1
|
Raimondi V, Storti P, Vescovini R, Franceschi V, Toscani D, Notarfranchi L, Dalla Palma AB, Iannozzi NT, Minesso S, Scita M, Lungu O, Dessena M, Donofrio G, Giuliani N. Follow-up of humoral and cellular immune responses after the third SARS-CoV-2 vaccine dose in multiple myeloma patients. Front Immunol 2025; 16:1532947. [PMID: 40040701 PMCID: PMC11876378 DOI: 10.3389/fimmu.2025.1532947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025] Open
Abstract
The stability of immune responses to SARS-CoV-2 vaccines, especially concerning the cross-reactive recognition of the Omicron variant, remains incompletely characterized in multiple myeloma (MM) patients. This study evaluated humoral responses in 29 MM patients and cellular responses in a subset of 19 MM patients, specific to Wuhan and Omicron spike proteins, between 16 and 26 weeks following the third vaccine dose. After 26 weeks, we highlighted a significant reduction in the neutralizing antibodies to both spikes and the percentages of IFN-γ+CD107a+ spike-specific CD8+ T cells. On the other hand, patients who underwent an additional stimulation between the two time points, through either a fourth vaccine dose or breakthrough infection, showed a significant increase in neutralizing antibodies and stable levels of cytotoxic CD8+ T cells. Additionally, those with only three doses experienced a higher rate of breakthrough infections during the 32-week follow-up period. These findings underscore the waning of vaccine-induced immunity over time and may help benefit-risk evaluation in vaccination strategies in MM patients.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Sergio Minesso
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Matteo Scita
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy
| | - Oxana Lungu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mattia Dessena
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy
| |
Collapse
|
2
|
Yang Y, Miller H, Byazrova MG, Cndotti F, Benlagha K, Camara NOS, Shi J, Forsman H, Lee P, Yang L, Filatov A, Zhai Z, Liu C. The characterization of CD8 + T-cell responses in COVID-19. Emerg Microbes Infect 2024; 13:2287118. [PMID: 37990907 PMCID: PMC10786432 DOI: 10.1080/22221751.2023.2287118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
This review gives an overview of the protective role of CD8+ T cells in SARS-CoV-2 infection. The cross-reactive responses intermediated by CD8+ T cells in unexposed cohorts are described. Additionally, the relevance of resident CD8+ T cells in the upper and lower airway during infection and CD8+ T-cell responses following vaccination are discussed, including recent worrisome breakthrough infections and variants of concerns (VOCs). Lastly, we explain the correlation between CD8+ T cells and COVID-19 severity. This review aids in a deeper comprehension of the association between CD8+ T cells and SARS-CoV-2 and broadens a vision for future exploration.
Collapse
Affiliation(s)
- Yuanting Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, USA
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Fabio Cndotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Junming Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
3
|
Lai KZH, Greenstein S, Govindasamy R, Paranilam J, Brown J, Kimball-Carroll S. COVID-19 Vaccination Recommendations for Immunocompromised Patient Populations: Delphi Panel and Consensus Statement Generation in the United States. Infect Dis Ther 2024; 13:2255-2283. [PMID: 39387989 PMCID: PMC11499552 DOI: 10.1007/s40121-024-01052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION The United States Advisory Committee on Immunization Practices (ACIP) and the Centers for Disease Control (CDC) recommend COVID-19 vaccines for all immunocompromised individuals. Certain disease groups are at increased risk of comorbidity and death for which disease-specific recommendations should be considered. The objective of the Delphi panel of experts was to summarize expert consensus on COVID-19 vaccinations for patients with rheumatologic disease, renal disease, hematologic malignancy and solid organ transplant (SOT) in the US. METHODS A two-stage Delphi panel method was employed, starting with qualitative interviews with key opinion leaders (KOLs) in the four disease areas (n = 4 KOLs, n = 16 total) followed by three rounds of iterative revision of disease-specific COVID-19 vaccine recommendations. Final consensus was rated after the third round. Statements addressed primary and booster dosing (e.g., number and frequency) and other considerations such as vaccine type or heterologous messenger ribonucleic acid (mRNA) vaccination. Following the Delphi Panel, an online survey was conducted to assess physician agreement within the disease areas (n = 50 each, n = 200 total) with the consensus statements. RESULTS Moderate to strong consensus was achieved for all primary series vaccination statements across disease groups, except one in hematology. Similarly, moderate to strong consensus was achieved for all booster series statements in all disease areas. However, statements on antibody titer measurements for re-vaccination considerations and higher dosages for immunocompromised patients did not reach agreement. Overall, approximately 62%-96% of physicians strongly agreed with the primary and booster vaccine recommendations. However, low agreement (29%-69%) was found among physicians for time interval between disease-specific treatment and vaccination, recommendations for mRNA vaccines, heterologous mRNA vaccination, antibody titer measurement and higher vaccine dosage for immunocompromised groups. CONCLUSION Consensus was achieved for disease-specific COVID-19 vaccine recommendations concerning primary and booster series vaccines and was generally well accepted by practicing physicians.
Collapse
Affiliation(s)
| | - Stuart Greenstein
- Westchester Medical Center, Transplant Surgery, 100 Woods Road, Valhalla, NY, 10595, USA
| | | | | | | | | |
Collapse
|
4
|
Moreno A, Manning K, Azeem MI, Nooka AK, Ellis M, Manalo RJ, Switchenko JM, Wali B, Kaufman JL, Hofmeister CC, Joseph NS, Lonial S, Dhodapkar KM, Dhodapkar MV, Suthar MS. Divergence of variant antibodies following SARS-CoV-2 booster vaccines in myeloma and impact of hybrid immunity. NPJ Vaccines 2024; 9:201. [PMID: 39465249 PMCID: PMC11514147 DOI: 10.1038/s41541-024-00999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Hematological malignancies are associated with an increased risk of complications during SARS-CoV-2 infections. Primary series or monovalent booster vaccines reduce disease severity, hospitalization, and death among multiple myeloma patients. We characterized virus-neutralizing and spike-binding antibody profiles following monovalent (WA1) or bivalent (WA1/BA.5) SARS-CoV-2 booster vaccination in MM patients. Bivalent vaccination improved the breadth of binding antibodies but not neutralization activity against contemporary variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.
Collapse
Affiliation(s)
- Alberto Moreno
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly Manning
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Maryam I Azeem
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Ajay K Nooka
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Madison Ellis
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Renee Julia Manalo
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
| | | | - Bushra Wali
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Jonathan L Kaufman
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Craig C Hofmeister
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Nisha S Joseph
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Sagar Lonial
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Kavita M Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Madhav V Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia.
- Winship Cancer Institute, Atlanta, Georgia.
| | - Mehul S Suthar
- Emory Vaccine Center, Emory University, Atlanta, Georgia.
- Emory National Primate Research Center, Atlanta, Georgia.
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
5
|
Martín-Sánchez E, Tamariz-Amador LE, Guerrero C, Zherniakova A, Zabaleta A, Maia C, Blanco L, Alignani D, Fortuño MA, Grande C, Manubens A, Arguiñano JM, Gomez C, Perez-Persona E, Olazabal I, Oiartzabal I, Panizo C, Prosper F, San-Miguel JF, Rodriguez-Otero P, Paiva B. Immune dysfunction prior to and during vaccination in multiple myeloma: a case study based on COVID-19. Blood Cancer J 2024; 14:111. [PMID: 38987557 PMCID: PMC11237013 DOI: 10.1038/s41408-024-01089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Infection is the leading cause of death in multiple myeloma (MM). However, the cellular composition associated with immune dysfunction is not defined. We analyzed immune profiles in the peripheral blood of patients with MM (n = 28) and B-cell chronic lymphoproliferative disorders (n = 53) vs. health care practitioners (n = 96), using multidimensional and computational flow cytometry. MM patients displayed altered distribution of most cell types (41/56, 73%), particularly within the B-cell (17/17) and T-cell (20/30) compartments. Using COVID-19 as a case study, we compared the immune response to vaccination based on 64,304 data points generated from the analysis of 1099 longitudinal samples. MM patients showed limited B-cell expansion linked to lower anti-RBD and anti-S antibody titers after the first two doses and booster. The percentages of B cells and CD4+ T cells in the blood, as well as the absolute counts of B cells and dendritic cells, predicted vaccine immunogenicity at different time points. In contrast with the humoral response, the percentage and antigen-dependent differentiation of SARS-CoV-2-specific CD8+ T cells was not altered in MM patients. Taken together, this study defined the cellular composition associated with immune dysfunction in MM and provided biomarkers such as the B-cell percentage and absolute count to individualize vaccination calendars.
Collapse
Affiliation(s)
- Esperanza Martín-Sánchez
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain.
| | - Luis-Esteban Tamariz-Amador
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Camila Guerrero
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Anastasiia Zherniakova
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Aintzane Zabaleta
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Catarina Maia
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Laura Blanco
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Diego Alignani
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Maria-Antonia Fortuño
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Carlos Grande
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Andrea Manubens
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | | | - Clara Gomez
- Hospital Universitario de Galdakao, Galdakano, Spain
| | | | - Iñigo Olazabal
- Hospital Universitario de Donostia, San Sebastian, Spain
| | | | - Carlos Panizo
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
- Hospital Universitario de Donostia, San Sebastian, Spain
| | - Felipe Prosper
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Jesus F San-Miguel
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Bruno Paiva
- Cancer Center Clinica Universidad de Navarra (CCUN), Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), CIBER-ONC numbers CB16/12/00369 and CB16/12/00489, Pamplona, Spain.
| |
Collapse
|
6
|
Meermeier EW, Bergsagel PL, Chesi M. Next-Generation Therapies for Multiple Myeloma. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:351-371. [PMID: 39364307 PMCID: PMC11449476 DOI: 10.1146/annurev-cancerbio-061421-014236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Recent therapeutic advances have significantly improved the outcome for patients with multiple myeloma (MM). The backbone of successful standard therapy is the combination of Ikaros degraders, glucocorticoids, and proteasome inhibitors that interfere with the integrity of myeloma-specific superenhancers by directly or indirectly targeting enhancer-bound transcription factors and coactivators that control expression of MM dependency genes. T cell engagers and chimeric antigen receptor T cells redirect patients' own T cells onto defined tumor antigens to kill MM cells. They have induced complete remissions even in end-stage patients. Unfortunately, responses to both conventional therapy and immunotherapy are not durable, and tumor heterogeneity, antigen loss, and lack of T cell fitness lead to therapy resistance and relapse. Novel approaches are under development to target myeloma-specific vulnerabilities, as is the design of multimodality immunological approaches, including and beyond T cells, that simultaneously recognize multiple epitopes to prevent antigen escape and tumor relapse.
Collapse
Affiliation(s)
| | | | - Marta Chesi
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
7
|
Dhodapkar MV. Immune status and selection of patients for immunotherapy in myeloma: a proposal. Blood Adv 2024; 8:2424-2432. [PMID: 38564776 PMCID: PMC11112605 DOI: 10.1182/bloodadvances.2023011242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
ABSTRACT Newer immune-based approaches based on recruitment and redirection of endogenous and/or synthetic immunity such as chimeric antigen receptor T cells or bispecific antibodies are transforming the clinical management of multiple myeloma (MM). Contributions of the immune system to the antitumor effects of myeloma therapies are also increasingly appreciated. Clinical malignancy in MM originates in the setting of systemic immune alterations that begin early in myelomagenesis and regional changes in immunity affected by spatial contexture. Preexisting and therapy-induced changes in immune cells correlate with outcomes in patients with MM including after immune therapies. Here, we discuss insights from and limitations of available data about immune status and outcomes after immune therapies in patients with MM. Preexisting variation in systemic and/or regional immunity is emerging as a major determinant of the efficacy of current immune therapies as well as vaccines. However, MM is a multifocal malignancy. As with solid tumors, integrating spatial aspects of the tumor and consideration of immune targets with the biology of immune cells may be critical to optimizing the application of immune therapy, including T-cell redirection, in MM. We propose 5 distinct spatial immune types of MM that may provide an initial framework for the optimal application of specific immune therapies in MM: immune depleted, immune permissive, immune excluded, immune suppressed, and immune resistant. Such considerations may also help optimize rational patient selection for emerging immune therapies to improve outcomes.
Collapse
Affiliation(s)
- Madhav V. Dhodapkar
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
8
|
Wagner A, Garner-Spitzer E, Auer C, Gattinger P, Zwazl I, Platzer R, Orola-Taus M, Pichler P, Amman F, Bergthaler A, Huppa JB, Stockinger H, Zielinski CC, Valenta R, Kundi M, Wiedermann U. Breakthrough Infections in SARS-CoV-2-Vaccinated Multiple Myeloma Patients Improve Cross-Protection against Omicron Variants. Vaccines (Basel) 2024; 12:518. [PMID: 38793769 PMCID: PMC11125692 DOI: 10.3390/vaccines12050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Patients with multiple myeloma (MM) are a heterogenous, immunocompromised group with increased risk for COVID-19 morbidity and mortality but impaired responses to primary mRNA SARS-CoV-2 vaccination. The effects of booster vaccinations and breakthrough infections (BTIs) on antibody (Ab) levels and cross-protection to variants of concern (VOCs) are, however, not sufficiently evaluated. Therefore, we analysed humoral and cellular vaccine responses in MM patients stratified according to disease stage/treatment into group (1) monoclonal gammopathy of undetermined significance, (2) after stem cell transplant (SCT) without immunotherapy (IT), (3) after SCT with IT, and (4) progressed MM, and in healthy subjects (prospective cohort study). In contrast to SARS-CoV-2 hu-1-specific Ab levels, Omicron-specific Abs and their cross-neutralisation capacity remained low even after three booster doses in a majority of MM patients. In particular, progressed MM patients receiving anti-CD38 mAb and those after SCT with IT were Ab low responders and showed delayed formation of spike-specific B memory cells. However, MM patients with hybrid immunity (i.e., vaccination and breakthrough infection) had improved cross-neutralisation capacity against VOCs, yet in the absence of severe COVID-19 disease. Our results indicate that MM patients require frequent variant-adapted booster vaccinations and/or changes to other vaccine formulations/platforms, which might have similar immunological effects as BTIs.
Collapse
Affiliation(s)
- Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Erika Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Claudia Auer
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Pia Gattinger
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (P.G.); (R.V.)
| | - Ines Zwazl
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - René Platzer
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
| | - Maria Orola-Taus
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Peter Pichler
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Fabian Amman
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, 1090 Vienna, Austria
| | - Andreas Bergthaler
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, 1090 Vienna, Austria
| | - Johannes B. Huppa
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
| | - Hannes Stockinger
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
| | - Christoph C. Zielinski
- Wiener Privatklinik, and Central European Cooperative Oncology Group (CECOG), Central European Cancer Center, 1090 Vienna, Austria;
| | - Rudolf Valenta
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (P.G.); (R.V.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Michael Kundi
- Center for Public Health, Medical University Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| |
Collapse
|
9
|
Dhodapkar MV. Immune-Pathogenesis of Myeloma. Hematol Oncol Clin North Am 2024; 38:281-291. [PMID: 38195307 DOI: 10.1016/j.hoc.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This research indicates that monoclonal gammopathy of undetermined significance (MGUS) and myeloma may stem from chronic immune activation and inflammation, causing immune dysfunction and spatial immune exclusion. As the conditions progress, a shift toward myeloma involves ongoing immune impairment, affecting both innate and adaptive immunity. Intriguingly, even in advanced myeloma stages, susceptibility to immune effector cells persists. This insight highlights the intricate interplay between immune responses and the development of these conditions, paving the way for potential therapeutic interventions targeting immune modulation in the management of MGUS and myeloma.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Winship Cancer Institute, 1365 Clifton Road, Atlanta, GA 30332, USA.
| |
Collapse
|
10
|
Sgherza N, Mestice A, Larocca AMV, Musto P. Antibody Response to Breakthrough SARS-CoV-2 Infection in "Booster" Vaccinated Patients with Multiple Myeloma According to B/T/NK Lymphocyte Absolute Counts and anti-CD38 Treatments. Mediterr J Hematol Infect Dis 2024; 16:e2024022. [PMID: 38468827 PMCID: PMC10927213 DOI: 10.4084/mjhid.2024.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Nicola Sgherza
- Hematology and Stem Cell Transplantation Unit, AOUC Policlinico, Bari, Italy
| | - Anna Mestice
- Hematology and Stem Cell Transplantation Unit, AOUC Policlinico, Bari, Italy
| | | | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, AOUC Policlinico, Bari, Italy
- Department of Precision and Regenerative Medicine and Ionian Area, “Aldo Moro” University School of Medicine, Bari, Italy
| |
Collapse
|
11
|
Wekking D, Senevirathne TH, Pearce JL, Aiello M, Scartozzi M, Lambertini M, De Silva P, Solinas C. The impact of COVID-19 on cancer patients. Cytokine Growth Factor Rev 2024; 75:110-118. [PMID: 38103990 DOI: 10.1016/j.cytogfr.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
The COVID-19 pandemic poses a significant challenge for individuals with compromised immune systems, such as patients with cancer, as they face a heightened susceptibility to severe infections compared to the general population. Such severe infections substantially increase the risk of morbidity and mortality among these patients. Notable risk factors for mortality include advanced age (> 70 years), current or past smoking history, advanced disease stage, the use of cytotoxic chemotherapy, and an Eastern Cooperative Oncology Group (ECOG) score of 2 or higher. Multiple types of vaccines have been developed and implemented, demonstrating remarkable efficacy in preventing infections. However, there have been observable reductions in their ability to elicit an immune response, particularly among individuals with hematological malignancies. The situation becomes more challenging due to the emergence of viral variants of concern (VOCs). Despite the increase in neutralizing antibody levels after vaccination, they remain lower in response to these evolving variants. The need for booster vaccinations has become apparent, particularly for this vulnerable population, due to the suboptimal immune response and waning of immunity post-vaccination. Examining and comprehending how the immune system reacts to various vaccination regimens for SARS-CoV-2 and its VOCs in cancer patients is crucial for designing clinical and public health strategies. This review aims to provide an updated overview of the effectiveness of COVID-19 vaccines in cancer patients, including those undergoing treatments such as hematopoietic stem cell transplantation (HCT) or chimeric antigen receptor (CAR) T cell therapy, by exploring the extent of both humoral and cellular immune responses to COVID-19 vaccination. Furthermore, it outlines risk factors and potential biomarkers that are associated with severe SARS-CoV-2 infection and vaccine responses, and offers suggestions for improving SARS-CoV-2 protection in cancer patients.
Collapse
Affiliation(s)
- Demi Wekking
- Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Thilini H Senevirathne
- Faculty of Science, Katholieke Universiteit Leuven, Kasteelpark Arenberg, Leuven, Belgium
| | - Josie L Pearce
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Premedical Program, Cambridge, MA, USA
| | - Marco Aiello
- Medical Oncology Unit A.O.U. Policlinico - Vittorio Emanuele di Catania, Italy
| | - Mario Scartozzi
- Department of Medical Oncology, University of Cagliari, Cagliari, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genoa, Genoa, Italy
| | - Pushpamali De Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Cinzia Solinas
- Medical Oncology, AOU Cagliari, P.O. Duilio Casula, Monserrato, CA, Italy.
| |
Collapse
|
12
|
Frerichs KA, Verkleij CPM, Mateos MV, Martin TG, Rodriguez C, Nooka A, Banerjee A, Chastain K, Perales-Puchalt A, Stephenson T, Uhlar C, Kobos R, van der Holt B, Kruyswijk S, Kuipers MT, Groen K, Vishwamitra D, Skerget S, Cortes-Selva D, Doyle M, Zaaijer HL, Zweegman S, Verona RI, van de Donk NWCJ. Teclistamab impairs humoral immunity in patients with heavily pretreated myeloma: importance of immunoglobulin supplementation. Blood Adv 2024; 8:194-206. [PMID: 38052042 PMCID: PMC10787247 DOI: 10.1182/bloodadvances.2023011658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Teclistamab and other B-cell maturation antigen (BCMA)-targeting bispecific antibodies (BsAbs) have substantial activity in patients with heavily pretreated multiple myeloma (MM) but are associated with a high rate of infections. BCMA is also expressed on normal plasma cells and mature B cells, which are essential for the generation of a humoral immune response. The aim of this study was to improve the understanding of the impact of BCMA-targeting BsAbs on humoral immunity. The impact of teclistamab on polyclonal immunoglobulins and B cell counts was evaluated in patients with MM who received once-weekly teclistamab 1.5 mg/kg subcutaneously. Vaccination responses were assessed in a subset of patients. Teclistamabinduced rapid depletion of peripheral blood B cells in patients with MM and eliminated normal plasma cells in ex vivo assays. In addition, teclistamab reduced the levels of polyclonal immunoglobulins (immunoglobulin G [IgG], IgA, IgE, and IgM), without recovery over time while receiving teclistamab therapy. Furthermore, response to vaccines against Streptococcus pneumoniae, Haemophilus influenzae type B, and severe acute respiratory syndrome coronavirus 2 was severely impaired in patients treated with teclistamab compared with vaccination responses observed in patients with newly diagnosed MM or relapsed/refractory MM. Intravenous immunoglobulin (IVIG) use was associated with a significantly lower risk of serious infections among patients treated with teclistamab (cumulative incidence of infections at 6 months: 5.3% with IVIG vs 54.8% with observation only [P < .001]). In conclusion, our data show severe defects in humoral immunity induced by teclistamab, the impact of which can be mitigated by the use of immunoglobulin supplementation. This trial was registered at www.ClinicalTrials.gov as #NCT04557098.
Collapse
Affiliation(s)
- Kristine A Frerichs
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Christie P M Verkleij
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | | | | | - Ajay Nooka
- Winship Cancer Institute, Emory University, Atlanta, GA
| | | | | | | | | | | | - Rachel Kobos
- Janssen Research & Development, Spring House, PA
| | - Bronno van der Holt
- HOVON Foundation, Rotterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Sandy Kruyswijk
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maria T Kuipers
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kaz Groen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | | | | | | | - Hans L Zaaijer
- Department of Medical Microbiology, Amsterdam UMC location, Academic Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Song NJ, Chakravarthy KB, Jeon H, Bolyard C, Reynolds K, Weller KP, Reisinger S, Wang Y, Li A, Jiang S, Ma Q, Barouch DH, Rubinstein MP, Shields PG, Oltz EM, Chung D, Li Z. mRNA vaccines against SARS-CoV-2 induce divergent antigen-specific T-cell responses in patients with lung cancer. J Immunother Cancer 2024; 12:e007922. [PMID: 38177076 PMCID: PMC10773442 DOI: 10.1136/jitc-2023-007922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is highly transmissible and evades pre-established immunity. Messenger RNA (mRNA) vaccination against ancestral strain spike protein can induce intact T-cell immunity against the Omicron variant, but efficacy of booster vaccination in patients with late-stage lung cancer on immune-modulating agents including anti-programmed cell death protein 1(PD-1)/programmed death-ligand 1 (PD-L1) has not yet been elucidated. METHODS We assessed T-cell responses using a modified activation-induced marker assay, coupled with high-dimension flow cytometry analyses. Peripheral blood mononuclear cells (PBMCs) were stimulated with various viral peptides and antigen-specific T-cell responses were evaluated using flow cytometry. RESULTS Booster vaccines induced CD8+ T-cell response against the ancestral SARS-CoV-2 strain and Omicron variant in both non-cancer subjects and patients with lung cancer, but only a marginal induction was detected for CD4+ T cells. Importantly, antigen-specific T cells from patients with lung cancer showed distinct subpopulation dynamics with varying degrees of differentiation compared with non-cancer subjects, with evidence of dysfunction. Notably, female-biased T-cell responses were observed. CONCLUSION We conclude that patients with lung cancer on immunotherapy show a substantial qualitative deviation from non-cancer subjects in their T-cell response to mRNA vaccines, highlighting the need for heightened protective measures for patients with cancer to minimize the risk of breakthrough infection with the Omicron and other future variants.
Collapse
Affiliation(s)
- No-Joon Song
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Karthik B Chakravarthy
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Hyeongseon Jeon
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Kelsi Reynolds
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Kevin P Weller
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Sarah Reisinger
- The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Anqi Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University, Stanford, California, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Qin Ma
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark P Rubinstein
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Peter G Shields
- The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Dongjun Chung
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
14
|
Dhodapkar MV. Harnessing Dendritic Cells: Next Frontier for Durable Immune Control in Myeloma. Clin Cancer Res 2023; 29:4524-4526. [PMID: 37737650 PMCID: PMC10873105 DOI: 10.1158/1078-0432.ccr-23-2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Immune-based approaches including T-cell redirection have transformed the therapeutic landscape in myeloma. Injection of dendritic cells (DC) led to the induction of immune responses in vaccinated patients with myeloma. These studies pave the way for future combination strategies harnessing DCs to enhance tumor immunity and improve outcomes in myeloma. See related article by Freeman et al., p. 4575.
Collapse
Affiliation(s)
- Madhav V. Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA 30322
- Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
15
|
Moreno A, Manning K, Azeem MI, Nooka AK, Ellis M, Manalo RJ, Switchenko JM, Wali B, Kaufman JL, Hofmeister CC, Joseph NS, Lonial S, Dhodapkar KM, Dhodapkar MV, Suthar MS. Divergence of variant binding/neutralizing antibodies following SARS-CoV-2 booster vaccines in myeloma: Impact of hybrid immunity. RESEARCH SQUARE 2023:rs.3.rs-3293339. [PMID: 37790523 PMCID: PMC10543400 DOI: 10.21203/rs.3.rs-3293339/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We characterized virus-neutralization and spike-binding antibody profiles in myeloma patients following monovalent or bivalent-SARS-CoV-2 booster vaccination. Vaccination improves the breadth of binding antibodies but not neutralization activity against current variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.
Collapse
Affiliation(s)
- Alberto Moreno
- Emory Vaccine Center, Emory University, Atlanta, GA
- Emory National Primate Research Center, Atlanta, GA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kelly Manning
- Emory Vaccine Center, Emory University, Atlanta, GA
- Emory National Primate Research Center, Atlanta, GA
| | - Maryam I. Azeem
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Ajay K. Nooka
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
- Winship Cancer Institute, Atlanta, GA
| | - Madison Ellis
- Emory Vaccine Center, Emory University, Atlanta, GA
- Emory National Primate Research Center, Atlanta, GA
| | - Renee Julia Manalo
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
| | | | - Bushra Wali
- Emory Vaccine Center, Emory University, Atlanta, GA
- Emory National Primate Research Center, Atlanta, GA
| | - Jonathan L. Kaufman
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
- Winship Cancer Institute, Atlanta, GA
| | - Craig C. Hofmeister
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
- Winship Cancer Institute, Atlanta, GA
| | - Nisha S. Joseph
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
- Winship Cancer Institute, Atlanta, GA
| | - Sagar Lonial
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
- Winship Cancer Institute, Atlanta, GA
| | - Kavita M. Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA
- Winship Cancer Institute, Atlanta, GA
| | - Madhav V. Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
- Winship Cancer Institute, Atlanta, GA
| | - Mehul S. Suthar
- Emory Vaccine Center, Emory University, Atlanta, GA
- Emory National Primate Research Center, Atlanta, GA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
16
|
Dhodapkar KM, Duffy A, Dhodapkar MV. Role of B cells in immune-related adverse events following checkpoint blockade. Immunol Rev 2023; 318:89-95. [PMID: 37421187 PMCID: PMC10530150 DOI: 10.1111/imr.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Blockade of immune checkpoints has transformed the therapy of several cancers. However, immune-related adverse events (irAEs) have emerged as a major challenge limiting the clinical application of this approach. B cells are recognized as major players in the pathogenesis of human autoimmunity and have been successfully targeted to treat these disorders. While T cells have been extensively studied as therapeutic targets of immune checkpoint blockade (ICB), these checkpoints also impact B cell tolerance. Blockade of immune checkpoints in the clinic is associated with distinct changes in the B cell compartment that correlate with the development of irAEs. In this review, we focus on the possible role of humoral immunity, specifically human B cell subsets and autoantibodies in the pathogenesis of ICB-induced irAEs. There remains an unmet need to better understand the T:B cell cross talk underlying the activation of pathogenic B cells and the development of ICB-induced irAEs. Such studies may identify new targets or approaches to prevent or treat irAEs and improve the application of ICB therapy in cancer.
Collapse
Affiliation(s)
- Kavita M. Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatric Hematology/Oncology, Emory University, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Alyssa Duffy
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatric Hematology/Oncology, Emory University, Atlanta, GA
| | - Madhav V. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
| |
Collapse
|
17
|
Moreno A, Manning K, Azeem MI, Nooka AK, Ellis M, Manalo RJ, Switchenko JM, Wali B, Kaufman JL, Hofmeister CC, Joseph NS, Lonial S, Dhodapkar KM, Dhodapkar MV, Suthar MS. Divergence of variant binding/neutralizing antibodies following SARS-CoV-2 booster vaccines in myeloma: Impact of hybrid immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553767. [PMID: 37662390 PMCID: PMC10473610 DOI: 10.1101/2023.08.17.553767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We characterized virus-neutralization and spike-binding antibody profiles in myeloma patients following monovalent or bivalent-SARS-CoV-2 booster vaccination. Vaccination improves the breadth of binding antibodies but not neutralization activity against current variants. Hybrid immunity and immune imprinting impact vaccine-elicited immunity.
Collapse
|
18
|
Robinson MH, Villa NY, Jaye DL, Nooka AK, Duffy A, McCachren SS, Manalo J, Switchenko JM, Barnes S, Potdar S, Azeem MI, Horvat AA, Parihar VC, Gong J, Liang Y, Smith GH, Gupta VA, Boise LH, Kaufman JL, Hofmeister CC, Joseph NS, Lonial S, Dhodapkar KM, Dhodapkar MV. Regulation of antigen-specific T cell infiltration and spatial architecture in multiple myeloma and premalignancy. J Clin Invest 2023; 133:e167629. [PMID: 37526080 PMCID: PMC10378152 DOI: 10.1172/jci167629] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/16/2023] [Indexed: 08/02/2023] Open
Abstract
Entry of antigen-specific T cells into human tumors is critical for immunotherapy, but the underlying mechanisms are poorly understood. Here, we combined high-dimensional spatial analyses with in vitro and in vivo modeling to study the mechanisms underlying immune infiltration in human multiple myeloma (MM) and its precursor monoclonal gammopathy of undetermined significance (MGUS). Clustered tumor growth was a feature of MM but not MGUS biopsies, and this growth pattern was reproduced in humanized mouse models. MM biopsies exhibited intralesional as well as spatial heterogeneity, with coexistence of T cell-rich and T cell-sparse regions and the presence of areas of T cell exclusion. In vitro studies demonstrated that T cell entry into MM clusters was regulated by agonistic signals and CD2-CD58 interactions. Upon adoptive transfer, antigen-specific T cells localized to the tumor site but required in situ DC-mediated antigen presentation for tumor entry. C-type lectin domain family 9 member A-positive (CLEC9A+) DCs appeared to mark portals of entry for gradients of T cell infiltration in MM biopsies, and their proximity to T cell factor 1-positive (TCF1+) T cells correlated with disease state and risk status. These data illustrate a role for tumor-associated DCs and in situ activation in promoting the infiltration of antigen-specific T cells in MM and provide insights into spatial alterations in tumor/immune cells with malignant evolution.
Collapse
Affiliation(s)
| | | | - David L. Jaye
- Department of Pathology and Laboratory Medicine, and
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Ajay K. Nooka
- Department of Hematology/Medical Oncology
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | - Maryam I. Azeem
- Department of Hematology/Medical Oncology
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatric Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | | | | | - Jingjing Gong
- Pathology Department, NanoString Inc., Seattle, Washington, USA
| | - Yan Liang
- Pathology Department, NanoString Inc., Seattle, Washington, USA
| | | | - Vikas A. Gupta
- Department of Hematology/Medical Oncology
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Lawrence H. Boise
- Department of Hematology/Medical Oncology
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jonathan L. Kaufman
- Department of Hematology/Medical Oncology
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Craig C. Hofmeister
- Department of Hematology/Medical Oncology
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Nisha S. Joseph
- Department of Hematology/Medical Oncology
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Sagar Lonial
- Department of Hematology/Medical Oncology
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Kavita M. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatric Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | - Madhav V. Dhodapkar
- Department of Hematology/Medical Oncology
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 vaccination in the first year after allogeneic hematopoietic cell transplant: a prospective, multicentre, observational study. EClinicalMedicine 2023; 59:101983. [PMID: 37128256 PMCID: PMC10133891 DOI: 10.1016/j.eclinm.2023.101983] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Background The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood. Methods We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG; nucleocapsid protein (anti-N) IgG; neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains; and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations <4 months versus 4-12 months after HCT using a propensity-adjusted analysis. We also evaluated factors associated with high-level anti-S IgG titers (≥2403 U/mL) in logistic regression models. Findings Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations <4 months versus 4-12 months after HCT. Anti-S IgG ≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent. Interpretation These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms. Funding National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.
Collapse
Affiliation(s)
- Joshua A. Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J. Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Aliyah Baluch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Armistead
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Peter Westervelt
- Barnes-Jewish Hospital, Washington University, St. Louis, MO, USA
| | - John McCarty
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Susan DeWolf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kinga Hosszu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, MD, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Amir A. Toor
- Virginia Commonwealth University, Richmond, VA, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Jeffery J. Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Mary M. Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcie L. Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weil Cornell Medical College, New York, NY, USA
| |
Collapse
|
20
|
Zitvogel L, Derosa L, Kroemer G. Defective Immunity Against SARS-CoV-2 Omicron Variants Despite Full Vaccination in Hematologic Malignancies. Blood Cancer Discov 2023; 4:172-175. [PMID: 37078891 PMCID: PMC10150292 DOI: 10.1158/2643-3230.bcd-22-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
SUMMARY In patients with multiple myeloma, completion of mRNA-based vaccination schemes failed to yield detectable SARS-CoV-2 Omicron-neutralizing antibodies and S1-RBD-specific CD8+ T cells in approximately 60% and 80% of the cases, respectively. Patients who develop breakthrough infections exhibited very low levels of live-virus neutralizing antibodies and the absence of follicular T helper cells. See related article by Azeem et al., p. 106 (9). See related article by Chang et al., p. 1684 (10).
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Medicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- CICBT1428 BIOTHERIS, GRCC, Villejuif Cedex, France
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Medicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- CICBT1428 BIOTHERIS, GRCC, Villejuif Cedex, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
21
|
Terpos E, Neri P, van de Donk NWCJ, D'Agostino M, Parekh S, Jagannath S, Ludwig H, Avigan DE, Dhodapkar MV, Raje NS. Immune Reconstitution and Vaccinations in Multiple Myeloma: A Report From the 19th International Myeloma Society Annual Workshop. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:413-419. [PMID: 37055346 DOI: 10.1016/j.clml.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
Given the significance of the immune system and the important role of therapies within the context of the immune system in plasma cell disorders, the International Myeloma Society annual workshop convened a session dedicated to this topic. A panel of experts covered various aspects of immune reconstitution and vaccination. The top oral presentations were highlighted and discussed. This is a report of the proceedings.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, Plasma Cell Dyscrasias Unit, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Paola Neri
- Department of Medical Oncology and Hematology, Tom Baker Cancer Center, Calgary, Alberta, Canada; Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Mattia D'Agostino
- SSD Clinical Trial in Oncoematologia e Mieloma Multiplo, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Samir Parekh
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sundar Jagannath
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Heinz Ludwig
- Department of Medicine I, Center for Medical Oncology and Hematology with Outpatient Department and Palliative Care, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - David E Avigan
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Noopur S Raje
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA; Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|