1
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Santollani L, Maiorino L, Zhang YJ, Palmeri JR, Stinson JA, Duhamel LR, Qureshi K, Suggs JR, Porth OT, Pinney W, Msari RA, Walsh AA, Wittrup KD, Irvine DJ. Local delivery of cell surface-targeted immunocytokines programs systemic antitumor immunity. Nat Immunol 2024; 25:1820-1829. [PMID: 39112631 PMCID: PMC11436379 DOI: 10.1038/s41590-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/11/2024] [Indexed: 09/05/2024]
Abstract
Systemically administered cytokines are potent immunotherapeutics but can cause severe dose-limiting toxicities. To overcome this challenge, cytokines have been engineered for intratumoral retention after local delivery. However, despite inducing regression of treated lesions, tumor-localized cytokines often elicit only modest responses at distal untreated tumors. In the present study, we report a localized cytokine therapy that safely elicits systemic antitumor immunity by targeting the ubiquitous leukocyte receptor CD45. CD45-targeted immunocytokines have lower internalization rates relative to wild-type counterparts, leading to sustained downstream cis and trans signaling between lymphocytes. A single intratumoral dose of αCD45-interleukin (IL)-12 followed by a single dose of αCD45-IL-15 eradicated treated tumors and untreated distal lesions in multiple syngeneic mouse tumor models without toxicity. Mechanistically, CD45-targeted cytokines reprogrammed tumor-specific CD8+ T cells in the tumor-draining lymph nodes to have an antiviral transcriptional signature. CD45 anchoring represents a broad platform for protein retention by host immune cells for use in immunotherapy.
Collapse
Affiliation(s)
- Luciano Santollani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yiming J Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph R Palmeri
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lauren R Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kashif Qureshi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jack R Suggs
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Owen T Porth
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riyam Al Msari
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Agnes A Walsh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Piper M, Gadwa J, Hodgson C, Knitz M, Yee E, Zhu Y, Larson KY, Klein C, Amann M, Saviola A, Karam SD. IL15/IL15Rα complex induces an anti-tumor immune response following radiation therapy only in the absence of Tregs and fails to induce expansion of progenitor TCF1+ CD8 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613691. [PMID: 39345626 PMCID: PMC11429847 DOI: 10.1101/2024.09.18.613691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background This work seeks to understand whether IL15-incorporating treatments improve response to radiotherapy and uncover mechanistic rationale for overcoming resistance to IL15 agonism using novel therapeutic combinations. Experimental Design Orthotopic tumor models of PDAC were used to determine response to treatment. IL15-/- and Rag1-/- mouse models were employed to determine dependence on IL15 and CTLs, respectively. Flow cytometry was used to assess immune cell frequency and activation state. Phospho-proteomic analyses were used to characterize intracellular signaling pathways. Results We show that the combination of radiation therapy (RT) and an IL15/IL15Ra fusion complex (denoted IL15c) fails to confer anti-tumor efficacy; however, a CD8-driven anti-tumor immune response is elicited with the concurrent administration of an aCD25 Treg-depleting antibody. Using IL15-/- and Rag1-/- mice, we demonstrate that response to RT + IL15c + aCD25 is dependent on both IL15 and CTLs. Furthermore, despite an equivalent survival benefit following treatment with RT + IL15c + aCD25 and combination RT + PD1-IL2v, a novel immunocytokine with PD-1 and IL2Rβγ binding domains, CTL immunophenotyping and phospho-proteomic analysis of intracellular metabolites showed significant upregulation of activation and functionality in CD8 T cells treated with RT + PD1-IL2v. Finally, we show the immunostimulatory response to RT + PD1-IL2v is significantly diminished with a concurrent lack of TCF+ CD8 T cell generation in the absence of functional IL15 signaling. Conclusions Our results are illustrative of a mechanism wherein unimpeded effector T cell activation through IL2Rβ signaling and Treg inhibition are necessary in mediating an anti-tumor immune response.
Collapse
|
4
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
5
|
Moynihan KD, Kumar MP, Sultan H, Pappas DC, Park T, Chin SM, Bessette P, Lan RY, Nguyen HC, Mathewson ND, Ni I, Chen W, Lee Y, Liao-Chan S, Chen J, Schumacher TN, Schreiber RD, Yeung YA, Djuretic IM. IL2 Targeted to CD8+ T Cells Promotes Robust Effector T-cell Responses and Potent Antitumor Immunity. Cancer Discov 2024; 14:1206-1225. [PMID: 38563906 PMCID: PMC11215410 DOI: 10.1158/2159-8290.cd-23-1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
IL2 signals pleiotropically on diverse cell types, some of which contribute to therapeutic activity against tumors, whereas others drive undesired activity, such as immunosuppression or toxicity. We explored the theory that targeting of IL2 to CD8+ T cells, which are key antitumor effectors, could enhance its therapeutic index. To this aim, we developed AB248, a CD8 cis-targeted IL2 that demonstrates over 500-fold preference for CD8+ T cells over natural killer and regulatory T cells (Tregs), which may contribute to toxicity and immunosuppression, respectively. AB248 recapitulated IL2's effects on CD8+ T cells in vitro and induced selective expansion of CD8+T cells in primates. In mice, an AB248 surrogate demonstrated superior antitumor activity and enhanced tolerability as compared with an untargeted IL2Rβγ agonist. Efficacy was associated with the expansion and phenotypic enhancement of tumor-infiltrating CD8+ T cells, including the emergence of a "better effector" population. These data support the potential utility of AB248 in clinical settings. Significance: The full potential of IL2 therapy remains to be unlocked. We demonstrate that toxicity can be decoupled from antitumor activity in preclinical models by limiting IL2 signaling to CD8+ T cells, supporting the development of CD8+ T cell-selective IL2 for the treatment of cancer. See related article by Kaptein et al. p. 1226.
Collapse
Affiliation(s)
| | - Manu P. Kumar
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Hussein Sultan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | | | - Terrence Park
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - S. Michael Chin
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Paul Bessette
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Ruth Y. Lan
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Henry C. Nguyen
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | | | - Irene Ni
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Wei Chen
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Yonghee Lee
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Sindy Liao-Chan
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Jessie Chen
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Ton N.M. Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Yik A. Yeung
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | | |
Collapse
|
6
|
Patra P, Upadhyay TK, Alshammari N, Saeed M, Kesari KK. Alginate-Chitosan Biodegradable and Biocompatible Based Hydrogel for Breast Cancer Immunotherapy and Diagnosis: A Comprehensive Review. ACS APPLIED BIO MATERIALS 2024; 7:3515-3534. [PMID: 38787337 PMCID: PMC11190989 DOI: 10.1021/acsabm.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 05/25/2024]
Abstract
Breast cancer is the most common type of cancer and the second leading cause of cancer-related mortality in females. There are many side effects due to chemotherapy and traditional surgery, like fatigue, loss of appetite, skin irritation, and drug resistance to cancer cells. Immunotherapy has become a hopeful approach toward cancer treatment, generating long-lasting immune responses in malignant tumor patients. Recently, hydrogel has received more attention toward cancer therapy due to its specific characteristics, such as decreased toxicity, fewer side effects, and better biocompatibility drug delivery to the particular tumor location. Researchers globally reported various investigations on hydrogel research for tumor diagnosis. The hydrogel-based multilayer platform with controlled nanostructure has received more attention for its antitumor effect. Chitosan and alginate play a leading role in the formation of the cross-link in a hydrogel. Also, they help in the stability of the hydrogel. This review discusses the properties, preparation, biocompatibility, and bioavailability of various research and clinical approaches of the multipolymer hydrogel made of alginate and chitosan for breast cancer treatment. With a focus on cases of breast cancer and the recovery rate, there is a need to find out the role of hydrogel in drug delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Pratikshya Patra
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Nawaf Alshammari
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo FI-00076, Finland
- Centre
of Research Impact and Outcome, Chitkara
University, Rajpura 140417, Punjab, India
| |
Collapse
|
7
|
Yadav R, Schubbert S, Holder PG, Chiang EY, Kiabi N, Bogaert L, Leung I, Rashid R, Avery KN, Bonzon C, Desjarlais JR, Sanjabi S, Sharma A, Lepherd M, Shelton A, Chan P, Liu Y, Joslyn L, Hosseini I, Stefanich EG, Kamath AV, Bernett MJ, Shivva V. Translational PK/PD and the first-in-human dose selection of a PD1/IL15: an engineered recombinant targeted cytokine for cancer immunotherapy. Front Pharmacol 2024; 15:1380000. [PMID: 38887559 PMCID: PMC11181026 DOI: 10.3389/fphar.2024.1380000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Interleukin 15 (IL-15) is a potential anticancer agent and numerous engineered IL-15 agonists are currently under clinical investigation. Selective targeting of IL-15 to specific lymphocytes may enhance therapeutic effects while helping to minimize toxicities. Methods We designed and built a heterodimeric targeted cytokine (TaCk) that consists of an anti-programmed cell death 1 receptor antibody (anti-PD-1) and an engineered IL-15. This "PD1/IL15" selectively delivers IL-15 signaling to lymphocytes expressing PD-1. We then investigated the pharmacokinetic (PK) and pharmacodynamic (PD) effects of PD1/IL15 TaCk on immune cell subsets in cynomolgus monkeys after single and repeat intravenous dose administrations. We used these results to determine the first-in-human (FIH) dose and dosing frequency for early clinical trials. Results The PD1/IL15 TaCk exhibited a nonlinear multiphasic PK profile, while the untargeted isotype control TaCk, containing an anti-respiratory syncytial virus antibody (RSV/IL15), showed linear and dose proportional PK. The PD1/IL15 TaCk also displayed a considerably prolonged PK (half-life range ∼1.0-4.1 days) compared to wild-type IL-15 (half-life ∼1.1 h), which led to an enhanced cell expansion PD response. The PD was dose-dependent, durable, and selective for PD-1+ lymphocytes. Notably, the dose- and time-dependent PK was attributed to dynamic TMDD resulting from test article-induced lymphocyte expansion upon repeat administration. The recommended first-in-human (FIH) dose of PD1/IL15 TaCk is 0.003 mg/kg, determined based on a minimum anticipated biological effect level (MABEL) approach utilizing a combination of in vitro and preclinical in vivo data. Conclusion This work provides insight into the complex PK/PD relationship of PD1/IL15 TaCk in monkeys and informs the recommended starting dose and dosing frequency selection to support clinical evaluation of this novel targeted cytokine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Amy Sharma
- Genentech, Inc., South SanFrancisco, CA, United States
| | | | - Amy Shelton
- Genentech, Inc., South SanFrancisco, CA, United States
| | - Pam Chan
- Genentech, Inc., South SanFrancisco, CA, United States
| | - Yanqiu Liu
- Genentech, Inc., South SanFrancisco, CA, United States
| | - Louis Joslyn
- Genentech, Inc., South SanFrancisco, CA, United States
| | - Iraj Hosseini
- Genentech, Inc., South SanFrancisco, CA, United States
| | | | | | | | - Vittal Shivva
- Genentech, Inc., South SanFrancisco, CA, United States
| |
Collapse
|
8
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Shi W, Liu N, Liu Z, Yang Y, Zeng Q, Wang Y, Song L, Hu F, Fu J, Chen J, Wu M, Zhou L, Zhu F, Gong L, Zhu J, Jiang L, Lu H. Next-generation anti-PD-L1/IL-15 immunocytokine elicits superior antitumor immunity in cold tumors with minimal toxicity. Cell Rep Med 2024; 5:101531. [PMID: 38697105 PMCID: PMC11148641 DOI: 10.1016/j.xcrm.2024.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/24/2023] [Accepted: 04/04/2024] [Indexed: 05/04/2024]
Abstract
The clinical applications of immunocytokines are severely restricted by dose-limiting toxicities. To address this challenge, here we propose a next-generation immunocytokine concept involving the design of LH05, a tumor-conditional anti-PD-L1/interleukin-15 (IL-15) prodrug. LH05 innovatively masks IL-15 with steric hindrance, mitigating the "cytokine sink" effect of IL-15 and reducing systemic toxicities associated with wild-type anti-PD-L1/IL-15. Moreover, upon specific proteolytic cleavage within the tumor microenvironment, LH05 releases an active IL-15 superagonist, exerting potent antitumor effects. Mechanistically, the antitumor efficacy of LH05 depends on the increased infiltration of CD8+ T and natural killer cells by stimulating the chemokines CXCL9 and CXCL10, thereby converting cold tumors into hot tumors. Additionally, the tumor-conditional anti-PD-L1/IL-15 can synergize with an oncolytic virus or checkpoint blockade in advanced and metastatic tumor models. Our findings provide a compelling proof of concept for the development of next-generation immunocytokines, contributing significantly to current knowledge and strategies of immunotherapy.
Collapse
Affiliation(s)
- Wenqiang Shi
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zexin Liu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqi Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiongya Zeng
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luyao Song
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Hu
- Hangzhou Converd Inc., Hangzhou, Zhejiang 311121, China
| | - Jin Fu
- Hangzhou Converd Inc., Hangzhou, Zhejiang 311121, China
| | - Junsheng Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyuan Wu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhou
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Likun Gong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Jiang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Huili Lu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Ren Z, Zhang X, Fu YX. Facts and Hopes on Chimeric Cytokine Agents for Cancer Immunotherapy. Clin Cancer Res 2024; 30:2025-2038. [PMID: 38190116 DOI: 10.1158/1078-0432.ccr-23-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Cytokines are key mediators of immune responses that can modulate the antitumor activity of immune cells. Cytokines have been explored as a promising cancer immunotherapy. However, there are several challenges to cytokine therapy, especially a lack of tumor targeting, resulting in high toxicity and limited efficacy. To overcome these limitations, novel approaches have been developed to engineer cytokines with improved properties, such as chimeric cytokines. Chimeric cytokines are fusion proteins that combine different cytokine domains or link cytokines to antibodies (immunocytokines) or other molecules that can target specific receptors or cells. Chimeric cytokines can enhance the selectivity and stability of cytokines, leading to reduced toxicity and improved efficacy. In this review, we focus on two promising cytokines, IL2 and IL15, and summarize the current advances and challenges of chimeric cytokine design and application for cancer immunotherapy. Most of the current approaches focus on increasing the potency of cytokines, but another important goal is to reduce toxicity. Cytokine engineering is promising for cancer immunotherapy as it can enhance tumor targeting while minimizing adverse effects.
Collapse
Affiliation(s)
| | - Xuhao Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yang-Xin Fu
- Changping Laboratory, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Zhang J, Li AM, Kansler ER, Li MO. Cancer immunity by tissue-resident type 1 innate lymphoid cells and killer innate-like T cells. Immunol Rev 2024; 323:150-163. [PMID: 38506480 PMCID: PMC11102320 DOI: 10.1111/imr.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert M. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily R. Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
12
|
Hu S, Meng K, Wang T, Qu R, Wang B, Xi Y, Yu T, Yuan Z, Cai Z, Tian Y, Zeng C, Wang X, Zou W, Fu X, Li L. Lung cancer cell-intrinsic IL-15 promotes cell migration and sensitizes murine lung tumors to anti-PD-L1 therapy. Biomark Res 2024; 12:40. [PMID: 38637902 PMCID: PMC11027539 DOI: 10.1186/s40364-024-00586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND IL-15 plays a vital role in enhancing NK cell- and T-cell-mediated antitumor immune responses; however, the direct effect of IL-15 on tumor cells has not been fully elucidated. Herein, we investigated the effect of IL-15 on lung adenocarcinoma cells. METHODS Silencing and overexpression techniques were used to modify endogenous IL-15 expression in tumor cells. Transwell assays were used to assess tumor cell migration and invasion; a live-cell analysis system was used to evaluate cell motility; cellular morphological changes were quantified by confocal fluorescence microscopy; the molecular mechanisms underlying the effect of IL-15 on tumor cells were analyzed by western blotting; and RhoA and Cdc42 activities were evaluated by a pulldown assay. NCG and C57BL/6 mouse models were used to evaluate the functions of IL-15 in vivo. RESULTS Cancer cell-intrinsic IL-15 promoted cell motility and migration in vitro and metastasis in vivo via activation of the AKT-mTORC1 pathway; however, exogenous IL-15 inhibited cell motility and migration via suppression of the RhoA-MLC2 axis. Mechanistic analysis revealed that both the intracellular and extracellular IL-15-mediated effects required the expression of IL-15Rα by tumor cells. Detailed analyses revealed that the IL-2/IL-15Rβ and IL-2Rγ chains were undetected in the complex formed by intracellular IL-15 and IL-15Rα. However, when exogenous IL-15 engaged tumor cells, a complex containing the IL-15Rα, IL-2/IL-15Rβ, and IL-2Rγ chains was formed, indicating that the differential actions of intracellular and extracellular IL-15 on tumor cells might be caused by their distinctive modes of IL-15 receptor engagement. Using a Lewis lung carcinoma (LLC) metastasis model, we showed that although IL-15 overexpression facilitated the lung metastasis of LLC cells, IL-15-overexpressing LLC tumors were more sensitive to anti-PD-L1 therapy than were IL-15-wild-type LLC tumors via an enhanced antitumor immune response, as evidenced by their increased CD8+ T-cell infiltration compared to that of their counterparts. CONCLUSIONS Cancer cell-intrinsic IL-15 and exogenous IL-15 differentially regulate cell motility and migration. Thus, cancer cell-intrinsic IL-15 acts as a double-edged sword in tumor progression. Additionally, high levels of IL-15 expressed by tumor cells might improve the responsiveness of tumors to immunotherapies.
Collapse
Affiliation(s)
- Shaojie Hu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Kelin Meng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Tianlai Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Rirong Qu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Boyu Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yu Xi
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Taiyan Yu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zhiwei Yuan
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zihao Cai
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yitao Tian
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Chenxi Zeng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xue Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Wenbin Zou
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
14
|
Peng S, Lin A, Jiang A, Zhang C, Zhang J, Cheng Q, Luo P, Bai Y. CTLs heterogeneity and plasticity: implications for cancer immunotherapy. Mol Cancer 2024; 23:58. [PMID: 38515134 PMCID: PMC10956324 DOI: 10.1186/s12943-024-01972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play critical antitumor roles, encompassing diverse subsets including CD4+, NK, and γδ T cells beyond conventional CD8+ CTLs. However, definitive CTLs biomarkers remain elusive, as cytotoxicity-molecule expression does not necessarily confer cytotoxic capacity. CTLs differentiation involves transcriptional regulation by factors such as T-bet and Blimp-1, although epigenetic regulation of CTLs is less clear. CTLs promote tumor killing through cytotoxic granules and death receptor pathways, but may also stimulate tumorigenesis in some contexts. Given that CTLs cytotoxicity varies across tumors, enhancing this function is critical. This review summarizes current knowledge on CTLs subsets, biomarkers, differentiation mechanisms, cancer-related functions, and strategies for improving cytotoxicity. Key outstanding questions include refining the CTLs definition, characterizing subtype diversity, elucidating differentiation and senescence pathways, delineating CTL-microbe relationships, and enabling multi-omics profiling. A more comprehensive understanding of CTLs biology will facilitate optimization of their immunotherapy applications. Overall, this review synthesizes the heterogeneity, regulation, functional roles, and enhancement strategies of CTLs in antitumor immunity, highlighting gaps in our knowledge of subtype diversity, definitive biomarkers, epigenetic control, microbial interactions, and multi-omics characterization. Addressing these questions will refine our understanding of CTLs immunology to better leverage cytotoxic functions against cancer.
Collapse
Affiliation(s)
- Shengkun Peng
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South University, Hunan, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Zekri L, Hagelstein I, Märklin M, Klimovich B, Christie M, Lindner C, Kämereit S, Prakash N, Müller S, Stotz S, Maurer A, Greve C, Schmied B, Atar D, Rammensee HG, Jung G, Salih HR. Immunocytokines with target cell-restricted IL-15 activity for treatment of B cell malignancies. Sci Transl Med 2024; 16:eadh1988. [PMID: 38446900 DOI: 10.1126/scitranslmed.adh1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Despite the advances in cancer treatment achieved, for example, by the CD20 antibody rituximab, an urgent medical need remains to optimize the capacity of such antibodies to induce antibody-dependent cellular cytotoxicity (ADCC) that determines therapeutic efficacy. The cytokine IL-15 stimulates proliferation, activation, and cytolytic capacity of NK cells, but broad clinical use is prevented by short half-life, poor accumulation at the tumor site, and severe toxicity due to unspecific immune activation. We here report modified immunocytokines consisting of Fc-optimized CD19 and CD20 antibodies fused to an IL-15 moiety comprising an L45E-E46K double mutation (MIC+ format). The E46K mutation abrogated binding to IL-15Rα, thereby enabling substitution of physiological trans-presentation by target binding and thus conditional IL-15Rβγ stimulation, whereas the L45E mutation optimized IL-15Rβγ agonism and producibility. In vitro analysis of NK activation, anti-leukemia reactivity, and toxicity using autologous and allogeneic B cells confirmed target-dependent function of MIC+ constructs. Compared with Fc-optimized CD19 and CD20 antibodies, MIC+ constructs mediated superior target cell killing and NK cell proliferation. Mouse models using luciferase-expressing human NALM-6 lymphoma cells, patient acute lymphoblastic leukemia (ALL) cells, and murine EL-4 lymphoma cells transduced with human CD19/CD20 as targets and human and murine NK cells as effectors, respectively, confirmed superior and target-dependent anti-leukemic activity. In summary, MIC+ constructs combine the benefits of Fc-optimized antibodies and IL-15 cytokine activity and mediate superior NK cell immunity with potentially reduced side effects. They thus constitute a promising new immunotherapeutic approach shown here for B cell malignancies.
Collapse
Affiliation(s)
- Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, Eberhard Karls Universität Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
| | - Mary Christie
- School of Medical Sciences, University of Sydney, 2050 NSW, Australia
| | - Cornelia Lindner
- Department of Immunology, Institute for Cell Biology, Eberhard Karls Universität Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Germany
| | - Sofie Kämereit
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, Eberhard Karls Universität Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Germany
| | - Nisha Prakash
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, Eberhard Karls Universität Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Germany
| | - Stefanie Müller
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
| | - Sophie Stotz
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
- Department for Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Andreas Maurer
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
- Department for Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Carsten Greve
- Department of Immunology, Institute for Cell Biology, Eberhard Karls Universität Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Germany
| | - Bastian Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Atar
- Childrens University Hospital, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, Eberhard Karls Universität Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, Eberhard Karls Universität Tübingen, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Zhao Y, Yang M, Feng J, Wang X, Liu Y. Advances in immunotherapy for biliary tract cancers. Chin Med J (Engl) 2024; 137:524-532. [PMID: 37646139 DOI: 10.1097/cm9.0000000000002759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 09/01/2023] Open
Abstract
ABSTRACT Biliary tract cancers (BTC), a heterogeneous disease with poor prognosis, including gallbladder cancer (GBC), intrahepatic cholangiocarcinoma (ICC), and extrahepatic cholangiocarcinoma (ECC). Although surgery is currently the primary regimen to treat BTC, most BTC patients are diagnosed at an advanced stage and miss the opportunity of surgical eradication. As a result, non-surgical therapy serves as the main intervention for advanced BTC. In recent years, immunotherapy has emerged as one of the most promising therapies in a number of solid cancers, and it includes immune checkpoint inhibitors (ICIs) monotherapy or combined therapy, tumor vaccines, oncolytic virus immunotherapy, adoptive cell therapy (ACT), and cytokine therapy. However, these therapies have been practiced in limited clinical settings in patients with BTC. In this review, we focus on the discussion of latest advances of immunotherapy in BTC and update the progress of multiple current clinical trials with different immunotherapies.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| | - Jiayi Feng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| | - Xu'an Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| |
Collapse
|
17
|
Yin Y, Zeng A, Abuduwayiti A, Xu Z, Chen K, Wang C, Fang X, Wang J, Jiang G, Dai J. MAIT cells are associated with responsiveness to neoadjuvant immunotherapy in COPD-associated NSCLC. Cancer Med 2024; 13:e7112. [PMID: 38509769 PMCID: PMC10955227 DOI: 10.1002/cam4.7112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD) experience worse clinical outcomes but respond better to immunotherapy than patients with NSCLC without COPD. Mucosal-associated invariant T (MAIT) cells, a versatile population of innate immune T lymphocytes, have a crucial function in the response to infection and tumors. This study investigated the distribution of MAIT cells in COPD-associated NSCLC and their involvement in the immune response. METHODS Flow cytometry, immunohistochemistry, and immunofluorescence were performed on tissue samples of patients with NSCLC, with or without COPD, treated with or without anti-programmed death 1 (PD1) immunotherapy. MAIT cells were stimulated with 5-OP-RU using a mouse subcutaneous tumor model. RESULTS Tumors contained significantly more MAIT cells than paraneoplastic tissues, and CD8+ MAIT cells accounted for more than 90% of these cells. Patients with NSCLC and COPD had higher CD8+ MAIT cell counts than those with NSCLC without COPD. Additionally, patients with NSCLC and COPD displayed reduced expression of the activation marker, CD69, and functional markers, granzyme B (GZMB) and interferon γ (IFNγ), and higher expression of the immune exhaustion marker, PD1. Among patients who received immunotherapy, the proportion with a complete or partial response was higher in those with COPD than in those without COPD. In patients with NSCLC and COPD, the major pathologic response (MPR) group had higher MAIT levels than those in the no major pathologic response (NPR) group. In the mouse subcutaneous tumor model stimulation of MAIT cells using 5-OP-RU enhanced the antitumor effects of anti-PD1. CONCLUSIONS In patients with NSCLC and COPD, response to immunotherapy is associated with accumulation of CD8+ MAIT cells showing immune exhaustion. These findings may contribute to innovative approaches for immunotherapy targeting CD8+ MAIT cells.
Collapse
Affiliation(s)
- Yanze Yin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ao Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Abudumijiti Abuduwayiti
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhilong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Keyi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyun Fang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jiarui Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jie Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
18
|
Ji C, Kuang B, Buetow BS, Vitsky A, Xu Y, Huang TH, Chaparro-Riggers J, Kraynov E, Matsumoto D. Pharmacokinetics, pharmacodynamics, and toxicity of a PD-1-targeted IL-15 in cynomolgus monkeys. PLoS One 2024; 19:e0298240. [PMID: 38315680 PMCID: PMC10843171 DOI: 10.1371/journal.pone.0298240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
PF-07209960 is a novel bispecific fusion protein composed of an anti-PD-1 antibody and engineered IL-15 cytokine mutein with reduced binding affinity to its receptors. The pharmacokinetics (PK), pharmacodynamics (PD), and toxicity of PF-07209960 were evaluated following once every other week subcutaneous (SC) or intravenous (IV) administration to cynomolgus monkeys in a repeat-dose PKPD (0.01-0.3 mg/kg/dose) and GLP toxicity study (0.1-3 mg/kg/dose). PF-07209960 showed dose dependent pharmacokinetics with a terminal T1/2 of 8 and 13 hours following IV administration at 0.03 and 0.1 mg/kg, respectively. The clearance is faster than a typical IgG1 antibody. Slightly faster clearance was also observed following the second dose, likely due to increased target pool and formation of anti-drug antibodies (ADA). Despite a high incidence rate of ADA (92%) observed in GLP toxicity study, PD-1 receptor occupancy, IL-15 signaling (STAT5 phosphorylation) and T cell expansion were comparable following the first and second doses. Activation and proliferation of T cells were observed with largest increase in cell numbers found in gamma delta T cells, followed by CD4+ and CD8+ T cells, and then NK cells. Release of cytokines IL-6, IFNγ, and IL-10 were detected, which peaked at 72 hours postdose. There was PF-07209960-related mortality at ≥1 mg/kg. At scheduled necropsy, microscopic findings were generalized mononuclear infiltration in various tissues. Both the no observed adverse effect level (NOAEL) and the highest non severely toxic dose (HNSTD) were determined to be 0.3 mg/kg/dose, which corresponded to mean Cmax and AUC48 values of 1.15 μg/mL and 37.9 μg*h/mL, respectively.
Collapse
Affiliation(s)
- Changhua Ji
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Bing Kuang
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Bernard S. Buetow
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Allison Vitsky
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Yuanming Xu
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | - Tzu-Hsuan Huang
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | | | - Eugenia Kraynov
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Diane Matsumoto
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| |
Collapse
|
19
|
Sprent J, Boyman O. Optimising IL-2 for Cancer Immunotherapy. Immune Netw 2024; 24:e5. [PMID: 38455463 PMCID: PMC10917570 DOI: 10.4110/in.2024.24.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The key role of T cells in cancer immunotherapy is well established and is highlighted by the remarkable capacity of Ab-mediated checkpoint blockade to overcome T-cell exhaustion and amplify anti-tumor responses. However, total or partial tumor remission following checkpoint blockade is still limited to only a few types of tumors. Hence, concerted attempts are being made to devise new methods for improving tumor immunity. Currently, much attention is being focused on therapy with IL-2. This cytokine is a powerful growth factor for T cells and optimises their effector functions. When used at therapeutic doses for cancer treatment, however, IL-2 is highly toxic. Nevertheless, recent work has shown that modifying the structure or presentation of IL-2 can reduce toxicity and lead to effective anti-tumor responses in synergy with checkpoint blockade. Here, we review the complex interaction of IL-2 with T cells: first during normal homeostasis, then during responses to pathogens, and finally in anti-tumor responses.
Collapse
Affiliation(s)
- Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney 1466, Australia
- Menzies Institute of Medical Research, Hobart 7000, Australia
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich 8091, Switzerland
- Faculty of Medicine and Faculty of Science, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
20
|
Santollani L, Zhang YJ, Maiorino L, Palmeri JR, Stinson JA, Duhamel LR, Qureshi K, Suggs JR, Porth OT, Pinney W, Msari RA, Wittrup KD, Irvine DJ. Local delivery of cell surface-targeted immunocytokines programs systemic anti-tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573641. [PMID: 38260254 PMCID: PMC10802272 DOI: 10.1101/2024.01.03.573641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cytokine therapies are potent immunotherapy agents but exhibit severe dose-limiting toxicities. One strategy to overcome this involves engineering cytokines for intratumoral retention following local delivery. Here, we develop a localized cytokine therapy that elicits profound anti-tumor immunity by engineered targeting to the ubiquitous leukocyte receptor CD45. We designed CD45-targeted immunocytokines (αCD45-Cyt) that, upon injection, decorated the surface of leukocytes in the tumor and tumor-draining lymph node (TDLN) without systemic exposure. αCD45-Cyt therapy eradicated both directly treated tumors and untreated distal lesions in multiple syngeneic mouse tumor models. Mechanistically, αCD45-Cyt triggered prolonged pSTAT signaling and reprogrammed tumor-specific CD8+ T cells in the TDLN to exhibit an anti-viral transcriptional signature. CD45 anchoring represents a broad platform for protein retention by host immune cells for use in immunotherapy.
Collapse
Affiliation(s)
- Luciano Santollani
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
| | - Yiming J. Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Joseph R. Palmeri
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
| | - Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Lauren R. Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Kashif Qureshi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
| | - Jack R. Suggs
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
| | - Owen T. Porth
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Riyam Al Msari
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - K. Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
- Department of Materials Science and Engineering; Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Codarri Deak L, Hashimoto M, Umaña P, Klein C. Beyond checkpoint inhibition: PD-1 cis-targeting of an IL-2Rβγ-biased interleukin-2 variant as a novel approach to build on checkpoint inhibition. Oncoimmunology 2023; 12:2197360. [PMID: 37025392 PMCID: PMC10072055 DOI: 10.1080/2162402x.2023.2197360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The immunocytokine PD1-IL2v was designed to overcome liabilities and improve efficacy of IL-2 therapies. PD1-IL2v preferentially targets PD-1+ T-cells and acts on antigen-specific stem-like PD-1+ TCF-1+ CD8+ T-cells expanding and differentiating them towards better effectors resulting in superior efficacy in LCMV chronic infection and tumor models compared to checkpoint inhibition.
Collapse
|
22
|
Niederlova V, Tsyklauri O, Kovar M, Stepanek O. IL-2-driven CD8 + T cell phenotypes: implications for immunotherapy. Trends Immunol 2023; 44:890-901. [PMID: 37827864 PMCID: PMC7615502 DOI: 10.1016/j.it.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The therapeutic potential of interleukin (IL)-2 in cancer treatment has been known for decades, yet its widespread adoption in clinical practice remains limited. Recently, chimeric proteins of an anti-PD-1 antibody and suboptimal IL-2 variants were shown to stimulate potent antitumor and antiviral immunity by inducing unique effector CD8+ T cells in mice. A similar subset of cytotoxic T cells is induced by depletion of regulatory T cells (Tregs), suggesting IL-2 sequestration as a major mechanism through which regulatory T cells suppress activated CD8+ T cells. Here, we present our view of how IL-2-based biologicals can boost the antitumor response at a cellular level, and propose that the role of Tregs following such treatments may have been previously overestimated.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
23
|
Santollani L, Wittrup KD. Spatiotemporally programming cytokine immunotherapies through protein engineering. Immunol Rev 2023; 320:10-28. [PMID: 37409481 DOI: 10.1111/imr.13234] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Cytokines have long been considered promising cancer immunotherapy agents due to their endogenous role in activating and proliferating lymphocytes. However, since the initial FDA approvals of Interleukin-2 (IL-2) and Interferon-ɑ (IFNɑ) for oncology over 30 years ago, cytokines have achieved little success in the clinic due to narrow therapeutic windows and dose-limiting toxicities. This is attributable to the discrepancy between the localized, regulated manner in which cytokines are deployed endogenously versus the systemic, untargeted administration used to date in most exogenous cytokine therapies. Furthermore, cytokines' ability to stimulate multiple cell types, often with paradoxical effects, may present significant challenges for their translation into effective therapies. Recently, protein engineering has emerged as a tool to address the shortcomings of first-generation cytokine therapies. In this perspective, we contextualize cytokine engineering strategies such as partial agonism, conditional activation and intratumoral retention through the lens of spatiotemporal regulation. By controlling the time, place, specificity, and duration of cytokine signaling, protein engineering can allow exogenous cytokine therapies to more closely approach their endogenous exposure profile, ultimately moving us closer to unlocking their full therapeutic potential.
Collapse
Affiliation(s)
- Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Balzeau J, Ravindran A, Wang X, Maisuria J, Lucchesi A, Yao H, Matsueda S. Successful ex vivo expansion of tumor infiltrating lymphocytes with systemic chemotherapy prior to surgical resection. Cancer Immunol Immunother 2023; 72:3377-3385. [PMID: 37468658 PMCID: PMC10992235 DOI: 10.1007/s00262-023-03500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Tumor infiltrating lymphocytes (TIL) have demonstrated efficacious clinical outcomes for many patients with various types of solid cancers, including melanoma, gastrointestinal cancer, lung cancer, and head and neck cancer. Currently, the majority of clinical trials require that patients did not receive systemic therapy right before tumor tissue resection to avoid the interference of chemotherapy in the ex vivo TIL expansion. The primary disadvantage of this strategy is limiting the accessibility of TIL therapy for many eligible cancer patients. Over the past decade, substantial progress has been made for ex vivo expansion technologies in T cells. In this study, we investigated the possibility of enrolling patients who underwent chemotherapy prior to surgical resection. We collected seventeen tumor tissues from treatment naive cases, and five from cases that underwent chemotherapies. Cancer indications enrolled in this study were colorectal and lung cancers from both primary and metastatic sites, such as liver and brain. TILs from these tumors were expanded ex vivo to 2.1E8 (total viable lymphocytes counts) on average, with an overall success rate of 90.9%. Subsequently, TIL phenotypes and cytokine production were analyzed using flow cytometry and ELISA, respectively. We demonstrated functional TIL expansion from tumor tissues despite chemotherapy prior to surgical resection. We observed no significant phenotypic or functional differences between groups with and without chemotherapy. TIL expansion rate and characteristics were similar regardless of chemotherapy prior to resection, thereby providing a possibility to recruit patients with the most recent chemotherapy history in TIL therapy trials.
Collapse
Affiliation(s)
| | | | - Xin Wang
- Fresh Wind Biotechnologies China Inc., Tianjin, China
| | | | - Anna Lucchesi
- Fresh Wind Biotechnologies USA Inc., Houston, TX, USA
| | - Hui Yao
- Fresh Wind Biotechnologies USA Inc., Houston, TX, USA
| | | |
Collapse
|
25
|
Martomo SA, Patel J. Evaluation of the clinical molecule anti-human-PD-L1/IL-15 KD033 in the human-PD-1/PD-L1-expressing murine model demonstrates PD-L1 targeting of IL-15 in vivo. Cancer Immunol Immunother 2023; 72:1941-1950. [PMID: 36454338 PMCID: PMC10198867 DOI: 10.1007/s00262-022-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022]
Abstract
KD033 is a clinical-stage immunocytokine composed of a high-affinity anti-human-PD-L1 antibody and the human IL-15/ IL-15 receptor sushi-domain complex. We have previously shown that KD033-surrogate, the anti-mouse-PD-L1/IL-15 immunocytokine, was efficacious in several syngeneic murine tumor models including those that were refractory to anti-PD-1/PD-L1 checkpoint blockers. KD033-surrogate showed better efficacy than the combination treatment of its component, anti-PD-L1 antibody with the non-targeting IL-15. KD033-surrogate was also efficacious in both low and high PD-L1-expressing tumors. In this study, we have utilized double knock-in mice expressing functional human PD-1/PD-L1 to show that the clinical molecule, KD033, reproduced the anti-tumor efficacy observed with KD033-surrogate in the syngeneic models. KD033 was equally efficacious in reducing the growth of human-PD-L1 positive (hPDL1+) and negative (hPDL1-) MC38 murine tumors. We observed similar peripheral pharmacodynamics changes in KD033-treated mice bearing either hPDL1+ or hPDL1- MC38 tumors. However, different transcriptomic profiles were observed between KD033-treated hPDL1+ and hPDL1- MC38 tumors with marked changes involving mostly downregulated genes in hPDL1- tumors in addition to the immune-related genes changes observed in both hPDL1+ and hPDL1- MC38 tumors. Cytotoxic and myeloid cell signatures were upregulated in both tumors with relatively greater increases observed in hPDL1- MC38 tumors. These effects of KD033 treatment in PD-L1 positive and negative tumors demonstrate the role of PD-L1 in targeting of IL-15 cytokine in vivo.
Collapse
Affiliation(s)
- Stella A Martomo
- Kadmon Corporation, a Sanofi Company, 450 East 29th Street, New York, NY, 10016, USA.
| | - Jeegar Patel
- Kadmon Corporation, a Sanofi Company, 450 East 29th Street, New York, NY, 10016, USA
| |
Collapse
|
26
|
Cai M, Huang X, Huang X, Ju D, Zhu YZ, Ye L. Research progress of interleukin-15 in cancer immunotherapy. Front Pharmacol 2023; 14:1184703. [PMID: 37251333 PMCID: PMC10213988 DOI: 10.3389/fphar.2023.1184703] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Interleukin-15 (IL-15) is a cytokine that belongs to the interleukin-2 (IL-2) family and is essential for the development, proliferation, and activation of immune cells, including natural killer (NK) cells, T cells and B cells. Recent studies have revealed that interleukin-15 also plays a critical role in cancer immunotherapy. Interleukin-15 agonist molecules have shown that interleukin-15 agonists are effective in inhibiting tumor growth and preventing metastasis, and some are undergoing clinical trials. In this review, we will summarize the recent progress in interleukin-15 research over the past 5 years, highlighting its potential applications in cancer immunotherapy and the progress of interleukin-15 agonist development.
Collapse
Affiliation(s)
- Menghan Cai
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Xuan Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiting Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Li Ye
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Felices M, Wesley E, Bendzick LE, Kodal B, Hopps R, Grzywacz B, Hinderlie P, Miller JS, Geller MA. Reverse Translation Identifies the Synergistic Role of Immune Checkpoint Blockade and IL15 to Enhance Immunotherapy of Ovarian Cancer. Cancer Immunol Res 2023; 11:674-686. [PMID: 36807510 PMCID: PMC10155036 DOI: 10.1158/2326-6066.cir-22-0600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Immune checkpoint blockade (ICB) has changed the standard of care for many patients with cancer, yet no ICB is approved for ovarian cancer. We hypothesized that maintenance therapy with an IL15 "superagonist" (N-803) and ICB in combination could induce potent immune activation in ovarian cancer. Using flow cytometry, cytometry by time of flight analysis, and cytotoxicity assays, we analyzed patient samples from women with advanced epithelial ovarian cancer treated with N-803 for indications of PD-1/PD-L1 upregulation with this treatment. In addition, ICB and N-803 were evaluated in preclinical studies to determine the functional impact of combination therapy on natural killer (NK) cells in vitro and in vivo. We observed that N-803 stimulated initial NK-cell expansion in patient samples; however, proliferation was not sustained beyond 2 weeks despite continued treatment. This result was reverse translated back to the laboratory to determine the functional relevance of this finding. The addition of ICB with an antibody-dependent cellular cytotoxicity IgG1 antibody against PD-L1 (avelumab) or an IgG4 antibody against PD-1 (pembrolizumab) enhanced N-803 induced NK-cell function in vitro. Using models of human ovarian cancer and NK-cell adoptive transfer in mice, we showed enhanced antitumor control with N-803 and ICB, as well as a combination effect that enhanced NK-cell persistence and expansion in vivo. This work suggests that PD-1/PD-L1 blockade combined with IL15 signaling may overcome resistance to cytokine therapy in ovarian cancer.
Collapse
Affiliation(s)
- Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Erin Wesley
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Laura E. Bendzick
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Behiye Kodal
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Rachel Hopps
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Bartosz Grzywacz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Peter Hinderlie
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Melissa A. Geller
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
28
|
Rybchenko VS, Aliev TK, Panina AA, Kirpichnikov MP, Dolgikh DA. Targeted Cytokine Delivery for Cancer Treatment: Engineering and Biological Effects. Pharmaceutics 2023; 15:pharmaceutics15020336. [PMID: 36839658 PMCID: PMC9960319 DOI: 10.3390/pharmaceutics15020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Anti-tumor properties of several cytokines have already been investigated in multiple experiments and clinical trials. However, those studies evidenced substantial toxicities, even at low cytokine doses, and the lack of tumor specificity. These factors significantly limit clinical applications. Due to their high specificity and affinity, tumor-specific monoclonal antibodies or their antigen-binding fragments are capable of delivering fused cytokines to tumors and, therefore, of decreasing the number and severity of side effects, as well as of enhancing the therapeutic index. The present review surveys the actual antibody-cytokine fusion protein (immunocytokine) formats, their targets, mechanisms of action, and anti-tumor and other biological effects. Special attention is paid to the formats designed to prevent the off-target cytokine-receptor interactions, potentially inducing side effects. Here, we describe preclinical and clinical data and the efficacy of the antibody-mediated cytokine delivery approach, either as a single therapy or in combination with other agents.
Collapse
Affiliation(s)
- Vladislav S Rybchenko
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Teimur K Aliev
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna A Panina
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry A Dolgikh
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
29
|
Way JC, Burrill DR, Silver PA. Bioinspired Design of Artificial Signaling Systems. Biochemistry 2023; 62:178-186. [PMID: 35984429 PMCID: PMC9851155 DOI: 10.1021/acs.biochem.2c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Indexed: 02/02/2023]
Abstract
Natural systems use weak interactions and avidity effects to give biological systems high specificity and signal-to-noise ratios. Here we describe design principles for engineering fusion proteins that target therapeutic fusion proteins to membrane-bound signaling receptors by first binding to designer-chosen co-receptors on the same cell surface. The key design elements are separate protein modules, one that has no signaling activity and binds to a cell surface receptor with high affinity and a second that binds to a receptor with low or moderate affinity and carries out a desired signaling or inhibitory activity. These principles are inspired by natural cytokines such as CNTF, IL-2, and IL-4 that bind strongly to nonsignaling receptors and then signal through low-affinity receptors. Such designs take advantage of the fact that when a protein is anchored to a cell membrane, its local concentration is extremely high with respect to those of other membrane proteins, so a second-step, low-affinity binding event is favored. Protein engineers have used these principles to design treatments for cancer, anemia, hypoxia, and HIV infection.
Collapse
Affiliation(s)
- Jeffrey C. Way
- General
Biologics, Inc., 108
Fayerweather Street, Unit 2, Cambridge, Massachusetts 02138, United States
| | - Devin R. Burrill
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Pamela A. Silver
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
30
|
Vasic V, Buldun C, Ritz M, Dickopf S, Georges GJ, Spick C, Peuker A, Meier T, Mayer K, Brinkmann U. Targeted chain-exchange-mediated reconstitution of a split type-I cytokine for conditional immunotherapy. MAbs 2023; 15:2245111. [PMID: 37608616 PMCID: PMC10448976 DOI: 10.1080/19420862.2023.2245111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Antibody-cytokine fusions targeted against tumor-associated antigens (TAAs) are promising cancer immunotherapy agents, with many such molecules currently undergoing clinical trials. However, due to the limited number of tumor-specific targets, on-target off-tumor effects can lead to systemic toxicity. Additionally, targeted cytokines can be scavenged by cytokine receptors on peripheral cells, decreasing tumor penetration. This study aims at overcoming these issues by engineering a platform for targeted conditionally active type I cytokines. Building on our previously reported PACE (Prodrug-Activating Chain Exchange) platform, we split the type I cytokine interleukin-4 (IL-4) to create two inactive IL-4 prodrugs, and fused these split IL-4 counterparts to the C-termini of antibody-like molecules that undergo proximity-induced chain exchange. In doing so, we developed IL-4 prodrugs that preferentially reconstitute into active IL-4 on target cells. We demonstrate that pre-assembled split IL-4 (without additional inactivation) retains activity and present two different strategies of splitting and inactivating IL-4. Using an IL-4 responsive cell-line, we show that IL-4 prodrugs are targeted to TAAs on target cells and regain activity upon chain exchange, primarily in a cis-activation setting. Furthermore, we demonstrate that split IL-4 complementation is also possible in a trans-activation setting, which opens up the possibility for activation of immune cells in the tumor vicinity. We demonstrate that targeted on-cell prodrug conversion is more efficient than nonspecific activation in-solution. Due to the structural similarity between IL-4 and other type I cytokines relevant in cancer immunotherapy such as IL-2, IL-15, and IL-21, cytokine-PACE may be expanded to develop a variety of targeted conditionally active cytokines for cancer immunotherapy.
Collapse
Affiliation(s)
- Vedran Vasic
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Can Buldun
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
- Bellevue Asset Management, Küsnacht, Switzerland
| | - Manfred Ritz
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Steffen Dickopf
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
- Discovery Biology, Morphosys AG, Planegg, Germany
| | - Guy J. Georges
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian Spick
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Alessa Peuker
- Reagent Research and Design, Roche Diagnostics GmbH, Penzberg, Germany
| | - Thomas Meier
- Reagent Research and Design, Roche Diagnostics GmbH, Penzberg, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
31
|
Emerging principles of cytokine pharmacology and therapeutics. Nat Rev Drug Discov 2023; 22:21-37. [PMID: 36131080 DOI: 10.1038/s41573-022-00557-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
Cytokines are secreted signalling proteins that play essential roles in the initiation, maintenance and resolution of immune responses. Although the unique ability of cytokines to control immune function has garnered clinical interest in the context of cancer, autoimmunity and infectious disease, the use of cytokine-based therapeutics has been limited. This is due, in part, to the ability of cytokines to act on many cell types and impact diverse biological functions, resulting in dose-limiting toxicity or lack of efficacy. Recent studies combining structural biology, protein engineering and receptor pharmacology have unlocked new insights into the mechanisms of cytokine receptor activation, demonstrating that many aspects of cytokine function are highly tunable. Here, we discuss the pharmacological principles underlying these efforts to overcome cytokine pleiotropy and enhance the therapeutic potential of this important class of signalling molecules.
Collapse
|
32
|
Shen J, Zou Z, Guo J, Cai Y, Xue D, Liang Y, Wang W, Peng H, Fu YX. An engineered concealed IL-15-R elicits tumor-specific CD8+T cell responses through PD-1-cis delivery. J Exp Med 2022; 219:213502. [PMID: 36165896 PMCID: PMC9521244 DOI: 10.1084/jem.20220745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022] Open
Abstract
Checkpoint blockade immunotherapy releases the inhibition of tumor-infiltrating lymphocytes (TILs) but weakly induces TIL proliferation. Exogenous IL-15 could further expand TILs and thus synergize with αPD-L1 therapy. However, systemic delivery of IL-15 extensively expands peripheral NK cells, causing severe toxicity. To redirect IL-15 to intratumoral PD-1+CD8+T effector cells instead of NK cells for better tumor control and lower toxicity, we engineered an anti-PD-1 fusion with IL-15-IL-15Rα, whose activity was geographically concealed by immunoglobulin Fc region with an engineered linker (αPD-1-IL-15-R) to bypass systemic NK cells. Systematic administration of αPD-1-IL-15-R elicited extraordinary antitumor efficacy with undetectable toxicity. Mechanistically, cis-delivery of αPD-1-IL-15-R vastly expands tumor-specific CD8+T cells for tumor rejection. Additionally, αPD-1-IL-15-R upregulated PD-1 and IL-15Rβ on T cells to create a feedforward activation loop, thus rejuvenating TILs, not only resulting in tumor control in situ, but also suppressing tumor metastasis. Collectively, renavigating IL-15 to tumor-specific PD-1+CD8+T cells, αPD-1-IL-15-R elicits effective systemic antitumor immunity.
Collapse
Affiliation(s)
- Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhuangzhi Zou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingya Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yueqi Cai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Diyuan Xue
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yong Liang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wenyan Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
33
|
Lutz EA, Jailkhani N, Momin N, Huang Y, Sheen A, Kang BH, Wittrup KD, Hynes RO. Intratumoral nanobody-IL-2 fusions that bind the tumor extracellular matrix suppress solid tumor growth in mice. PNAS NEXUS 2022; 1:pgac244. [PMID: 36712341 PMCID: PMC9802395 DOI: 10.1093/pnasnexus/pgac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Confining cytokine exposure to the tumors would greatly enhance cancer immunotherapy safety and efficacy. Immunocytokines, cytokines fused to tumor-targeting antibodies, have been developed with this intention, but without significant clinical success to date. A critical limitation is uptake by receptor-expressing cells in the blood, that decreases the dose at the tumor and engenders toxicity. Small-format immunocytokines, constructed with antibody fragments, are hypothesized to improve tumor specificity due to rapid systemic clearance. However, effective design criteria for small-format immunocytokines need further examination. Here, we engineer small interleukin-2 (IL-2) immunocytokines fused to nanobodies with nanomolar to picomolar affinities for the tumor-specific EIIIB domain of fibronectin (also known as EDB). Upon intravenous delivery into immunocompetent mice, such immunocytokines led to similar tumor growth delay as size-matched untargeted IL-2. Intratumoral (i.t.) delivery imparted improved survival dependent on affinity to EIIIB. I.t. administration offers a promising avenue to deliver small-format immunocytokines, given effective affinity for the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Ying Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Byong H Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
34
|
Chen ZL, Yin ZJ, Qiu TY, Chen J, Liu J, Zhang XY, Xu JQ. Revealing the characteristics of ZIKV infection through tissue-specific transcriptome sequencing analysis. BMC Genomics 2022; 23:697. [PMID: 36209057 PMCID: PMC9546753 DOI: 10.1186/s12864-022-08919-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, Zika virus (ZIKV) re-emerged in India and was potentially associated with microcephaly. However, the molecular mechanisms underlying ZIKV pathogenesis remain to be explored. RESULTS Herein, we performed a comprehensive RNA-sequencing analysis on ZIKV-infected JEG-3, U-251 MG, and HK-2 cells versus corresponding uninfected controls. Combined with a series of functional analyses, including gene annotation, pathway enrichment, and protein-protein interaction (PPI) network analysis, we defined the molecular characteristics induced by ZIKV infection in different tissues and invasion time points. Data showed that ZIKV infection and replication in each susceptible organ commonly stimulated interferon production and down-regulated metabolic-related processes. Also, tissue-specific immune responses or biological processes (BPs) were induced after ZIKV infection, including GnRH signaling pathway in JEG-3 cells, MAPK signaling pathway in U-251 MG cells, and PPAR signaling pathway in HK-2 cells. Of note, ZIKV infection induced delayed antiviral interferon responses in the placenta-derived cell lines, which potentially explains the molecular mechanism by which ZIKV replicates rapidly in the placenta and subsequential vertical transmission occurs. CONCLUSIONS Together, these data may provide a systemic insight into the pathogenesis of ZIKV infection in distinct human tissue-derived cell lines, which is likely to help develop prophylactic and therapeutic strategies against ZIKV infection.
Collapse
Affiliation(s)
- Zhi-Lu Chen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zuo-Jing Yin
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tian-Yi Qiu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Immunotherapy and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jian Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jian Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xiao-Yan Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China. .,Department of Immunotherapy and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jian-Qing Xu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China. .,Department of Immunotherapy and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
35
|
Wang B, Hu S, Fu X, Li L. CD4
+
Cytotoxic T Lymphocytes in Cancer Immunity and Immunotherapy. Adv Biol (Weinh) 2022; 7:e2200169. [PMID: 36193961 DOI: 10.1002/adbi.202200169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Indexed: 11/05/2022]
Abstract
CD4+ T cells have the ability to differentiate into relatively specialized effector subsets after exposure to innate immune signals. The remarkable plasticity of CD4+ T cells is required to achieve immune responses in different tissues and against various pathogens. Numerous studies have shown that CD4+ T cells can play direct and indispensable roles in protective immunity by killing infected or transformed cells. Although the lineage decision of commitment to the CD4+ or CD8+ cell lineage is once thought to be inflexible, the identification of antigen-experienced CD4+ T cells with cytotoxic activity suggests the existence of unexpected plasticity for these cells. The recognition of CD4+ cytotoxic T lymphocytes (CTLs) and the mechanisms driving the differentiation of this particular cell subset create opportunities to explore the roles of these effector cells in protective immunity and immune-related pathology. CD4+ CTLs are proven to play a protective role in antiviral immunity. Here, the latest investigations on the phenotypic and functional features of CD4+ CTLs and their roles in antitumor immunity and immunotherapy are briefly reviewed.
Collapse
Affiliation(s)
- Boyu Wang
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Shaojie Hu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Xiangning Fu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Lequn Li
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| |
Collapse
|
36
|
Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol 2022; 43:833-847. [PMID: 36058806 PMCID: PMC9612852 DOI: 10.1016/j.it.2022.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
37
|
Wittrup KD, Kaufman HL, Schmidt MM, Irvine DJ. Intratumorally anchored cytokine therapy. Expert Opin Drug Deliv 2022; 19:725-732. [PMID: 35638290 PMCID: PMC9262866 DOI: 10.1080/17425247.2022.2084070] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION On-target, off-tumor toxicity severely limits systemic dosing of cytokines and agonist antibodies for cancer. Intratumoral administration is increasingly being explored to mitigate this problem. Full exploitation of this mode of administration must include a mechanism for sustained retention of the drug; otherwise, rapid diffusion out of the tumor eliminates any advantage. AREAS COVERED We focus here on strategies for anchoring immune agonists in accessible formats. Such anchoring may utilize extracellular matrix components, cell surface receptor targets, or exogenously administered particulate materials. Promising alternative strategies not reviewed here include slow release from the interior of a material depot, expression following local transfection, and conditional proteolytic activation of masked molecules. EXPERT OPINION An effective mechanism for tissue retention is a critical component of intratumorally anchored cytokine therapy, as leakage leads to decreased tumor drug exposure and increased systemic toxicity. Matching variable drug release kinetics with receptor-mediated cellular uptake is an intrinsic requirement for the alternative strategies mentioned above. Bioavailability of an anchored form of the administered drug is key to obviating this balancing act.
Collapse
Affiliation(s)
- K. Dane Wittrup
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | | | | | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Howard Hughes Medical Institute, MD, USA
| |
Collapse
|
38
|
Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells. Br J Cancer 2022; 127:649-660. [PMID: 35597867 PMCID: PMC9381772 DOI: 10.1038/s41416-022-01839-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Immunotherapy with immune checkpoint inhibitors (ICIs) is being explored to improve cholangiocarcinoma (CCA) therapy. However, it remains difficult to predict which ICI will be effective for individual patients. Therefore, the aim of this study is to develop a co-culture method with patient-derived CCA organoids and immune cells, which could represent anti-cancer immunity in vitro. Methods CCA organoids were co-cultured with peripheral blood mononuclear cells or T cells. Flow cytometry, time-lapse confocal imaging for apoptosis, and quantification of cytokeratin 19 fragment (CYFRA) release were applied to analyse organoid and immune cell behaviour. CCA organoids were also cultured in immune cell-conditioned media to analyse the effect of soluble factors. Results The co-culture system demonstrated an effective anti-tumour organoid immune response by a decrease in live organoid cells and an increase in apoptosis and CYFRA release. Interpatient heterogeneity was observed. The cytotoxic effects could be mediated by direct cell–cell contact and by release of soluble factors, although soluble factors only decreased viability in one organoid line. Conclusions In this proof-of-concept study, a novel CCA organoid and immune cell co-culture method was established. This can be the first step towards personalised immunotherapy for CCA by predicting which ICIs are most effective for individual patients.
Collapse
|
39
|
Recent Advances and Next Breakthrough in Immunotherapy for Cancer Treatment. J Immunol Res 2022; 2022:8052212. [PMID: 35340585 PMCID: PMC8956433 DOI: 10.1155/2022/8052212] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
With the huge therapeutic potential, cancer immunotherapy is expected to become the mainstream of cancer treatment. In the current field of cancer immunotherapy, there are mainly five types. Immune checkpoint blockade therapy is one of the most promising directions. Adoptive cell therapy is an important component of cancer immunotherapy. The therapy with the cancer vaccine is promising cancer immunotherapy capable of cancer prevention. Cytokine therapy is one of the pillars of cancer immunotherapy. Oncolytic immunotherapy is a promising novel component of cancer immunotherapy, which with significantly lower incidence of serious adverse reactions. The recent positive results of many clinical trials with cancer immunotherapy may herald good clinical prospects. But there are still many challenges in the broad implementation of immunotherapy. Such as the immunotherapy cannot act on all tumors, and it has serious adverse effects including but not limited to nonspecific and autoimmunity inflammation. Here, we center on recent progress made within the last 5 years in cancer immunotherapy. And we discuss the theoretical background, as well as the opportunities and challenges of cancer immunotherapy.
Collapse
|
40
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
41
|
PD-1-cis IL-2R agonism yields better effectors from stem-like CD8 + T cells. Nature 2022; 610:161-172. [PMID: 36171284 PMCID: PMC9534752 DOI: 10.1038/s41586-022-05192-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/04/2022] [Indexed: 12/22/2022]
Abstract
Expansion and differentiation of antigen-experienced PD-1+TCF-1+ stem-like CD8+ T cells into effector cells is critical for the success of immunotherapies based on PD-1 blockade1-4. Hashimoto et al. have shown that, in chronic infections, administration of the cytokine interleukin (IL)-2 triggers an alternative differentiation path of stem-like T cells towards a distinct population of 'better effector' CD8+ T cells similar to those generated in an acute infection5. IL-2 binding to the IL-2 receptor α-chain (CD25) was essential in triggering this alternative differentiation path and expanding better effectors with distinct transcriptional and epigenetic profiles. However, constitutive expression of CD25 on regulatory T cells and some endothelial cells also contributes to unwanted systemic effects from IL-2 therapy. Therefore, engineered IL-2 receptor β- and γ-chain (IL-2Rβγ)-biased agonists are currently being developed6-10. Here we show that IL-2Rβγ-biased agonists are unable to preferentially expand better effector T cells in cancer models and describe PD1-IL2v, a new immunocytokine that overcomes the need for CD25 binding by docking in cis to PD-1. Cis binding of PD1-IL2v to PD-1 and IL-2Rβγ on the same cell recovers the ability to differentiate stem-like CD8+ T cells into better effectors in the absence of CD25 binding in both chronic infection and cancer models and provides superior efficacy. By contrast, PD-1- or PD-L1-blocking antibodies alone, or their combination with clinically relevant doses of non-PD-1-targeted IL2v, cannot expand this unique subset of better effector T cells and instead lead to the accumulation of terminally differentiated, exhausted T cells. These findings provide the basis for the development of a new generation of PD-1 cis-targeted IL-2R agonists with enhanced therapeutic potential for the treatment of cancer and chronic infections.
Collapse
|
42
|
Felices M, Miller JS. Putting On the Gas and Taking Off the Brakes: A Novel Combinatorial Strategy to Enhance Tumor-Infiltrating Lymphocytes. Cancer Immunol Res 2021; 9:1110. [PMID: 34493487 DOI: 10.1158/2326-6066.cir-21-0556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The advent of checkpoint blockade and use of cytokines to enhance immune responses have changed the field of immunotherapy. Yet, these approaches are not without drawbacks including systemic toxicities and acquired therapeutic resistance. In this issue, Xu and colleagues describe a novel biological molecule composed of a PD-1-targeting antibody linked to a mutated IL15 that induces better targeting of IL15 to tumor-infiltrating lymphocytes (TIL) to decrease systemic toxicities and enhance antitumor responses.See related article by Xu et al., p. 1141 (1).
Collapse
Affiliation(s)
- Martin Felices
- Masonic Cancer Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Masonic Cancer Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|