1
|
Kondakova I, Sereda E, Sidenko E, Vtorushin S, Vedernikova V, Burov A, Spirin P, Prassolov V, Lebedev T, Morozov A, Karpov V. Association of Proteasome Activity and Pool Heterogeneity with Markers Determining the Molecular Subtypes of Breast Cancer. Cancers (Basel) 2025; 17:159. [PMID: 39796785 PMCID: PMC11720674 DOI: 10.3390/cancers17010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed. Breast cancer (BC) therapy depends on the subtype of the tumor, determined by the expression level of Ki67, HER-2, estrogen and progesterone receptors. Relationships between the presence of specific proteasome forms and proteins that determine the BC subtype remain unclear. Here, using gene expression data in 19,145 tumor samples from 144 datasets and tissues from 159 patients with different subtypes of BC, we investigated the association between the activity and expression of proteasomes and levels of BC subtype markers. METHODS Bioinformatic analysis of proteasome subunit (PSMB1-10) gene expression in BC was performed. Proteasome heterogeneity in BC cell lines was investigated by qPCR. By Western blotting, proteasome composition was assessed in cells and patient tissue lysates. Proteasome activities were studied using fluorogenic substrates. BC molecular subtypes were determined by immunohistochemistry. RESULTS BC subtypes demonstrate differing proteasome subunit expression pattern and strong PSMB8-10 co-correlation in tumors. A significant increase in chymotrypsin- and caspase-like proteasome activities in BC compared to adjacent tissues was revealed. The subunit composition of proteasomes in tumor tissues of BC subtypes varied. Regression analysis demonstrated a positive correlation between proteasome activities and the expression of Ki67, estrogen receptors and progesterone receptors. CONCLUSION BC subtypes demonstrate differences within the proteasome pool. Correlations between the proteasome activity, hormone receptors and Ki67 indicate possible mutual influence. Obtained results facilitate development of novel drug combinations for BC therapy.
Collapse
Affiliation(s)
- Irina Kondakova
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
| | - Elena Sereda
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeniya Sidenko
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Sergey Vtorushin
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Valeria Vedernikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Moscow Center for Advanced Studies, Kulakova 20, 123592 Moscow, Russia
| | - Alexander Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| |
Collapse
|
2
|
Narukawa T, Yasuda S, Horinaka M, Taniguchi K, Tsujikawa T, Morita M, Ukimura O, Sakai T. The Novel HDAC Inhibitor OBP-801 Promotes MHC Class I Presentation Through LMP2 Upregulation, Enhancing the PD-1-Targeting Therapy in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2024; 16:4058. [PMID: 39682244 DOI: 10.3390/cancers16234058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors have been reported to exhibit immunomodulatory activities, including the upregulation of major histocompatibility complex class I (MHC class I). Although the immunoproteasome plays a pivotal role in MHC class I antigen presentation, its effect on immunotherapy for clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS This study assessed whether OBP-801, a novel HDAC inhibitor, affects the expression of immunoproteasome subunits and subsequently the MHC class-I-mediated anti-cancer immunity in ccRCC. We analyzed the data of 531 patients with ccRCC from the Cancer Genome Atlas Kidney Clear Cell Carcinoma database. We further evaluated the treatment efficacy of the combination of OBP-801 and anti-PD-1 in a ccRCC mouse model. RESULTS Low molecular mass polypeptide (LMP) 2 was correlated most positively with CD3E, CD8A, and CD8B expression and estimated CD8+ T cell number. In vitro studies showed that OBP-801 upregulated MHC class I presentation by inducing LMP2 expression in the ccRCC cell lines RENCA, 786-O, and Caki-1. In vivo studies in a syngeneic mouse model with subcutaneous implantation of RENCA cells showed that OBP-801 treatment increased the percentage of CD45+CD3e+ T cells in tumor-infiltrating lymphocytes. The combination of anti-PD-1 antibody and OBP-801 enhanced the anti-tumor effect, LMP2 protein expression, and MHC class I presentation in tumor cells. MHC class I presentation in the tumors of each mouse was positively correlated with the percentage of CD45+CD3e+ T cells. CONCLUSIONS Our results demonstrate that OBP-801 promotes MHC class I presentation through LMP2 upregulation in tumor cells and thereby potentiates PD-1-targeting therapy. These data suggest that the combination of OBP-801 and anti-PD-1 treatment is a promising therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Tsukasa Narukawa
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Urology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shusuke Yasuda
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Keiko Taniguchi
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head & Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mie Morita
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
3
|
Shi S, Ou X, Liu C, Wen H, Jiang K. Immunoproteasome acted as immunotherapy 'coffee companion' in advanced carcinoma therapy. Front Immunol 2024; 15:1464267. [PMID: 39281672 PMCID: PMC11392738 DOI: 10.3389/fimmu.2024.1464267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Immunoproteasome is a specialized form of proteasome which plays a crucial role in antigen processing and presentation, and enhances immune responses against malignant cells. This review explores the role of immunoproteasome in the anti-tumor immune responses, including immune surveillance and modulation of the tumor microenvironment, as well as its potential as a target for cancer immunotherapy. Furthermore, we have also discussed the therapeutic potential of immunoproteasome inhibitors, strategies to enhance antigen presentation and combination therapies. The ongoing trials and case studies in urology, melanoma, lung, colorectal, and breast cancers have also been summarized. Finally, the challenges facing clinical translation of immunoproteasome-targeted therapies, such as toxicity and resistance mechanisms, and the future research directions have been addressed. This review underscores the significance of targeting the immunoproteasome in combination with other immunotherapies for solid tumors and its potential broader applications in other diseases.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Liu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Wen
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Jiang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Burov A, Grigorieva E, Lebedev T, Vedernikova V, Popenko V, Astakhova T, Leonova O, Spirin P, Prassolov V, Karpov V, Morozov A. Multikinase inhibitors modulate non-constitutive proteasome expression in colorectal cancer cells. Front Mol Biosci 2024; 11:1351641. [PMID: 38774235 PMCID: PMC11106389 DOI: 10.3389/fmolb.2024.1351641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.
Collapse
Affiliation(s)
- Alexander Burov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grigorieva
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria Vedernikova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Karpov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Leister H, Krause FF, Gil B, Prus R, Prus I, Hellhund-Zingel A, Mitra M, Da Rosa Gerbatin R, Delanty N, Beausang A, Brett FM, Farrell MA, Cryan J, O’Brien DF, Henshall DC, Helmprobst F, Pagenstecher A, Steinhoff U, Visekruna A, Engel T. Immunoproteasome deficiency results in age-dependent development of epilepsy. Brain Commun 2024; 6:fcae017. [PMID: 38317856 PMCID: PMC10839634 DOI: 10.1093/braincomms/fcae017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
The immunoproteasome is a central protease complex required for optimal antigen presentation. Immunoproteasome activity is also associated with facilitating the degradation of misfolded and oxidized proteins, which prevents cellular stress. While extensively studied during diseases with increasing evidence suggesting a role for the immunoproteasome during pathological conditions including neurodegenerative diseases, this enzyme complex is believed to be mainly not expressed in the healthy brain. In this study, we show an age-dependent increase in polyubiquitination in the brains of wild-type mice, accompanied by an induction of immunoproteasomes, which was most prominent in neurons and microglia. In contrast, mice completely lacking immunoproteasomes (triple-knockout mice), displayed a strong increase in polyubiquitinated proteins already in the young brain and developed spontaneous epileptic seizures, beginning at the age of 6 months. Injections of kainic acid led to high epilepsy-related mortality of aged triple-knockout mice, confirming increased pathological hyperexcitability states. Notably, the expression of the immunoproteasome was reduced in the brains of patients suffering from epilepsy. In addition, the aged triple-knockout mice showed increased anxiety, tau hyperphosphorylation and degeneration of Purkinje cell population with the resulting ataxic symptoms and locomotion alterations. Collectively, our study suggests a critical role for the immunoproteasome in the maintenance of a healthy brain during ageing.
Collapse
Affiliation(s)
- Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Beatriz Gil
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Ruslan Prus
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Inna Prus
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Anne Hellhund-Zingel
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Meghma Mitra
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Rogerio Da Rosa Gerbatin
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Norman Delanty
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- Department of Neurology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Francesca M Brett
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Michael A Farrell
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Jane Cryan
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Donncha F O’Brien
- Department of Neurosurgery, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Frederik Helmprobst
- Institute of Neuropathology, Philipps-University, 35043 Marburg, Germany
- Core Facility for Mouse Pathology and Electron Microscopy, Philipps-University, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, 35043 Marburg, Germany
- Core Facility for Mouse Pathology and Electron Microscopy, Philipps-University, 35043 Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| |
Collapse
|
6
|
Hu X, Hu Z, Zhang H, Zhang N, Feng H, Jia X, Zhang C, Cheng Q. Deciphering the tumor-suppressive role of PSMB9 in melanoma through multi-omics and single-cell transcriptome analyses. Cancer Lett 2024; 581:216466. [PMID: 37944578 DOI: 10.1016/j.canlet.2023.216466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Skin cutaneous melanoma (SKCM) poses a significant challenge in skin cancers. Recent immunotherapy breakthroughs have revolutionized melanoma treamtment, yet tumor heterogeneity persists as an obstacle. Epigenetic modifications orchestrated by DNA methylation contributed to tumorigenesis, thus potentially unveiling melanoma prognosis. Here, we identified an interferon-gamma (IFN-g) sensitive subtype, which possesses favorable outcomes, robust infiltration CD8+T cells, and IFN-g score in bulk RNA-seq profile. Subsequently, we established an IFN-g sensitivity signature based on machine learning. We validated that PSMB9 is strongly correlated with immunotherapy response in both methylation and expression cohorts in this 10-probe signature. We assumed that PSMB9 acts as a putative melanoma suppressor, for its activation of CD8+T cell; capacity to modulate IFN-γ secretion; and dynamics altering IFN-g receptors in bulk tissue. We performed single-cell RNA-seq on immunotherapy patients' tissue to uncover the nuanced role of PSMB9 in activating CD8T + cells, enhancing IFN-g, and influencing malignant cells receptors and transcriptional factors. Overexpress PSMB9 in two SKCM cell lines to mimic the hypomethylated state to approve our conjecture. Strong cell proliferation and migration inhibition were detected on both cells, indicating that PSMB9 is present in tumor cells and that high expression is detrimental to tumor growth and migration. Overall, comprehensive integrated analysis shows that PSMB9 emerges as a vital prognostic marker, acting predictive potential regarding immunotherapy in melanoma. This evidence not only reveals the multifaceted impact of PSMB9 on both malignant and immune cells but also serves as a prospective target for undergoing immunotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Xing Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Zhengang Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Nan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region, 850001, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
7
|
Lee MH, Ratanachan D, Wang Z, Hack J, Abdulrahman L, Shamlin NP, Kalayjian M, Nesseler JP, Ganapathy E, Nguyen C, Ratikan JA, Cacalano NA, Austin D, Damoiseaux R, DiPardo B, Graham DS, Kalbasi A, Sayer JW, McBride WH, Schaue D. Adaptation of the Tumor Antigen Presentation Machinery to Ionizing Radiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:693-705. [PMID: 37395687 PMCID: PMC10435044 DOI: 10.4049/jimmunol.2100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/18/2022] [Indexed: 07/04/2023]
Abstract
Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), β2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5. In contrast, in another less immunogenic, murine fibrosarcoma (NFSA), LMP7 transcripts and expression of components of the immunoproteasome and the APM were muted after IR, which affected MHC-I expression and CD8+ T lymphocyte infiltration into NFSA tumors in vivo. Introduction of LMP7 into NFSA largely corrected these deficiencies, enhancing MHC-I expression and in vivo tumor immunogenicity. The immune adaptation in response to IR mirrored many aspects of the response to IFN-γ in coordinating the transcriptional MHC-I program, albeit with notable differences. Further investigations showed divergent upstream pathways in that, unlike IFN-γ, IR failed to activate STAT-1 in either FSA or NFSA cells while heavily relying on NF-κB activation. The IR-induced shift toward immunoproteasome production within a tumor indicates that proteasomal reprogramming is part of an integrated and dynamic tumor-host response that is specific to the stressor and the tumor and therefore is of clinical relevance for radiation oncology.
Collapse
Affiliation(s)
- Mi-Heon Lee
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Duang Ratanachan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Zitian Wang
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jacob Hack
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Lobna Abdulrahman
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas P. Shamlin
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mirna Kalayjian
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jean Philippe Nesseler
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ekambaram Ganapathy
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christine Nguyen
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Josephine A. Ratikan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicolas A. Cacalano
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - David Austin
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of CNSI, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Benjamin DiPardo
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Danielle S. Graham
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - James W. Sayer
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- School of Public Health, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - William H. McBride
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
8
|
Farhana A, Alsrhani A, Khan YS, Rasheed Z. Cancer Bioenergetics and Tumor Microenvironments-Enhancing Chemotherapeutics and Targeting Resistant Niches through Nanosystems. Cancers (Basel) 2023; 15:3836. [PMID: 37568652 PMCID: PMC10416858 DOI: 10.3390/cancers15153836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Qassim, Saudi Arabia
| |
Collapse
|
9
|
Wang Q, Huang X, Zeng S, Zhou R, Wang D. Identification and validation of a TTN-associated immune prognostic model for skin cutaneous melanoma. Front Genet 2023; 13:1084937. [PMID: 36704353 PMCID: PMC9871619 DOI: 10.3389/fgene.2022.1084937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
TTN is the most commonly mutated gene in skin cutaneous melanoma (SKCM). Tumor mutational burden (TMB) can generate new antigens that regulate the recognition of T cells, which will significantly affect the prognosis of patients. The TTN gene has a long coding sequence and a high number of mutant sites, which allows SKCM patients to produce higher TMB and may influence the immune response. It has been found that the overall survival (OS) of SKCM patients with TTN mutation was significantly higher than that of wild-type patients. However, the effect of TTN mutation on the immune microenvironment of SKCM has not been fully investigated. Here, we systematically explored the relationship and potential mechanisms between TTN mutation status and the immune response. We first revealed that TTN mutated SKCM were significantly associated with four immune-related biological processes. Next, 115 immune genes differentially expressed between TTN mutation and wild-type SKCM patients were found to significantly affect the OS of SKCM patients. Then, we screened four immune-related genes (CXCL9, PSMB9, CD274, and FCGR2A) using LASSO regression analysis and constructed a TTN mutation-associated immune prognostic model (TM-IPM) to distinguish the SKCM patients with a high or low risk of poor prognosis, independent of multiple clinical characteristics. SKCM in the low-risk group highly expressed a large number of immune-related genes, and functional enrichment analysis of these genes showed that this group was involved in multiple immune processes and pathways. Furthermore, the nomogram constructed by TM-IPM with other clinicopathological parameters can provide a predictive tool for clinicians. Moreover, we found that CD8+ T cells were significantly enriched in the low-risk group. The expression level of immune checkpoints was higher in the low-risk group than in the high-risk group. Additionally, the response to chemotherapeutic agents was higher in the low-risk group than in the high-risk group, which may be related to the long survival in the low-risk group. Collectively, we constructed and validated a TM-IPM using four immune-related genes and analyzed the potential mechanisms of TM-IPM to predict patient prognosis and response to immunotherapy from an immunological perspective.
Collapse
Affiliation(s)
- Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingtai Huang
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, College of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Xie T, Fan G, Huang L, Lou N, Han X, Xing P, Shi Y. Analysis on methylation and expression of PSMB8 and its correlation with immunity and immunotherapy in lung adenocarcinoma. Epigenomics 2022; 14:1427-1448. [PMID: 36683462 DOI: 10.2217/epi-2022-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: To find biomarkers for immunity and immunotherapy in lung adenocarcinoma (LUAD) through multiomics analysis. Materials & methods: The multiomics data of patients with LUAD were downloaded from the TCGA and GEO databases. CIBERSORT, quanTIseq, ESTIMATEScore, k-means clustering, gene set enrichment analysis, gene set variation analysis, immunophenoscore and logistic regression were used in this study. Results: PSMB8 HypoMet-HighExp group patients have more active immune-related pathways, more antitumor immune cells, less protumor immune cells, higher immunophenoscore and longer progression-free survival of immune checkpoint inhibitor therapy than HyperMet-LowExp group. In multivariate analysis, PSMB8 showed an independent value. Conclusion: The combination of DNA methylation and mRNA expression of PSMB8 could independently distinguish types of tumor immune microenvironment and predict programmed cell death protein 1/programmed cell death-ligand 1 inhibitors' effects in patients with LUAD.
Collapse
Affiliation(s)
- Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Liling Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ning Lou
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe & Rare Diseases, NMPA Key Laboratory for Clinical Research & Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| |
Collapse
|
11
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
12
|
Sharma A, Noon JB, Kontodimas K, Garo LP, Platten J, Quinton LJ, Urban JF, Reinhardt C, Bosmann M. IL-27 Enhances γδ T Cell–Mediated Innate Resistance to Primary Hookworm Infection in the Lungs. THE JOURNAL OF IMMUNOLOGY 2022; 208:2008-2018. [PMID: 35354611 PMCID: PMC9012701 DOI: 10.4049/jimmunol.2000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
Abstract
IL-27 is a heterodimeric IL-12 family cytokine formed by noncovalent association of the promiscuous EBI3 subunit and selective p28 subunit. IL-27 is produced by mononuclear phagocytes and unfolds pleiotropic immune-modulatory functions through ligation to IL-27 receptor α (IL-27RA). Although IL-27 is known to contribute to immunity and to limit inflammation after various infections, its relevance for host defense against multicellular parasites is still poorly defined. Here, we investigated the role of IL-27 during infection with the soil-transmitted hookworm, Nippostrongylus brasiliensis, in its early host intrapulmonary life cycle. IL-27(p28) was detectable in bronchoalveolar lavage fluid of C57BL/6J wild-type mice on day 1 after s.c. inoculation. IL-27RA expression was most abundant on lung-invading γδ T cells. Il27ra-/- mice showed increased lung parasite burden together with aggravated pulmonary hemorrhage and higher alveolar total protein leakage as a surrogate for epithelial-vascular barrier disruption. Conversely, injections of recombinant mouse (rm)IL-27 into wild-type mice reduced lung injury and parasite burden. In multiplex screens, higher airway accumulations of IL-6, TNF-α, and MCP-3 (CCL7) were observed in Il27ra-/- mice, whereas rmIL-27 treatment showed a reciprocal effect. Importantly, γδ T cell numbers in airways were enhanced by endogenous or administered IL-27. Further analysis revealed a direct antihelminthic function of IL-27 on γδ T cells as adoptive intratracheal transfer of rmIL-27-treated γδ T cells during primary N. brasiliensis lung infection conferred protection in mice. In summary, this report demonstrates protective functions of IL-27 to control the early lung larval stage of hookworm infection.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jason B Noon
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Lucien P Garo
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Johannes Platten
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lee J Quinton
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joseph F Urban
- Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, U.S. Department of Agriculture, Beltsville, MD; and
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts;
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
13
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
14
|
Leister H, Krause FF, Mahdavi R, Steinhoff U, Visekruna A. The Role of Immunoproteasomes in Tumor-Immune Cell Interactions in Melanoma and Colon Cancer. Arch Immunol Ther Exp (Warsz) 2022; 70:5. [PMID: 35064840 PMCID: PMC8783903 DOI: 10.1007/s00005-022-00644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
The participation of proteasomes in vital cellular and metabolic processes that are involved in tumor growth has made this protease complex an attractive target for cancer treatment. In contrast to ubiquitously available constitutive proteasome, the increased enzymatic activity of immunoproteasome is associated with tumor-infiltrating immune cells, such as antigen-presenting cells and T lymphocytes. In various tumors, an effective anti-tumor immunity is provided through generation of tumor-associated antigens by proteasomes, contributing crucially to cancer eradication by T lymphocytes. The knowledge regarding the role of immunoproteasomes in the communication between tumor cells and infiltrating immune cells is limited. Novel data suggest that the involvement of immunoproteasomes in tumorigenesis is more complex than previously thought. In the intestine, in which diverse signals from commensal bacteria and food can contribute to the onset of chronic inflammation and inflammation-driven cancer, immunoproteasomes exert tumorigenic properties by modulating the expression of pro-inflammatory factors. In contrast, in melanoma and non-small cell lung cancer, the immunoproteasome acts against cancer development by promoting an effective anti-tumor immunity. In this review, we highlight the potential of immunoproteasomes to either contribute to inflammatory signaling and tumor development, or to support anti-cancer immunity. Further, we discuss novel therapeutic options for cancer treatments that are associated with modulating the activity of immunoproteasomes in the tumor microenvironment.
Collapse
Affiliation(s)
- Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Rouzbeh Mahdavi
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
15
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
16
|
Sharma A, Kontodimas K, Bosmann M. The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxid Redox Signal 2021; 35:1376-1392. [PMID: 34348482 PMCID: PMC8817698 DOI: 10.1089/ars.2021.0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023]
Abstract
Significance: It is estimated that close to 50 million cases of sepsis result in over 11 million annual fatalities worldwide. The pathognomonic feature of sepsis is a dysregulated inflammatory response arising from viral, bacterial, or fungal infections. Immune recognition of pathogen-associated molecular patterns is a hallmark of the host immune defense to combat microbes and to prevent the progression to sepsis. Mitochondrial antiviral signaling protein (MAVS) is a ubiquitous adaptor protein located at the outer mitochondrial membrane, which is activated by the cytosolic pattern recognition receptors, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene 5 (MDA5), following binding of viral RNA agonists. Recent Advances: Substantial progress has been made in deciphering the activation of the MAVS pathway with its interacting proteins, downstream signaling events (interferon [IFN] regulatory factors, nuclear factor kappa B), and context-dependent type I/III IFN response. Critical Issues: In the evolutionary race between pathogens and the host, viruses have developed immune evasion strategies for cleavage, degradation, or blockade of proteins in the MAVS pathway. For example, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M protein and ORF9b protein antagonize MAVS signaling and a protective type I IFN response. Future Directions: The role of MAVS as a sensor for nonviral pathogens, host cell injury, and metabolic perturbations awaits better characterization in the future. New technical advances in multidimensional single-cell analysis and single-molecule methods will accelerate the rate of new discoveries. The ultimate goal is to manipulate MAVS activities in the form of immune-modulatory therapies to combat infections and sepsis. Antioxid. Redox Signal. 35, 1376-1392.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
17
|
Sharma A, Kontodimas K, Bosmann M. Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19. Front Med (Lausanne) 2021; 8:648005. [PMID: 34150793 PMCID: PMC8211875 DOI: 10.3389/fmed.2021.648005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus is causing devastating morbidity and mortality worldwide. Nanomedicine approaches have a high potential to enhance conventional diagnostics, drugs and vaccines. In fact, lipid nanoparticle/mRNA vaccines are already widely used to protect from COVID-19. In this review, we present an overview of the taxonomy, structure, variants of concern, epidemiology, pathophysiology and detection methods of SARS-CoV-2. The efforts of repurposing, tailoring, and adapting pre-existing medications to battle COVID-19 and the state of vaccine developments are presented. Next, we discuss the broad concepts and limitations of how nanomedicine could address the COVID-19 threat. Nanomaterials are particles in the nanometer scale (10-100 nm) which possess unique properties related to their size, polarity, structural and chemical composition. Nanoparticles can be composed of precious metals (copper, silver, gold), inorganic materials (graphene, silicon), proteins, carbohydrates, lipids, RNA/DNA, or conjugates, combinations and polymers of all of the aforementioned. The advanced biochemical features of these nanoscale particles allow them to directly interact with virions and irreversibly disrupt their structure, which can render a virus incapable of replicating within the host. Virus-neutralizing coats and surfaces impregnated with nanomaterials can enhance personal protective equipment, hand sanitizers and air filter systems. Nanoparticles can enhance drug-based therapies by optimizing uptake, stability, target cell-specific delivery, and magnetic properties. In fact, recent studies have highlighted the potential of nanoparticles in different aspects of the fight against SARS-CoV-2, such as enhancing biosensors and diagnostic tests, drug therapies, designing new delivery mechanisms, and optimizing vaccines. This article summarizes the ongoing research on diagnostic strategies, treatments, and vaccines for COVID-19, while emphasizing the potential of nanoparticle-based pharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|