1
|
Yan XY, Kang YY, Zhang ZY, Huang P, Yang C, Naranmandura H. Therapeutic approaches targeting oncogenic proteins in myeloid leukemia: challenges and perspectives. Expert Opin Ther Targets 2024:1-18. [PMID: 39679536 DOI: 10.1080/14728222.2024.2443577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Leukemia is typically categorized into myeloid leukemia and lymphoblastic leukemia based on the origins of leukemic cells. Myeloid leukemia is a group of clonal malignancies characterized by the presence of increased immature myeloid cells in both the bone marrow and peripheral blood. Of note, the aberrant expression of specific proteins or the generation of fusion proteins due to chromosomal abnormalities are well established drivers in various forms of myeloid leukemia. Therefore, these oncoproteins represent promising targets for drug development. AREAS COVERED In this review, we comprehensively discussed the pathogenesis of typical leukemia oncoproteins and the current landscape of small molecule drugs targeting these oncogenic proteins. Additionally, we elucidated novel strategies, including proteolysis-targeting chimeras (PROTACs), hyperthermia, and genomic editing, which specifically degrade oncogenic proteins in myeloid malignancies. EXPERT OPINION Although small molecule drugs have significantly improved the prognosis of oncoprotein-driven myeloid leukemia patients, drug resistance due to the mutations in oncoproteins is still a great challenge in the clinic. New approaches such as PROTACs, hyperthermia, and genomic editing are considered promising approaches for the treatment of oncoprotein-driven leukemia, especially for drug-resistant mutants.
Collapse
Affiliation(s)
- Xing Yi Yan
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yan Zhang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Schwarz-Furlan S, Gengler C, Yoshimi-Noellke A, Piontek G, Schneider-Kimoto Y, Schmugge M, Thiede C, Niemeyer CM, Erlacher M, Rudelius M. Diagnostic features in paediatric MDS-EB with UBTF-internal tandem duplication: defining a unique subgroup. Histopathology 2024. [PMID: 39564724 DOI: 10.1111/his.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
AIM Tandem-duplications of the UBTF gene (UBTF-TDs) have recently been identified as a new genetic driver in young individuals with acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Disease in these newly defined subgroups is characterized by poor response to standard intensive chemotherapy and inferior survival of the affected patients. However, a thorough analysis of bone marrow histomorphology of UBTF-mutated neoplasia has not been undertaken thus far. METHODS AND RESULTS In this retrospective study, we investigated the characteristic histopathological features of a cohort comprising 14 paediatric MDS patients with an excess of blasts (MDS-EB) and UBTF-TD. Bone marrow biopsies from these patients revealed hypercellularity and severe dysplasia across all three haematopoietic lineages. In particular, a marked hyperplastic megakaryopoiesis characterized by the presence of frequent micromegakaryocytes and a high number of monolobulated cells forming small clusters was observed. Additionally, erythropoiesis was left-shifted, with numerous blastoid precursors. The granulopoietic precursors displayed prominent UBTF-positive nucleoli. CONCLUSION The unique combination of these histomorphological features strongly suggests a possible UBTF aberration. It will allow initiating the appropriate genetic testing to confirm the presence of UBTF-TD and identify potential additional genetic alterations. Such molecular profiling will not only contribute to a better understanding of the disease mechanism, but also facilitate more rational treatment approaches for these high-risk paediatric MDS patients.
Collapse
Affiliation(s)
| | - Carole Gengler
- Department of Pathology, Université Lausanne, Lausanne, Switzerland
| | - Ayami Yoshimi-Noellke
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Guido Piontek
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Markus Schmugge
- Department of Hematology and Oncology, University Children's Hospital, Zürich, Switzerland
| | - Christian Thiede
- Department of Internal Medicine I, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- AgenDix GmbH, Dresden, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
3
|
Nadiminti KVG, Sahasrabudhe KD, Liu H. Menin inhibitors for the treatment of acute myeloid leukemia: challenges and opportunities ahead. J Hematol Oncol 2024; 17:113. [PMID: 39558390 PMCID: PMC11575055 DOI: 10.1186/s13045-024-01632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
The AML treatment landscape has significantly changed in recent years with the approval of targeted therapies in the front-line and relapsed/refractory settings, including inhibitors of FLT3 and IDH1/2 mutations. More importantly, approval of the combination of the BCl-2 inhibitor, venetoclax, and hypomethylating agents or low dose cytarabine provided unprecedented breakthrough for the frontline treatment of older, unfit AML patients. Even with all this exciting progress, more targeted therapies for AML treatment are needed. Recent development of menin inhibitors targeting AML with KMT2A rearrangements or NPM1 mutations could represent a promising new horizon of treatment for patients within these subsets of AML. Our current review will focus on a summary and updates of recent developments of menin inhibitors in the treatment of AML, on the challenges ahead arising from drug resistance, as well as on the opportunities of novel combinations with menin inhibitors.
Collapse
Affiliation(s)
- Kalyan V G Nadiminti
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705-2281, USA.
| | - Kieran D Sahasrabudhe
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705-2281, USA
| | - Hongtao Liu
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705-2281, USA
| |
Collapse
|
4
|
Lei S, Jia S, Takalkar S, Chang TC, Ma X, Szlachta K, Xu K, Cheng Z, Hui Y, Koo SC, Mead PE, Gao Q, Kumar P, Bailey CP, Sunny J, Pappo AS, Federico SM, Robinson GW, Gajjar A, Rubnitz JE, Jeha S, Pui CH, Inaba H, Wu G, Klco JM, Tatevossian RG, Mullighan CG. Genomic profiling of circulating tumor DNA for childhood cancers. Leukemia 2024:10.1038/s41375-024-02461-x. [PMID: 39523434 DOI: 10.1038/s41375-024-02461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The utility of circulating tumor DNA (ctDNA) analysis has not been well-established for disease detection and monitoring of childhood cancers, especially leukemias. We developed PeCan-Seq, a deep sequencing method targeting diverse somatic genomic variants in cell-free samples in childhood cancer. Plasma samples were collected at diagnosis from 233 children with hematologic, solid and brain tumors. All children with hematologic malignancy (n = 177) had detectable ctDNA at diagnosis. The median ctDNA fraction was 0.77, and 97% of 789 expected tumor variants were identified, including sequence mutations, copy number variations, and structural variations responsible for oncogenic fusions. In contrast, ctDNA was detected in 19 of 38 solid tumor patients and 1 of 18 brain tumor patients. Somatic variants from ctDNA were correlated with minimal residual disease levels as determined by flow cytometry in serial plasma samples from patients with B-cell acute lymphoblastic leukemia (B-ALL). We showcase multi-tumor detection by ctDNA analysis for a patient with concurrent B-ALL and neuroblastoma. In conclusion, PeCan-seq sensitively identified heterogeneous ctDNA alterations from 1 mL plasma for childhood hematologic malignancies and a subset of solid tumors. PeCan-seq provides a robust, non-invasive approach to augment comprehensive genomic profiling at diagnosis and mutation-specific detection during disease monitoring.
Collapse
Affiliation(s)
- Shaohua Lei
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujuan Jia
- Clinical Biomarkers Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sunitha Takalkar
- Clinical Biomarkers Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Karol Szlachta
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ke Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yawei Hui
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Priyadarshini Kumar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colin P Bailey
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jobin Sunny
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alberto S Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sara M Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Ruth G Tatevossian
- Clinical Biomarkers Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Cuglievan B, Kantarjian H, Rubnitz JE, Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E, Short NJ, McCall D, Daver N, Nunez C, Haddad FG, Garcia M, Bhalla KN, Maiti A, Catueno S, Fiskus W, Carter BZ, Gibson A, Roth M, Khazal S, Tewari P, Abbas HA, Bourgeois W, Andreeff M, Shukla NN, Truong DD, Connors J, Ludwig JA, Stutterheim J, Salzer E, Juul-Dam KL, Sasaki K, Mahadeo KM, Tasian SK, Borthakur G, Dickson S, Jain N, Jabbour E, Meshinchi S, Garcia-Manero G, Ravandi F, Stein EM, Kolb EA, Issa GC. Menin inhibitors in pediatric acute leukemia: a comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia 2024; 38:2073-2084. [PMID: 39179671 PMCID: PMC11436367 DOI: 10.1038/s41375-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Aberrant expression of HOX and MEIS1 family genes, as seen in KMT2A-rearranged, NUP98-rearranged, or NPM1-mutated leukemias leads to arrested differentiation and leukemia development. HOX family genes are essential gatekeepers of physiologic hematopoiesis, and their expression is regulated by the interaction between KMT2A and menin. Menin inhibitors block this interaction, downregulate the abnormal expression of MEIS1 and other transcription factors and thereby release the differentiation block. Menin inhibitors show significant clinical efficacy against KMT2A-rearranged and NPM1-mutated acute leukemias, with promising potential to address unmet needs in various pediatric leukemia subtypes. In this collaborative initiative, pediatric and adult hematologists/oncologists, and stem cell transplant physicians have united their expertise to explore the potential of menin inhibitors in pediatric leukemia treatment internationally. Our efforts aim to provide a comprehensive clinical overview of menin inhibitors, integrating preclinical evidence and insights from ongoing global clinical trials. Additionally, we propose future international, inclusive, and efficient clinical trial designs, integrating pediatric populations in adult trials, to ensure broad access to this promising therapy for all children and adolescents with menin-dependent leukemias.
Collapse
Affiliation(s)
- Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; The Innovative Therapies for Children with Cancer Consortium, Paris, France
| | | | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erin Guest
- Department of Pediatric Oncology, Children's Mercy, Kansas City, MO, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Division of Transplant and Cellular Therapy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Priti Tewari
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Connors
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elisabeth Salzer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kris M Mahadeo
- Division of Pediatric Transplantation and Cellular Therapy, Duke University, Durham, NC, USA
| | - Sarah K Tasian
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Dickson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Department of Leukemia, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Anders Kolb
- Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey ALW, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A Pan-Cancer Gene Panel for Childhood Malignancies to Enhance Cancer Monitoring and Early Detection. Clin Cancer Res 2024; 30:4100-4114. [PMID: 39047169 PMCID: PMC11393547 DOI: 10.1158/1078-0432.ccr-24-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The purpose of the study was to design a pan-cancer gene panel for childhood malignancies and validate it using clinically characterized patient samples. EXPERIMENTAL DESIGN In addition to 5,275 coding exons, SJPedPanel also covers 297 introns for fusions/structural variations and 7,590 polymorphic sites for copy-number alterations. Capture uniformity and limit of detection are determined by targeted sequencing of cell lines using dilution experiment. We validate its coverage by in silico analysis of an established real-time clinical genomics (RTCG) cohort of 253 patients. We further validate its performance by targeted resequencing of 113 patient samples from the RTCG cohort. We demonstrate its power in analyzing low tumor burden specimens using morphologic remission and monitoring samples. RESULTS Among the 485 pathogenic variants reported in RTCG cohort, SJPedPanel covered 86% of variants, including 82% of 90 rearrangements responsible for fusion oncoproteins. In our targeted resequencing cohort, 91% of 389 pathogenic variants are detected. The gene panel enabled us to detect ∼95% of variants at allele fraction (AF) 0.5%, whereas the detection rate is ∼80% at AF 0.2%. The panel detected low-frequency driver alterations from morphologic leukemia remission samples and relapse-enriched alterations from monitoring samples, demonstrating its power for cancer monitoring and early detection. CONCLUSIONS SJPedPanel enables the cost-effective detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions by targeted sequencing of ∼0.15% of human genome for childhood malignancies. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
Affiliation(s)
- Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vidya Balagopal
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anna L W Huskey
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Emily Plyler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhikai Liang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Joy Nakitandwe
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jiali Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maria Namwanje
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jamie Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Saradhi Mallampati
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
7
|
Rasouli M, Troester S, Grebien F, Goemans BF, Zwaan CM, Heidenreich O. NUP98 oncofusions in myeloid malignancies: An update on molecular mechanisms and therapeutic opportunities. Hemasphere 2024; 8:e70013. [PMID: 39323480 PMCID: PMC11423334 DOI: 10.1002/hem3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a heterogeneous molecular landscape. In the pediatric context, the NUP98 gene is a frequent target of chromosomal rearrangements that are linked to poor prognosis and unfavorable treatment outcomes in different AML subtypes. The translocations fuse NUP98 to a diverse array of partner genes, resulting in fusion proteins with novel functions. NUP98 fusion oncoproteins induce aberrant biomolecular condensation, abnormal gene expression programs, and re-wired protein interactions which ultimately cause alterations in the cell cycle and changes in cellular structures, all of which contribute to leukemia development. The extent of these effects is steered by the functional domains of the fusion partners and the influence of concomitant somatic mutations. In this review, we discuss the complex characteristics of NUP98 fusion proteins and potential novel therapeutic approaches for NUP98 fusion-driven AML.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Selina Troester
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Florian Grebien
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | | | - C. Michel Zwaan
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of HematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
8
|
Barajas JM, Umeda M, Contreras L, Khanlari M, Westover T, Walsh MP, Xiong E, Yang C, Otero B, Arribas-Layton M, Abdelhamed S, Song G, Ma X, Thomas Rd ME, Ma J, Klco JM. UBTF tandem duplications in pediatric myelodysplastic syndrome and acute myeloid leukemia: implications for clinical screening and diagnosis. Haematologica 2024; 109:2459-2468. [PMID: 38426285 PMCID: PMC11290532 DOI: 10.3324/haematol.2023.284683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Recent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for approximately 4.3% of AML in childhood and about 3% in adult AML aged <60 years of age, are subtype-defining and associated with poor outcomes. Here, we provide a comprehensive investigation into the clinicopathological features of UBTF-TD myeloid neoplasms in childhood, including 89 unique pediatric AML and 6 myelodysplastic syndrome (MDS) cases harboring a tandem duplication in exon 13 of UBTF. We demonstrate that UBTF-TD myeloid tumors are associated with dysplastic features, low bone marrow blast infiltration, and low white blood cell count. Furthermore, using bulk and single-cell analyses, we confirm that UBTF-TD is an early and clonal event associated with a distinct transcriptional profile, whereas the acquisition of FLT3 or WT1 mutations is associated with more stem cell-like programs. Lastly, we report rare duplications within exon 9 of UBTF that phenocopy exon 13 duplications, expanding the spectrum of UBTF alterations in pediatric myeloid tumors. Collectively, we comprehensively characterize pediatric AML and MDS with UBTF-TD, and highlight key clinical and pathologic features that distinguish this new entity from other molecular subtypes of AML.
Collapse
Affiliation(s)
- Juan M Barajas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Lisett Contreras
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mahsa Khanlari
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Emily Xiong
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | | | | | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Melvin E Thomas Rd
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
9
|
Tiong IS, Ritchie DS, Blombery P. Response and Resistance to Menin Inhibitor in UBTF-Tandem Duplication AML. N Engl J Med 2024; 390:2323-2325. [PMID: 38924737 DOI: 10.1056/nejmc2404110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Ing Soo Tiong
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Ren Z, Vanhooren J, Derpoorter C, De Moerloose B, Lammens T. A 69 long noncoding RNA signature predicts relapse and acts as independent prognostic factor in pediatric AML. Blood Adv 2024; 8:3299-3310. [PMID: 38640434 PMCID: PMC11226973 DOI: 10.1182/bloodadvances.2024012667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
ABSTRACT Risk stratification using genetics and minimal residual disease has allowed for an increase in the cure rates of pediatric acute myeloid leukemia (pedAML) to up to 70% in contemporary protocols. Nevertheless, ∼30% of patients still experience relapse, indicating a need to optimize stratification strategies. Recently, long noncoding RNA (lncRNA) expression has been shown to hold prognostic power in multiple cancer types. Here, we aimed at refining relapse prediction in pedAML using lncRNA expression. We built a relapse-related lncRNA prognostic signature, named AMLlnc69, using 871 transcriptomes of patients with pedAML obtained from the Therapeutically Applicable Research to Generate Effective Treatments repository. We identified a 69 lncRNA signature AMLlnc69 that is highly predictive of relapse risk (c-index = 0.73), with area under the receiver operating characteristic curve (AUC) values for predicting the 1-, 2-, and 3-year relapse-free survival (RFS) of 0.78, 0.77, and 0.77, respectively. The internal validation using a bootstrap method (resampling times = 1000) resulted in a c-index of 0.72 and AUC values for predicting the 1-, 2-, and 3-year RFS of 0.77, 0.76, and 0.76, respectively. Through a Cox regression analysis, AMLlnc69, nucleophosmin mutation, and white blood cell at diagnosis were identified as independent predictors of RFS. Finally, a nomogram was build using these 2 parameters, showing a c-index of 0.80 and 0.71 after bootstrapping (n = 1000). In conclusion, the identified AMLlnc69 will, after prospective validation, add important information to guide the management of patients with pedAML. The nomogram is a promising tool for easy stratification of patients into a novel scheme of relapse-risk groups.
Collapse
Affiliation(s)
- Zhiyao Ren
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Jolien Vanhooren
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Charlotte Derpoorter
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
11
|
Fenwarth L, Duployez N. Genomics has more to reveal. Oncotarget 2024; 15:400-401. [PMID: 38900627 PMCID: PMC11197967 DOI: 10.18632/oncotarget.28596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
| | - Nicolas Duployez
- Correspondence to:Nicolas Duployez, Laboratory of Hematology, CHU Lille, Lille 59037, France; U1277 CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), University of Lille 59037, INSERM, France email
| |
Collapse
|
12
|
Harrop S, Nguyen PC, Robinson S, Nguyen T, Tiong IS, Came N, Baldwin K, Nguyen V, Chan KL, Blombery P, Westerman D. Immunophenotypic characterisation of acute myeloid leukaemia with UBTF tandem duplications. Br J Haematol 2024; 204:2492-2495. [PMID: 38544472 DOI: 10.1111/bjh.19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Sean Harrop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Phillip C Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Samuel Robinson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tamia Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ing Soo Tiong
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Neil Came
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Kylie Baldwin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Vuong Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kah Lok Chan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - David Westerman
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Tarlock K, Gerbing RB, Ries RE, Smith JL, Leonti A, Huang BJ, Kirkey D, Robinson L, Peplinksi JH, Lange B, Cooper TM, Gamis AS, Kolb EA, Aplenc R, Pollard JA, Alonzo TA, Meshinchi S. Prognostic impact of cooccurring mutations in FLT3-ITD pediatric acute myeloid leukemia. Blood Adv 2024; 8:2094-2103. [PMID: 38295280 PMCID: PMC11063409 DOI: 10.1182/bloodadvances.2023011980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
ABSTRACT We sought to define the cooccurring mutational profile of FLT3-ITD-positive (ITDpos) acute myeloid leukemia (AML) in pediatric and young adult patients and to define the prognostic impact of cooperating mutations. We identified 464 patients with FLT3-ITD mutations treated on Children's Oncology Group trials with available sequencing and outcome data. Overall survival, event-free survival (EFS), and relapse risk were determined according to the presence of cooccurring risk stratifying mutations. Among the cohort, 79% of patients had cooccurring alterations across 239 different genes that were altered through mutations or fusions. Evaluation of the prognostic impact of the cooccurring mutations demonstrated that patients with ITDpos AML experienced significantly different outcomes according to the cooccurring mutational profile. Patients with ITDpos AML harboring a cooccurring favorable-risk mutation of NPM1, CEBPA, t(8;21), or inv(16) experienced a 5-year EFS of 64%, which was significantly superior to of 22.2% for patients with ITDpos AML and poor-risk mutations of WT1, UBTF, or NUP98::NSD1 as well to 40.9% for those who lacked either favorable-risk or poor-risk mutation (ITDpos intermediate; P < .001 for both). Multivariable analysis demonstrated that cooccurring mutations had significant prognostic impact, whereas allelic ratio had no impact. Therapy intensification, specifically consolidation transplant in remission, resulted in significant improvements in survival for ITDpos AML. However, patients with ITDpos/NUP98::NSD1 continued to have poor outcomes with intensified therapy, including sorafenib. Cooccurring mutational profile in ITDpos AML has significant prognostic impacts and is critical to determining risk stratification and therapeutic allocation. These clinical trials were registered at www.clinicaltrials.gov as NCT00002798, NCT00070174, NCT00372593, and NCT01371981.
Collapse
Affiliation(s)
- Katherine Tarlock
- Division of Hematology/Oncology, Seattle Children’s Hospital, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Amanda Leonti
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Benjamin J. Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Danielle Kirkey
- Division of Hematology/Oncology, Seattle Children’s Hospital, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Leila Robinson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jack H. Peplinksi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Beverly Lange
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Todd M. Cooper
- Division of Hematology/Oncology, Seattle Children’s Hospital, Seattle, WA
| | - Alan S. Gamis
- Divisions of Hematology/Oncology, Children’s Mercy Hospital and Clinics, Kansas City, MO
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Richard Aplenc
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jessica A. Pollard
- Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Todd A. Alonzo
- Children’s Oncology Group, Monrovia, CA
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
14
|
Ma J, Liu YC, Voss RK, Ma J, Palagani A, Caldwell E, Rosikiewicz W, Cardenas M, Foy S, Umeda M, Wilkinson MR, Inaba H, Klco JM, Rubnitz JE, Wang L. Genomic and global gene expression profiling in pediatric and young adult acute leukemia with PICALM::MLLT10 Fusion. Leukemia 2024; 38:981-990. [PMID: 38429501 DOI: 10.1038/s41375-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
PICALM MLLT10 fusion is a rare but recurrent genetic driver in acute leukemias. To better understand the genomic landscape of PICALM::MLLT10 (PM) positive acute leukemia, we performed genomic profiling and gene expression profiling in twenty PM-positive patients, including AML (n = 10), T-ALL/LLy (n = 8), Mixed-phenotype acute leukemia (MPAL), T/B (n = 1) and acute undifferentiated leukemia (AUL) (n = 1). Besides confirming the known activation of HOXA, differential gene expression analysis compared to hematopoietic stem cells demonstrated the enrichment of genes associated with cell proliferation-related pathways and relatively high expression of XPO1 in PM-AML and PM-T-ALL/LLy. Our study also suggested PHF6 disruption as a key cooperating event in PICALM::MLLT10-positive leukemias. In addition, we demonstrated differences in gene expression profiles as well as remarkably different spectra of co-occurring mutations between PM-AML and PM-T-ALL/LLy. Alterations affecting TP53 and NF1, hallmarks of PM-AML, are strongly associated with disease progression and relapse, whereas EZH2 alterations are highly enriched in PM-T-ALL/LLy. This comprehensive genomic and transcriptomic profiling provides insights into the pathogenesis and development of PICALM::MLLT10 positive acute leukemia.
Collapse
Affiliation(s)
- Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca K Voss
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ajay Palagani
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth Caldwell
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maria Cardenas
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark R Wilkinson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
15
|
Karol SE, Gueguen G. Pediatric acute myeloid leukemia - novel approaches. Curr Opin Hematol 2024; 31:47-52. [PMID: 37982279 DOI: 10.1097/moh.0000000000000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
PURPOSE OF REVIEW Despite higher remission and survival rates than observed in adults, children with acute myeloid leukemia (AML) still suffer unacceptably high rates of treatment failure and late toxicities. Ongoing work aims to improve these long-term outcomes through improvements in the utilization of current therapies, the incorporation of novel chemotherapy agents, and improved use of current or novel cellular and immunotherapeutic approaches. In this review, we highlight recent advances and contextualize them within this evolving landscape. RECENT FINDINGS Novel agents such as the B-cell lymphoma 2 inhibitor venetoclax and the menin inhibitors have shown promising results with implications for large portions of the pediatric AML population. Older agents are being used in novel combinations (e.g. gemtuzumab ozogamicin) or are expanding into pediatrics after longer use in adults (e.g. Fms-like tyrosine kinase 3 inhibitors). Finally, immunotherapeutic approaches offer new options for patients with high-risk or relapsed disease. SUMMARY Recent findings have altered the landscape of pediatric AML therapy with exciting immediate and long-term implications. Ongoing studies may soon define this as standard as well. After many years in which few new therapies have become available for children with AML, recent and upcoming advances may soon dramatically alter the therapeutic landscape.
Collapse
Affiliation(s)
- Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gwenaelle Gueguen
- Center of Clinical Investigations, INSERM CIC1426, Robert-Debré University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
16
|
Bernt KM. Menin dependence: UBTF-ITD AML joins the club. Blood 2024; 143:567-569. [PMID: 38358850 DOI: 10.1182/blood.2023023041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Affiliation(s)
- Kathrin M Bernt
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, and Abramson Cancer Center
| |
Collapse
|
17
|
Barajas JM, Rasouli M, Umeda M, Hiltenbrand R, Abdelhamed S, Mohnani R, Arthur B, Westover T, Thomas ME, Ashtiani M, Janke LJ, Xu B, Chang TC, Rosikiewicz W, Xiong E, Rolle C, Low J, Krishan R, Song G, Walsh MP, Ma J, Rubnitz JE, Iacobucci I, Chen T, Krippner-Heidenreich A, Zwaan CM, Heidenreich O, Klco JM. Acute myeloid leukemias with UBTF tandem duplications are sensitive to menin inhibitors. Blood 2024; 143:619-630. [PMID: 37890156 PMCID: PMC10873536 DOI: 10.1182/blood.2023021359] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
ABSTRACT UBTF tandem duplications (UBTF-TDs) have recently emerged as a recurrent alteration in pediatric and adult acute myeloid leukemia (AML). UBTF-TD leukemias are characterized by a poor response to conventional chemotherapy and a transcriptional signature that mirrors NUP98-rearranged and NPM1-mutant AMLs, including HOX-gene dysregulation. However, the mechanism by which UBTF-TD drives leukemogenesis remains unknown. In this study, we investigated the genomic occupancy of UBTF-TD in transformed cord blood CD34+ cells and patient-derived xenograft models. We found that UBTF-TD protein maintained genomic occupancy at ribosomal DNA loci while also occupying genomic targets commonly dysregulated in UBTF-TD myeloid malignancies, such as the HOXA/HOXB gene clusters and MEIS1. These data suggest that UBTF-TD is a gain-of-function alteration that results in mislocalization to genomic loci dysregulated in UBTF-TD leukemias. UBTF-TD also co-occupies key genomic loci with KMT2A and menin, which are known to be key partners involved in HOX-dysregulated leukemias. Using a protein degradation system, we showed that stemness, proliferation, and transcriptional signatures are dependent on sustained UBTF-TD localization to chromatin. Finally, we demonstrate that primary cells from UBTF-TD leukemias are sensitive to the menin inhibitor SNDX-5613, resulting in markedly reduced in vitro and in vivo tumor growth, myeloid differentiation, and abrogation of the UBTF-TD leukemic expression signature. These findings provide a viable therapeutic strategy for patients with this high-risk AML subtype.
Collapse
Affiliation(s)
- Juan M. Barajas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Milad Rasouli
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rebecca Mohnani
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bright Arthur
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Tamara Westover
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Melvin E. Thomas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Minoo Ashtiani
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Laura J. Janke
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Emily Xiong
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chandra Rolle
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Reethu Krishan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Michael P. Walsh
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Christian M. Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
18
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey AL, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A pan-cancer gene panel for childhood malignancies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.27.23299068. [PMID: 38076942 PMCID: PMC10705664 DOI: 10.1101/2023.11.27.23299068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background Large scale genomics projects have identified driver alterations for most childhood cancers that provide reliable biomarkers for clinical diagnosis and disease monitoring using targeted sequencing. However, there is lack of a comprehensive panel that matches the list of known driver genes. Here we fill this gap by developing SJPedPanel for childhood cancers. Results SJPedPanel covers 5,275 coding exons of 357 driver genes, 297 introns frequently involved in rearrangements that generate fusion oncoproteins, commonly amplified/deleted regions (e.g., MYCN for neuroblastoma, CDKN2A and PAX5 for B-/T-ALL, and SMARCB1 for AT/RT), and 7,590 polymorphism sites for interrogating tumors with aneuploidy, such as hyperdiploid and hypodiploid B-ALL or 17q gain neuroblastoma. We used driver alterations reported from an established real-time clinical genomics cohort (n=253) to validate this gene panel. Among the 485 pathogenic variants reported, our panel covered 417 variants (86%). For 90 rearrangements responsible for oncogenic fusions, our panel covered 74 events (82%). We re-sequenced 113 previously characterized clinical specimens at an average depth of 2,500X using SJPedPanel and recovered 354 (91%) of the 389 reported pathogenic variants. We then investigated the power of this panel in detecting mutations from specimens with low tumor purity (as low as 0.1%) using cell line-based dilution experiments and discovered that this gene panel enabled us to detect ∼80% variants with allele fraction of 0.2%, while the detection rate decreases to ∼50% when the allele fraction is 0.1%. We finally demonstrate its utility in disease monitoring on clinical specimens collected from AML patients in morphologic remission. Conclusions SJPedPanel enables the detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions for childhood cancers by targeted sequencing of ∼0.15% of human genome. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
|
19
|
New genomic classification of pediatric acute myeloid leukemia. Nat Genet 2024; 56:202-203. [PMID: 38238630 DOI: 10.1038/s41588-023-01639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
|
20
|
Umeda M, Ma J, Westover T, Ni Y, Song G, Maciaszek JL, Rusch M, Rahbarinia D, Foy S, Huang BJ, Walsh MP, Kumar P, Liu Y, Yang W, Fan Y, Wu G, Baker SD, Ma X, Wang L, Alonzo TA, Rubnitz JE, Pounds S, Klco JM. A new genomic framework to categorize pediatric acute myeloid leukemia. Nat Genet 2024; 56:281-293. [PMID: 38212634 PMCID: PMC10864188 DOI: 10.1038/s41588-023-01640-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 887 pAML into 23 mutually distinct molecular categories, including new major entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3 or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a new prognostic framework for pAML based on these updated molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.
Collapse
Affiliation(s)
- Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yonghui Ni
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Delaram Rahbarinia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Priyadarshini Kumar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd A Alonzo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
21
|
Lambo S, Trinh DL, Ries RE, Jin D, Setiadi A, Ng M, Leblanc VG, Loken MR, Brodersen LE, Dai F, Pardo LM, Ma X, Vercauteren SM, Meshinchi S, Marra MA. A longitudinal single-cell atlas of treatment response in pediatric AML. Cancer Cell 2023; 41:2117-2135.e12. [PMID: 37977148 DOI: 10.1016/j.ccell.2023.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Pediatric acute myeloid leukemia (pAML) is characterized by heterogeneous cellular composition, driver alterations and prognosis. Characterization of this heterogeneity and how it affects treatment response remains understudied in pediatric patients. We used single-cell RNA sequencing and single-cell ATAC sequencing to profile 28 patients representing different pAML subtypes at diagnosis, remission and relapse. At diagnosis, cellular composition differed between genetic subgroups. Upon relapse, cellular hierarchies transitioned toward a more primitive state regardless of subtype. Primitive cells in the relapsed tumor were distinct compared to cells at diagnosis, with under-representation of myeloid transcriptional programs and over-representation of other lineage programs. In some patients, this was accompanied by the appearance of a B-lymphoid-like hierarchy. Our data thus reveal the emergence of apparent subtype-specific plasticity upon treatment and inform on potentially targetable processes.
Collapse
Affiliation(s)
- Sander Lambo
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Diane L Trinh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan Jin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Audi Setiadi
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, Division of Hematopathology, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Ng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Veronique G Leblanc
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | | | - Fangyan Dai
- Hematologics, Incorporated, Seattle, WA, USA
| | | | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne M Vercauteren
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, Division of Hematopathology, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Murphy LA, Winters AC. Emerging and Future Targeted Therapies for Pediatric Acute Myeloid Leukemia: Targeting the Leukemia Stem Cells. Biomedicines 2023; 11:3248. [PMID: 38137469 PMCID: PMC10741170 DOI: 10.3390/biomedicines11123248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Acute myeloid leukemia (AML) is a rare subtype of acute leukemia in the pediatric and adolescent population but causes disproportionate morbidity and mortality in this age group. Standard chemotherapeutic regimens for AML have changed very little in the past 3-4 decades, but the addition of targeted agents in recent years has led to improved survival in select subsets of patients as well as a better biological understanding of the disease. Currently, one key paradigm of bench-to-bedside practice in the context of adult AML is the focus on leukemia stem cell (LSC)-targeted therapies. Here, we review current and emerging immunotherapies and other targeted agents that are in clinical use for pediatric AML through the lens of what is known (and not known) about their LSC-targeting capability. Based on a growing understanding of pediatric LSC biology, we also briefly discuss potential future agents on the horizon.
Collapse
Affiliation(s)
- Lindsey A. Murphy
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Amanda C. Winters
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Barajas JM, Umeda M, Contreras L, Khanlari M, Westover T, Walsh MP, Xiong E, Yang C, Otero B, Arribas-Layton M, Abdelhamed S, Song G, Ma X, Thomas ME, Ma J, Klco JM. UBTF Tandem Duplications in Pediatric MDS and AML: Implications for Clinical Screening and Diagnosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298320. [PMID: 38014207 PMCID: PMC10680889 DOI: 10.1101/2023.11.13.23298320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Recent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for ~4.3% of AMLs in childhood and up to 3% in adult AMLs under 60, are subtype-defining and associated with poor outcomes. Here, we provide a comprehensive investigation into the clinicopathological features of UBTF-TD myeloid neoplasms in childhood, including 89 unique pediatric AML and 6 myelodysplastic syndrome (MDS) cases harboring a tandem duplication in exon 13 of UBTF. We demonstrate that UBTF-TD myeloid tumors are associated with dysplastic features, low bone marrow blast infiltration, and low white blood cell count. Furthermore, using bulk and single-cell analyses, we confirm that UBTF-TD is an early and clonal event associated with a distinct transcriptional profile, whereas the acquisition of FLT3 or WT1 mutations is associated with more stem cell-like programs. Lastly, we report rare duplications within exon 9 of UBTF that phenocopy exon 13 duplications, expanding the spectrum of UBTF alterations in pediatric myeloid tumors. Collectively, we comprehensively characterize pediatric AML and MDS with UBTF-TD and highlight key clinical and pathologic features that distinguish this new entity from other molecular subtypes of AML.
Collapse
Affiliation(s)
- Juan M. Barajas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lisett Contreras
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mahsa Khanlari
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Michael P. Walsh
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily Xiong
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | | | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Melvin E. Thomas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
24
|
Harrop S, Nguyen PC, Byrne D, Wilson C, Ryland GL, Nguyen T, Anderson MA, Khaw SL, Martin M, Tiong IS, Sanij E, Blombery P. Persistence of UBTF tandem duplications in remission in acute myeloid leukaemia. EJHAEM 2023; 4:1105-1109. [PMID: 38024622 PMCID: PMC10660390 DOI: 10.1002/jha2.808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023]
Abstract
UBTF tandem duplications are recurrent in adult and paediatric acute myeloid leukaemia and have been reported to be associated with a poor prognosis. Co-mutations in WT1 and FLT3 are common while morphological dysplasia is frequent. The role of UBTF-TDs in leukemogenesis is yet to be elucidated; however they have been proposed as early initiating events, making them attractive for assessment of MRD and a potential therapeutic target. We present two cases where the UBTF-TD was observed in remission and discuss the implications of these findings in the clinicobiological understanding of this emerging entity.
Collapse
Affiliation(s)
- Sean Harrop
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | | - David Byrne
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | | - Georgina L Ryland
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia
| | - Tamia Nguyen
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | | - Seong Lin Khaw
- Royal Children's Hospital Melbourne Victoria Australia
- Murdoch Children's Research Institute Melbourne Victoria Australia
| | | | - Ing Soo Tiong
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
- St Vincent's Institute of Medical Research Fitzroy Victoria Australia
- Department of Medicine St Vincent's Hospital University of Melbourne Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia
- Department of Biochemistry and Molecular Biology Monash University Clayton Victoria Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia
| |
Collapse
|
25
|
Daiß JL, Griesenbeck J, Tschochner H, Engel C. Synthesis of the ribosomal RNA precursor in human cells: mechanisms, factors and regulation. Biol Chem 2023; 404:1003-1023. [PMID: 37454246 DOI: 10.1515/hsz-2023-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
26
|
Theophanous A, Christodoulou A, Mattheou C, Sibai DS, Moss T, Santama N. Transcription factor UBF depletion in mouse cells results in downregulation of both downstream and upstream elements of the rRNA transcription network. J Biol Chem 2023; 299:105203. [PMID: 37660911 PMCID: PMC10558777 DOI: 10.1016/j.jbc.2023.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Transcription/processing of the ribosomal RNA (rRNA) precursor, as part of ribosome biosynthesis, is intensively studied and characterized in eukaryotic cells. Here, we constructed shRNA-based mouse cell lines partially silenced for the Upstream Binding Factor UBF, the master regulator of rRNA transcription and organizer of open rDNA chromatin. Full Ubf silencing in vivo is not viable, and these new tools allow further characterization of rRNA transcription and its coordination with cellular signaling. shUBF cells display cell cycle G1 delay and reduced 47S rRNA precursor and 28S rRNA at baseline and serum-challenged conditions. Growth-related mTOR signaling is downregulated with the fractions of active phospho-S6 Kinase and pEIF4E translation initiation factor reduced, similar to phosphorylated cell cycle regulator retinoblastoma, pRB, positive regulator of UBF availability/rRNA transcription. Additionally, we find transcription-competent pUBF (Ser484) severely restricted and its interacting initiation factor RRN3 reduced and responsive to extracellular cues. Furthermore, fractional UBF occupancy on the rDNA unit is decreased in shUBF, and expression of major factors involved in different aspects of rRNA transcription is severely downregulated by UBF depletion. Finally, we observe reduced RNA Pol1 occupancy over rDNA promoter sequences and identified unexpected regulation of RNA Pol1 expression, relative to serum availability and under UBF silencing, suggesting that regulation of rRNA transcription may not be restricted to modulation of Pol1 promoter binding/elongation rate. Overall, this work reveals that UBF depletion has a critical downstream and upstream impact on the whole network orchestrating rRNA transcription in mammalian cells.
Collapse
Affiliation(s)
- Andria Theophanous
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | - Dany S Sibai
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
27
|
Kirkham JK, Liu YC, Foy SG, Ma J, Gheorghe G, Furtado LV, Popescu MI, Klco JM, Karol SE, Blackburn PR. Clinical and genomic characterization of an ATRA-insensitive acute promyelocytic leukemia variant with a FNDC3B::RARB fusion. Genes Chromosomes Cancer 2023; 62:617-623. [PMID: 37283355 DOI: 10.1002/gcc.23180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
The promyelocytic leukemia-retinoic acid receptor-α (PML::RARA) fusion is the hallmark of acute promyelocytic leukemia (APL) and is observed in over 95% of APL cases. RARA and homologous receptors RARB and RARG are occasionally fused to other gene partners, which differentially affect sensitivity to targeted therapies. Most APLs without RARA fusions have rearrangements involving RARG or RARB, both of which frequently show resistance to all-trans-retinoic acid (ATRA) and/or multiagent chemotherapy for acute myeloid leukemia (AML). We present a 13-year-old male diagnosed with variant APL with a novel FNDC3B::RARB in-frame fusion that showed no response to ATRA but responded well to conventional AML therapy. While FNDC3B has been identified as a rare RARA translocation partner in ATRA-sensitive variant APL, it has never been reported as a fusion partner with RARB and it is only the second known fusion partner with RARB in variant APL. We also show that this novel fusion confers an RNA expression signature that is similar to APL, despite clinical resistance to ATRA monotherapy.
Collapse
MESH Headings
- Male
- Humans
- Adolescent
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Translocation, Genetic
- Tretinoin/therapeutic use
- Leukemia, Myeloid, Acute/genetics
- Retinoic Acid Receptor alpha/genetics
- Genomics
- Oncogene Proteins, Fusion/genetics
- Fibronectins/genetics
Collapse
Affiliation(s)
- Justin K Kirkham
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Scott G Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gabriela Gheorghe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marcela I Popescu
- Department of Pediatric Hematology and Oncology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Patrick R Blackburn
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
28
|
Egan G, Tasian SK. Relapsed pediatric acute myeloid leukaemia: state-of-the-art in 2023. Haematologica 2023; 108:2275-2288. [PMID: 36861399 PMCID: PMC10483345 DOI: 10.3324/haematol.2022.281106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Although outcomes of children and adolescents with newly diagnosed acute myeloid leukemia (AML) have improved significantly over the past two decades, more than one-third of patients continue to relapse and experience suboptimal long-term outcomes. Given the small numbers of patients with relapsed AML and historical logistical barriers to international collaboration including poor trial funding and drug availability, the management of AML relapse has varied among pediatric oncology cooperative groups with several salvage regimens utilized and a lack of universally defined response criteria. The landscape of relapsed pediatric AML treatment is changing rapidly, however, as the international AML community harnesses collective knowledge and resources to characterize the genetic and immunophenotypic heterogeneity of relapsed disease, identify biological targets of interest within specific AML subtypes, develop new precision medicine approaches for collaborative investigation in early-phase clinical trials, and tackle challenges of universal drug access across the globe. This review provides a comprehensive overview of progress achieved to date in the treatment of pediatric patients with relapsed AML and highlights modern, state-of-the-art therapeutic approaches under active and emerging clinical investigation that have been facilitated by international collaboration among academic pediatric oncologists, laboratory scientists, regulatory agencies, pharmaceutical partners, cancer research sponsors, and patient advocates.
Collapse
Affiliation(s)
- Grace Egan
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto; Toronto, Ontario
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania, United States; University of Pennsylvania Perelman School of Medicine and Abramson Cancer Center; Philadelphia, Pennsylvania.
| |
Collapse
|
29
|
Tomizawa D, Tsujimoto SI. Risk-Stratified Therapy for Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4171. [PMID: 37627199 PMCID: PMC10452723 DOI: 10.3390/cancers15164171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is the second most common type of leukemia in children. Recent advances in high-resolution genomic profiling techniques have uncovered the mutational landscape of pediatric AML as distinct from adult AML. Overall survival rates of children with AML have dramatically improved in the past 40 years, currently reaching 70% to 80% in developed countries. This was accomplished by the intensification of conventional chemotherapy, improvement in risk stratification using leukemia-specific cytogenetics/molecular genetics and measurable residual disease, appropriate use of allogeneic hematopoietic stem cell transplantation, and improvement in supportive care. However, the principle therapeutic approach for pediatric AML has not changed substantially for decades and improvement in event-free survival is rather modest. Further refinements in risk stratification and the introduction of emerging novel therapies to contemporary therapy, through international collaboration, would be key solutions for further improvements in outcomes.
Collapse
Affiliation(s)
- Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children’s Cancer Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| |
Collapse
|
30
|
Wu RH, Zhu CY, Yu PH, Ma Y, Hussain L, Naranmandura H, Wang QQ. The landscape of novel strategies for acute myeloid leukemia treatment: Therapeutic trends, challenges, and future directions. Toxicol Appl Pharmacol 2023; 473:116585. [PMID: 37302559 DOI: 10.1016/j.taap.2023.116585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous subtype of hematological malignancies with a wide spectrum of cytogenetic and molecular abnormalities, which makes it difficult to manage and cure. Along with the deeper understanding of the molecular mechanisms underlying AML pathogenesis, a large cohort of novel targeted therapeutic approaches has emerged, which considerably expands the medical options and changes the therapeutic landscape of AML. Despite that, resistant and refractory cases caused by genomic mutations or bypass signalling activation remain a great challenge. Therefore, discovery of novel treatment targets, optimization of combination strategies, and development of efficient therapeutics are urgently required. This review provides a detailed and comprehensive discussion on the advantages and limitations of targeted therapies as a single agent or in combination with others. Furthermore, the innovative therapeutic approaches including hyperthermia, monoclonal antibody-based therapy, and CAR-T cell therapy are also introduced, which may provide safe and viable options for the treatment of patients with AML.
Collapse
Affiliation(s)
- Ri Han Wu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Chen Ying Zhu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yafang Ma
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
31
|
Moss T, LeDoux MS, Crane-Robinson C. HMG-boxes, ribosomopathies and neurodegenerative disease. Front Genet 2023; 14:1225832. [PMID: 37600660 PMCID: PMC10435976 DOI: 10.3389/fgene.2023.1225832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The UBTF E210K neuroregression syndrome is a predominantly neurological disorder caused by recurrent de novo dominant variants in Upstream Binding Factor, that is, essential for transcription of the ribosomal RNA genes. This unusual form of ribosomopathy is characterized by a slow decline in cognition, behavior, and sensorimotor functioning during the critical period of development. UBTF (or UBF) is a multi-HMGB-box protein that acts both as an epigenetic factor to establish "open" chromatin on the ribosomal genes and as a basal transcription factor in their RNA Polymerase I transcription. Here we review the possible mechanistic connections between the UBTF variants, ribosomal RNA gene transcription and the neuroregression syndrome, and suggest that DNA topology may play an important role.
Collapse
Affiliation(s)
- Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Mark S. LeDoux
- Department of Psychology, University of Memphis, Memphis, TN, United States
- Veracity Neuroscience LLC, Memphis, TN, United States
| | - Colyn Crane-Robinson
- Biophysics Laboratories, School of Biology, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
32
|
Krizsán S, Péterffy B, Egyed B, Nagy T, Sebestyén E, Hegyi LL, Jakab Z, Erdélyi DJ, Müller J, Péter G, Csanádi K, Kállay K, Kriván G, Barna G, Bedics G, Haltrich I, Ottóffy G, Csernus K, Vojcek Á, Tiszlavicz LG, Gábor KM, Kelemen Á, Hauser P, Gaál Z, Szegedi I, Ujfalusi A, Kajtár B, Kiss C, Matolcsy A, Tímár B, Kovács G, Alpár D, Bödör C. Next-Generation Sequencing-Based Genomic Profiling of Children with Acute Myeloid Leukemia. J Mol Diagn 2023; 25:555-568. [PMID: 37088137 PMCID: PMC10435843 DOI: 10.1016/j.jmoldx.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/11/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents a major cause of childhood leukemic mortality, with only a limited number of studies investigating the molecular landscape of the disease. Here, we present an integrative analysis of cytogenetic and molecular profiles of 75 patients with pediatric AML from a multicentric, real-world patient cohort treated according to AML Berlin-Frankfurt-Münster protocols. Targeted next-generation sequencing of 54 genes revealed 17 genes that were recurrently mutated in >5% of patients. Considerable differences were observed in the mutational profiles compared with previous studies, as BCORL1, CUX1, KDM6A, PHF6, and STAG2 mutations were detected at a higher frequency than previously reported, whereas KIT, NRAS, and KRAS were less frequently mutated. Our study identified novel recurrent mutations at diagnosis in the BCORL1 gene in 9% of the patients. Tumor suppressor gene (PHF6, TP53, and WT1) mutations were found to be associated with induction failure and shorter event-free survival, suggesting important roles of these alterations in resistance to therapy and disease progression. Comparison of the mutational landscape at diagnosis and relapse revealed an enrichment of mutations in tumor suppressor genes (16.2% versus 44.4%) and transcription factors (35.1% versus 55.6%) at relapse. Our findings shed further light on the heterogeneity of pediatric AML and identify previously unappreciated alterations that may lead to improved molecular characterization and risk stratification of pediatric AML.
Collapse
Affiliation(s)
- Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Borbála Péterffy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dániel J Erdélyi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Judit Müller
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztián Kállay
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gergely Kriván
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gábor Barna
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Katalin Csernus
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Krisztina Mita Gábor
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Ágnes Kelemen
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Péter Hauser
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Zsuzsanna Gaál
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Csongor Kiss
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Botond Tímár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Kovács
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
33
|
Rasouli M, Blair H, Troester S, Szoltysek K, Cameron R, Ashtiani M, Krippner-Heidenreich A, Grebien F, McGeehan G, Zwaan CM, Heidenreich O. The MLL-Menin Interaction is a Therapeutic Vulnerability in NUP98-rearranged AML. Hemasphere 2023; 7:e935. [PMID: 37520776 PMCID: PMC10378738 DOI: 10.1097/hs9.0000000000000935] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Chromosomal translocations involving the NUP98 locus are among the most prevalent rearrangements in pediatric acute myeloid leukemia (AML). AML with NUP98 fusions is characterized by high expression of HOXA and MEIS1 genes and is associated with poor clinical outcome. NUP98 fusion proteins are recruited to their target genes by the mixed lineage leukemia (MLL) complex, which involves a direct interaction between MLL and Menin. Here, we show that therapeutic targeting of the Menin-MLL interaction inhibits the propagation of NUP98-rearrranged AML both ex vivo and in vivo. Treatment of primary AML cells with the Menin inhibitor revumenib (SNDX-5613) impairs proliferation and clonogenicity ex vivo in long-term coculture and drives myeloid differentiation. These phenotypic effects are associated with global gene expression changes in primary AML samples that involve the downregulation of many critical NUP98 fusion protein-target genes, such as MEIS1 and CDK6. In addition, Menin inhibition reduces the expression of both wild-type FLT3 and mutated FLT3-ITD, and in combination with FLT3 inhibitor, suppresses patient-derived NUP98-r AML cells in a synergistic manner. Revumenib treatment blocks leukemic engraftment and prevents leukemia-associated death of immunodeficient mice transplanted with NUP98::NSD1 FLT3-ITD-positive patient-derived AML cells. These results demonstrate that NUP98-rearranged AMLs are highly susceptible to inhibition of the MLL-Menin interaction and suggest the inclusion of AML patients harboring NUP98 fusions into the clinical evaluation of Menin inhibitors.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Selina Troester
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Austria
| | - Katarzyna Szoltysek
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Maria Sklodowska-Curie Institute – Oncology Center, Gliwice Branch, Poland
| | - Rachel Cameron
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Minoo Ashtiani
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
| | | | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Austria
| | | | - C. Michel Zwaan
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
34
|
Liu YC, Geyer JT. Pediatric Hematopathology in the Era of Advanced Molecular Diagnostics: What We Know and How We Can Apply the Updated Classifications. Pathobiology 2023; 91:30-44. [PMID: 37311434 PMCID: PMC10857803 DOI: 10.1159/000531480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Pediatric hematologic malignancies often show genetic features distinct from their adult counterparts, which reflect the differences in their pathogenesis. Advances in the molecular diagnostics including the widespread use of next-generation sequencing technology have revolutionized the diagnostic workup for hematologic disorders and led to the identification of new disease subgroups as well as prognostic information that impacts the clinical treatment. The increasing recognition of the importance of germline predisposition in various hematologic malignancies also shapes the disease models and management. Although germline predisposition variants can occur in patients with myelodysplastic syndrome/neoplasm (MDS) of all ages, the frequency is highest in the pediatric patient population. Therefore, evaluation for germline predisposition in the pediatric group can have significant clinical impact. This review discusses the recent advances in juvenile myelomonocytic leukemia, pediatric acute myeloid leukemia, B-lymphoblastic leukemia/lymphoma, and pediatric MDS. This review also includes a brief discussion of the updated classifications from the International Consensus Classification (ICC) and the 5th edition World Health Organization (WHO) classification regarding these disease entities.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
35
|
Georgi JA, Stasik S, Eckardt JN, Zukunft S, Hartwig M, Röllig C, Middeke JM, Oelschlägel U, Krug U, Sauer T, Scholl S, Hochhaus A, Brümmendorf TH, Naumann R, Steffen B, Einsele H, Schaich M, Burchert A, Neubauer A, Schäfer-Eckart K, Schliemann C, Krause SW, Hänel M, Noppeney R, Kaiser U, Baldus CD, Kaufmann M, Müller-Tidow C, Platzbecker U, Berdel WE, Serve H, Ehninger G, Bornhäuser M, Schetelig J, Kroschinsky F, Thiede C. UBTF tandem duplications are rare but recurrent alterations in adult AML and associated with younger age, myelodysplasia, and inferior outcome. Blood Cancer J 2023; 13:88. [PMID: 37236968 DOI: 10.1038/s41408-023-00858-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tandem-duplication mutations of the UBTF gene (UBTF-TDs) coding for the upstream binding transcription factor have recently been described in pediatric patients with acute myeloid leukemia (AML) and were found to be associated with particular genetics (trisomy 8 (+8), FLT3-internal tandem duplications (FLT3-ITD), WT1-mutations) and inferior outcome. Due to limited knowledge on UBTF-TDs in adult AML, we screened 4247 newly diagnosed adult AML and higher-risk myelodysplastic syndrome (MDS) patients using high-resolution fragment analysis. UBTF-TDs were overall rare (n = 52/4247; 1.2%), but significantly enriched in younger patients (median age 41 years) and associated with MDS-related morphology as well as significantly lower hemoglobin and platelet levels. Patients with UBTF-TDs had significantly higher rates of +8 (34% vs. 9%), WT1 (52% vs. 7%) and FLT3-ITD (50% vs. 20.8%) co-mutations, whereas UBTF-TDs were mutually exclusive with several class-defining lesions such as mutant NPM1, in-frame CEBPAbZIP mutations as well as t(8;21). Based on the high-variant allele frequency found and the fact that all relapsed patients analyzed (n = 5) retained the UBTF-TD mutation, UBTF-TDs represent early clonal events and are stable over the disease course. In univariate analysis, UBTF-TDs did not represent a significant factor for overall or relapse-free survival in the entire cohort. However, in patients under 50 years of age, who represent the majority of UBTF-mutant patients, UBTF-TDs were an independent prognostic factor for inferior event-free (EFS), relapse-free (RFS) and overall survival (OS), which was confirmed by multivariable analyses including established risk factors such as age and ELN2022 genetic risk groups (EFS [HR: 2.20; 95% CI 1.52-3.17, p < 0.001], RFS [HR: 1.59; 95% CI 1.02-2.46, p = 0.039] and OS [HR: 1.64; 95% CI 1.08-2.49, p = 0.020]). In summary, UBTF-TDs appear to represent a novel class-defining lesion not only in pediatric AML but also younger adults and are associated with myelodysplasia and inferior outcome in these patients.
Collapse
Affiliation(s)
- Julia-Annabell Georgi
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Sebastian Stasik
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Jan-Niklas Eckardt
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Sven Zukunft
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Marita Hartwig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Jan Moritz Middeke
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Uta Oelschlägel
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Utz Krug
- Medizinische Klinik 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Tim Sauer
- Universität Heidelberg, Medizinische Klinik und Poliklinik, Abteilung Innere Medizin V, Heidelberg, Germany
| | - Sebastian Scholl
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | | | - Ralph Naumann
- Medizinische Klinik III, St. Marien-Krankenhaus Siegen, Siegen, Germany
| | - Björn Steffen
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Markus Schaich
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Andreas Burchert
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Andreas Neubauer
- Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Marburg, Germany
| | - Kerstin Schäfer-Eckart
- Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Medizinische Klinik 5, Nürnberg, Germany
| | | | - Stefan W Krause
- Medizinische Klinik 5, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mathias Hänel
- Klinik für Innere Medizin III, Klinikum Chemnitz, Chemnitz, Germany
| | - Richard Noppeney
- Klinik für Hämatologie, Universitätsklinikum Essen, Essen, Germany
| | - Ulrich Kaiser
- Medizinische Klinik II, St. Bernward Krankenhaus, Hildesheim, Germany
| | - Claudia D Baldus
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Kaufmann
- Abteilung für Hämatologie, Onkologie und Palliativmedizin, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Carsten Müller-Tidow
- Universität Heidelberg, Medizinische Klinik und Poliklinik, Abteilung Innere Medizin V, Heidelberg, Germany
| | - Uwe Platzbecker
- Klinik und Poliklinik für Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Wolfgang E Berdel
- Medizinische Klinik A, Universitätsklinikum Münster, Münster, Germany
| | - Hubert Serve
- Medizinische Klinik 2, Hämatologie/Onkologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases NCT, Dresden, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
- DKMS Clinical Trials Unit, Dresden, Germany
| | - Frank Kroschinsky
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus, Dresden, Germany.
- AgenDix GmbH, Dresden, Germany.
| |
Collapse
|
36
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
37
|
Duployez N, Vasseur L, Kim R, Largeaud L, Passet M, L'Haridon A, Lemaire P, Fenwarth L, Geffroy S, Helevaut N, Celli-Lebras K, Adès L, Lebon D, Berthon C, Marceau-Renaut A, Cheok M, Lambert J, Récher C, Raffoux E, Micol JB, Pigneux A, Gardin C, Delabesse E, Soulier J, Hunault M, Dombret H, Itzykson R, Clappier E, Preudhomme C. UBTF tandem duplications define a distinct subtype of adult de novo acute myeloid leukemia. Leukemia 2023:10.1038/s41375-023-01906-z. [PMID: 37085611 DOI: 10.1038/s41375-023-01906-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.
Collapse
Affiliation(s)
- Nicolas Duployez
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France.
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France.
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France.
| | - Loïc Vasseur
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laëtitia Largeaud
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie Passet
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anaïs L'Haridon
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
| | - Pierre Lemaire
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurène Fenwarth
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Sandrine Geffroy
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Nathalie Helevaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | | | - Lionel Adès
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Delphine Lebon
- Hematology Department, CHU Amiens-Picardie, Amiens, France
| | - Céline Berthon
- Hematology Department, Claude Huriez Hospital, CHU Lille, Lille, France
| | - Alice Marceau-Renaut
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| | - Meyling Cheok
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Juliette Lambert
- Hematology Department, Versailles Hospital, University Versailles-Saint-Quentin-en-Yvelines, Le Chesnay, France
| | - Christian Récher
- Service d'Hématologie, CHU Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Emmanuel Raffoux
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | | | - Arnaud Pigneux
- Hematology Department, CHU de Bordeaux, Bordeaux, France
| | - Claude Gardin
- Hematology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Eric Delabesse
- Hematology Laboratory, CHU Toulouse, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jean Soulier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Mathilde Hunault
- Hematology Department, Université d'Angers, Université de Nantes, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICAT, F‑49000, Angers, France
- Fédération Hospitalo-Universitaire, Grand-Ouest Acute Leukemia, Angers, France
| | - Hervé Dombret
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire de biologie médicale multisites SeqOIA - FMG2025, Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claude Preudhomme
- Université de Lille, Unité 1277-Canther, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire (CHU) de Lille, Lille, France
| |
Collapse
|
38
|
Liu Y, Klein J, Bajpai R, Dong L, Tran Q, Kolekar P, Smith JL, Ries RE, Huang BJ, Wang YC, Alonzo TA, Tian L, Mulder HL, Shaw TI, Ma J, Walsh MP, Song G, Westover T, Autry RJ, Gout AM, Wheeler DA, Wan S, Wu G, Yang JJ, Evans WE, Loh M, Easton J, Zhang J, Klco JM, Meshinchi S, Brown PA, Pruett-Miller SM, Ma X. Etiology of oncogenic fusions in 5,190 childhood cancers and its clinical and therapeutic implication. Nat Commun 2023; 14:1739. [PMID: 37019972 PMCID: PMC10076316 DOI: 10.1038/s41467-023-37438-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Oncogenic fusions formed through chromosomal rearrangements are hallmarks of childhood cancer that define cancer subtype, predict outcome, persist through treatment, and can be ideal therapeutic targets. However, mechanistic understanding of the etiology of oncogenic fusions remains elusive. Here we report a comprehensive detection of 272 oncogenic fusion gene pairs by using tumor transcriptome sequencing data from 5190 childhood cancer patients. We identify diverse factors, including translation frame, protein domain, splicing, and gene length, that shape the formation of oncogenic fusions. Our mathematical modeling reveals a strong link between differential selection pressure and clinical outcome in CBFB-MYH11. We discover 4 oncogenic fusions, including RUNX1-RUNX1T1, TCF3-PBX1, CBFA2T3-GLIS2, and KMT2A-AFDN, with promoter-hijacking-like features that may offer alternative strategies for therapeutic targeting. We uncover extensive alternative splicing in oncogenic fusions including KMT2A-MLLT3, KMT2A-MLLT10, C11orf95-RELA, NUP98-NSD1, KMT2A-AFDN and ETV6-RUNX1. We discover neo splice sites in 18 oncogenic fusion gene pairs and demonstrate that such splice sites confer therapeutic vulnerability for etiology-based genome editing. Our study reveals general principles on the etiology of oncogenic fusions in childhood cancer and suggests profound clinical implications including etiology-based risk stratification and genome-editing-based therapeutics.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology and Center for Advanced Genome Editing, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology and Center for Advanced Genome Editing, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin J Huang
- Department of Pediatrics and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Todd A Alonzo
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Autry
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David A Wheeler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and the Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Editing, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
39
|
Kaburagi T, Shiba N, Yamato G, Yoshida K, Tabuchi K, Ohki K, Ishikita E, Hara Y, Shiraishi Y, Kawasaki H, Sotomatsu M, Takizawa T, Taki T, Kiyokawa N, Tomizawa D, Horibe K, Miyano S, Taga T, Adachi S, Ogawa S, Hayashi Y. UBTF-internal tandem duplication as a novel poor prognostic factor in pediatric acute myeloid leukemia. Genes Chromosomes Cancer 2023; 62:202-209. [PMID: 36448876 DOI: 10.1002/gcc.23110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The prognosis of pediatric acute myeloid leukemia (AML) has improved via stratification therapy. However, relapse or death occurs in 30%-40% of cases. Novel genetic factors for pediatric AML need to be elucidated to improve prognosis. We detected recurrent internal tandem duplication in upstream binding transcription factor (UBTF-ITD) in 1.2% (6/503) of Japanese pediatric patients with de novo AML. No UBTF-ITD was detected in 175 adult patients with AML or in 65 cell lines that included 15 AML, 39 acute lymphoblastic leukemia, five chronic myeloid leukemia, and six neuroblastoma cell lines. All UBTF-ITDs were found in exon 13 and shared a duplicated region. UBTF-ITD was more frequently detected in patients with trisomy 8, FLT3-ITD, WT1 mutation, and/or high PRDM16 expression (trisomy 8, 3/6; FLT3-ITD, 5/6; WT1 mutation, 2/6; and high PRDM16 expression, 6/6). Gene expression patterns of patients with UBTF-ITD were similar to those of patients with NUP98::NSD1 or FUS::ERG. Survival analysis of the AML-05 cohort revealed that patients with UBTF-ITD had worse outcomes than those without UBTF-ITD (3-year event-free survival, 20% vs. 55%; 3-year overall survival, 40% vs. 74%). Moreover, among the 27 patients with trisomy 8, all three patients with UBTF -ITD had a poor prognosis resulting in early events (relapse or non-complete remission) within 1 year. Our findings suggest that UBTF-ITD may be a novel and significant prognostic factor for pediatric patients with AML.
Collapse
Affiliation(s)
- Taeko Kaburagi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan.,Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Genki Yamato
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan.,Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Tabuchi
- Department of Pediatrics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research institute for Child Health and Development, Tokyo, Japan
| | - Etsuko Ishikita
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan.,Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yusuke Hara
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hirohide Kawasaki
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan
| | - Manabu Sotomatsu
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tomohiko Taki
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Souichi Adachi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan.,Institute of Physiology and Medicine, Jobu University, Gunma, Japan
| |
Collapse
|
40
|
Ryland GL, Umeda M, Holmfeldt L, Lehmann S, Herlin MK, Ma J, Khanlari M, Rubnitz JE, Ries RE, Kosasih HJ, Ekert PG, Goh HN, Tiong IS, Grimmond SM, Haferlach C, Day RB, Ley TJ, Meshinchi S, Ma X, Blombery P, Klco JM. Description of a novel subtype of acute myeloid leukemia defined by recurrent CBFB insertions. Blood 2023; 141:800-805. [PMID: 36179268 PMCID: PMC10273080 DOI: 10.1182/blood.2022017874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Georgina L. Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Linda Holmfeldt
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- The Beijer Laboratory, Uppsala, Sweden
| | - Sören Lehmann
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mahsa Khanlari
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Paul G. Ekert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Hwee Ngee Goh
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ing S. Tiong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sean M. Grimmond
- Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | | | - Ryan B. Day
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
41
|
Shiba N. Comprehensive molecular understanding of pediatric acute myeloid leukemia. Int J Hematol 2023; 117:173-181. [PMID: 36653696 DOI: 10.1007/s12185-023-03533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease with various genetic abnormalities. Recent advances in genetic analysis have enabled the identification of causative genes in > 90% of pediatric AML cases. Fusion genes such as RUNX1::RUNX1T1, CBFB::MYH11, and KMT2A::MLLT3 are frequently detected in > 70% of pediatric AML cases, whereas FLT3-internal tandem duplication, CEBPA-bZip, and NPM1 mutations are detected in approximately 5-15% of cases, respectively. Conversely, mutations in DNMT3A, TET2, and IDH, which are common in adults, are extremely rare in pediatric AML. The genetic characteristics of pediatric AML are slightly different from those of adult AML. For accurate risk stratification and treatment intensity, genome analysis should be performed in a simple, fast, and inexpensive manner and the results should be returned to patients in real time. As with acute lymphoblastic leukemia, the presence or absence of minimal residual disease is an important factor in determining the success of treatment against AML, and it is important to predict prognosis and formulate treatment strategies considering the genetic abnormalities. For the development and clinical application of new molecularly targeted therapies based on identified genetic abnormalities, it is necessary to explore when and in which combinations drugs will be most effective.
Collapse
Affiliation(s)
- Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
42
|
The evolution of targeted therapy in pediatric AML: gemtuzumab ozogamicin, FLT3/IDH/BCL2 inhibitors, and other therapies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:603-610. [PMID: 36485125 PMCID: PMC9819987 DOI: 10.1182/hematology.2022000358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the maximum intensification of chemotherapy and the increased use of hematopoietic stem cell transplantation (HCT) in pediatric patients with acute myeloid leukemia (AML), nearly 40% of patients still experience relapse, and cure in this setting remains a significant challenge. Recent improvements in AML characterization, including advances in flow cytometry and comprehensive genomic sequencing, have led to a better understanding of AML biology and the identification of multiple potential therapeutic targets. Novel agents targeting genomic lesions, cell surface antigens, and other mechanisms that permit oncogenesis or immune escape are being incorporated into current treatment strategies or are under investigation in efforts to improve outcomes and decrease the toxicities and late effects associated with traditional intensive chemotherapeutic and HCT treatment. However, multiple challenges still exist, including the biologic and immunophenotypic heterogeneity of childhood AML, the differences in underlying biology as compared to adult AML, and the significant potential for on-target/off-tumor toxicity associated with therapies directed at targets common to myeloid cells, both leukemic and normal. This article reviews the current landscape of genomic and cell surface targets for children with AML with a focus on the currently available targeted therapeutic agents, those in active clinical investigation, and those still in development.
Collapse
|
43
|
Wang H, Chan KYY, Cheng CK, Ng MH, Lee PY, Cheng FWT, Lam GKS, Chow TW, Ha SY, Chiang AK, Leung WH, Leung AY, Wang CC, Zhang T, Zhang XB, So CC, Yuen YP, Sun Q, Zhang C, Xu Y, Cheung JTK, Ng WH, Tang PMK, Kang W, To KF, Lee WYW, Wong RS, Poon ENY, Zhao Q, Huang J, Chen C, Yuen PMP, Li CK, Leung AWK, Leung KT. Pharmacogenomic Profiling of Pediatric Acute Myeloid Leukemia to Identify Therapeutic Vulnerabilities and Inform Functional Precision Medicine. Blood Cancer Discov 2022; 3:516-535. [PMID: 35960210 PMCID: PMC9894568 DOI: 10.1158/2643-3230.bcd-22-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the expanding portfolio of targeted therapies for adults with acute myeloid leukemia (AML), direct implementation in children is challenging due to inherent differences in underlying genetics. Here we established the pharmacologic profile of pediatric AML by screening myeloblast sensitivity to approved and investigational agents, revealing candidates of immediate clinical relevance. Drug responses ex vivo correlated with patient characteristics, exhibited age-specific alterations, and concorded with activities in xenograft models. Integration with genomic data uncovered new gene-drug associations, suggesting actionable therapeutic vulnerabilities. Transcriptome profiling further identified gene-expression signatures associated with on- and off-target drug responses. We also demonstrated the feasibility of drug screening-guided treatment for children with high-risk AML, with two evaluable cases achieving remission. Collectively, this study offers a high-dimensional gene-drug clinical data set that could be leveraged to research the unique biology of pediatric AML and sets the stage for realizing functional precision medicine for the clinical management of the disease. SIGNIFICANCE We conducted integrated drug and genomic profiling of patient biopsies to build the functional genomic landscape of pediatric AML. Age-specific differences in drug response and new gene-drug interactions were identified. The feasibility of functional precision medicine-guided management of children with high-risk AML was successfully demonstrated in two evaluable clinical cases. This article is highlighted in the In This Issue feature, p. 476.
Collapse
Affiliation(s)
- Han Wang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Keung Cheng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret H.L. Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Po Yi Lee
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Frankie Wai Tsoi Cheng
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Grace Kee See Lam
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Tin Wai Chow
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Shau Yin Ha
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Alan K.S. Chiang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wing Hang Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Anskar Y.H. Leung
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, California
| | - Chi Chiu So
- Department of Pathology, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Yuet Ping Yuen
- Department of Pathology, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Qiwei Sun
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yaqun Xu
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - John Tak Kit Cheung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing Hei Ng
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Raymond S.M. Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Qi Zhao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Patrick Man Pan Yuen
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi-kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.,Corresponding Authors: Kam Tong Leung, E-mail: ; Chi-kong Li, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong. Phone: 852-3513-3176; Fax: 852-2636-0020; E-mail: ; and Alex Wing Kwan Leung, E-mail:
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.,Corresponding Authors: Kam Tong Leung, E-mail: ; Chi-kong Li, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong. Phone: 852-3513-3176; Fax: 852-2636-0020; E-mail: ; and Alex Wing Kwan Leung, E-mail:
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.,Corresponding Authors: Kam Tong Leung, E-mail: ; Chi-kong Li, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong. Phone: 852-3513-3176; Fax: 852-2636-0020; E-mail: ; and Alex Wing Kwan Leung, E-mail:
| |
Collapse
|
44
|
Yasuda T, Sanada M, Tsuzuki S, Hayakawa F. Oncogenic lesions and molecular subtypes in adults with B-cell acute lymphoblastic leukemia. Cancer Sci 2022; 114:8-15. [PMID: 36106363 PMCID: PMC9807527 DOI: 10.1111/cas.15583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 09/04/2022] [Indexed: 01/07/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL), a genetically heterogeneous disease, is classified into different molecular subtypes that are defined by recurrent gene rearrangements, gross chromosomal abnormalities, or specific gene mutations. Cells with these genetic alterations acquire a leukemia-initiating ability and show unique expression profiles. The distribution of B-ALL molecular subtypes is greatly dependent on age, which also affects treatment responsiveness and long-term survival, partly accounting for the inferior outcome in adolescents and young adults (AYA) and (older) adults with B-ALL. Recent advances in sequencing technology, especially RNA sequencing and the application of these technologies in large B-ALL cohorts have uncovered B-ALL molecular subtypes prevalent in AYA and adults. These new insights supply more precise estimations of prognoses and targeted therapies informed by sequencing results, as well as a deeper understanding of the genetic basis of AYA/adult B-ALL. This article provides an account of these technological advances and an overview of the recent major findings of B-ALL molecular subtypes in adults.
Collapse
Affiliation(s)
- Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
45
|
Why B(-)other? About the gap of unknowns in ALL. Blood 2022; 139:3455-3457. [PMID: 35708724 PMCID: PMC9203700 DOI: 10.1182/blood.2022015993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
|
46
|
Relapsed acute myeloid leukemia in children and adolescents: current treatment options and future strategies. Leukemia 2022; 36:1951-1960. [PMID: 35668109 DOI: 10.1038/s41375-022-01619-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
Pediatric acute myeloid leukemia (AML) develops from clonal expansion of hematopoietic precursor cells and is characterized by morphologic and cytomolecular heterogeneity. Although the past 40 years have seen significant improvements in overall survival, the prevailing treatment challenges in pediatric AML are the prevention of relapse and the management of relapsed disease. Approximately 25% of children and adolescents with AML suffer disease relapse and face a poor prognosis. Our greater understanding of the genomic, epigenomic, metabolomic, and immunologic pathophysiology of relapsed AML allows for better therapeutic strategies that are being developed for pediatric clinical trials. The development of biologically rational agents is critical as conventional chemotherapeutic salvage regimens are not effective for all patients and pose risk of organ toxicity in heavily pretreated patients. Another major barrier to improvement in outcomes for relapsed pediatric AML is the historic lack of availability and participation in clinical trials. There are ongoing efforts to launch multinational clinical trials of emerging therapies. The purpose of this review is to summarize currently available and newly developed therapies for relapsed pediatric AML.
Collapse
|
47
|
Hasserjian RP, Nardi V. Bedside to Bench and Back: Identifying a New Clinically Relevant Driver in Pediatric Acute Myeloid Leukemia. Blood Cancer Discov 2022; 3:173-175. [PMID: 35176140 DOI: 10.1158/2643-3230.bcd-22-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this issue of Blood Cancer Discovery, Dr Masayuki Umeda and colleagues identify and comprehensively analyze a novel recurrent UBTF mutation (tandem duplications) in pediatric acute myeloid leukemia. Acute myeloid leukemia cases with UBTF tandem duplications display distinctive biologic features, including association with FLT3-ITD and WT1 mutations and high-risk disease, and appear to represent a new genetic subtype of acute myeloid leukemia.
Collapse
|
48
|
UBTF::ATXN7L3 gene fusion defines novel B cell precursor ALL subtype with CDX2 expression and need for intensified treatment. Leukemia 2022; 36:1676-1680. [PMID: 35397658 PMCID: PMC9162919 DOI: 10.1038/s41375-022-01557-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
|