1
|
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM, Au L. Bispecific antibodies: advancing precision oncology. Trends Cancer 2024; 10:893-919. [PMID: 39214782 DOI: 10.1016/j.trecan.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered molecules designed to target two different epitopes or antigens. The mechanism of action is determined by the bsAb molecular targets and structure (or format), which can be manipulated to create variable and novel functionalities, including linking immune cells with tumor cells, or dual signaling pathway blockade. Several bsAbs have already changed the treatment landscape of hematological malignancies and select solid cancers. However, the mechanisms of resistance to these agents are understudied and the management of toxicities remains challenging. Herein, we review the principles in bsAb engineering, current understanding of mechanisms of action and resistance, data for clinical application, and provide a perspective on ongoing challenges and future developments in this field.
Collapse
Affiliation(s)
- Mercedes Herrera
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Giulia Pretelli
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Thiago M Steiner
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lewis Au
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
3
|
Hale G. Living in LALA land? Forty years of attenuating Fc effector functions. Immunol Rev 2024. [PMID: 39158044 DOI: 10.1111/imr.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The Fc region of antibodies is vital for most of their physiological functions, many of which are engaged through binding to a range of Fc receptors. However, these same interactions are not always helpful or wanted when therapeutic antibodies are directed against self-antigens, and can sometimes cause catastrophic adverse reactions. Over the past 40 years, there have been intensive efforts to "silence" unwanted binding to Fc-gamma receptors, resulting in at least 45 different variants which have entered clinical trials. One of the best known is "LALA" (L234A/L235A). However, neither this, nor most of the other variants in clinical use are completely silenced, and in addition, the biophysical properties of many of them are compromised. I review the development of different variants to see what we can learn from their biological properties and use in the clinic. With the rise of powerful new uses of antibody therapy such as bispecific T-cell engagers, antibody-drug conjugates, and checkpoint inhibitors, it is increasingly important to optimize the Fc region as well as the antibody binding site in order to achieve the best combination of safety and efficacy.
Collapse
|
4
|
Goebeler ME, Stuhler G, Bargou R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:539-560. [PMID: 38822215 DOI: 10.1038/s41571-024-00905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Research into bispecific antibodies, which are designed to simultaneously bind two antigens or epitopes, has advanced enormously over the past two decades. Owing to advances in protein engineering technologies and considerable preclinical research efforts, bispecific antibodies are constantly being developed and optimized to improve their efficacy and to mitigate toxicity. To date, >200 of these agents, the majority of which are bispecific immune cell engagers, are in either preclinical or clinical evaluation. In this Review, we discuss the role of bispecific antibodies in patients with cancer, including history and development, as well as innovative targeting strategies, clinical applications, and adverse events. We also discuss novel alternative bispecific antibody constructs, such as those targeting two antigens expressed by tumour cells or cells located in the tumour microenvironment. Finally, we consider future research directions in this rapidly evolving field, including innovative antibody engineering strategies, which might enable more effective delivery, overcome resistance, and thus optimize clinical outcomes.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany.
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Gernot Stuhler
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Logghe T, van Zwol E, Immordino B, Van den Cruys K, Peeters M, Giovannetti E, Bogers J. Hyperthermia in Combination with Emerging Targeted and Immunotherapies as a New Approach in Cancer Treatment. Cancers (Basel) 2024; 16:505. [PMID: 38339258 PMCID: PMC10854776 DOI: 10.3390/cancers16030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in the development of novel therapies, cancer continues to stand as a prominent global cause of death. In many cases, the cornerstone of standard-of-care therapy consists of chemotherapy (CT), radiotherapy (RT), or a combination of both. Notably, hyperthermia (HT), which has been in clinical use in the last four decades, has proven to enhance the effectiveness of CT and RT, owing to its recognized potency as a sensitizer. Furthermore, HT exerts effects on all steps of the cancer-immunity cycle and exerts a significant impact on key oncogenic pathways. Most recently, there has been a noticeable expansion of cancer research related to treatment options involving immunotherapy (IT) and targeted therapy (TT), a trend also visible in the research and development pipelines of pharmaceutical companies. However, the potential results arising from the combination of these innovative therapeutic approaches with HT remain largely unexplored. Therefore, this review aims to explore the oncology pipelines of major pharmaceutical companies, with the primary objective of identifying the principal targets of forthcoming therapies that have the potential to be advantageous for patients by specifically targeting molecular pathways involved in HT. The ultimate goal of this review is to pave the way for future research initiatives and clinical trials that harness the synergy between emerging IT and TT medications when used in conjunction with HT.
Collapse
Affiliation(s)
- Tine Logghe
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Eke van Zwol
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Benoît Immordino
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | | | - Marc Peeters
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johannes Bogers
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
6
|
van der Wulp W, Remst DFG, Kester MGD, Hagedoorn RS, Parren PWHI, van Kasteren SI, Schuurman J, Hoeben RC, Ressing ME, Bleijlevens B, Heemskerk MHM. Antibody-mediated delivery of viral epitopes to redirect EBV-specific CD8 + T-cell immunity towards cancer cells. Cancer Gene Ther 2024; 31:58-68. [PMID: 37945970 PMCID: PMC10794138 DOI: 10.1038/s41417-023-00681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Antibody-mediated delivery of immunogenic epitopes to redirect virus-specific CD8+ T-cells towards cancer cells is an emerging and promising new therapeutic strategy. These so-called antibody-epitope conjugates (AECs) rely on the proteolytic release of the epitopes close to the tumor surface for presentation by HLA class I molecules to eventually redirect and activate virus-specific CD8+ T-cells towards tumor cells. We fused the immunogenic EBV-BRLF1 epitope preceded by a protease cleavage site to the C-terminus of the heavy and/or light chains of cetuximab and trastuzumab. We evaluated these AECs and found that, even though all AECs were able to redirect the EBV-specific T-cells, AECs with an epitope fused to the C-terminus of the heavy chain resulted in higher levels of T-cell activation compared to AECs with the same epitope fused to the light chain of an antibody. We observed that all AECs were depending on the presence of the antibody target, that the level of T-cell activation correlated with expression levels of the antibody target, and that our AECs could efficiently deliver the BRLF1 epitope to cancer cell lines from different origins (breast, ovarian, lung, and cervical cancer and a multiple myeloma). Moreover, in vivo, the AECs efficiently reduced tumor burden and increased the overall survival, which was prolonged even further in combination with immune checkpoint blockade. We demonstrate the potential of these genetically fused AECs to redirect the potent EBV-specific T-cells towards cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Willemijn van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | | | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
8
|
Alsajjan R, Mason WP. Bispecific T-Cell Engagers and Chimeric Antigen Receptor T-Cell Therapies in Glioblastoma: An Update. Curr Oncol 2023; 30:8501-8549. [PMID: 37754534 PMCID: PMC10529026 DOI: 10.3390/curroncol30090619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. The prognosis is extremely poor even with standard treatment of maximal safe resection, radiotherapy, and chemotherapy. Recurrence is inevitable within months, and treatment options are very limited. Chimeric antigen receptor T-cell therapy (CART) and bispecific T-cell engagers (TCEs) are two emerging immunotherapies that can redirect T-cells for tumor-specific killing and have shown remarkable success in hematological malignancies and been under extensive study for application in glioblastoma. While there have been multiple clinical trials showing preliminary evidence of safety and efficacy for CART, bispecific TCEs are still in the early stages of clinical testing, with preclinical studies showing very promising results. However, there are multiple shared challenges that need to be addressed in the future, including the route of delivery, antigen escape, the immunosuppressive tumor microenvironment, and toxicity resulting from the limited choice of tumor-specific antigens. Efforts are underway to optimize the design of both these treatments and find the ideal combination therapy to overcome these challenges. In this review, we describe the work that has been performed as well as novel approaches in glioblastoma and in other solid tumors that may be applicable in the future.
Collapse
Affiliation(s)
- Roa Alsajjan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
- Division of Neurology, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Warren P. Mason
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
9
|
Pejchal R, Cooper AB, Brown ME, Vásquez M, Krauland EM. Profiling the Biophysical Developability Properties of Common IgG1 Fc Effector Silencing Variants. Antibodies (Basel) 2023; 12:54. [PMID: 37753968 PMCID: PMC10526015 DOI: 10.3390/antib12030054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Therapeutic antibodies represent the most significant modality in biologics, with around 150 approved drugs on the market. In addition to specific target binding mediated by the variable fragments (Fvs) of the heavy and light chains, antibodies possess effector functions through binding of the constant region (Fc) to Fcγ receptors (FcγR), which allow immune cells to attack and kill target cells using a variety of mechanisms. However, for some applications, including T-cell-engaging bispecifics, this effector function is typically undesired. Mutations within the lower hinge and the second constant domain (CH2) of IgG1 that comprise the FcγR binding interface reduce or eliminate effector function ("Fc silencing") while retaining binding to the neonatal Fc receptor (FcRn), important for normal antibody pharmacokinetics (PKs). Comprehensive profiling of biophysical developability properties would benefit the choice of constant region variants for development. Here, we produce a large panel of representative mutations previously described in the literature and in many cases in clinical or approved molecules, generate select combinations thereof, and characterize their binding and biophysical properties. We find that some commonly used CH2 mutations, including D265A and P331S, are effective in reducing binding to FcγR but significantly reduce stability, promoting aggregation, particularly under acidic conditions commonly employed in manufacturing. We highlight mutation sets that are particularly effective for eliminating Fc effector function with the retention of WT-like stability, including L234A, L235A, and S267K (LALA-S267K), L234A, L235E, and S267K (LALE-S267K), L234A, L235A, and P329A (LALA-P329A), and L234A, L235E, and P329G (LALE-P329G).
Collapse
Affiliation(s)
- Robert Pejchal
- Adimab LLC, Lebanon, NH 03766, USA; (M.E.B.); (M.V.); (E.M.K.)
| | | | | | | | | |
Collapse
|
10
|
Grasso L, Jiang Q, Hassan R, Nicolaides NC, Kline JB. NAV-003, a bispecific antibody targeting a unique mesothelin epitope and CD3ε with improved cytotoxicity against humoral immunosuppressed tumors. Eur J Immunol 2023; 53:e2250309. [PMID: 37146241 PMCID: PMC10524251 DOI: 10.1002/eji.202250309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/07/2023]
Abstract
Mesothelin (MSLN) is a cell surface protein overexpressed in a number of cancer types. Several antibody- and cellular-based MSLN targeting agents have been tested in clinical trials where their therapeutic efficacy has been moderate at best. Previous studies using antibody and Chimeric Antigen Receptor-T cells (CAR-T) strategies have shown the importance of particular MSLN epitopes for optimal therapeutic response, while other studies have found that certain MSLN-positive tumors can produce proteins that can bind to subsets of IgG1-type antibodies and suppress their immune effector activities. In an attempt to develop an improved anti-MSLN targeting agent, we engineered a humanized divalent anti-MSLN/anti-CD3ε bispecific antibody that avoids suppressive factors, can target a MSLN epitope proximal to the tumor cell surface, and is capable of effectively binding, activating, and redirecting T cells to the surface of MSLN-positive tumor cells. NAV-003 has shown significantly improved tumor cell killing against lines producing immunosuppressive proteins in vitro and in vivo. Moreover, NAV-003 demonstrated good tolerability in mice and efficacy against patient-derived mesothelioma xenografts co-engrafted with human peripheral blood mononuclear cells. Together these data support the potential for NAV-003 clinical development and human proof-of-concept studies in patients with MSLN-expressing cancers.
Collapse
Affiliation(s)
- Luigi Grasso
- Navrogen Inc., 1837 University Circle, Cheyney, PA 19319
| | - Qun Jiang
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, Maryland
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, CCR, NCI, NIH, Bethesda, Maryland
| | | | | |
Collapse
|
11
|
Shah D, Soper B, Shopland L. Cytokine release syndrome and cancer immunotherapies - historical challenges and promising futures. Front Immunol 2023; 14:1190379. [PMID: 37304291 PMCID: PMC10248525 DOI: 10.3389/fimmu.2023.1190379] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Cancer is the leading cause of death worldwide. Cancer immunotherapy involves reinvigorating the patient's own immune system to fight against cancer. While novel approaches like Chimeric Antigen Receptor (CAR) T cells, bispecific T cell engagers, and immune checkpoint inhibitors have shown promising efficacy, Cytokine Release Syndrome (CRS) is a serious adverse effect and remains a major concern. CRS is a phenomenon of immune hyperactivation that results in excessive cytokine secretion, and if left unchecked, it may lead to multi-organ failure and death. Here we review the pathophysiology of CRS, its occurrence and management in the context of cancer immunotherapy, and the screening approaches that can be used to assess CRS and de-risk drug discovery earlier in the clinical setting with more predictive pre-clinical data. Furthermore, the review also sheds light on the potential immunotherapeutic approaches that can be used to overcome CRS associated with T cell activation.
Collapse
Affiliation(s)
- Deep Shah
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| | - Brian Soper
- Technical Information Services, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Lindsay Shopland
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| |
Collapse
|
12
|
Huang PL, Kan HT, Hsu CH, Hsieh HT, Cheng WC, Huang RY, You JJ. A bispecific antibody AP203 targeting PD-L1 and CD137 exerts potent antitumor activity without toxicity. J Transl Med 2023; 21:346. [PMID: 37226226 PMCID: PMC10210478 DOI: 10.1186/s12967-023-04193-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Bispecific antibody has garnered considerable attention in the recent years due to its impressive preliminary efficacy in hematological malignancies. For solid tumors, however, the main hindrance is the suppressive tumor microenvironment, which effectively impedes the activation of infiltrating T cells. Herein, we designed a bispecific antibody AP203 with high binding affinity to PD-L1 and CD137 and assessed its safety and anti-tumor efficacy, as well as explored the mechanism of action. METHODS The optimal antibody binders against PD-L1 and CD137 were screened from the OmniMab phagemid library. The binding affinity of the constructed AP203 were evaluated using enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). T-cell stimulatory capacity was assessed using the allogeneic mixed lymphocyte reaction (MLR), antigen-specific recall response, and coculture with PD-L1-expressing cells. In vivo antitumor efficacy was evaluated using two models of tumor-xenografted humanized mice with profiling of tumor infiltrating lymphocytes (TILs). The possible toxicity of AP203 was examined using in vitro cytokine release assay by human PBMCs. RESULTS AP203, which simultaneously targeted PD-L1 and costimulatory CD137, elicit superior agonistic effects over parental antibodies alone or in combination in terms of T cell activation, enhanced memory recall responses, and overcoming Treg-mediated immunosuppression (P < 0.05). The agonistic activity of AP203 was further demonstrated PD-L1-dependent by coculturing T cells with PD-L1-expressing cells. In vivo animal studies using immunodeficient or immunocompetent mice both showed a dose-related antitumor efficacy superior to parental antibodies in combination (P < 0.05). Correspondingly, AP203 significantly increased tumor infiltrating CD8 + T cells, while decreased CD4 + T cells, as well as Treg cells (P < 0.05), resulting in a dose-dependent increase in the CD8 + /CD4 + ratio. Moreover, either soluble or immobilized AP203 did not induce the production of inflammatory cytokines by human PBMCs. CONCLUSIONS AP203 exerts potent antitumor activity not only by blocking PD-1/PD-L1 inhibitory signaling, but also by activating CD137 costimulatory signaling in effector T cells that consequently counteracts Treg-mediated immunosuppression. Based on promising preclinical results, AP203 should be a suitable candidate for clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Po-Lin Huang
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan.
| | - Hung-Tsai Kan
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan
| | - Ching-Hsuan Hsu
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan
| | - Hsin-Ta Hsieh
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan
| | - Wan-Chien Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Jhong-Jhe You
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan.
| |
Collapse
|
13
|
Shanshal M, Caimi PF, Adjei AA, Ma WW. T-Cell Engagers in Solid Cancers-Current Landscape and Future Directions. Cancers (Basel) 2023; 15:2824. [PMID: 37345160 DOI: 10.3390/cancers15102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Monoclonal antibody treatment initially heralded an era of molecularly targeted therapy in oncology and is now widely applied in modulating anti-cancer immunity by targeting programmed cell receptors (PD-1, PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and, more recently, lymphocyte-activation gene 3 (LAG3). Chimeric antigen receptor T-cell therapy (CAR-T) recently proved to be a valid approach to inducing anti-cancer immunity by directly modifying the host's immune cells. However, such cell-based therapy requires extensive resources such as leukapheresis, ex vivo modification and expansion of cytotoxic T-cells and current Good Manufacturing Practice (cGMP) laboratories and presents significant logistical challenges. Bi-/trispecific antibody technology is a novel pharmaceutical approach to facilitate the engagement of effector immune cells to potentially multiple cancer epitopes, e.g., the recently approved blinatumomab. This opens the opportunity to develop 'off-the-shelf' anti-cancer agents that achieve similar and/or complementary anti-cancer effects as those of modified immune cell therapy. The majority of bi-/trispecific antibodies target the tumor-associated antigens (TAA) located on the extracellular surface of cancer cells. The extracellular antigens represent just a small percentage of known TAAs and are often associated with higher toxicities because some of them are expressed on normal cells (off-target toxicity). In contrast, the targeting of intracellular TAAs such as mutant RAS and TP53 may lead to fewer off-target toxicities while still achieving the desired antitumor efficacy (on-target toxicity). Here, we provide a comprehensive review on the emerging field of bi-/tri-specific T-cell engagers and potential therapeutic opportunities.
Collapse
Affiliation(s)
| | | | | | - Wen Wee Ma
- Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
van der Wulp W, Gram AM, Bleijlevens B, Hagedoorn RS, Araman C, Kim RQ, Drijfhout JW, Parren PWHI, Hibbert RG, Hoeben RC, van Kasteren SI, Schuurman J, Ressing ME, Heemskerk MHM. Comparison of methods generating antibody-epitope conjugates for targeting cancer with virus-specific T cells. Front Immunol 2023; 14:1183914. [PMID: 37261346 PMCID: PMC10227578 DOI: 10.3389/fimmu.2023.1183914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Therapeutic antibody-epitope conjugates (AECs) are promising new modalities to deliver immunogenic epitopes and redirect virus-specific T-cell activity to cancer cells. Nevertheless, many aspects of these antibody conjugates require optimization to increase their efficacy. Here we evaluated different strategies to conjugate an EBV epitope (YVL/A2) preceded by a protease cleavage site to the antibodies cetuximab and trastuzumab. Three approaches were taken: chemical conjugation (i.e. a thiol-maleimide reaction) to reduced cysteine side chains, heavy chain C-terminal enzymatic conjugation using sortase A, and genetic fusions, to the heavy chain (HC) C-terminus. All three conjugates were capable of T-cell activation and target-cell killing via proteolytic release of the EBV epitope and expression of the antibody target was a requirement for T-cell activation. Moreover, AECs generated with a second immunogenic epitope derived from CMV (NLV/A2) were able to deliver and redirect CMV specific T-cells, in which the amino sequence of the attached peptide appeared to influence the efficiency of epitope delivery. Therefore, screening of multiple protease cleavage sites and epitopes attached to the antibody is necessary. Taken together, our data demonstrated that multiple AECs could sensitize cancer cells to virus-specific T cells.
Collapse
Affiliation(s)
- Willemijn van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Anna M. Gram
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Can Araman
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sander I. van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | - Maaike E. Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
15
|
Espinosa-Cotton M, Guo HF, Cheung NKV. Tracking Bispecific Antibody-Induced T Cell Trafficking Using Luciferase-Transduced Human T Cells. J Vis Exp 2023:10.3791/64390. [PMID: 37246883 PMCID: PMC10999115 DOI: 10.3791/64390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
T cell-engaging bispecific antibodies (T-BsAbs) are in various stages of preclinical development and clinical testing for solid tumors. Factors such as valency, spatial arrangement, interdomain distance, and Fc mutations affect the anti-tumor efficacy of these therapies, commonly by influencing the homing of T cells to tumors, which remains a major challenge. Here, we describe a method to transduce activated human T cells with luciferase, allowing in vivo tracking of T cells during T-BsAb therapy studies. The ability of T-BsAbs to redirect T cells to tumors can be quantitatively evaluated at multiple time points during treatment, allowing researchers to correlate the anti-tumor efficacy of T-BsAbs and other interventions with the persistence of T cells in tumors. This method alleviates the need to sacrifice animals during treatment to histologically assess T cell infiltration and can be repeated at multiple time points to determine the kinetics of T cell trafficking during and after treatment.
Collapse
Affiliation(s)
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
16
|
Abstract
As a natural function, antibodies defend the host from infected cells and pathogens by recognizing their pathogenic determinants. Antibodies (Abs) gained wide acceptance with an enormous impact on human health and have predominantly captured the arena of bio-therapeutics and bio-diagnostics. The scope of Ab-based biologics is vast, and it is likely to solve many unmet clinical needs in future. The majority of attention is now devoted to developing innovative technologies for manufacturing and engineering Abs, better suited to satisfy human needs. The advent of Ab engineering technologies (AET) led to phenomenal developments leading to the generation of Abs-/Ab-derived molecules with desirable functional properties proportional to their expanding requirements. Evolution brought by AET, from the naturally occurring Ab forms to several advanced Ab formats and derivatives, was much needed as it is of great interest to the pharmaceutical industry. Thus, numerous advancements in AET have propelled success in therapeutic Ab development, along with the potential for ever-increasing improvements. Unique characteristics of Abs, such as its diversity, specificity, structural integrity and an array of possible applications, together inspire continuous innovation in the field. Overall, the AET could assist in conquer of several limitations of Abs in terms of their applicability in the field of therapeutics, diagnostics and research; AET has so far led to the production of next-generation Abs, which have revolutionized these arenas. Here in this review, we discuss the various distinguished engineering platforms for Ab development and the progress in modern therapeutics by the so-called "next-generation Abs."
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Banaras Hindu University, Varanasi, India.,Amity University Rajasthan, Jaipur, India
| |
Collapse
|
17
|
Conformation specific antagonistic high affinity antibodies to the RON receptor kinase for imaging and therapy. Sci Rep 2022; 12:22564. [PMID: 36581692 PMCID: PMC9800565 DOI: 10.1038/s41598-022-26404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
The RON receptor tyrosine kinase is an exceptionally interesting target in oncology and immunology. It is not only overexpressed in a wide variety of tumors but also has been shown to be expressed on myeloid cells associated with tumor infiltration, where it serves to dampen tumour immune responses and reduce the efficacy of anti-CTLA4 therapy. Potent and selective inhibitory antibodies to RON might therefore both inhibit tumor cell growth and stimulate immune rejection of tumors. We derived cloned and sequenced a new panel of exceptionally avid anti-RON antibodies with picomolar binding affinities that inhibit MSP-induced RON signaling and show remarkable potency in antibody dependent cellular cytotoxicity. Antibody specificity was validated by cloning the antibody genes and creating recombinant antibodies and by the use of RON knock out cell lines. When radiolabeled with 89-Zirconium, the new antibodies 3F8 and 10G1 allow effective immuno-positron emission tomography (immunoPET) imaging of RON-expressing tumors and recognize universally exposed RON epitopes at the cell surface. The 10G1 was further developed into a novel bispecific T cell engager with a 15 pM EC50 in cytotoxic T cell killing assays.
Collapse
|
18
|
Zwolak A, Chan SR, Harvilla P, Mahady S, Armstrong AA, Luistro L, Tamot N, Yamada D, Derebe M, Pomerantz S, Chiu M, Ganesan R, Chowdhury P. A stable, engineered TL1A ligand co-stimulates T cells via specific binding to DR3. Sci Rep 2022; 12:20538. [PMID: 36446890 PMCID: PMC9709071 DOI: 10.1038/s41598-022-24984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
TL1A (TNFSF15) is a TNF superfamily ligand which can bind the TNFRSF member death receptor 3 (DR3) on T cells and the soluble decoy receptor DcR3. Engagement of DR3 on CD4+ or CD8+ effector T cells by TL1A induces downstream signaling, leading to proliferation and an increase in secretion of inflammatory cytokines. We designed a stable recombinant TL1A molecule that (1) displays high monodispersity and stability, (2) displays the ability to activate T cells in vitro and in vivo, and (3) lacks binding to DcR3 while retaining functional activity via DR3. Together these results suggest the TL1A ligand can be amenable to therapeutic development on its own or paired with a tumor-targeting moiety.
Collapse
Affiliation(s)
- Adam Zwolak
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Szeman Ruby Chan
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Paul Harvilla
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Sally Mahady
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Anthony A. Armstrong
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Leopoldo Luistro
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Ninkka Tamot
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Douglas Yamada
- grid.497530.c0000 0004 0389 4927Oncology Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Mehabaw Derebe
- grid.417993.10000 0001 2260 0793Merck Research Laboratories, Discovery Biologics, Protein Sciences, South San Francisco, CA USA
| | - Steven Pomerantz
- grid.497530.c0000 0004 0389 4927Biologics Discovery, Janssen Research & Development, LLC, Spring House, PA 19477 USA
| | - Mark Chiu
- Tavotek Biotherapeutics, Spring House, PA USA
| | - Rajkumar Ganesan
- grid.417886.40000 0001 0657 5612Immunotherapeutics, Amgen, South San Francisco, CA USA
| | - Partha Chowdhury
- grid.497530.c0000 0004 0389 4927Cell Engineering and Early Development, Janssen Research & Development, Spring House, PA USA
| |
Collapse
|
19
|
Bispecific Antibodies: A Novel Approach for the Treatment of Solid Tumors. Pharmaceutics 2022; 14:pharmaceutics14112442. [PMID: 36432631 PMCID: PMC9694302 DOI: 10.3390/pharmaceutics14112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Advancement in sequencing technologies allows for the identification of molecular pathways involved in tumor progression and treatment resistance. Implementation of novel agents targeting these pathways, defined as targeted therapy, significantly improves the prognosis of cancer patients. Targeted therapy also includes the use of monoclonal antibodies (mAbs). These drugs recognize specific oncogenic proteins expressed in cancer cells. However, as with many other types of targeting agents, mAb-based therapy usually fails in the long-term control of cancer progression due to the development of resistance. In many cases, resistance is caused by the activation of alternative pathways involved in cancer progression and the development of immune evasion mechanisms. To overcome this off-target resistance, bispecific antibodies (bsAbs) were developed to simultaneously target differential oncogenic pathway components, tumor-associated antigens (TAA) and immune regulatory molecules. As a result, in the last few years, several bsAbs have been tested or are being tested in cancer patients. A few of them are currently approved for the treatment of some hematologic malignancies but no bsAbs are approved in solid tumors. In this review, we will provide an overview of the state-of-the-art of bsAbs for the treatment of solid malignancies outlining their classification, design, main technologies utilized for production, mechanisms of action, updated clinical evidence and potential limitations.
Collapse
|
20
|
Espinosa-Cotton M, Cheung NKV. Bispecific antibodies for the treatment of neuroblastoma. Pharmacol Ther 2022; 237:108241. [PMID: 35830901 PMCID: PMC10351215 DOI: 10.1016/j.pharmthera.2022.108241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Bispecific antibodies (BsAb) are a new generation of antibody-based therapy, conveying artificial specificity to polyclonal T cells or radiohaptens. These drugs have been successfully implemented to cure hematologic malignancies and are under clinical investigation for solid tumors including HRNB. BsAbs designed to engage T cells or increase the therapeutic index of radiotherapy hold the potential to significantly improve the long-term survival of HRNB patients by shrinking bulky tumors and more effectively eliminating micrometastases and preventing relapse. BsAbs can also be used to arm T cells, yielding a product analogous to CAR T cells, possibly with an improved safety profile. A thoughtful and realistic integration of these therapies into the standard of care should benefit more patients worldwide. Here we describe the history of development of BsAbs for HRNB, which dates back almost three decades. We discuss the merits and pitfalls of all relevant BsAbs, including T cell-engagers and agents used for radioimmunotherapy, highlighting the importance of structural design and interdomain spacing for anti-tumor efficacy.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York.
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York
| |
Collapse
|
21
|
Chen TT. Conditionally active T cell engagers for the treatment of solid tumors: rationale and clinical development. Expert Opin Biol Ther 2022; 22:955-963. [PMID: 35857922 DOI: 10.1080/14712598.2022.2098674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION T cell engagers are a class of bispecific molecules that induce highly potent T cell-dependent cytotoxicity by bringing T cell activating receptors into proximity with cancer-associated cell surface antigens. However, because of their high potency, there is a greater risk of on-target/off-tumor toxicity owing to normal tissues having tumor antigen expression even at low levels. To reduce these adverse events, the dysregulated activity of proteases within the tumor microenvironment has recently been explored to create inert prodrugs that become conditionally active engagers after their cleavage by these enzymes. AREAS COVERED T-cell engagers that have been introduced for clinical use, and their respective successes and failures are reviewed. The unique challenges of these bispecific molecules for treating solid tumors and prior technologies used to exploit the proteolytic tumor microenvironment to create better-tolerated prodrugs and how that experience has led to the current series of conditionally active T-cell engagers, are discussed. EXPERT OPINION Methods for modulating the serum half-life of both inert and activated T cell engagers could have important ramifications in how they infiltrate tumors and prevent toxicity. Alternative features of the tumor microenvironment can also be leveraged in the development of conditional T cell engagers.
Collapse
Affiliation(s)
- T Timothy Chen
- Maverick Therapeutics, Inc., a wholly owned subsidiary of Takeda Development Center Americas, Inc
| |
Collapse
|
22
|
Ordóñez-Reyes C, Garcia-Robledo JE, Chamorro DF, Mosquera A, Sussmann L, Ruiz-Patiño A, Arrieta O, Zatarain-Barrón L, Rojas L, Russo A, de Miguel-Perez D, Rolfo C, Cardona AF. Bispecific Antibodies in Cancer Immunotherapy: A Novel Response to an Old Question. Pharmaceutics 2022; 14:pharmaceutics14061243. [PMID: 35745815 PMCID: PMC9229626 DOI: 10.3390/pharmaceutics14061243] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/14/2023] Open
Abstract
Immunotherapy has redefined the treatment of cancer patients and it is constantly generating new advances and approaches. Among the multiple options of immunotherapy, bispecific antibodies (bsAbs) represent a novel thoughtful approach. These drugs integrate the action of the immune system in a strategy to redirect the activation of innate and adaptive immunity toward specific antigens and specific tumor locations. Here we discussed some basic aspects of the design and function of bsAbs, their main challenges and the state-of-the-art of these molecules in the treatment of hematological and solid malignancies and future perspectives.
Collapse
Affiliation(s)
- Camila Ordóñez-Reyes
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Juan Esteban Garcia-Robledo
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Diego F. Chamorro
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Andrés Mosquera
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
| | - Liliana Sussmann
- Department of Neurology, Fundación Universitaria de Ciencias de la Salud, Bogotá 111221, Colombia;
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), Mexico City 14080, Mexico; (O.A.); (L.Z.-B.)
| | - Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), Mexico City 14080, Mexico; (O.A.); (L.Z.-B.)
| | - Leonardo Rojas
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
| | | | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.d.M.-P.); (C.R.)
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.d.M.-P.); (C.R.)
| | - Andrés F. Cardona
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
- Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá 110131, Colombia
- Correspondence: ; Tel.: +57-(1)-6190052; Fax: +57-(1)-6190053
| |
Collapse
|
23
|
Crook ZR, Girard EJ, Sevilla GP, Brusniak MY, Rupert PB, Friend DJ, Gewe MM, Clarke M, Lin I, Ruff R, Pakiam F, Phi TD, Bandaranayake A, Correnti CE, Mhyre AJ, Nairn NW, Strong RK, Olson JM. Ex silico engineering of cystine-dense peptides yielding a potent bispecific T cell engager. Sci Transl Med 2022; 14:eabn0402. [PMID: 35584229 PMCID: PMC10118748 DOI: 10.1126/scitranslmed.abn0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.
Collapse
Affiliation(s)
- Zachary R Crook
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Blaze Bioscience Inc., Seattle, WA 98109, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gregory P Sevilla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Blaze Bioscience Inc., Seattle, WA 98109, USA
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter B Rupert
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Della J Friend
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mesfin M Gewe
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Midori Clarke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ida Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Ashok Bandaranayake
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew J Mhyre
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Roland K Strong
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
24
|
Aghanejad A, Bonab SF, Sepehri M, Haghighi FS, Tarighatnia A, Kreiter C, Nader ND, Tohidkia MR. A review on targeting tumor microenvironment: The main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol 2022; 207:592-610. [PMID: 35296439 DOI: 10.1016/j.ijbiomac.2022.03.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) as biological macromolecules have been remarked the large and growing pipline of the pharmaceutical market and also the most promising tool in modern medicine for cancer therapy. These therapeutic entities, which consist of whole mAbs, armed mAbs (i.e., antibody-toxin conjugates, antibody-drug conjugates, and antibody-radionuclide conjugates), and antibody fragments, mostly target tumor cells. However, due to intrinsic heterogeneity of cancer diseases, tumor cells targeting mAb have been encountered with difficulties in their unpredictable efficacy as well as variability in remission and durable clinical benefits among cancer patients. To address these pitfalls, the area has undergone two major evolutions with the intent of minimizing anti-drug responses and addressing limitations experienced with tumor cell-targeted therapies. As a novel hallmark of cancer, the tumor microenvironment (TME) is becoming the great importance of attention to develop innovative strategies based on therapeutic mAbs. Here, we underscore innovative strategies targeting TME by mAbs which destroy tumor cells indirectly through targeting vasculature system (e.g., anti-angiogenesis), immune system modulation (i.e., stimulation, suppression, and depletion), the targeting and blocking of stroma-based growth signals (e.g., cancer-associated fibroblasts), and targeting cancer stem cells, as well as, their effector mechanisms, clinical uses, and relevant mechanisms of resistance.
Collapse
Affiliation(s)
- Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Farashi Bonab
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sepehri
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadat Haghighi
- Yazd Diabetes Research Center, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Kreiter
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
T Cell Bispecific Antibodies: An Antibody-Based Delivery System for Inducing Antitumor Immunity. Pharmaceuticals (Basel) 2021; 14:ph14111172. [PMID: 34832954 PMCID: PMC8619951 DOI: 10.3390/ph14111172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
As a breakthrough immunotherapy, T cell bispecific antibodies (T-BsAbs) are a promising antibody therapy for various kinds of cancer. In general, T-BsAbs have dual-binding specificity to a tumor-associated antigen and a CD3 subunit forming a complex with the TCR. This enables T-BsAbs to crosslink tumor cells and T cells, inducing T cell activation and subsequent tumor cell death. Unlike immune checkpoint inhibitors, which release the brake of the immune system, T-BsAbs serve as an accelerator of T cells by stimulating their immune response via CD3 engagement. Therefore, they can actively redirect host immunity toward tumors, including T cell recruitment from the periphery to the tumor site and immunological synapse formation between tumor cells and T cells. Although the low immunogenicity of solid tumors increases the challenge of cancer immunotherapy, T-BsAbs capable of immune redirection can greatly benefit patients with such tumors. To investigate the detailed relationship between T-BsAbs delivery and their T cell redirection activity, it is necessary to determine how T-BsAbs deliver antitumor immunity to the tumor site and bring about tumor cell death. This review article discusses T-BsAb properties, specifically their pharmacokinetics, redirection of anticancer immunity, and local mechanism of action within tumor tissues, and discuss further challenges to expediting T-BsAb development.
Collapse
|
26
|
Wu Z, Lau CM, Sottile R, Le Luduec JB, Panjwani MK, Conaty PM, Srpan K, Laib Sampaio K, Mertens T, Adler SP, Hill AB, Barker JN, Cheung NKV, Sun JC, Hsu KC. Human Cytomegalovirus Infection Promotes Expansion of a Functionally Superior Cytoplasmic CD3 + NK Cell Subset with a Bcl11b-Regulated T Cell Signature. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2534-2544. [PMID: 34625521 PMCID: PMC8578400 DOI: 10.4049/jimmunol.2001319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 09/04/2021] [Indexed: 11/19/2022]
Abstract
Human CMV (HCMV) is a ubiquitous pathogen that indelibly shapes the NK cell repertoire. Using transcriptomic, epigenomic, and proteomic approaches to evaluate peripheral blood NK cells from healthy human volunteers, we find that prior HCMV infection promotes NK cells with a T cell-like gene profile, including the canonical markers CD3ε, CD5, and CD8β, as well as the T cell lineage-commitment transcription factor Bcl11b. Although Bcl11b expression is upregulated during NK maturation from CD56bright to CD56dim, we find a Bcl11b-mediated signature at the protein level for FcεRIγ, PLZF, IL-2Rβ, CD3γ, CD3δ, and CD3ε in later-stage, HCMV-induced NK cells. BCL11B is targeted by Notch signaling in T cell development, and culture of NK cells with Notch ligand increases cytoplasmic CD3ε expression. The Bcl11b-mediated gain of CD3ε, physically associated with CD16 signaling molecules Lck and CD247 in NK cells is correlated with increased Ab-dependent effector function, including against HCMV-infected cells, identifying a potential mechanism for their prevalence in HCMV-infected individuals and their prospective clinical use in Ab-based therapies.
Collapse
Affiliation(s)
- Zeguang Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Colleen M Lau
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Rosa Sottile
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jean-Benoît Le Luduec
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - M Kazim Panjwani
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Peter M Conaty
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Katja Srpan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Thomas Mertens
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Juliet N Barker
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joseph C Sun
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY; and
| | - Katharine C Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY;
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
27
|
Development of a Recombinant RBD Subunit Vaccine for SARS-CoV-2. Viruses 2021; 13:v13101936. [PMID: 34696367 PMCID: PMC8541238 DOI: 10.3390/v13101936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
The novel coronavirus pneumonia (COVID-19) pandemic is a great threat to human society and now is still spreading. Although several vaccines have been authorized for emergency use, only one recombinant subunit vaccine has been permitted for widespread use. More subunit vaccines for COVID-19 should be developed in the future. The receptor binding domain (RBD), located at the S protein of SARS-CoV-2, contains most of the neutralizing epitopes. However, the immunogenicity of RBD monomers is not strong enough. In this study, we fused the RBD-monomer with a modified Fc fragment of human IgG1 to form an RBD-Fc fusion protein. The recombinant vaccine candidate based on the RBD-Fc protein could induce high levels of IgG and neutralizing antibody in mice, and these could last for at least three months. The secretion of IFN-γ, IL-2 and IL-10 in the RBD-stimulated splenocytes of immunized mice also increased significantly. Our results first showed that the RBD-Fc vaccine could induce both humoral and cellular immune responses and might be an optional strategy to control COVID-19.
Collapse
|
28
|
Lin TY, Park JA, Long A, Guo HF, Cheung NKV. Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer immunotherapy. J Immunother Cancer 2021; 9:jitc-2021-003114. [PMID: 34497115 PMCID: PMC8438958 DOI: 10.1136/jitc-2021-003114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prognosis for metastatic Ewing sarcoma family of tumors (EFT) is still poor despite high-dose chemotherapy and radiation treatment. Immunotherapies hold promise, but cancer antigen-targeting immunotherapies have largely failed to induce effective T cell receptor-mediated antitumor response. However, T cell-engaging bispecific antibodies (T-BsAbs) have yet to be adequately explored. METHODS Rehumanized STEAP1-IgG was used to build T-BsAb (named BC261) using the 2+2 IgG-[L]-scFv platform carrying the anti-CD3 huOKT3 scFv as the second specificity. Its binding epitope mapping, species cross-reactivity, tumor cell line staining, and in vitro cytotoxicity were investigated thoroughly. Its potency in driving tumor-infiltrating lymphocytes (TILs) was quantified using bioluminescence, correlated with in vivo antitumor response against cell line-derived or patient-derived xenografts (CDXs or PDXs) and compared with anti-STEAP1 T-BsAbs built on representative antibody platforms. RESULTS BC261 binding epitope was mapped to its second extracellular domain of STEAP1 shared among canine and primate orthologs. BC261 induced potent cytotoxicity against panels of EFT, prostate cancer, and canine osteosarcoma cell lines despite their low antigen density. BC261 drove significantly more TILs into tumors (30-fold) and exerted superior antitumor effects compared with the other standard BsAb platforms. The antitumor efficacy of BC261 was consistent against EFT and prostate cancer CDXs and PDXs. CONCLUSIONS BC261 was highly efficient in driving T cell infiltration and tumor ablation. Either as stand-alone therapeutics or for ex vivo armed T cells, this novel anti-STEAP1 T-BsAb BC261 has therapeutic potential.
Collapse
Affiliation(s)
- Tsung-Yi Lin
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeong A Park
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alan Long
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong-Fen Guo
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nai-Kong V Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
29
|
Nakajima M, Guo HF, Hoseini SS, Suzuki M, Xu H, Cheung NK. Potent antitumor effect of T cells armed with anti-GD2 bispecific antibody. Pediatr Blood Cancer 2021; 68:e28971. [PMID: 33844437 PMCID: PMC9347186 DOI: 10.1002/pbc.28971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Humanized 3F8-bispecific antibody (hu3F8-BsAb) using the IgG(L)-scFv format (where scFv is single-chain variable fragment), where the anti-CD3 huOKT3 scFv is fused with the carboxyl end of the hu3F8 light chain, has potent antitumor cytotoxicity against GD2(+) tumors. To overcome the insufficient number and function of T cells in cancer patients, they can be rejuvenated and expanded ex vivo before arming with hu3F8-BsAb for adoptive transfer, potentially reducing toxic side effects from direct BsAb administration. PROCEDURE T cells from normal volunteers were expanded and activated ex vivo using CD3/CD28 beads for 8 days. Activated T cells (ATCs) were harvested and co-incubated with a Good Manufacturing Practice grade hu3F8-BsAb at room temperature for 20 min. These armed ATCs were tested for cytotoxicity in vitro and in vivo against human GD2(+) cell lines and patient-derived xenografts in BALB-Rag2-/- IL-2R-γc-KO mice. RESULTS Hu3F8-BsAb armed ATCs showed robust antigen-specific tumor cytotoxicity against GD2(+) tumors in vitro. In vivo, T cells armed with hu3F8-BsAb were highly cytotoxic against GD2(+) melanoma and neuroblastoma xenografts in mice, accompanied by T-cell infiltration without significant side effects. Only zeptomole (10-21 ) quantities of BsAb per T cell was required for maximal antitumor effects. Tumor response was a function of T-cell dose. CONCLUSION BsAb armed T cells may have clinical utility as the next generation of cytotherapy combined with recombinant BsAb against human tumors for both adult and pediatrics, if autologous T cells can be activated and expanded ex vivo.
Collapse
Affiliation(s)
- Miho Nakajima
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSK), New York, New York,Current Address: Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hong-fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSK), New York, New York
| | | | - Maya Suzuki
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSK), New York, New York,Current Address: Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSK), New York, New York
| | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSK), New York, New York
| |
Collapse
|
30
|
Hashmi H, Husnain M, Khan A, Usmani SZ. CD38-Directed Therapies for Management of Multiple Myeloma. Immunotargets Ther 2021; 10:201-211. [PMID: 34235096 PMCID: PMC8254545 DOI: 10.2147/itt.s259122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
The survival outcomes for multiple myeloma have improved several-fold in the past two decades, primarily due to the introduction of therapies with novel mechanisms of action including immunomodulatory agents, proteasome inhibitors, stem cell transplant and monoclonal antibodies in the schema of therapy. Antibody-based therapies targeting the surface marker CD38, namely daratumumab and isatuximab, have emerged as being highly effective as single agents as well as in combination regimens for both newly diagnosed and relapsed settings. Herein, the authors summarize the most recent data with both the current and emerging CD38-directed therapies in multiple myeloma.
Collapse
Affiliation(s)
- Hamza Hashmi
- Department of Medicine, Division of Hematology/Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Muhammad Husnain
- Department of Medicine, Division of Hematology/Oncology, University of Arizona, Tucson, AZ, USA
| | - Ali Khan
- Division of Plasma Cell Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - Saad Z Usmani
- Division of Plasma Cell Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| |
Collapse
|
31
|
Zhou S, Liu M, Ren F, Meng X, Yu J. The landscape of bispecific T cell engager in cancer treatment. Biomark Res 2021; 9:38. [PMID: 34039409 PMCID: PMC8157659 DOI: 10.1186/s40364-021-00294-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
T cell-based immunotherapies have revolutionized treatment paradigms in various cancers, however, limited response rates secondary to lack of significant T-cell infiltration in the tumor site remain a major problem. To address this limitation, strategies for redirecting T cells to treat cancer are being intensively investigated, while the bispecific T cell engager (BiTE) therapy constitutes one of the most promising therapeutic approaches. BiTE is a bispecific antibody construct with a unique function, simultaneously binding an antigen on tumor cells and a surface molecule on T cells to induce tumor lysis. BiTE therapy represented by blinatumomab has achieved impressive efficacy in the treatment of B cell malignancies. However, major mechanisms of resistance to BiTE therapy are associated with antigen loss and immunosuppressive factors such as the upregulation of immune checkpoints. Thus, modification of antibody constructs and searching for combination strategies designed to further enhance treatment efficacy as well as reduce toxicity has become an urgent issue, especially for solid tumors in which response to BiTE therapy is always poor. In particular, immunotherapies focusing on innate immunity have attracted increasing interest and have shown promising anti-tumor activity by engaging innate cells or innate-like cells, which can be used alone or complement current therapies. In this review, we depict the landscape of BiTE therapy, including clinical advances with potential response predictors, challenges of treatment toxicity and resistance, and developments of novel immune cell-based engager therapy.
Collapse
Affiliation(s)
- Shujie Zhou
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingguo Liu
- Department of Oncology, Yuncheng Honesty Hospital, Heze, Shandong, China
| | - Fei Ren
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiangjiao Meng
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong, China.
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
32
|
Hoseini SS, Vadlamudi M, Espinosa-Cotton M, Tran H, Feng Y, Guo HF, Xu H, Cheung I, Cheung NKV. T cell engaging bispecific antibodies targeting CD33 IgV and IgC domains for the treatment of acute myeloid leukemia. J Immunother Cancer 2021; 9:e002509. [PMID: 34035113 PMCID: PMC8154967 DOI: 10.1136/jitc-2021-002509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) remains one of the most challenging hematological malignancies. Despite progress in therapeutics, majority of patients succumb to this neoplasm. CD33 is a proven therapeutic target, given its expression on most AML cells. Almost all anti-CD33 antibodies target the membrane distal immunoglobulin V (IgV) domain of the CD33 extracellular domain. METHODS In this manuscript, we present data on three bispecific antibodies (BsAbs) against the CD33 IgV and membrane proximal immunoglobulin C (IgC) domains. We use in vitro binding and cytotoxicity assays to show the effect of these BsAbs on AML cell lines. We also use immunodeficient mice-bearing leukemias from cell lines and patient-derived xenografts to show the effect of these BsAbs in vivo. RESULTS In vitro, the IgV-targeting BsAb had higher binding to AML cell lines using flow cytometry and delivered more potent cytotoxicity in T-cell-dependent cytotoxicity assays; importantly, the IgC domain-targeting outperformed the IgV domain-targeting BsAb in medullary and extramedullary leukemia animal models. CONCLUSIONS These data support further clinical development of this BsAb for first-in-human phase I clinical trial.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Cell Proliferation/drug effects
- Coculture Techniques
- Cytokines/metabolism
- Humans
- Immunoglobulin Domains
- Immunoglobulin Variable Region
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Lymphocyte Activation/drug effects
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Sialic Acid Binding Ig-like Lectin 3/antagonists & inhibitors
- Sialic Acid Binding Ig-like Lectin 3/immunology
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- THP-1 Cells
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Sayed Shahabuddin Hoseini
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Ymabs Therapeutics, Nutley, New Jersey, USA
| | | | | | - Hoa Tran
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yi Feng
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong-Fen Guo
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong Xu
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Irene Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nai-Kong V Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
33
|
de Miguel M, Umana P, Gomes de Morais AL, Moreno V, Calvo E. T-cell-engaging Therapy for Solid Tumors. Clin Cancer Res 2021; 27:1595-1603. [PMID: 33082210 DOI: 10.1158/1078-0432.ccr-20-2448] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/29/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
T-cell engagers (TCE) are a rapidly evolving novel group of treatments that have in common the concurrent engagement of a T-cell surface molecule and a tumoral cell antigen. Bispecific antibodies and genetically engineered adoptive cell therapies, as chimeric antigen receptors or T-cell receptors, have similarities and differences among their mechanisms of action, toxicity profiles, and resistance pathways. Nevertheless, the success observed in the hematologic field has not been obtained with solid tumors yet, as they are biologically more complex and have few truly tumor-specific cell surface antigens that can be targeted with high avidity T cells. Different strategies are under study to improve their short-term perspective, such as new generations of more active TCEs, multi-target or combination of different treatments approaches, or to improve the manufacturing processes. A comprehensive review of TCEs as a grouped treatment class, their current status, and research directions in their application to solid tumors therapeutics are discussed here.
Collapse
Affiliation(s)
- Maria de Miguel
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC) Early Phase Program, HM Sanchinarro University Hospital, Madrid, Spain
| | - Pablo Umana
- Roche Innovation Center Zurich Schlieren, Zurich, Switzerland
| | - Ana Luiza Gomes de Morais
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC) Early Phase Program, HM Sanchinarro University Hospital, Madrid, Spain
| | - Victor Moreno
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Emiliano Calvo
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC) Early Phase Program, HM Sanchinarro University Hospital, Madrid, Spain.
| |
Collapse
|
34
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
35
|
Casey DL, Cheung NKV. Immunotherapy of Pediatric Solid Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies. Cancer Immunol Res 2020; 8:161-166. [PMID: 32015013 DOI: 10.1158/2326-6066.cir-19-0692] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Over the last decade, immunotherapy has rapidly changed the therapeutic landscape and prognosis for many hematologic malignancies and adult solid tumors. Despite this success, immunotherapy for pediatric solid tumors remains in the early stages of development, and significant clinical benefit has yet to be realized, with anti-GD2 for neuroblastoma being the exception. The limited neoepitope expression and paucity of T-cell infiltration into the immunosuppressive tumor microenvironment have hampered current established immunotherapies. Emerging approaches to recruit T cells, to convert phenotypically "cold" into "inflamed" tumors, and to vastly improve therapeutic indices hold exceptional promise. Here, we review these approaches, highlighting the role of the tumor microenvironment and novel antibody platforms to maximize the full clinical potential of immunotherapy in pediatric oncology.
Collapse
Affiliation(s)
- Dana L Casey
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
36
|
Jiao Y, Yi M, Xu L, Chu Q, Yan Y, Luo S, Wu K. CD38: targeted therapy in multiple myeloma and therapeutic potential for solid cancers. Expert Opin Investig Drugs 2020; 29:1295-1308. [PMID: 32822558 DOI: 10.1080/13543784.2020.1814253] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION CD38 is expressed by some cells of hematological malignancies and tumor-related immunosuppressive cells, including regulatory T cells, regulatory B cells, and myeloid-derived suppressor cells. CD38 is an effective target in some hematological malignancies such as multiple myeloma (MM). Daratumumab (Dara), a CD38-targeting antibody, can eliminate CD38high immune suppressor cells and is regarded as a standard therapy for MM because of its outstanding clinical efficacy. Other CD38 monospecific antibodies, such as isatuximab, MOR202, and TAK079, showed promising effects in clinical trials. AREA COVERED This review examines the expression, function, and targeting of CD38 in MM and its potential to deplete immunosuppressive cells in solid cancers. We summarize the distribution and biological function of CD38 and discuss the application of anti-CD38 drugs in hematological malignancies. We also analyz the role of CD38+ immune cells in the tumor microenvironment to encourage additional investigations that target CD38 in solid cancers. PubMed and ClinicalTrials were searched to identify relevant literature from the database inception to 30 April 2020. EXPERT OPINION There is convincing evidence that CD38-targeted immunotherapeutics reduce CD38+ immune suppressor cells. This result suggests that CD38 can be exploited to treat solid tumors by regulating the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital , Zhengzhou, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yongxiang Yan
- R & D Department, Wuhan YZY Biopharma Co., Ltd , Wuhan, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital , Zhengzhou, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital , Zhengzhou, China
| |
Collapse
|
37
|
Lešnik S, Hodošček M, Podobnik B, Konc J. Loop Grafting between Similar Local Environments for Fc-Silent Antibodies. J Chem Inf Model 2020; 60:5475-5486. [PMID: 32379970 PMCID: PMC7686954 DOI: 10.1021/acs.jcim.9b01198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Reduction
of the affinity of the fragment crystallizable (Fc) region with immune
receptors by substitution of one or a few amino acids, known as Fc-silencing,
is an established approach to reduce the immune effector functions
of monoclonal antibody therapeutics. This approach to Fc-silencing,
however, is problematic as it can lead to instability and immunogenicity
of the developed antibodies. We evaluated loop grafting as a novel
approach to Fc-silencing in which the Fc loops responsible for immune
receptor binding were replaced by loops of up to 20 amino acids from
similar local environments in other human and mouse antibodies. Molecular
dynamics simulations of the designed variants of an Fc region in a
complex with the immune receptor FcγIIIa confirmed that loop
grafting potentially leads to a significant reduction in the binding
of the antibody variants to the receptor, while retaining their stability.
In comparison, standard variants with less than eight substituted
amino acids showed possible instability and a lower degree of Fc-silencing
due to the occurrence of compensatory interactions. The presented
approach to Fc-silencing is general and could be used to modulate
undesirable side effects of other antibody therapeutics without affecting
their stability or increasing their immunogenicity.
Collapse
Affiliation(s)
- Samo Lešnik
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Milan Hodošček
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Barbara Podobnik
- Biologics Technical Development Mengeš, Technical Research & Development Novartis, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| | - Janez Konc
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Affiliation(s)
- Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
39
|
Abstract
Neuroblastoma (NB) is a malignant embryonal tumor of the sympathetic nervous system that is most commonly diagnosed in the abdomen, often presenting with signs and symptoms of metastatic spread. Three decades ago, high-risk NB metastatic to bone and bone marrow in children was not curable. Today, with multimodality treatment, 50% of these patients will survive, but most suffer from debilitating treatment-related complications. Novel targeted therapies to improve cure rates while minimizing toxicities are urgently needed. Recent molecular discoveries in oncology have spawned the development of an impressive array of targeted therapies for adult cancers, yet the paucity of recurrent somatic mutations or activated oncogenes in pediatric cancers poses a major challenge to the evolving paradigm of personalized medicine. Although low tumor mutational burden is a major hurdle for immune checkpoint inhibitors, an immature or impaired immune system and inhibitory tumor microenvironment can further complicate the prospects for successful immunotherapy. In this regard, despite the poor immunogenic properties of NB, the success of antibody-based immunotherapy and radioimmunotherapy directed at single targets (eg, GD2 and B7-H3) is both encouraging and surprising, given that most solid tumor antibodies that use Fc-dependent mechanisms or radioimmunotargeting have largely failed. Here, we summarize the current information on the immunologic properties of this tumor, its potential immunotherapeutic targets, and novel antibody-based strategies on the horizon.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
40
|
Rader C. Bispecific antibodies in cancer immunotherapy. Curr Opin Biotechnol 2019; 65:9-16. [PMID: 31841859 DOI: 10.1016/j.copbio.2019.11.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Among antibody-based cancer therapies, bispecific antibodies (biAbs) have gained momentum in preclinical and clinical investigations following the regulatory approvals of the trailblazing T-cell engaging biAb (T-biAb) blinatumomab. Discussed herein are recent strategies that aim at boosting the potency and mitigating the toxicity of T-biAbs, broadening their therapeutic utility from hematologic to solid malignancies, and generating T-biAbs in situ. In cancer immunotherapy, T-biAbs are facing fierce competition with chimeric antigen receptor T cells (CAR-Ts), a battle for clinical and commercial viability that will be closely watched. However, innovative combinations of T-biAbs and CAR-Ts have also transpired. NK-cell engaging biAbs (NK-biAbs) are reemerging as an alternative that addresses liabilities of T-biAbs. Beyond NK-biAbs, other biAbs designed to recruit cellular and molecular components of the innate immune system will be covered in this reflection on new tools, technologies, and targets.
Collapse
Affiliation(s)
- Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|