1
|
Asano Y, Veatch J, McAfee M, Bakhtiari J, Lee B, Martin L, Zhang S, Mazziotta F, Paulson KG, Schmitt TM, Munkbhat A, Young C, Seaton B, Hunter D, Horst N, Lindberg M, Miller N, Stone M, Bielas J, Koelle D, Voillet V, Gottardo R, Gooley T, Oda S, Greenberg PD, Nghiem P, Chapuis AG. Tumor Regression Following Engineered Polyomavirus-Specific T Cell Therapy in Immune Checkpoint Inhibitor-Refractory Merkel Cell Carcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.01.24309780. [PMID: 39006423 PMCID: PMC11245074 DOI: 10.1101/2024.07.01.24309780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although immune check-point inhibitors (CPIs) revolutionized treatment of Merkel cell carcinoma (MCC), patients with CPI-refractory MCC lack effective therapy. More than 80% of MCC express T-antigens encoded by Merkel cell polyomavirus, which is an ideal target for T-cell receptor (TCR)-based immunotherapy. However, MCC often repress HLA expression, requiring additional strategies to reverse the downregulation for allowing T cells to recognize their targets. We identified TCRMCC1 that recognizes a T-antigen epitope restricted to human leukocyte antigen (HLA)-A*02:01. Seven CPI-refractory metastatic MCC patients received CD4 and CD8 T cells transduced with TCRMCC1 (TTCR-MCC1) preceded either by lymphodepleting chemotherapy or an HLA-upregulating regimen (single-fraction radiation therapy (SFRT) or systemic interferon gamma (IFNγ)) with concurrent avelumab. Two patients who received preceding SFRT and IFNγ respectively experienced tumor regression. One experienced regression of 13/14 subcutaneous lesions with 1 'escape' lesion and the other had delayed tumor regression in all lesions after initial progression. Although TTCR-MCC1 cells with an activated phenotype infiltrated tumors including the 'escape' lesion, all progressing lesions transcriptionally lacked HLA expression. While SFRT/IFNγ did not immediately upregulate tumor HLA expression, a secondary endogenous antigen-specific T cell infiltrate was detected in one of the regressing tumors and associated with HLA upregulation, indicating in situ immune responses have the potential to reverse HLA downregulation. Indeed, supplying a strong co-stimulatory signal via a CD200R-CD28 switch receptor allows TTCR-MCC1 cells to control HLA-downregulated MCC cells in a xenograft mouse model, upregulating HLA expression. Our results demonstrate the potential of TCR gene therapy for metastatic MCC and propose a next strategy for overcoming epigenetic downregulation of HLA in MCC.
Collapse
Affiliation(s)
- Yuta Asano
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joshua Veatch
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | | | | | - Bo Lee
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | - Nick Horst
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Matt Stone
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jason Bielas
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - David Koelle
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | | | - Raphael Gottardo
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Ted Gooley
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shannon Oda
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Philip D. Greenberg
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Paul Nghiem
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Aude G. Chapuis
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Becker JC, Stang A, Schrama D, Ugurel S. Merkel Cell Carcinoma: Integrating Epidemiology, Immunology, and Therapeutic Updates. Am J Clin Dermatol 2024; 25:541-557. [PMID: 38649621 PMCID: PMC11193695 DOI: 10.1007/s40257-024-00858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare skin cancer characterized by neuroendocrine differentiation. Its carcinogenesis is based either on the integration of the Merkel cell polyomavirus or on ultraviolet (UV) mutagenesis, both of which lead to high immunogenicity either through the expression of viral proteins or neoantigens. Despite this immunogenicity resulting from viral or UV-associated carcinogenesis, it exhibits highly aggressive behavior. However, owing to the rarity of MCC and the lack of epidemiologic registries with detailed clinical data, there is some uncertainty regarding the spontaneous course of the disease. Historically, advanced MCC patients were treated with conventional cytotoxic chemotherapy yielding a median response duration of only 3 months. Starting in 2017, four programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) immune checkpoint inhibitors-avelumab, pembrolizumab, nivolumab (utilized in both neoadjuvant and adjuvant settings), and retifanlimab-have demonstrated efficacy in treating patients with disseminated MCC on the basis of prospective clinical trials. However, generating clinical evidence for rare cancers, such as MCC, is challenging owing to difficulties in conducting large-scale trials, resulting in small sample sizes and therefore lacking statistical power. Thus, to comprehensively understand the available clinical evidence on various immunotherapy approaches for MCC, we also delve into the epidemiology and immune biology of this cancer. Nevertheless, while randomized studies directly comparing immune checkpoint inhibitors and chemotherapy in MCC are lacking, immunotherapy shows response rates comparable to those previously reported with chemotherapy but with more enduring responses. Notably, adjuvant nivolumab has proven superiority to the standard-of-care therapy (observation) in the adjuvant setting.
Collapse
Affiliation(s)
- Jürgen C Becker
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstrasse 1, 45141, Essen, Germany.
- Department of Dermatology, University Medicine Essen, Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
- Cancer Registry of North Rhine-Westphalia, Bochum, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Selma Ugurel
- Department of Dermatology, University Medicine Essen, Essen, Germany
| |
Collapse
|
3
|
Ford ES, Li AZ, Laing KJ, Dong L, Diem K, Jing L, Mayer-Blackwell K, Basu K, Ott M, Tartaglia J, Gurunathan S, Reid JL, Ecsedi M, Chapuis AG, Huang ML, Magaret AS, Johnston C, Zhu J, Koelle DM, Corey L. Expansion of the HSV-2-specific T cell repertoire in skin after immunotherapeutic HSV-2 vaccine. JCI Insight 2024; 9:e179010. [PMID: 39133650 PMCID: PMC11383358 DOI: 10.1172/jci.insight.179010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 09/11/2024] Open
Abstract
The skin at the site of HSV-2 reactivation is enriched for HSV-2-specific T cells. To evaluate whether an immunotherapeutic vaccine could elicit skin-based memory T cells, we studied skin biopsies and HSV-2-reactive CD4+ T cells from PBMCs by T cell receptor (TCR) β chain (TRB) sequencing before and after vaccination with a replication-incompetent whole-virus HSV-2 vaccine candidate (HSV529). The representation of HSV-2-reactive CD4+ TRB sequences from PBMCs in the skin TRB repertoire increased after the first vaccine dose. We found sustained expansion after vaccination of unique, skin-based T cell clonotypes that were not detected in HSV-2-reactive CD4+ T cells isolated from PBMCs. In one participant, a switch in immunodominance occurred with the emergence of a TCR αβ pair after vaccination that was not detected in blood. This TCRαβ was shown to be HSV-2 reactive by expression of a synthetic TCR in a Jurkat-based NR4A1 reporter system. The skin in areas of HSV-2 reactivation possessed an oligoclonal TRB repertoire that was distinct from the circulation. Defining the influence of therapeutic vaccination on the HSV-2-specific TRB repertoire requires tissue-based evaluation.
Collapse
Affiliation(s)
- Emily S Ford
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | - Alvason Z Li
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Kerry J Laing
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | - Lichun Dong
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | - Kurt Diem
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lichen Jing
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | | | - Krithi Basu
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | - Mariliis Ott
- Division of Allergy and Infectious Diseases, Department of Medicine, and
| | | | | | - Jack L Reid
- Translational Sciences and Therapeutics Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Matyas Ecsedi
- Translational Sciences and Therapeutics Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Aude G Chapuis
- Translational Sciences and Therapeutics Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Amalia S Magaret
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine and
| | - David M Koelle
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Gambichler T, Schrama D, Käpynen R, Weyer-Fahlbusch SS, Becker JC, Susok L, Kreppel F, Abu Rached N. Current Progress in Vaccines against Merkel Cell Carcinoma: A Narrative Review and Update. Vaccines (Basel) 2024; 12:533. [PMID: 38793784 PMCID: PMC11125734 DOI: 10.3390/vaccines12050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Merkel cell carcinoma is a rare, aggressive skin cancer that mainly occurs in elderly and immunocompromised patients. Due to the success of immune checkpoint inhibition in MCC, the importance of immunotherapy and vaccines in MCC has increased in recent years. In this article, we aim to present the current progress and perspectives in the development of vaccines for this disease. Here, we summarize and discuss the current literature and ongoing clinical trials investigating vaccines against MCC. We identified 10 articles through a PubMed search investigating a vaccine against MCC. From the international clinical trial database Clinical.Trials.gov, we identified nine studies on vaccines for the management of MCC, of which seven are actively recruiting. Most of the identified studies investigating a vaccine against MCC are preclinical or phase 1/2 trials. The vaccine principles mainly included DNA- and (synthetic) peptide-based vaccines, but RNA-based vaccines, oncolytic viruses, and the combination of vaccines and immunotherapy are also under investigation for the treatment of MCC. Although the management of MCC is changing, when compared to times before the approval of immune checkpoint inhibitors, it will still take some time before the first MCC vaccine is ready for approval.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany; (R.K.); (N.A.R.)
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten-Herdecke University, 44122 Dortmund, Germany; (S.S.W.-F.); (L.S.)
- Department of Dermatology and Phlebology, Christian Hospital Unna, 59423 Unna, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Riina Käpynen
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany; (R.K.); (N.A.R.)
| | - Sera S. Weyer-Fahlbusch
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten-Herdecke University, 44122 Dortmund, Germany; (S.S.W.-F.); (L.S.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, West German Cancer Center, Department of Dermatology, University Duisburg-Essen, 45122 Essen, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Laura Susok
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten-Herdecke University, 44122 Dortmund, Germany; (S.S.W.-F.); (L.S.)
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany;
| | - Nessr Abu Rached
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany; (R.K.); (N.A.R.)
| |
Collapse
|
5
|
Pulliam T, Jani S, Jing L, Ryu H, Jojic A, Shasha C, Zhang J, Kulikauskas R, Church C, Garnett-Benson C, Gooley T, Chapuis A, Paulson K, Smith KN, Pardoll DM, Newell EW, Koelle DM, Topalian SL, Nghiem P. Circulating cancer-specific CD8 T cell frequency is associated with response to PD-1 blockade in Merkel cell carcinoma. Cell Rep Med 2024; 5:101412. [PMID: 38340723 PMCID: PMC10897614 DOI: 10.1016/j.xcrm.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Understanding cancer immunobiology has been hampered by difficulty identifying cancer-specific T cells. Merkel cell polyomavirus (MCPyV) causes most Merkel cell carcinomas (MCCs). All patients with virus-driven MCC express MCPyV oncoproteins, facilitating identification of virus (cancer)-specific T cells. We studied MCPyV-specific T cells from 27 patients with MCC using MCPyV peptide-HLA-I multimers, 26-color flow cytometry, single-cell transcriptomics, and T cell receptor (TCR) sequencing. In a prospective clinical trial, higher circulating MCPyV-specific CD8 T cell frequency before anti-PD-1 treatment was strongly associated with 2-year recurrence-free survival (75% if detectable, 0% if undetectable, p = 0.0018; ClinicalTrial.gov: NCT02488759). Intratumorally, such T cells were typically present, but their frequency did not significantly associate with response. Circulating MCPyV-specific CD8 T cells had increased stem/memory and decreased exhaustion signatures relative to their intratumoral counterparts. These results suggest that cancer-specific CD8 T cells in the blood may play a role in anti-PD-1 responses. Thus, strategies that augment their number or mobilize them into tumors could improve outcomes.
Collapse
Affiliation(s)
- Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Saumya Jani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ana Jojic
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn Shasha
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jiajia Zhang
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rima Kulikauskas
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | - Ted Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aude Chapuis
- Department of Medicine, University of Washington, Seattle, WA 98109, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kelly Paulson
- Paul G. Allen Research Center, Providence-Swedish Cancer Institute, Seattle, WA 98104, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Kellie N Smith
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Evan W Newell
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Suzanne L Topalian
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Ryu H, Bi TM, Pulliam TH, Sarkar K, Church CD, Kumar N, Mayer-Blackwell K, Jani S, Ramchurren N, Hansen UK, Hadrup SR, Fling SP, Koelle DM, Nghiem P, Newell EW. Merkel cell polyomavirus-specific and CD39 +CLA + CD8 T cells as blood-based predictive biomarkers for PD-1 blockade in Merkel cell carcinoma. Cell Rep Med 2024; 5:101390. [PMID: 38340724 PMCID: PMC10897544 DOI: 10.1016/j.xcrm.2023.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024]
Abstract
Merkel cell carcinoma is a skin cancer often driven by Merkel cell polyomavirus (MCPyV) with high rates of response to anti-PD-1 therapy despite low mutational burden. MCPyV-specific CD8 T cells are implicated in anti-PD-1-associated immune responses and provide a means to directly study tumor-specific T cell responses to treatment. Using mass cytometry and combinatorial tetramer staining, we find that baseline frequencies of blood MCPyV-specific cells correlated with response and survival. Frequencies of these cells decrease markedly during response to therapy. Phenotypes of MCPyV-specific CD8 T cells have distinct expression patterns of CD39, cutaneous lymphocyte-associated antigen (CLA), and CD103. Correspondingly, overall bulk CD39+CLA+ CD8 T cell frequencies in blood correlate with MCPyV-specific cell frequencies and similarly predicted favorable clinical outcomes. Conversely, frequencies of CD39+CD103+ CD8 T cells are associated with tumor burden and worse outcomes. These cell subsets can be useful as biomarkers and to isolate blood-derived tumor-specific T cells.
Collapse
Affiliation(s)
- Heeju Ryu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Timothy M Bi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas H Pulliam
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Korok Sarkar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Candice D Church
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Nandita Kumar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Saumya Jani
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Nirasha Ramchurren
- Cancer Immunotherapy Trails Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulla K Hansen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Steven P Fling
- Cancer Immunotherapy Trails Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Benaroya Research Institute, Seattle, WA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Ford ES, Li A, Laing KJ, Dong L, Diem K, Jing L, Basu K, Ott M, Tartaglia J, Gurunathan S, Reid JL, Ecsedi M, Chapuis AG, Huang ML, Magaret AS, Johnston C, Zhu J, Koelle DM, Corey L. Expansion of the HSV-2-specific T cell repertoire in skin after immunotherapeutic HSV-2 vaccine. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2022.02.04.22270210. [PMID: 38352384 PMCID: PMC10863019 DOI: 10.1101/2022.02.04.22270210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The skin at the site of HSV-2 reactivation is enriched for HSV-2-specific T cells. To evaluate whether an immunotherapeutic vaccine could elicit skin-based memory T cells, we studied skin biopsies and HSV-2-reactive CD4+ T cells from peripheral blood mononuclear cells (PBMCs) by T cell receptor β (TRB) sequencing before and after vaccination with a replication-incompetent whole virus HSV-2 vaccine candidate (HSV529). The representation of HSV-2-reactive CD4+ TRB sequences from PBMCs in the skin TRB repertoire increased after the first vaccine dose. We found sustained expansion after vaccination of unique, skin-based T-cell clonotypes that were not detected in HSV-2-reactive CD4+ T cells isolated from PBMCs. In one participant a switch in immunodominance occurred with the emergence of a T cell receptor (TCR) αβ pair after vaccination that was not detected in blood. This TCRαβ was shown to be HSV-2-reactive by expression of a synthetic TCR in a Jurkat-based NR4A1 reporter system. The skin in areas of HSV-2 reactivation possesses an oligoclonal TRB repertoire that is distinct from the circulation. Defining the influence of therapeutic vaccination on the HSV-2-specific TRB repertoire requires tissue-based evaluation.
Collapse
Affiliation(s)
- Emily S Ford
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Alvason Li
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
| | - Kerry J Laing
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Lichun Dong
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Kurt Diem
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - Lichen Jing
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Krithi Basu
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Mariliis Ott
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | | | | | - Jack L Reid
- Clinical Research Division, Fred Hutch Cancer Center, Seattle WA
| | - Matyas Ecsedi
- Clinical Research Division, Fred Hutch Cancer Center, Seattle WA
| | - Aude G Chapuis
- Clinical Research Division, Fred Hutch Cancer Center, Seattle WA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - Amalia S Magaret
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - Christine Johnston
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
| | - Jia Zhu
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| | - David M Koelle
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
- Department of Global Health, University of Washington, Seattle WA
- Benaroya Research Institute, Seattle WA
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle WA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA
| |
Collapse
|
8
|
Hansen UK, Church CD, Carnaz Simões AM, Frej MS, Bentzen AK, Tvingsholm SA, Becker JC, Fling SP, Ramchurren N, Topalian SL, Nghiem PT, Hadrup SR. T antigen-specific CD8+ T cells associate with PD-1 blockade response in virus-positive Merkel cell carcinoma. J Clin Invest 2024; 134:e177082. [PMID: 38618958 PMCID: PMC11014655 DOI: 10.1172/jci177082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024] Open
Abstract
Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel cell polyomavirus, which is driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag-specific immune response and therapeutic strategies for the nonresponding fraction are both limited. We tracked T-Ag-reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class I haplotypes. We observed a broad T cell recognition of T-Ags, including identification of 20 T-Ag-derived epitopes we believe to be novel. Broadening of the T-Ag recognition profile and increased T cell frequencies during therapy were strongly associated with clinical response and prolonged progression-free survival. T-Ag-specific T cells could be further boosted and expanded directly from peripheral blood using artificial antigen-presenting scaffolds, even in patients with no detectable T-Ag-specific T cells. These T cells provided strong tumor-rejection capacity while retaining a favorable phenotype for adoptive cell transfer. These findings demonstrate that T-Ag-specific T cells are associated with the clinical outcome to PD-1 blockade and that Ag-presenting scaffolds can be used to boost such responses.
Collapse
Affiliation(s)
- Ulla Kring Hansen
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- PokeAcell Aps, BioInnovation Institute, Copenhagen, Denmark
| | - Candice D. Church
- Department of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Marcus Svensson Frej
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- PokeAcell Aps, BioInnovation Institute, Copenhagen, Denmark
| | - Amalie Kai Bentzen
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Siri A. Tvingsholm
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jürgen C. Becker
- Department of Translational Skin Cancer Research, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | | | - Suzanne L. Topalian
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Paul T. Nghiem
- Department of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sine Reker Hadrup
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Ford ES, Mayer-Blackwell K, Jing L, Laing KJ, Sholukh AM, St Germain R, Bossard EL, Xie H, Pulliam TH, Jani S, Selke S, Burrow CJ, McClurkan CL, Wald A, Greninger AL, Holbrook MR, Eaton B, Eudy E, Murphy M, Postnikova E, Robins HS, Elyanow R, Gittelman RM, Ecsedi M, Wilcox E, Chapuis AG, Fiore-Gartland A, Koelle DM. Repeated mRNA vaccination sequentially boosts SARS-CoV-2-specific CD8 + T cells in persons with previous COVID-19. Nat Immunol 2024; 25:166-177. [PMID: 38057617 PMCID: PMC10981451 DOI: 10.1038/s41590-023-01692-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hybrid immunity is more protective than vaccination or previous infection alone. To investigate the kinetics of spike-reactive T (TS) cells from SARS-CoV-2 infection through messenger RNA vaccination in persons with hybrid immunity, we identified the T cell receptor (TCR) sequences of thousands of index TS cells and tracked their frequency in bulk TCRβ repertoires sampled longitudinally from the peripheral blood of persons who had recovered from coronavirus disease 2019 (COVID-19). Vaccinations led to large expansions in memory TS cell clonotypes, most of which were CD8+ T cells, while also eliciting diverse TS cell clonotypes not observed before vaccination. TCR sequence similarity clustering identified public CD8+ and CD4+ TCR motifs associated with spike (S) specificity. Synthesis of longitudinal bulk ex vivo single-chain TCRβ repertoires and paired-chain TCRɑβ sequences from droplet sequencing of TS cells provides a roadmap for the rapid assessment of T cell responses to vaccines and emerging pathogens.
Collapse
Affiliation(s)
- Emily S Ford
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kerry J Laing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Anton M Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Russell St Germain
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily L Bossard
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Thomas H Pulliam
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Saumya Jani
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michael R Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Brett Eaton
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Elizabeth Eudy
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Michael Murphy
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Elena Postnikova
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | | | | | - Rachel M Gittelman
- Adaptive Biotechnologies, Seattle, WA, USA
- Guardant Health, Redwood City, CA, USA
| | - Matyas Ecsedi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Takeda Oncology, Cambridge, MA, USA
| | - Elise Wilcox
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aude G Chapuis
- Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
10
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
11
|
Buchta Rosean C, Leyder EC, Hamilton J, Carter JJ, Galloway DA, Koelle DM, Nghiem P, Heiland T. LAMP1 targeting of the large T antigen of Merkel cell polyomavirus results in potent CD4 T cell responses and tumor inhibition. Front Immunol 2023; 14:1253568. [PMID: 37711623 PMCID: PMC10499392 DOI: 10.3389/fimmu.2023.1253568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Most cases of Merkel cell carcinoma (MCC), a rare and highly aggressive type of neuroendocrine skin cancer, are associated with Merkel cell polyomavirus (MCPyV) infection. MCPyV integrates into the host genome, resulting in expression of oncoproteins including a truncated form of the viral large T antigen (LT) in infected cells. These oncoproteins are an attractive target for a therapeutic cancer vaccine. Methods We designed a cancer vaccine that promotes potent, antigen-specific CD4 T cell responses to MCPyV-LT. To activate antigen-specific CD4 T cells in vivo, we utilized our nucleic acid platform, UNITE™ (UNiversal Intracellular Targeted Expression), which fuses a tumor-associated antigen with lysosomal-associated membrane protein 1 (LAMP1). This lysosomal targeting technology results in enhanced antigen presentation and potent antigen-specific T cell responses. LTS220A, encoding a mutated form of MCPyV-LT that diminishes its pro-oncogenic properties, was introduced into the UNITE™ platform. Results Vaccination with LTS220A-UNITE™ DNA vaccine (ITI-3000) induced antigen-specific CD4 T cell responses and a strong humoral response that were sufficient to delay tumor growth of a B16F10 melanoma line expressing LTS220A. This effect was dependent on the CD4 T cells' ability to produce IFNγ. Moreover, ITI-3000 induced a favorable tumor microenvironment (TME), including Th1-type cytokines and significantly enhanced numbers of CD4 and CD8 T cells as well as NK and NKT cells. Additionally, ITI-3000 synergized with an α-PD-1 immune checkpoint inhibitor to further slow tumor growth and enhance survival. Conclusions These findings strongly suggest that in pre-clinical studies, DNA vaccination with ITI-3000, using the UNITE™ platform, enhances CD4 T cell responses to MCPyV-LT that result in significant anti-tumor immune responses. These data support the initiation of a first-in-human (FIH) Phase 1 open-label study to evaluate the safety, tolerability, and immunogenicity of ITI-3000 in patients with polyomavirus-positive MCC (NCT05422781).
Collapse
Affiliation(s)
| | | | | | - Joseph J. Carter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Denise A. Galloway
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Teri Heiland
- Immunomic Therapeutics Inc., Rockville, MD, United States
| |
Collapse
|
12
|
Celikdemir B, Houben R, Kervarrec T, Samimi M, Schrama D. Current and preclinical treatment options for Merkel cell carcinoma. Expert Opin Biol Ther 2023; 23:1015-1034. [PMID: 37691397 DOI: 10.1080/14712598.2023.2257603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Merkel cell carcinoma (MCC) is a rare, highly aggressive form of skin cancer with neuroendocrine features. The origin of this cancer is still unclear, but research in the last 15 years has demonstrated that MCC arises via two distinct etiologic pathways, i.e. virus and UV-induced. Considering the high mortality rate and the limited therapeutic options available, this review aims to highlight the significance of MCC research and the need for advancement in MCC treatment. AREAS COVERED With the advent of the immune checkpoint inhibitor therapies, we now have treatment options providing a survival benefit for patients with advanced MCC. However, the issue of primary and acquired resistance to these therapies remains a significant concern. Therefore, ongoing efforts seeking additional therapeutic targets and approaches for MCC therapy are a necessity. Through a comprehensive literature search, we provide an overview on recent preclinical and clinical studies with respect to MCC therapy. EXPERT OPINION Currently, the only evidence-based therapy for MCC is immune checkpoint blockade with anti-PD-1/PD-L1 for advanced patients. Neoadjuvant, adjuvant and combined immune checkpoint blockade are promising treatment options.
Collapse
Affiliation(s)
- Büke Celikdemir
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire De Tours, Tours, France
| | - Mahtab Samimi
- Department of Dermatology, University Hospital of Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Jani S, Church CD, Nghiem P. Insights into anti-tumor immunity via the polyomavirus shared across human Merkel cell carcinomas. Front Immunol 2023; 14:1172913. [PMID: 37287968 PMCID: PMC10242112 DOI: 10.3389/fimmu.2023.1172913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Understanding and augmenting cancer-specific immunity is impeded by the fact that most tumors are driven by patient-specific mutations that encode unique antigenic epitopes. The shared antigens in virus-driven tumors can help overcome this limitation. Merkel cell carcinoma (MCC) is a particularly interesting tumor immunity model because (1) 80% of cases are driven by Merkel cell polyomavirus (MCPyV) oncoproteins that must be continually expressed for tumor survival; (2) MCPyV oncoproteins are only ~400 amino acids in length and are essentially invariant between tumors; (3) MCPyV-specific T cell responses are robust and strongly linked to patient outcomes; (4) anti-MCPyV antibodies reliably increase with MCC recurrence, forming the basis of a standard clinical surveillance test; and (5) MCC has one of the highest response rates to PD-1 pathway blockade among all solid cancers. Leveraging these well-defined viral oncoproteins, a set of tools that includes over 20 peptide-MHC class I tetramers has been developed to facilitate the study of anti-tumor immunity across MCC patients. Additionally, the highly immunogenic nature of MCPyV oncoproteins forces MCC tumors to develop robust immune evasion mechanisms to survive. Indeed, several immune evasion mechanisms are active in MCC, including transcriptional downregulation of MHC expression by tumor cells and upregulation of inhibitory molecules including PD-L1 and immunosuppressive cytokines. About half of patients with advanced MCC do not persistently benefit from PD-1 pathway blockade. Herein, we (1) summarize the lessons learned from studying the anti-tumor T cell response to virus-positive MCC; (2) review immune evasion mechanisms in MCC; (3) review mechanisms of resistance to immune-based therapies in MCC and other cancers; and (4) discuss how recently developed tools can be used to address open questions in cancer immunotherapy. We believe detailed investigation of this model cancer will provide insight into tumor immunity that will likely also be applicable to more common cancers without shared tumor antigens.
Collapse
Affiliation(s)
- Saumya Jani
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Candice D. Church
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Paul Nghiem
- Department of Medicine, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
14
|
Sergi MC, Lauricella E, Porta C, Tucci M, Cives M. An update on Merkel cell carcinoma. Biochim Biophys Acta Rev Cancer 2023; 1878:188880. [PMID: 36914034 DOI: 10.1016/j.bbcan.2023.188880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare cancer of the skin characterized by a neuroendocrine phenotype and an aggressive clinical behavior. It frequently originates in sun-exposed body areas, and its incidence has steadily increased in the last three decades. Merkel cell polyomavirus (MCPyV) and ultraviolet (UV) radiation exposure are the main causative agents of MCC, and distinct molecular features have been documented in virus-positive and virus-negative malignancies. Surgery remains the cornerstone of treatment for localized tumors, but even when integrated with adjuvant radiotherapy is able to definitively cure only a fraction of MCC patients. While characterized by a high objective response rate, chemotherapy is associated with a short-lasting benefit of approximately 3 months. On the other hand, immune checkpoint inhibitors including avelumab and pembrolizumab have demonstrated durable antitumor activity in patients with stage IV MCC, and investigations on their use in the neoadjuvant or adjuvant setting are currently underway. Addressing the needs of those patients who do not persistently benefit from immunotherapy is currently one of the most compelling unmet needs in the field, and multiple clinical trials of new tyrosine kinase inhibitors (TKIs), peptide receptor radionuclide therapy (PRRT), therapeutic vaccines, immunocytokines as well as innovative forms of adoptive cellular immunotherapies are under clinical scrutiny at present.
Collapse
Affiliation(s)
- Maria Chiara Sergi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Lauricella
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Mauro Cives
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.
| |
Collapse
|
15
|
Martinov T, Greenberg PD. Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor-Based Cellular Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:331-351. [PMID: 37655310 PMCID: PMC10470615 DOI: 10.1146/annurev-cancerbio-061521-082114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
T cell reactivity to tumor-specific neoantigens can drive endogenous and therapeutically induced antitumor immunity. However, most tumor-specific neoantigens are unique to each patient (private) and targeting them requires personalized therapy. A smaller subset of neoantigens includes epitopes that span recurrent mutation hotspots, translocations, or gene fusions in oncogenic drivers and tumor suppressors, as well as epitopes that arise from viral oncogenic proteins. Such antigens are likely to be shared across patients (public), uniformly expressed within a tumor, and required for cancer cell survival and fitness. Although a limited number of these public neoantigens are naturally immunogenic, recent studies affirm their clinical utility. In this review, we highlight efforts to target mutant KRAS, mutant p53, and epitopes derived from oncogenic viruses using T cells engineered with off-the-shelf T cell receptors. We also discuss the challenges and strategies to achieving more effective T cell therapies, particularly in the context of solid tumors.
Collapse
Affiliation(s)
- Tijana Martinov
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Philip D Greenberg
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Immunology Department, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Zaggana E, Konstantinou MP, Krasagakis GH, de Bree E, Kalpakis K, Mavroudis D, Krasagakis K. Merkel Cell Carcinoma-Update on Diagnosis, Management and Future Perspectives. Cancers (Basel) 2022; 15:cancers15010103. [PMID: 36612102 PMCID: PMC9817518 DOI: 10.3390/cancers15010103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
MCC is a rare but highly aggressive skin cancer. The identification of the driving role of Merkel cell polyomavirus (MCPyV) and ultraviolet-induced DNA damage in the oncogenesis of MCC allowed a better understanding of its biological behavior. The presence of MCPyV-specific T cells and lymphocytes exhibiting an 'exhausted' phenotype in the tumor microenvironment along with the high prevalence of immunosuppression among affected patients are strong indicators of the immunogenic properties of MCC. The use of immunotherapy has revolutionized the management of patients with advanced MCC with anti-PD-1/PD L1 blockade, providing objective responses in as much as 50-70% of cases when used in first-line treatment. However, acquired resistance or contraindication to immune checkpoint inhibitors can be an issue for a non-negligible number of patients and novel therapeutic strategies are warranted. This review will focus on current management guidelines for MCC and future therapeutic perspectives for advanced disease with an emphasis on molecular pathways, targeted therapies, and immune-based strategies. These new therapies alone or in combination with anti-PD-1/PD-L1 inhibitors could enhance immune responses against tumor cells and overcome acquired resistance to immunotherapy.
Collapse
Affiliation(s)
- Eleni Zaggana
- Department of Dermatology, University General Hospital of Heraklion, 71500 Crete, Greece
| | - Maria Polina Konstantinou
- Department of Dermatology, University General Hospital of Heraklion, 71500 Crete, Greece
- Correspondence: ; Tel.: +30-2810-3925-82; Fax: +30-2810-5420-85
| | | | - Eelco de Bree
- Medical School, University of Crete, 71500 Crete, Greece
- Department of Surgical Oncology, University General Hospital of Heraklion, 71500 Crete, Greece
| | - Konstantinos Kalpakis
- Medical School, University of Crete, 71500 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Crete, Greece
| | - Dimitrios Mavroudis
- Medical School, University of Crete, 71500 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Crete, Greece
| | - Konstantinos Krasagakis
- Department of Dermatology, University General Hospital of Heraklion, 71500 Crete, Greece
- Medical School, University of Crete, 71500 Crete, Greece
| |
Collapse
|
17
|
Laing KJ, Ouwendijk WJD, Campbell VL, McClurkan CL, Mortazavi S, Elder Waters M, Krist MP, Tu R, Nguyen N, Basu K, Miao C, Schmid DS, Johnston C, Verjans GMGM, Koelle DM. Selective retention of virus-specific tissue-resident T cells in healed skin after recovery from herpes zoster. Nat Commun 2022; 13:6957. [PMID: 36376285 PMCID: PMC9663441 DOI: 10.1038/s41467-022-34698-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Herpes zoster is a localized skin infection caused by reactivation of latent varicella-zoster virus. Tissue-resident T cells likely control skin infections. Zoster provides a unique opportunity to determine if focal reinfection of human skin boosts local or disseminated antigen-specific tissue-resident T cells. Here, we show virus-specific T cells are retained over one year in serial samples of rash site and contralateral unaffected skin of individuals recovered from zoster. Consistent with zoster resolution, viral DNA is largely undetectable on skin from day 90 and virus-specific B and T cells decline in blood. In skin, there is selective infiltration and long-term persistence of varicella-zoster virus-specific T cells in the rash site relative to the contralateral site. The skin T cell infiltrates express the canonical tissue-resident T cell markers CD69 and CD103. These findings show that zoster promotes spatially-restricted long-term retention of antigen-specific tissue-resident T cells in previously infected skin.
Collapse
Affiliation(s)
- Kerry J Laing
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Werner J D Ouwendijk
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Shahin Mortazavi
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Maxwell P Krist
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Richard Tu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nhi Nguyen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Krithi Basu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Congrong Miao
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, USA
| | - D Scott Schmid
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, USA
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Georges M G M Verjans
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
18
|
Ford ES, Mayer-Blackwell K, Jing L, Sholukh AM, St Germain R, Bossard EL, Xie H, Pulliam TH, Jani S, Selke S, Burrow CJ, McClurkan CL, Wald A, Holbrook MR, Eaton B, Eudy E, Murphy M, Postnikova E, Robins HS, Elyanow R, Gittelman RM, Ecsedi M, Wilcox E, Chapuis AG, Fiore-Gartland A, Koelle DM. CD8 + T cell clonotypes from prior SARS-CoV-2 infection predominate during the cellular immune response to mRNA vaccination. RESEARCH SQUARE 2022:rs.3.rs-2146712. [PMID: 36263073 PMCID: PMC9580387 DOI: 10.21203/rs.3.rs-2146712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Almost three years into the SARS-CoV-2 pandemic, hybrid immunity is highly prevalent worldwide and more protective than vaccination or prior infection alone. Given emerging resistance of variant strains to neutralizing antibodies (nAb), it is likely that T cells contribute to this protection. To understand how sequential SARS-CoV-2 infection and mRNA-vectored SARS-CoV-2 spike (S) vaccines affect T cell clonotype-level expansion kinetics, we identified and cross-referenced TCR sequences from thousands of S-reactive single cells against deeply sequenced peripheral blood TCR repertoires longitudinally collected from persons during COVID-19 convalescence through booster vaccination. Successive vaccinations recalled memory T cells and elicited antigen-specific T cell clonotypes not detected after infection. Vaccine-related recruitment of novel clonotypes and the expansion of S-specific clones were most strongly observed for CD8+ T cells. Severe COVID-19 illness was associated with a more diverse CD4+ T cell response to SARS-CoV-2 both prior to and after mRNA vaccination, suggesting imprinting of CD4+ T cells by severe infection. TCR sequence similarity search algorithms revealed myriad public TCR clusters correlating with human leukocyte antigen (HLA) alleles. Selected TCRs from distinct clusters functionally recognized S in the predicted HLA context, with fine viral peptide requirements differing between TCRs. Most subjects tested had S-specific T cells in the nasal mucosa after a 3rd mRNA vaccine dose. The blood and nasal T cell responses to vaccination revealed by clonal tracking were more heterogeneous than nAb boosts. Analysis of bulk and single cell TCR sequences reveals T cell kinetics and diversity at the clonotype level, without requiring prior knowledge of T cell epitopes or HLA restriction, providing a roadmap for rapid assessment of T cell responses to emerging pathogens.
Collapse
|
19
|
Church C, Pulliam T, Longino N, Park SY, Smythe KS, Makarov V, Riaz N, Jing L, Amezquita R, Campbell JS, Gottardo R, Pierce RH, Choi J, Chan TA, Koelle DM, Nghiem P. Transcriptional and functional analyses of neoantigen-specific CD4 T cells during a profound response to anti-PD-L1 in metastatic Merkel cell carcinoma. J Immunother Cancer 2022; 10:e005328. [PMID: 36252564 PMCID: PMC9472219 DOI: 10.1136/jitc-2022-005328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) often responds to PD-1 pathway blockade, regardless of tumor-viral status (~80% of cases driven by the Merkel cell polyomavirus (MCPyV)). Prior studies have characterized tumor-specific T cell responses to MCPyV, which have typically been CD8, but little is known about the T cell response to UV-induced neoantigens. METHODS A patient in her mid-50s with virus-negative (VN) MCC developed large liver metastases after a brief initial response to chemotherapy. She received anti-PD-L1 (avelumab) and had a partial response within 4 weeks. Whole exome sequencing (WES) was performed to determine potential neoantigen peptides. Characterization of peripheral blood neoantigen T cell responses was evaluated via interferon-gamma (IFNγ) ELISpot, flow cytometry and single-cell RNA sequencing. Tumor-resident T cells were characterized by multiplexed immunohistochemistry. RESULTS WES identified 1027 tumor-specific somatic mutations, similar to the published average of 1121 for VN-MCCs. Peptide prediction with a binding cut-off of ≤100 nM resulted in 77 peptides that were synthesized for T cell assays. Although peptides were predicted based on class I HLAs, we identified circulating CD4 T cells targeting 5 of 77 neoantigens. In contrast, no neoantigen-specific CD8 T cell responses were detected. Neoantigen-specific CD4 T cells were undetectable in blood before anti-PD-L1 therapy but became readily detectible shortly after starting therapy. T cells produced robust IFNγ when stimulated by neoantigen (mutant) peptides but not by the normal (wild-type) peptides. Single cell RNAseq showed neoantigen-reactive T cells expressed the Th1-associated transcription factor (T-bet) and associated cytokines. These CD4 T cells did not significantly exhibit cytotoxicity or non-Th1 markers. Within the pretreatment tumor, resident CD4 T cells were also Th1-skewed and expressed T-bet. CONCLUSIONS We identified and characterized tumor-specific Th1-skewed CD4 T cells targeting multiple neoantigens in a patient who experienced a profound and durable partial response to anti-PD-L1 therapy. To our knowledge, this is the first report of neoantigen-specific T cell responses in MCC. Although CD4 and CD8 T cells recognizing viral tumor antigens are often detectible in virus-positive MCC, only CD4 T cells recognizing neoantigens were detected in this patient. These findings suggest that CD4 T cells can play an important role in the response to anti-PD-(L)1 therapy.
Collapse
Affiliation(s)
- Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Natalie Longino
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Song Y Park
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kimberly S Smythe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Center for Immunotherapy and Precision Immuno-oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nadeem Riaz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Robert Amezquita
- Biostatistics Bioinformatics and Epidemiology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jean S Campbell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raphael Gottardo
- Biostatistics Bioinformatics and Epidemiology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Lausanne University Hospital, Lausanne, Vaud, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Robert H Pierce
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jaehyuk Choi
- Department of Dermatology, Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
20
|
Joshi TP, Farr MA, Hsiou DA, Nugent S, Fathy RA, Lewis DJ. Therapeutic targets for vaccination in polyomavirus-driven Merkel cell carcinoma. Dermatol Ther 2022; 35:e15580. [PMID: 35560970 DOI: 10.1111/dth.15580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Tejas P Joshi
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Morgan A Farr
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David A Hsiou
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shannon Nugent
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ramie A Fathy
- School of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Lewis
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Koelle DM, Dong L, Jing L, Laing KJ, Zhu J, Jin L, Selke S, Wald A, Varon D, Huang ML, Johnston C, Corey L, Posavad CM. HSV-2-Specific Human Female Reproductive Tract Tissue Resident Memory T Cells Recognize Diverse HSV Antigens. Front Immunol 2022; 13:867962. [PMID: 35432373 PMCID: PMC9009524 DOI: 10.3389/fimmu.2022.867962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023] Open
Abstract
Antigen-specific TRM persist and protect against skin or female reproductive tract (FRT) HSV infection. As the pathogenesis of HSV differs between humans and model organisms, we focus on humans with well-characterized recurrent genital HSV-2 infection. Human CD8+ TRM persisting at sites of healed human HSV-2 lesions have an activated phenotype but it is unclear if TRM can be cultivated in vitro. We recovered HSV-specific TRM from genital skin and ectocervix biopsies, obtained after recovery from recurrent genital HSV-2, using ex vivo activation by viral antigen. Up to several percent of local T cells were HSV-reactive ex vivo. CD4 and CD8 T cell lines were up to 50% HSV-2-specific after sorting-based enrichment. CD8 TRM displayed HLA-restricted reactivity to specific HSV-2 peptides with high functional avidities. Reactivity to defined peptides persisted locally over several month and was quite subject-specific. CD4 TRM derived from biopsies, and from an extended set of cervical cytobrush specimens, also recognized diverse HSV-2 antigens and peptides. Overall we found that HSV-2-specific TRM are abundant in the FRT between episodes of recurrent genital herpes and maintain competency for expansion. Mucosal sites are accessible for clinical monitoring during immune interventions such as therapeutic vaccination.
Collapse
Affiliation(s)
- David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lei Jin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Dana Varon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christine M. Posavad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
22
|
Jing L, Wu X, Krist MP, Hsiang TY, Campbell VL, McClurkan CL, Favors SM, Hemingway LA, Godornes C, Tong DQ, Selke S, LeClair AC, Pyo CW, Geraghty DE, Laing KJ, Wald A, Gale M, Koelle DM. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. JCI Insight 2022; 7:e158126. [PMID: 35133988 PMCID: PMC8986086 DOI: 10.1172/jci.insight.158126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 12/03/2022] Open
Abstract
SARS-CoV-2 provokes a robust T cell response. Peptide-based studies exclude antigen processing and presentation biology, which may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DCs to activate CD8 and CD4 T cells from convalescent people. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory tract cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the Alpha, Beta, Gamma, and Delta variant lineages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Chu-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Anna Wald
- Department of Medicine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael Gale
- Department of Immunology, and
- Center for Innate Immunity of Immune Disease, Department of Immunology, and
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - David M. Koelle
- Department of Medicine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| |
Collapse
|
23
|
Kortekaas Krohn I, Aerts JL, Breckpot K, Goyvaerts C, Knol E, Van Wijk F, Gutermuth J. T-cell subsets in the skin and their role in inflammatory skin disorders. Allergy 2022; 77:827-842. [PMID: 34559894 DOI: 10.1111/all.15104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
T lymphocytes (T cells) are major players of the adaptive immune response. Naive T cells are primed in the presence of cytokines, leading to polarization into distinct T-cell subsets with specific functions. These subsets are classified based on their T-cell receptor profile, expression of transcription factors, surface cytokine and chemokine receptors, and their cytokine production, which together determine their specific function. This review provides an overview of the various T-cell subsets and their function in several inflammatory skin disorders ranging from allergic inflammation to skin tumors. Moreover, we highlight similarities of T-cell responses across different skin disorders, demonstrating the presence of similar and opposing functions for the different T-cell subsets. Finally, we discuss the effects of currently available and promising therapeutic approaches to harness T cells in inflammatory skin diseases for which efficacy next to unwanted side effects provide new insights into the pathophysiology of skin disorders.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| | - Joeri L. Aerts
- Vrije Universiteit Brussel (VUB)Neuro‐Aging and Viro‐Immunotherapy (NAVI) Research Group Brussels Belgium
| | - Karine Breckpot
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Cleo Goyvaerts
- Vrije Universiteit Brussel (VUB)Laboratory for Molecular and Cellular Therapy (LMCT)Department of Biomedical Sciences Brussels Belgium
| | - Edward Knol
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
- Department Dermatology/Allergology University Medical Center Utrecht Utrecht The Netherlands
| | - Femke Van Wijk
- Center for Translational Immunology University Medical Center Utrecht Utrecht The Netherlands
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB)Skin Immunology & Immune Tolerance (SKIN) Research Group Brussels Belgium
- Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)Department of DermatologyUniversitair Ziekenhuis Brussel Brussels Belgium
| |
Collapse
|
24
|
Jing L, Wu X, Krist MP, Hsiang TY, Campbell VL, McClurkan CL, Favors SM, Hemingway LA, Godornes C, Tong DQ, Selke S, LeClair AC, Pyo CW, Geraghty DE, Laing KJ, Wald A, Gale M, Koelle DM. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.23.22269497. [PMID: 35118477 PMCID: PMC8811910 DOI: 10.1101/2022.01.23.22269497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 provokes a brisk T cell response. Peptide-based studies exclude antigen processing and presentation biology and may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DC to activate CD8 and CD4 T cells from convalescent persons. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the alpha, beta, gamma, and delta variant lineages.
Collapse
|
25
|
Hansen UK, Lyngaa R, Ibrani D, Church C, Verhaegen M, Dlugosz AA, Becker JC, Straten PT, Nghiem P, Hadrup SR. Extended T-Cell Epitope Landscape in Merkel Cell Polyomavirus Large T and Small T Oncoproteins Identified Uniquely in Patients with Cancer. J Invest Dermatol 2022; 142:239-243.e13. [PMID: 34298058 PMCID: PMC9413685 DOI: 10.1016/j.jid.2021.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Ulla Kring Hansen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Rikke Lyngaa
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Dafina Ibrani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA;,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA;,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Monique Verhaegen
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrzej Antoni Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA;,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jürgen Christian Becker
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany;,German Cancer Consortium (DKTK), Essen, Germany;,German Cancer Research Center (DKFZ), Heidelberg, Germany;,Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Per thor Straten
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA;,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA;,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;,Seattle Cancer Care Alliance Center, Seattle, Washington, USA
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark;,Corresponding author:
| |
Collapse
|
26
|
Immune-instructive materials as new tools for immunotherapy. Curr Opin Biotechnol 2021; 74:194-203. [PMID: 34959210 DOI: 10.1016/j.copbio.2021.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Immune instructive materials, are materials with the ability to modulate or mimic the function of immune cells, provide exciting opportunities for developing new therapies in many areas including medical devices, chronic inflammation, cancer, and autoimmune diseases. In this review we highlight some of the latest research involving material-based strategies for modulating macrophage phenotype and dendritic cell function, as well as a brief description on biomaterial use in T cell and natural killer cell engineering. We highlight studies on material topography, size, shape and surface chemistry to reduce inflammation, along with scaffold and hydrogel delivery systems that are used for modulating DC phenotype and influencing T cell polarization. Artificial antigen presenting cells are also reviewed as a promising approach to cancer immunotherapy.
Collapse
|
27
|
Vitiello GAF, Ferreira WAS, Cordeiro de Lima VC, Medina TDS. Antiviral Responses in Cancer: Boosting Antitumor Immunity Through Activation of Interferon Pathway in the Tumor Microenvironment. Front Immunol 2021; 12:782852. [PMID: 34925363 PMCID: PMC8674309 DOI: 10.3389/fimmu.2021.782852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, it became apparent that cancers either associated with viral infections or aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic, exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-state conditions and cell homeostasis. In line with this, epigenetic disruptions within steady-state cells can lead to cancer development and trigger the release of EREs into the cytoplasmic compartment. As such, detection of viral molecules by intracellular innate immune sensors leads to the production of type I and type III interferons that act to induce an antiviral state, thus restraining viral replication. This knowledge has recently gained momentum due to the possibility of triggering intratumoral activation of interferon responses, which could be used as an adjuvant to elicit strong anti-tumor immune responses that ultimately lead to a cascade of cytokine production. Accordingly, several therapeutic approaches are currently being tested using this rationale to improve responses to cancer immunotherapies. In this review, we discuss the immune mechanisms operating in viral infections, show evidence that exogenous viruses and endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu as a promising molecular predictive marker and immunotherapy target. Finally, we briefly discuss current strategies to modulate these responses within tumor tissues, including the clinical use of innate immune receptor agonists and DNA demethylating agents.
Collapse
Affiliation(s)
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
28
|
T-Cell Responses in Merkel Cell Carcinoma: Implications for Improved Immune Checkpoint Blockade and Other Therapeutic Options. Int J Mol Sci 2021; 22:ijms22168679. [PMID: 34445385 PMCID: PMC8395396 DOI: 10.3390/ijms22168679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with rising incidence and high mortality. Approximately 80% of the cases are caused by the human Merkel cell polyomavirus, while the remaining 20% are induced by UV light leading to mutations. The standard treatment of metastatic MCC is the use of anti-PD-1/-PD-L1-immune checkpoint inhibitors (ICI) such as Pembrolizumab or Avelumab, which in comparison with conventional chemotherapy show better overall response rates and longer duration of responses in patients. Nevertheless, 50% of the patients do not respond or develop ICI-induced, immune-related adverse events (irAEs), due to diverse mechanisms, such as down-regulation of MHC complexes or the induction of anti-inflammatory cytokines. Other immunotherapeutic options such as cytokines and pro-inflammatory agents or the use of therapeutic vaccination offer great ameliorations to ICI. Cytotoxic T-cells play a major role in the effectiveness of ICI, and tumour-infiltrating CD8+ T-cells and their phenotype contribute to the clinical outcome. This literature review presents a summary of current and future checkpoint inhibitor therapies in MCC and demonstrates alternative therapeutic options. Moreover, the importance of T-cell responses and their beneficial role in MCC treatment is discussed.
Collapse
|
29
|
Finton KAK, Brusniak MY, Jones LA, Lin C, Fioré-Gartland AJ, Brock C, Gafken PR, Strong RK. ARTEMIS: A Novel Mass-Spec Platform for HLA-Restricted Self and Disease-Associated Peptide Discovery. Front Immunol 2021; 12:658372. [PMID: 33986749 PMCID: PMC8111693 DOI: 10.3389/fimmu.2021.658372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022] Open
Abstract
Conventional immunoprecipitation/mass spectroscopy identification of HLA-restricted peptides remains the purview of specializing laboratories, due to the complexity of the methodology, and requires computational post-analysis to assign peptides to individual alleles when using pan-HLA antibodies. We have addressed these limitations with ARTEMIS: a simple, robust, and flexible platform for peptide discovery across ligandomes, optionally including specific proteins-of-interest, that combines novel, secreted HLA-I discovery reagents spanning multiple alleles, optimized lentiviral transduction, and streamlined affinity-tag purification to improve upon conventional methods. This platform fills a middle ground between existing techniques: sensitive and adaptable, but easy and affordable enough to be widely employed by general laboratories. We used ARTEMIS to catalog allele-specific ligandomes from HEK293 cells for seven classical HLA alleles and compared results across replicates, against computational predictions, and against high-quality conventional datasets. We also applied ARTEMIS to identify potentially useful, novel HLA-restricted peptide targets from oncovirus oncoproteins and tumor-associated antigens.
Collapse
Affiliation(s)
- Kathryn A K Finton
- Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lisa A Jones
- Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Chenwei Lin
- Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Andrew J Fioré-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Chance Brock
- Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Philip R Gafken
- Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Roland K Strong
- Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
30
|
Nghiem P, Bhatia S, Lipson EJ, Sharfman WH, Kudchadkar RR, Brohl AS, Friedlander PA, Daud A, Kluger HM, Reddy SA, Boulmay BC, Riker A, Burgess MA, Hanks BA, Olencki T, Kendra K, Church C, Akaike T, Ramchurren N, Shinohara MM, Salim B, Taube JM, Jensen E, Kalabis M, Fling SP, Homet Moreno B, Sharon E, Cheever MA, Topalian SL. Three-year survival, correlates and salvage therapies in patients receiving first-line pembrolizumab for advanced Merkel cell carcinoma. J Immunother Cancer 2021; 9:jitc-2021-002478. [PMID: 33879601 PMCID: PMC8061836 DOI: 10.1136/jitc-2021-002478] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Merkel cell carcinoma (MCC) is an aggressive skin cancer associated with poor survival. Programmed cell death-1 (PD-1) pathway inhibitors have shown high rates of durable tumor regression compared with chemotherapy for MCC. The current study was undertaken to assess baseline and on-treatment factors associated with MCC regression and 3-year survival, and to explore the effects of salvage therapies in patients experiencing initial non-response or tumor progression after response or stable disease following first-line pembrolizumab therapy on Cancer Immunotherapy Trials Network-09/KEYNOTE-017. Methods In this multicenter phase II trial, 50 patients with advanced unresectable MCC received pembrolizumab 2 mg/kg every 3 weeks for ≤2 years. Patients were followed for a median of 31.8 months. Results Overall response rate to pembrolizumab was 58% (complete response 30%+partial response 28%; 95% CI 43.2 to 71.8). Among 29 responders, the median response duration was not reached (NR) at 3 years (range 1.0+ to 51.8+ months). Median progression-free survival (PFS) was 16.8 months (95% CI 4.6 to 43.4) and the 3-year PFS was 39.1%. Median OS was NR; the 3-year OS was 59.4% for all patients and 89.5% for responders. Baseline Eastern Cooperative Oncology Group performance status of 0, greater per cent tumor reduction, completion of 2 years of treatment and low neutrophil-to-lymphocyte ratio were associated with response and longer survival. Among patients with initial disease progression or those who developed progression after response or stable disease, some had extended survival with subsequent treatments including chemotherapies and immunotherapies. Conclusions This study represents the longest available follow-up from any first-line anti-programmed death-(ligand) 1 (anti-PD-(L)1) therapy in MCC, confirming durable PFS and OS in a proportion of patients. After initial tumor progression or relapse following response, some patients receiving salvage therapies survived. Improving the management of anti-PD-(L)1-refractory MCC remains a challenge and a high priority. Trial registration number NCT02267603.
Collapse
Affiliation(s)
- Paul Nghiem
- University of Washington / Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shailender Bhatia
- University of Washington / Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Evan J Lipson
- Johns Hopkins Bloomberg~Kimmel Institute for Cancer Immunotherapy and Kimmel Cancer Center, Baltimore, Maryland, USA
| | - William H Sharfman
- Johns Hopkins Bloomberg~Kimmel Institute for Cancer Immunotherapy and Kimmel Cancer Center, Baltimore, Maryland, USA
| | | | | | | | - Adil Daud
- University of California San Francisco, San Francisco, California, USA
| | | | | | | | - Adam Riker
- Louisiana State University, New Orleans, Louisiana, USA.,Department of Surgery, Anne Arundel Medical Center, Annapolis, Maryland, USA.,DeCesaris Cancer Institute, Cancer Service Line, Luminis Health, Parole, Maryland, USA
| | | | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas Olencki
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Kari Kendra
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | | | - Nirasha Ramchurren
- Fred Hutchinson Cancer Research Center / Cancer Immunotherapy Trials Network, Seattle, Washington, USA
| | | | - Bob Salim
- Axio Research, LLC, Seattle, Washington, USA
| | - Janis M Taube
- Johns Hopkins Bloomberg~Kimmel Institute for Cancer Immunotherapy and Kimmel Cancer Center, Baltimore, Maryland, USA
| | | | | | - Steven P Fling
- Fred Hutchinson Cancer Research Center / Cancer Immunotherapy Trials Network, Seattle, Washington, USA
| | | | - Elad Sharon
- National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, Maryland, USA
| | - Martin A Cheever
- Fred Hutchinson Cancer Research Center / Cancer Immunotherapy Trials Network, Seattle, Washington, USA
| | - Suzanne L Topalian
- Johns Hopkins Bloomberg~Kimmel Institute for Cancer Immunotherapy and Kimmel Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Cives M, Mannavola F, Lospalluti L, Sergi MC, Cazzato G, Filoni E, Cavallo F, Giudice G, Stucci LS, Porta C, Tucci M. Non-Melanoma Skin Cancers: Biological and Clinical Features. Int J Mol Sci 2020; 21:E5394. [PMID: 32751327 PMCID: PMC7432795 DOI: 10.3390/ijms21155394] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-melanoma skin cancers (NMSCs) include basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and Merkel cell carcinoma (MCC). These neoplasms are highly diverse in their clinical presentation, as well as in their biological evolution. While the deregulation of the Hedgehog pathway is commonly observed in BCC, SCC and MCC are characterized by a strikingly elevated mutational and neoantigen burden. As result of our improved understanding of the biology of non-melanoma skin cancers, innovative treatment options including inhibitors of the Hedgehog pathway and immunotherapeutic agents have been recently investigated against these malignancies, leading to their approval by regulatory authorities. Herein, we review the most relevant biological and clinical features of NMSC, focusing on innovative treatment approaches.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Basal Cell/drug therapy
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/surgery
- Carcinoma, Merkel Cell/drug therapy
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/surgery
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Clinical Trials as Topic
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Immunotherapy/methods
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Skin Neoplasms/surgery
Collapse
Affiliation(s)
- Mauro Cives
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
- National Cancer Center, Tumori Institute Giovanni Paolo II, 70121 Bari, Italy
| | - Francesco Mannavola
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Lucia Lospalluti
- Section of Dermatology, Azienda Ospedaliero-Universitaria Policlinico di Bari, 70121 Bari, Italy;
| | - Maria Chiara Sergi
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Gerardo Cazzato
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Elisabetta Filoni
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Federica Cavallo
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Giuseppe Giudice
- Section of Plastic and Reconstructive Surgery, Department of Emergency and Organ Transplantation (DETO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Luigia Stefania Stucci
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Camillo Porta
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Marco Tucci
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
- National Cancer Center, Tumori Institute Giovanni Paolo II, 70121 Bari, Italy
| |
Collapse
|
32
|
Zhao B, Hui X, Jiao L, Bi L, Wang L, Huang P, Yang W, Yin Y, Jin S, Wang C, Zhang X, Xu L. A TCM Formula YYWY Inhibits Tumor Growth in Non-Small Cell Lung Cancer and Enhances Immune-Response Through Facilitating the Maturation of Dendritic Cells. Front Pharmacol 2020; 11:798. [PMID: 32595493 PMCID: PMC7301756 DOI: 10.3389/fphar.2020.00798] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
In worldwide, lung cancer has a major socio-economic impact and is one of the most common causes of cancer-related deaths. Current therapies for lung cancer are still quite unsatisfactory, urging for alternative new treatments. Traditional Chinese Medicine (TCM) is currently increasingly popular and exhibits a complicated intervention in cancers therapy. In this study, we evaluated the anti-tumor effect and explored the mechanisms of a TCM formula Yangyinwenyang (YYWY) in non-small cell lung cancer (NSCLC) models. YYWY induced the apoptosis of lung cancer cells in vitro. In Lewis NSCLC-bearing mice model, YYWY significantly inhibited the tumor growth. Further, RNA-seq analysis and immunostaining of the tumor tissue implied the critical role of YYWY in the regulation of immune response, especially the dendritic cells (DCs) in the effect of YYWY. Therefore, we focused on DCs, which were the initiator and modulator of the immune response. YYWY facilitated the maturation of DCs through MAPK and NF-κB signaling pathways and promoted the release of the cytokines IFN-γ, interleukin (IL)-1β, IL-2, IL-12, and tumor necrosis factor (TNF)-α by DCs. Moreover, the YYWY-matured DCs enhanced the proliferation of T cells and promoted the differentiation of T cells into T helper Th1 and cytotoxic T cell (CTL). In addition, YYWY increased the ratio of Th1/Th2 (IFN-γ/IL-4 radio). Collectively, our findings clearly suggested that YYWY exerted an anti-tumor effect on NSCLC, at least partially through facilitating the mature DCs to activate the proliferation and differentiation of T cells.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- A Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Piao Huang
- A Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinan Yin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenyi Jin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyan Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- A Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|