1
|
Niu H, Maruoka M, Noguchi Y, Kosako H, Suzuki J. Phospholipid scrambling induced by an ion channel/metabolite transporter complex. Nat Commun 2024; 15:7566. [PMID: 39217145 PMCID: PMC11366033 DOI: 10.1038/s41467-024-51939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cells establish the asymmetrical distribution of phospholipids and alter their distribution by phospholipid scrambling (PLS) to adapt to environmental changes. Here, we demonstrate that a protein complex, consisting of the ion channel Tmem63b and the thiamine transporter Slc19a2, induces PLS upon calcium (Ca2+) stimulation. Through revival screening using a CRISPR sgRNA library on high PLS cells, we identify Tmem63b as a PLS-inducing factor. Ca2+ stimulation-mediated PLS is suppressed by deletion of Tmem63b, while human disease-related Tmem63b mutants induce constitutive PLS. To search for a molecular link between Ca2+ stimulation and PLS, we perform revival screening on Tmem63b-overexpressing cells, and identify Slc19a2 and the Ca2+-activated K+ channel Kcnn4 as PLS-regulating factors. Deletion of either of these genes decreases PLS activity. Biochemical screening indicates that Tmem63b and Slc19a2 form a heterodimer. These results demonstrate that a Tmem63b/Slc19a2 heterodimer induces PLS upon Ca2+ stimulation, along with Kcnn4 activation.
Collapse
Affiliation(s)
- Han Niu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuki Noguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan.
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan.
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
2
|
Alajeyan IA, Alsughayyir J, Alfhili MA. Stimulation of Calcium/NOS/CK1α Signaling by Cedrol Triggers Eryptosis and Hemolysis in Red Blood Cells. Yonago Acta Med 2024; 67:191-200. [PMID: 39176191 PMCID: PMC11335916 DOI: 10.33160/yam.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/23/2024] [Indexed: 08/24/2024]
Abstract
Background Cedrol (CRL) is a sesquiterpene alcohol present in the essential oils of coniferous trees including Cupressus and Juniperus genera. CRL has shown potent anticancer activity by virtue of apoptosis. Red blood cells (RBCs), although devoid of mitochondria and nucleus, can undergo hemolysis and eryptosis which contribute to chemotherapy-induced anemia (CIA). In this work, we explored the hemolytic and eryptotic potential of CRL in human RBCs as a safety assessment of the sesquiterpene as an anticancer agent. Methods RBCs from healthy donors were treated with anticancer concentrations of CRL for 24 h at 37°C with varying experimental manipulations. Hemolysis was photometrically assessed by measuring hemoglobin release whereas flow cytometry was employed to detect phosphatidylserine (PS) exposure by annexin-V-FITC, intracellular Ca2+ by Fluo4/AM, cell volume by forward scatter (FSC), and oxidative stress by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Results Significant, concentration-responsive hemolysis was noted upon CRL exposure with concomitant K+, LDH, and AST leakage. CRL also significantly increased annexin-V-positive cells and Fluo4 fluorescence and reduced FSC. Moreover, the cytotoxicity of CRL was significantly ameliorated in the presence of L-NAME, D4476, and PEG 8,000 but was aggravated by urea and sucrose. Conclusion CRL stimulates hemolysis and eryptosis characterized by PS exposure, Ca2+ overload, and cell shrinkage. The hemolytic activity of CRL was mediated through nitric oxide synthase and casein kinase 1α. Blocking either enzyme may attenuate the toxicity of CRL to RBCs and prevent undesirable side effects associated with its anticancer applications.
Collapse
Affiliation(s)
- Iman A Alajeyan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
3
|
Alp G, Oztas Y, Yalcinkaya A, Ozel S, Yildirim N, Unal S. Plasma sphingolipids in patients with sickle cell disease: Multiple-site vaso-occlusive crises could be associated with lower sphingolipid levels. Lipids 2024; 59:75-82. [PMID: 38332401 DOI: 10.1002/lipd.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Although sickle cell disease (SCD) and its manifestations have been associated with various lipid alterations, there are a few studies exploring the impact of sphingolipids in SCD. In this study, we determined plasma ceramide (Cer) and sphingomyelin (CerPCho) species and investigated their association with the crisis in SCD. SCD patients (N = 27) suffering from vaso-occlusive crisis (VOC) or acute chest syndrome (ACS) were involved in this study. Blood samples were drawn at crisis and later at steady state periods. Clinical history, white blood cell count (WBC), C-reactive protein and lactate dehydrogenase (LDH) levels were recorded. 16:0, 18:0, 20:0, 22:0 Cer and 16:0, 18:0, 24:0 CerPCho were measured via LC-MS/MS. All measured Cer and CerPCho levels of SCD patients at crisis and steady-state were found to be similar. Inflammation-related parameters were significantly higher in patients with ACS compared to single-site VOC. Patients with multiple-site VOC were found to have significantly lower sphingolipid levels compared with those with single-site VOC, at crisis (16, 18, 24 CerPCho and 18, 22 Cer) and at steady-state (24:0 CerPCho and 18 Cer). Our results show that sphingolipid levels in SCD patients are similar during crisis and at steady state. However, lower sphingolipid levels appear to be associated with the development of multiple-site VOC. Since the differences were observed at both crisis and steady-state, sphingolipid level could be an underlying factor associated with crisis characteristics in patients with SCD.
Collapse
Affiliation(s)
- Gokce Alp
- Faculty of Engineering, Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
| | - Yesim Oztas
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, Ankara, Turkey
| | - Ahmet Yalcinkaya
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, Ankara, Turkey
| | - Selinay Ozel
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nazim Yildirim
- Faculty of Medicine, Department of Pediatrics Hematology, Mersin University, Mersin, Turkey
| | - Selma Unal
- Faculty of Medicine, Department of Pediatrics Hematology, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Kargutkar N, Nadkarni A. Effect of hydroxyurea on erythrocyte apoptosis in hemoglobinopathy patients. Expert Rev Hematol 2023; 16:685-692. [PMID: 37394969 DOI: 10.1080/17474086.2023.2231152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Hydroxyurea (HU) therapy improves the clinical severity of patients with hemoglobinopathies. Few studies have documented some mechanisms of HU, but the exact mechanism of action is unknown. Phosphatidylserine on erythrocytes is responsible for apoptosis. In this study, we investigate the expression of phosphatidylserine on the erythrocytes surface of hemoglobinopathies before and after HU treatment. RESEARCH DESIGNS AND METHODS Blood samples from 45 thalassemia intermedia and 40 SCA and 30 HbE-b-thalassemia patients were analyzed before and after 3 and 6 months of HU treatment. The profile of phosphatidylserine was determined by flow-cytometry using the Annexin V-RBC apoptosis kit. RESULTS Hydroxyurea proved effective in improving clinical severity of hemoglobinopathies. After treatment with hydroxyurea, the percentage of phosphatidylserine-positive cells was significantly reduced in all 3 patient groups (p < 0.0001). Correlation analysis using different hematological parameters as independent variables and % phosphatidylserine as dependent variable showed a negative relationship with HbF, RBC, and hemoglobin in all 3 patient groups. CONCLUSION Hydroxyurea reduces the expression of phosphatidylserine on erythrocytes, contributing to the beneficial effects of this therapy. We suggest that the use of such a biological marker in conjunction with HbF levels may provide valuable insights into the biology and consequences of early RBC apoptosis.
Collapse
Affiliation(s)
- Neha Kargutkar
- ICMR-National Institute of Immunohaematology, King Edward Memorial Hospital, Mumbai, India
| | - Anita Nadkarni
- ICMR-National Institute of Immunohaematology, King Edward Memorial Hospital, Mumbai, India
| |
Collapse
|
5
|
Tkachenko A, Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol (Praha) 2023; 69:116-126. [PMID: 38410969 DOI: 10.14712/fb2023069040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|
6
|
Liu Y, Wang Y, Wang C, Dong T, Xu H, Guo Y, Zhao X, Hu Y, Wu J. Hijacking Self-Assembly to Establish Intracellular Functional Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203027. [PMID: 36073796 PMCID: PMC9631083 DOI: 10.1002/advs.202203027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The targeted transport of nanomedicines is often impeded by various biological events in the body. Viruses can hijack host cells and utilize intracellular transcription and translation biological events to achieve their replication. Inspired by this, a strategy to hijack endogenous products of biological events to assemble into intracellular functional nanoparticles is established. It has been shown that, following tumor vessel destruction therapy, injected cell permeable small molecule drugs bisphosphonate can hijack the hemorrhagic product iron and self-assemble into peroxidase-like nanoparticles within tumor-infiltrating macrophages. Unlike free drugs, the generated intercellular nanoparticles can specifically stress mitochondria, resulting in immune activation of macrophages in vitro and polarizing tumor-associated macrophages (TAMs) from immunosuppressive to tumoricidal and increasing the recruitment of T cells deep within tumor. The hijacking self-assembly strategy significantly inhibits tumor growth compared with the treatment of vascular-disrupting agents alone. Using bisphosphonate to hijack the metabolite associated with hemorrhage, iron, to fabricate functional nanoparticles within specific cells, which may open up new nanotechnology for drug delivery and small molecular drug development.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Yuchen Wang
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Tiejun Dong
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Yunfei Guo
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
| | - Xiaozhi Zhao
- Department of AndrologyDrum Tower hospitalMedical School of Nanjing UniversityNanjing210093China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
- Jiangsu Key Laboratory for Nano TechnologyNanjing UniversityNanjing210093China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School and School of Life SciencesNanjing UniversityNanjing210093China
- Jiangsu Key Laboratory for Nano TechnologyNanjing UniversityNanjing210093China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| |
Collapse
|
7
|
Scovino AM, Totino PRR, Morrot A. Eryptosis as a New Insight in Malaria Pathogenesis. Front Immunol 2022; 13:855795. [PMID: 35634341 PMCID: PMC9136947 DOI: 10.3389/fimmu.2022.855795] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Eryptosis is a programmed cell death-like process that occurs in red blood cells. Although the red blood cells are anucleated, there are similarities between eryptosis and apoptosis, such as increased calcium efflux, calpain activation, phosphatidylserine exposure, cell blebbing and cell shrinkage. Eryptosis occurs physiologically in red blood cells, as a consequence of the natural senescence process of these cells, but it can also be stimulated in pathological situations such as metabolic syndromes, uremic syndromes, polycythemia vera, anemias such as sickle cell anemia and thalassemia, and infectious processes including Plasmodium infection. Infection-induced eryptosis is believed to contribute to damage caused by Plasmodium, but it’s still a topic of debate in the literature. In this review, we provided an overview of eryptosis mechanisms and its possible pathogenic role in malaria.
Collapse
Affiliation(s)
- Aline Miranda Scovino
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Alexandre Morrot,
| |
Collapse
|
8
|
Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells 2022; 11:cells11030503. [PMID: 35159312 PMCID: PMC8834305 DOI: 10.3390/cells11030503] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Human erythrocytes are organelle-free cells packaged with iron-containing hemoglobin, specializing in the transport of oxygen. With a total number of approximately 25 trillion cells per individual, the erythrocyte is the most abundant cell type not only in blood but in the whole organism. Despite their low complexity and their inability to transcriptionally upregulate antioxidant defense mechanisms, they display a relatively long life time, of 120 days. This ensures the maintenance of tissue homeostasis where the clearance of old or damaged erythrocytes is kept in balance with erythropoiesis. Whereas the regulatory mechanisms of erythropoiesis have been elucidated over decades of intensive research, the understanding of the mechanisms of erythrocyte clearance still requires some refinement. Here, we present the main pathways leading to eryptosis, the programmed death of erythrocytes, with special emphasis on Ca2+ influx, the generation of ceramide, oxidative stress, kinase activation, and iron metabolism. We also compare stress-induced erythrocyte death with erythrocyte ageing and clearance, and discuss the similarities between eryptosis and ferroptosis, the iron-dependent regulated death of nucleated blood cells. Finally, we focus on the pathologic consequences of deranged eryptosis, and discuss eryptosis in the context of different infectious diseases, e.g., viral or parasitic infections, and hematologic disorders.
Collapse
|
9
|
Zhang Y, Xu Y, Zhang S, Lu Z, Li Y, Zhao B. The regulation roles of Ca 2+ in erythropoiesis: What have we learned? Exp Hematol 2021; 106:19-30. [PMID: 34879257 DOI: 10.1016/j.exphem.2021.12.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023]
Abstract
Calcium (Ca2+) is an important second messenger molecule in the body, regulating cell cycle and fate. There is growing evidence that intracellular Ca2+ levels play functional roles in the total physiological process of erythroid differentiation, including the proliferation and differentiation of erythroid progenitor cells, terminal enucleation, and mature red blood cell aging and clearance. Moreover, recent research on the pathology of erythroid disorders has made great progress in the past decades, indicating that calcium ion hemostasis is closely related to ineffective erythropoiesis and increased sensitivity to stress factors. In this review, we summarized what is known about the functional roles of intracellular Ca2+ in erythropoiesis and erythrocyte-related diseases, with an emphasis on the regulation of the intracellular Ca2+ homeostasis during erythroid differentiation. An understanding of the regulation roles of Ca2+ homeostasis in erythroid differentiation will facilitate further studies and eventually molecular identification of the pathways involved in the pathological process of erythroid disorders, providing new therapeutic opportunities in erythrocyte-related disease.
Collapse
Affiliation(s)
- Yuanzhen Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shujing Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Lu DCY, Wadud R, Hannemann A, Rees DC, Brewin JN, Gibson JS. Pathophysiological Relevance of Renal Medullary Conditions on the Behaviour of Red Cells From Patients With Sickle Cell Anaemia. Front Physiol 2021; 12:653545. [PMID: 33815154 PMCID: PMC8017214 DOI: 10.3389/fphys.2021.653545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Red cells from patients with sickle cell anaemia (SCA) contain the abnormal haemoglobin HbS. Under hypoxic conditions, HbS polymerises and causes red cell sickling, a rise in intracellular Ca2+ and exposure of phosphatidylserine (PS). These changes make sickle cells sticky and liable to lodge in the microvasculature, and so reduce their lifespan. The aim of the present work was to investigate how the peculiar conditions found in the renal medulla - hypoxia, acidosis, lactate, hypertonicity and high levels of urea - affect red cell behaviour. Results show that the first four conditions all increased sickling and PS exposure. The presence of urea at levels found in a healthy medulla during antidiuresis, however, markedly reduced sickling and PS exposure and would therefore protect against red cell adherence. Loss of the ability to concentrate urine, which occurs in sickle cell nephropathy would obviate this protective effect and may therefore contribute to pathogenesis.
Collapse
Affiliation(s)
- David C-Y Lu
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rasiqh Wadud
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anke Hannemann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, United Kingdom
| | - John N Brewin
- Department of Paediatric Haematology, King's College Hospital, London, United Kingdom
| | - John Stanley Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Ahmed JS, Guyah B, Sang' D, Webale MK, Mufyongo NS, Munde E, Ouma C. Influence of blood group, Glucose-6-phosphate dehydrogenase and Haemoglobin genotype on Falciparum malaria in children in Vihiga highland of Western Kenya. BMC Infect Dis 2020; 20:487. [PMID: 32646433 PMCID: PMC7346653 DOI: 10.1186/s12879-020-05216-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/02/2020] [Indexed: 11/29/2022] Open
Abstract
Background Genetic diversity of ABO blood, glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin type and their ability to protect against malaria vary geographically, ethnically and racially. No study has been carried out in populations resident in malaria regions in western Kenya. Method A total of 574 malaria cases (severe malaria anaemia, SMA = 137 and non-SMA = 437) seeking treatment at Vihiga County and Referral Hospital in western Kenya, were enrolled and screened for ABO blood group, G6PD deficiency and haemoglobin genotyped in a hospital-based cross-sectional study. Result When compared to blood group O, blood groups A, AB and B were not associated with SMA (P = 0.380, P = 0.183 and P = 0.464, respectively). Further regression analysis revealed that the carriage of the intermediate status of G6PD was associated with risk to SMA (OR = 1.52, 95%CI = 1.029–2.266, P = 0.035). There was, however, no association between AS and SS with severe malaria anaemia. Co-occurrence of both haemoglobin type and G6PD i.e. the AA/intermediate was associated with risk to SMA (OR = 1.536, 95%CI = 1.007–2.343, P = 0.046) while the carriage of the AS/normal G6PD was associated with protection against SMA (OR = 0.337, 95%CI = 0.156–0.915, P = 0.031). Conclusion Results demonstrate that blood group genotypes do not have influence on malaria disease outcome in this region. Children in Vihiga with blood group O have some protection against malaria. However, the intermediate status of G6PD is associated with risk of SMA. Further, co-inheritance of sickle cell and G6PD status are important predictors of malaria disease outcome. This implies combinatorial gene function in influencing disease outcome.
Collapse
Affiliation(s)
- Jafaralli Sande Ahmed
- Department of Biomedical Sciences and Technology, Maseno University, Maragoli, Kenya.,Department of Health, County Government of Vihiga, Vihiga, Kenya
| | - Bernard Guyah
- Department of Biomedical Sciences and Technology, Maseno University, Maragoli, Kenya
| | - David Sang'
- Department of Biomedical Sciences and Technology, Maseno University, Maragoli, Kenya
| | - Mark Kilongosi Webale
- School of Health Sciences, Kirinyaga University, Kerugoya, Kenya.,Department of Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Nathan Shaviya Mufyongo
- Department of Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Elly Munde
- School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Maragoli, Kenya.
| |
Collapse
|
12
|
Jacob SS, Prasad K, Rao P, Kamath A, Hegde RB, Baby PM, Rao RK. Computerized Morphometric Analysis of Eryptosis. Front Physiol 2019; 10:1230. [PMID: 31649550 PMCID: PMC6769039 DOI: 10.3389/fphys.2019.01230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Eryptosis is the suicidal destruction-process of erythrocytes, much like apoptosis of nucleated cells, in the course of which the stressed red cell undergoes cell-shrinkage, vesiculation and externalization of membrane phosphatidylserine. Currently, there exist numerous methods to detect eryptosis, both morphometrically and biochemically. This study aimed to design a simple but sensitive, automated computerized approach to instantaneously detect eryptotic red cells and quantify their hallmark morphological characteristics. Red cells from 17 healthy volunteers were exposed to normal Ringer and hyperosmotic stress with sodium chloride, following which morphometric comparisons were conducted from their photomicrographs. The proposed method was found to significantly detect and differentiate normal and eryptotic red cells, based on variations in their structural markers. The receiver operating characteristic curve analysis for each of the markers showed a significant discriminatory accuracy with high sensitivity, specificity and area under the curve values. The software-based technique was then validated with RBCs in malaria. This model, quantifies eryptosis morphometrically in real-time, with minimal manual intervention, providing a new window to explore eryptosis triggered by different stressors and diseases and can find wide application in laboratories of hematology, blood banks and medical research.
Collapse
Affiliation(s)
- Sanu Susan Jacob
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Keerthana Prasad
- School of Information Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Asha Kamath
- Department of Statistics, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Roopa B Hegde
- School of Information Sciences, Manipal Academy of Higher Education, Manipal, India.,Nitte Mahalinga Adyanthaya Memorial Institute of Technology, NITTE, Karkala, India
| | - Prathap M Baby
- Department of Physiology, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Karnataka, India
| | - Raghavendra K Rao
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
13
|
Abstract
WHO database mentions that the global anemia-affected population is 24.8%. To name a few conditions in which compromisation of the red blood corpuscles and hemoglobin occurs are iron deficiency anemia, gestational anemia, anemia due to malaria and parasitism, hemolytic anemia, sickle cell anemia. The line of treatment in case of anemia involves administration of iron supplements, plasmapheresis, steroids, blood transfusion at regular intervals, and lifestyle changes. The systematic approach applied for the pharmaceutical molecules should be equally inculcated in the case of nutraceuticals. The traditional system when woven carefully with the novel drug delivery system will give effective nutrient delivery. Functional foods have inherent nutritional value. Nutraceuticals and functional food cannot cure the anemic condition, but help the patient lead life almost like a normal individual.
Collapse
|
14
|
Boulet C, Doerig CD, Carvalho TG. Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy? Front Cell Infect Microbiol 2018; 8:419. [PMID: 30560094 PMCID: PMC6284368 DOI: 10.3389/fcimb.2018.00419] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria is a major global health burden, affecting over 200 million people worldwide. Resistance against all currently available antimalarial drugs is a growing threat, and represents a major and long-standing obstacle to malaria eradication. Like many intracellular pathogens, Plasmodium parasites manipulate host cell signaling pathways, in particular programmed cell death pathways. Interference with apoptotic pathways by malaria parasites is documented in the mosquito and human liver stages of infection, but little is known about this phenomenon in the erythrocytic stages. Although mature erythrocytes have lost all organelles, they display a form of programmed cell death termed eryptosis. Numerous features of eryptosis resemble those of nucleated cell apoptosis, including surface exposure of phosphatidylserine, cell shrinkage and membrane ruffling. Upon invasion, Plasmodium parasites induce significant stress to the host erythrocyte, while delaying the onset of eryptosis. Many eryptotic inducers appear to have a beneficial effect on the course of malaria infection in murine models, but major gaps remain in our understanding of the underlying molecular mechanisms. All currently available antimalarial drugs have parasite-encoded targets, which facilitates the emergence of resistance through selection of mutations that prevent drug-target binding. Identifying host cell factors that play a key role in parasite survival will provide new perspectives for host-directed anti-malarial chemotherapy. This review focuses on the interrelationship between Plasmodium falciparum and the eryptosis of its host erythrocyte. We summarize the current knowledge in this area, highlight the different schools of thoughts and existing gaps in knowledge, and discuss future perspectives for host-directed therapies in the context of antimalarial drug discovery.
Collapse
Affiliation(s)
- Coralie Boulet
- Molecular Parasitology Laboratory, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christian D Doerig
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Teresa G Carvalho
- Molecular Parasitology Laboratory, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
15
|
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2018; 286:826-854. [PMID: 30028073 DOI: 10.1111/febs.14606] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The average lifespan of circulating erythrocytes usually exceeds hundred days. Prior to that, however, erythrocytes may be exposed to oxidative stress in the circulation which could cause injury and trigger their suicidal death or eryptosis. Oxidative stress activates Ca2+ -permeable nonselective cation channels in the cell membrane, thus, stimulating Ca2+ entry and subsequent cell membrane scrambling resulting in phosphatidylserine exposure and activation of Ca2+ -sensitive K+ channels leading to K+ exit, hyperpolarization, Cl- exit, and ultimately cell shrinkage due to loss of KCl and osmotically driven water. While the mechanistic link between oxidative stress and anemia remains ill-defined, several diseases such as diabetes, hepatic failure, malignancy, chronic kidney disease and inflammation have been identified to display both increased oxidative stress as well as eryptosis. Recent compelling evidence suggests that oxidative stress is an important perpetrator in accelerating erythrocyte loss in different systemic conditions and an underlying mechanism for anemia associated with these pathological states. In the present review, we discuss the role of oxidative stress in reducing erythrocyte survival and provide novel insights into the possible use of antioxidants as putative antieryptotic and antianemic agents in a variety of systemic diseases.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls-University Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Florian Lang
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany.,Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
16
|
Hannemann A, Rees DC, Brewin JN, Noe A, Low B, Gibson JS. Oxidative stress and phosphatidylserine exposure in red cells from patients with sickle cell anaemia. Br J Haematol 2018; 182:567-578. [PMID: 29938778 PMCID: PMC6120535 DOI: 10.1111/bjh.15441] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/13/2018] [Indexed: 12/14/2022]
Abstract
Phosphatidylserine (PS) exposure increases as red cells age, and is an important signal for the removal of senescent cells from the circulation. PS exposure is elevated in red cells from sickle cell anaemia (SCA) patients and is thought to enhance haemolysis and vaso-occlusion. Although precise conditions leading to its externalisation are unclear, high intracellular Ca2+ has been implicated. Red cells from SCA patients are also exposed to an increased oxidative challenge, and we postulated that this stimulates PS exposure, through increased Ca2+ levels. We tested four different ways of generating oxidative stress: hypoxanthine and xanthine oxidase, phenazine methosulphate, nitrite and tert-butyl hydroperoxide, together with thiol modification with N-ethylmaleimide (NEM), dithiothreitol and hypochlorous acid (HOCl), in red cells permeabilised to Ca2+ using bromo-A23187. Unexpectedly, our findings showed that the four oxidants significantly reduced Ca2+ -induced PS exposure (by 40-60%) with no appreciable effect on Ca2+ affinity. By contrast, NEM markedly increased PS exposure (by about 400%) and slightly but significantly increased the affinity for Ca2+ . Dithiothreitol modestly reduced PS exposure (by 25%) and HOCl had no effect. These findings emphasise the importance of thiol modification for PS exposure in sickle cells but suggest that increased oxidant stress alone is not important.
Collapse
Affiliation(s)
- Anke Hannemann
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - David C. Rees
- Department of Paediatric HaematologyKing's College HospitalKing's College London School of MedicineLondonUK
| | - John N. Brewin
- Department of Paediatric HaematologyKing's College HospitalKing's College London School of MedicineLondonUK
| | - Andreas Noe
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Ben Low
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - John S. Gibson
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
17
|
Zhong H, Wake H, Liu K, Gao Y, Teshigawara K, Sakaguchi M, Mori S, Nishibori M. Effects of Histidine-rich glycoprotein on erythrocyte aggregation and hemolysis: Implications for a role under septic conditions. J Pharmacol Sci 2017; 136:97-106. [PMID: 29544683 DOI: 10.1016/j.jphs.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/19/2017] [Accepted: 11/09/2017] [Indexed: 01/25/2023] Open
Abstract
The apoptotic process of erythrocytes is known as eryptosis, and is characterized by phosphatidylserine (PS) expression on the outer membrane. PS-positive erythrocytes are increased in sepsis, and PS is believed to facilitate coagulation of erythrocytes and activate macrophages. However, the relationship between eryptosis and abnormal coagulation in sepsis is still not fully understood. Histidine-rich glycoprotein (HRG) inhibits immunothrombus formation by regulating neutrophils and vascular endothelial cells. In the present study, we subjected isolated erythrocytes to Zn2+ stimulation, which activated their aggregation and PS expression. We then determined the Zn2+ contents in septic lung and kidney tissues, and found that they were elevated, suggesting that eryptosis was enhanced in these tissues. Erythrocyte adhesion to endothelial cells was also significantly increased after Zn2+ stimulation, and this effect was inhibited by HRG. Finally, we examined HRG treatment in septic model mice, and found that HRG decreased hemolysis, possibly due to its ability to bind heme. Our study demonstrated a novel Zn2+-initiated aggregation/thrombus formation pathway. We also showed the regulatory role of HRG in this pathway, together with the ability of HRG to inhibit hemolysis under septic conditions. HRG supplementation might be a novel therapeutic strategy for inflammatory disorders, especially sepsis.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yuan Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shuji Mori
- School of Pharmacy, Shujitsu University, 1-6-1 Nishikawahara, Naka-ku, Okayama 703-8516, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
18
|
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 2017; 31:349-361. [PMID: 28669393 DOI: 10.1016/j.blre.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
During the course of their natural ageing and upon injury, anucleate erythrocytes can undergo an unconventional apoptosis-like cell death, termed eryptosis. Eryptotic erythrocytes display a plethora of morphological alterations including volume reduction, membrane blebbing and breakdown of the membrane phospholipid asymmetry resulting in phosphatidylserine externalization which, in turn, mediates their phagocytic recognition and clearance from the circulation. Overall, the eryptosis machinery is tightly orchestrated by a wide array of endogenous mediators, ion channels, membrane receptors, and a host of intracellular signaling proteins. Enhanced eryptosis shortens the lifespan of circulating erythrocytes and confers a procoagulant phenotype; this phenomenon has been tangibly implicated in the pathogenesis of anemia, deranged microcirculation, and increased prothrombotic risk associated with a multitude of clinical conditions. Herein, we reviewed the molecular mechanisms dictating eryptosis and erythrophagocytosis and critically analyzed the current evidence leading to the pathophysiological ramifications of eryptotic cell death in the context of human disease.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Rosi Bissinger
- Department of Internal Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ziad Solh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Medical Services and Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Totino PRR, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Evidencing the Role of Erythrocytic Apoptosis in Malarial Anemia. Front Cell Infect Microbiol 2016; 6:176. [PMID: 28018860 PMCID: PMC5145864 DOI: 10.3389/fcimb.2016.00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/21/2016] [Indexed: 01/06/2023] Open
Abstract
In the last decade it has become clear that, similarly to nucleated cells, enucleated red blood cells (RBCs) are susceptible to programmed apoptotic cell death. Erythrocytic apoptosis seems to play a role in physiological clearance of aged RBCs, but it may also be implicated in anemia of different etiological sources including drug therapy and infectious diseases. In malaria, severe anemia is a common complication leading to death of children and pregnant women living in malaria-endemic regions of Africa. The pathogenesis of malarial anemia is multifactorial and involves both ineffective production of RBCs by the bone marrow and premature elimination of non-parasitized RBCs, phenomena potentially associated with apoptosis. In the present overview, we discuss evidences associating erythrocytic apoptosis with the pathogenesis of severe malarial anemia, as well as with regulation of parasite clearance in malaria. Efforts to understand the role of erythrocytic apoptosis in malarial anemia can help to identify potential targets for therapeutic intervention based on apoptotic pathways and consequently, mitigate the harmful impact of malaria in global public health.
Collapse
Affiliation(s)
- Paulo R R Totino
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Cláudio T Daniel-Ribeiro
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | | |
Collapse
|
20
|
Tzounakas VL, Kriebardis AG, Georgatzakou HT, Foudoulaki-Paparizos LE, Dzieciatkowska M, Wither MJ, Nemkov T, Hansen KC, Papassideri IS, D'Alessandro A, Antonelou MH. Glucose 6-phosphate dehydrogenase deficient subjects may be better "storers" than donors of red blood cells. Free Radic Biol Med 2016; 96:152-65. [PMID: 27094493 DOI: 10.1016/j.freeradbiomed.2016.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 02/04/2023]
Abstract
Storage of packed red blood cells (RBCs) is associated with progressive accumulation of lesions, mostly triggered by energy and oxidative stresses, which potentially compromise the effectiveness of the transfusion therapy. Concerns arise as to whether glucose 6-phosphate dehydrogenase deficient subjects (G6PD(-)), ~5% of the population in the Mediterranean area, should be accepted as routine donors in the light of the increased oxidative stress their RBCs suffer from. To address this question, we first performed morphology (scanning electron microscopy), physiology and omics (proteomics and metabolomics) analyses on stored RBCs from healthy or G6PD(-) donors. We then used an in vitro model of transfusion to simulate transfusion outcomes involving G6PD(-) donors or recipients, by reconstituting G6PD(-) stored or fresh blood with fresh or stored blood from healthy volunteers, respectively, at body temperature. We found that G6PD(-) cells store well in relation to energy, calcium and morphology related parameters, though at the expenses of a compromised anti-oxidant system. Additional stimuli, mimicking post-transfusion conditions (37°C, reconstitution with fresh healthy blood, incubation with oxidants) promoted hemolysis and oxidative lesions in stored G6PD(-) cells in comparison to controls. On the other hand, stored healthy RBC units showed better oxidative parameters and lower removal signaling when reconstituted with G6PD(-) fresh blood compared to control. Although the measured parameters of stored RBCs from the G6PD deficient donors appeared to be acceptable, the results from the in vitro model of transfusion suggest that G6PD(-) RBCs could be more susceptible to hemolysis and oxidative stresses post-transfusion. On the other hand, their chronic exposure to oxidative stress might make them good recipients, as they better tolerate exposure to oxidatively damaged long stored healthy RBCs.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece
| | - Anastasios G Kriebardis
- Laboratory of Hematology and Transfusion Medicine, Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens 12210, Greece
| | - Hara T Georgatzakou
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Matthew J Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Issidora S Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA.
| | - Marianna H Antonelou
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece.
| |
Collapse
|
21
|
Fang Z, Jiang C, Tang J, He M, Lin X, Chen X, Han L, Zhang Z, Feng Y, Guo Y, Li H, Jiang W. A comprehensive analysis of membrane and morphology of erythrocytes from patients with glucose-6-phosphate dehydrogenase deficiency. J Struct Biol 2016; 194:235-43. [DOI: 10.1016/j.jsb.2015.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
|
22
|
Tzounakas VL, Kriebardis AG, Papassideri IS, Antonelou MH. Donor-variation effect on red blood cell storage lesion: A close relationship emerges. Proteomics Clin Appl 2016; 10:791-804. [PMID: 27095294 DOI: 10.1002/prca.201500128] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Although the molecular pathways leading to the progressive deterioration of stored red blood cells (RBC storage lesion) and the clinical relevance of storage-induced changes remain uncertain, substantial donor-specific variability in RBC performance during storage, and posttransfusion has been established ("donor-variation effect"). In-bag hemolysis and numerous properties of the RBC units that may affect transfusion efficacy have proved to be strongly donor-specific. Donor-variation effect may lead to the production of highly unequal blood labile products even when similar storage strategy and duration are applied. Genetic, undiagnosed/subclinical medical conditions and lifestyle factors that affect RBC characteristics at baseline, including RBC lifespan, energy metabolism, and sensitivity to oxidative stress, are all likely to influence the storage capacity of individual donors' cells, although not evident by the donor's health or hematological status at blood donation. Consequently, baseline characteristics of the donors, such as membrane peroxiredoxin-2 and serum uric acid concentration, have been proposed as candidate biomarkers of storage quality. This review article focuses on specific factors that might contribute to the donor-variation effect and emphasizes the emerging need for using omics-based technologies in association with in vitro and in vivo transfusion models and clinical trials to discover biomarkers of storage quality and posttransfusion recovery in donor blood.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens, Greece
| | - Anastasios G Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Greece
| | | | - Marianna H Antonelou
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens, Greece
| |
Collapse
|
23
|
Okovityi SV, Rad'ko SV. [The application of succine in sports]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2016; 92:59-65. [PMID: 26841533 DOI: 10.17116/kurort2015659-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of energy deficiency in the course of physical exercises that eventually leads to serious derangement of the energy metabolism is an important component of the deterioration of physical and intellectual working capacity. The most promising approach to the correction of impaired physical and intellectual working capacity associated with energy deficiency consists in the application of pharmaceutical preparations containing intermediate products of the tricarbonic acid cycle. Of great promise in this context is succinic acid by virtue of its oxidation in endogenous reactions that constitutes the physiological adaptive mechanism by which resistance of the organism to oxygen deficiency is promoted.
Collapse
Affiliation(s)
- S V Okovityi
- State budgetary educational institution of higher professional education 'Sankt-Peterburg Chemico-Pharmaceutical Academy', Russian Ministry of Health, Sankt-Peterburg, Russian Federation, 197376
| | - S V Rad'ko
- State budgetary educational institution of higher professional education 'Sankt-Peterburg Chemico-Pharmaceutical Academy', Russian Ministry of Health, Sankt-Peterburg, Russian Federation, 197376
| |
Collapse
|
24
|
Divoky V, Song J, Horvathova M, Kralova B, Votavova H, Prchal JT, Yoon D. Delayed hemoglobin switching and perinatal neocytolysis in mice with gain-of-function erythropoietin receptor. J Mol Med (Berl) 2015; 94:597-608. [PMID: 26706855 DOI: 10.1007/s00109-015-1375-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED Mutations of the truncated cytoplasmic domain of human erythropoietin receptor (EPOR) result in gain-of-function of erythropoietin (EPO) signaling and a dominantly inherited polycythemia, primary familial and congenital polycythemia (PFCP). We interrogated the unexplained transient absence of perinatal polycythemia observed in PFCP patients using an animal model of PFCP to examine its erythropoiesis during embryonic, perinatal, and early postnatal periods. In this model, we replaced the murine EpoR gene (mEpoR) with the wild-type human EPOR (wtHEPOR) or mutant human EPOR gene (mtHEPOR) and previously reported that the gain-of-function mtHEPOR mice become polycythemic at 3~6 weeks of age, but not at birth, similar to the phenotype of PFCP patients. In contrast, wtHEPOR mice had sustained anemia. We report that the mtHEPOR fetuses are polycythemic, but their polycythemia is abrogated in the perinatal period and reappears again at 3 weeks after birth. mtHEPOR fetuses have a delayed switch from primitive to definitive erythropoiesis, augmented erythropoietin signaling, and prolonged Stat5 phosphorylation while the wtHEPOR fetuses are anemic. Our study demonstrates the in vivo effect of excessive EPO/EPOR signaling on developmental erythropoiesis switch and describes that fetal polycythemia in this PFCP model is followed by transient correction of polycythemia in perinatal life associated with low Epo levels and increased exposure of erythrocytes' phosphatidylserine. We suggest that neocytolysis contributes to the observed perinatal correction of polycythemia in mtHEPOR newborns as embryos leaving the hypoxic uterus are exposed to normoxia at birth. KEY MESSAGE Human gain-of-function EPOR (mtHEPOR) causes fetal polycythemia in knock-in mice. Wild-type human EPOR causes fetal anemia in knock-in mouse model. mtHEPOR mice have delayed switch from primitive to definitive erythropoiesis. Polycythemia of mtHEPOR mice is transiently corrected in perinatal life. mtHEPOR newborns have low Epo and increased exposure of erythrocytes' phosphatidylserine.
Collapse
Affiliation(s)
- Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, 775 15, Olomouc, Czech Republic
| | - Jihyun Song
- Hematology Division, Department of Medicine, University of Utah and VAH, Salt Lake City, UT, 84132, USA
| | - Monika Horvathova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, 775 15, Olomouc, Czech Republic
| | - Barbora Kralova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, 775 15, Olomouc, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, 12820, Prague, Czech Republic
| | - Josef T Prchal
- Hematology Division, Department of Medicine, University of Utah and VAH, Salt Lake City, UT, 84132, USA.
| | - Donghoon Yoon
- Hematology Division, Department of Medicine, University of Utah and VAH, Salt Lake City, UT, 84132, USA
- Myeloma Institute University of Arkansas for Medical Science, Little Rock, AR, USA
| |
Collapse
|
25
|
Lang E, Bissinger R, Gulbins E, Lang F. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 2015; 20:758-67. [PMID: 25637185 DOI: 10.1007/s10495-015-1094-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, a suicidal death characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine exposure at the cell surface. As eryptotic erythrocytes are rapidly cleared from circulating blood, excessive eryptosis may lead to anemia. Moreover, eryptotic erythrocytes may adhere to the vascular wall and thus impede microcirculation. Stimulators of eryptosis include osmotic shock, oxidative stress and energy depletion. Mechanisms involved in the stimulation eryptosis include ceramide formation which may result from phospholipase A2 dependent formation of platelet activating factor (PAF) with PAF dependent stimulation of sphingomyelinases. Enhanced erythrocytic ceramide formation is observed in fever, sepsis, HUS, uremia, hepatic failure, and Wilson's disease. Enhanced eryptosis is further observed in iron deficiency, phosphate depletion, dehydration, malignancy, malaria, sickle-cell anemia, beta-thalassemia and glucose-6-phosphate dehydrogenase-deficiency. Moreover, eryptosis is triggered by osmotic shock and a wide variety of xenobiotics, which are again partially effective by enhancing ceramide abundance. Ceramide formation is inhibited by high concentrations of urea. As shown in Wilson's disease, pharmacological interference with ceramide formation may be a therapeutic option in the treatment of eryptosis inducing clinical disorders.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076, Tuebingen, Germany
| | | | | | | |
Collapse
|
26
|
Lelliott PM, McMorran BJ, Foote SJ, Burgio G. The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential? Malar J 2015. [PMID: 26215182 PMCID: PMC4517643 DOI: 10.1186/s12936-015-0809-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As parasites, Plasmodium species depend upon their host for survival. During the blood stage of their life-cycle parasites invade and reside within erythrocytes, commandeering host proteins and resources towards their own ends, and dramatically transforming the host cell. Parasites aptly avoid immune detection by minimizing the exposure of parasite proteins and removing themselves from circulation through cytoadherence. Erythrocytic disorders brought on by host genetic mutations can interfere with one or more of these processes, thereby providing a measure of protection against malaria to the host. This review summarizes recent findings regarding the mechanistic aspects of this protection, as mediated through the parasites interaction with abnormal erythrocytes. These novel findings include the reliance of the parasite on the host enzyme ferrochelatase, and the discovery of basigin and CD55 as obligate erythrocyte receptors for parasite invasion. The elucidation of these naturally occurring malaria resistance mechanisms is increasing the understanding of the host-parasite interaction, and as discussed below, is providing new insights into the development of therapies to prevent this disease.
Collapse
Affiliation(s)
- Patrick M Lelliott
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Brendan J McMorran
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Simon J Foote
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
27
|
Hossain MF, Ismail M, Tanu AR, Shekhar HU. Respiratory Burst Enzymes, Pro-Oxidants and Antioxidants Status in Bangladeshi Population with β-Thalassemia Major. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2015; 7:253-8. [PMID: 26199921 PMCID: PMC4488991 DOI: 10.4103/1947-2714.159329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Oxidative stress is intimately associated with many diseases, including β-thalassemia. AIM The study was to estimate the status of respiratory burst enzymes, pro-oxidants, and antioxidants in β-thalassemia major patients in Bangladesh and to compare with apparently healthy individuals. MATERIALS AND METHODS A total of 49 subjects were recruited which included 25 patients (age range 5 to 40 years) with β-thalassemia major and 24 controls (age and sex matched). Superoxide dismutase (SOD) and catalase (CAT) represented respiratory burst enzymes; malondialdehyde (MDA), lipid hydroperoxide (LHP), and xanthine oxidase (XO) were measured as pro-oxidants; and glutathione S transferase (GST), vitamin C (Vit.C), and glutathione (GSH) were the measured antioxidants. RESULTS The activity of SOD was significantly (P < 0.001) increased by about 79% and the activity of CAT was significantly (P < 0.001) decreased by more than 34% in the blood of β-thalassemia major patients compared to the control group. The content of pro-oxidants such as MDA, LHP, and XO was significantly (P < 0.001) higher in patients by about 228%, 241.3% and 148.1% respectively compared to control group. The level of GSH and Vit.C were significantly (P = 0.000) decreased in patients by about 59% and 81% versus the healthy group, respectively; and GST activity was significantly (P < 0.001) declined by 44.25% in patients group. CONCLUSION β-thalassemia major patients demonstrate raised oxidative stress compared to healthy subjects.
Collapse
Affiliation(s)
- Md. Faruk Hossain
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md. Ismail
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Arifur Rahman Tanu
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
28
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
29
|
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 2015; 39:35-42. [PMID: 25636585 DOI: 10.1016/j.semcdb.2015.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling, is stimulated by Ca(2+) entry through Ca(2+)-permeable, PGE2-activated cation channels, by ceramide, caspases, calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). Eryptosis is triggered by intoxication, malignancy, hepatic failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Eryptosis may precede and protect against hemolysis but by the same token result in anemia and deranged microcirculation.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.
| |
Collapse
|
30
|
Calabrò S, Alzoubi K, Bissinger R, Jilani K, Faggio C, Lang F. Enhanced eryptosis following juglone exposure. Basic Clin Pharmacol Toxicol 2014; 116:460-7. [PMID: 25348830 DOI: 10.1111/bcpt.12340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
Juglone, a quinone isolated from Juglans mandshurica Maxim, has previously been shown to be effective against malignancy. The effect is at least partially due to stimulation of suicidal death or apoptosis of tumour cells. On the other hand, juglone has been shown to counteract apoptosis, for example, of neurons. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase in cytosolic Ca(2+) activity [(Ca(2+) )i]. This study explored whether juglone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine exposure at the erythrocyte surface from FITC annexin V binding, ceramide abundance from binding of fluorescent antibodies in flow cytometry and cytosolic ATP with a luciferin-luciferase-based assay. As a result, a 24-hr exposure of human erythrocytes to juglone (5 μM) significantly decreased erythrocyte forward scatter. Juglone (1-5 μM) significantly increased the percentage of annexin V binding cells. Juglone (5 μM) significantly increased ceramide abundance at the erythrocyte surface and decreased erythrocyte ATP concentration. The effect of juglone (10 μM) on annexin V binding was slightly but significantly blunted by removal of extracellular Ca(2+) and by addition of protein kinase C (PKC) inhibitor staurosporine (1 μM). In conclusion, juglone stimulates suicidal erythrocyte death or eryptosis at least in part by upregulation of ceramide abundance, energy depletion and activation of PKC.
Collapse
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology, University of Tuebingen, Tuebingen, Germany; Department of Biological and Environmental Sciences, University of Messina, S. Agata-Messina, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Aguilar-Dorado IC, Hernández G, Quintanar-Escorza MA, Maldonado-Vega M, Rosas-Flores M, Calderón-Salinas JV. Eryptosis in lead-exposed workers. Toxicol Appl Pharmacol 2014; 281:195-202. [PMID: 25448684 DOI: 10.1016/j.taap.2014.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/20/2014] [Accepted: 10/04/2014] [Indexed: 12/13/2022]
Abstract
Eryptosis is a physiological phenomenon in which old and damaged erythrocytes are removed from circulation. Erythrocytes incubated with lead have exhibited major eryptosis. In the present work we found evidence of high levels of eryptosis in lead exposed workers possibly via oxidation. Blood samples were taken from 40 male workers exposed to lead (mean blood lead concentration 64.8μg/dl) and non-exposed workers (4.2μg/dl). The exposure to lead produced an intoxication characterized by 88.3% less δ-aminolevulinic acid dehydratase (δALAD) activity in lead exposed workers with respect to non-lead exposed workers. An increment of oxidation in lead exposed workers was characterized by 2.4 times higher thiobarbituric acid-reactive substance (TBARS) concentration and 32.8% lower reduced/oxidized glutathione (GSH/GSSG) ratio. Oxidative stress in erythrocytes of lead exposed workers is expressed in 192% higher free calcium concentration [Ca(2+)]i and 1.6 times higher μ-calpain activity with respect to non-lead exposed workers. The adenosine triphosphate (ATP) concentration was not significantly different between the two worker groups. No externalization of phosphatidylserine (PS) was found in non-lead exposed workers (<0.1%), but lead exposed workers showed 2.82% externalization. Lead intoxication induces eryptosis possibly through a molecular pathway that includes oxidation, depletion of reduced glutathione (GSH), increment of [Ca(2+)], μ-calpain activation and externalization of PS in erythrocytes. Identifying molecular signals that induce eryptosis in lead intoxication is necessary to understand its physiopathology and chronic complications.
Collapse
Affiliation(s)
| | - Gerardo Hernández
- Section of Methodology of Science, Centro de Investigación y Estudios Avanzados IPN, México, DF, Mexico
| | | | | | - Margarita Rosas-Flores
- Biochemistry Department, Centro de Investigación y Estudios Avanzados IPN, México, DF, Mexico
| | | |
Collapse
|
32
|
Alzoubi K, Calabrò S, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Sulforaphane. Basic Clin Pharmacol Toxicol 2014; 116:229-35. [DOI: 10.1111/bcpt.12309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tuebingen Germany
| | - Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tuebingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tuebingen Germany
| |
Collapse
|
33
|
Labib HA, Etewa RL, Atia H. The hypercoagulable status in common Mediterranean β-thalassaemia mutations trait. Int J Lab Hematol 2014; 37:326-33. [PMID: 25179546 DOI: 10.1111/ijlh.12289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/21/2014] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The coagulation activation in β-thalassaemia is multifactorial and most likely a consequence of the exposure of phosphatidylserine (PS) on RBCs surface. The degree of PS exposure and procoagulant activity of RBCs in β-thalassaemia trait (BTT) subjects carrying common Mediterranean mutations were assessed. METHODS Eighty BTT subjects carrying common Mediterranean mutations (β+, n = 53 and β0 , n = 27) and sixty healthy subjects served as controls were studied. Plasma prothrombin fragment 1+2 (F1+2), percentage of PS expression on RBCs membrane, clotting times of modified thromboplastin generation test (MTGT) and modified partial thromboplastin with kaolin (MPTTK) were estimated. RESULTS The percentage of annexin V positive RBCs and plasma F1+2 had a significant increase and MTGT had a significant decrease in BTT subjects versus controls and in β0 group versus β+ group. MPTTK was significantly shorter in BTT subjects than controls, but no significant deference between BTT subjects. The percentage of annexin V positive RBCs showed a significant negative correlation with haemoglobin level, MTGT and MPTTK, and a significant positive correlation with plasma F1+2. CONCLUSION BTT subjects may have a risk of hypercoagulable state particularly in β0 genotype. Measurement of PS exposure on RBCs and the plasma F1+2 is useful to evaluate hypercoagulability state.
Collapse
Affiliation(s)
- H A Labib
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | |
Collapse
|
34
|
Abstract
SIGNIFICANCE Eryptosis, the suicidal erythrocyte death, is characterized by cell shrinkage, membrane blebbing, and phosphatidylserine translocation to the outer membrane leaflet. Phosphatidylserine at the erythrocyte surface binds endothelial CXCL16/SR-PSOX (CXC-Motiv-Chemokin-16/Scavenger-receptor-for-phosphatidylserine-and-oxidized-low-density-lipoprotein) and fosters engulfment of affected erythrocytes by phagocytosing cells. Eryptosis serves to eliminate infected or defective erythrocytes, but excessive eryptosis may lead to anemia and may interfere with microcirculation. Clinical conditions with excessive eryptosis include diabetes, chronic renal failure, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, glutamate cysteine ligase modulator deficiency, and Wilson's disease. RECENT ADVANCES Eryptosis is triggered by a wide variety of xenobiotics and other injuries such as oxidative stress. Signaling of eryptosis includes prostaglandin E₂ formation with subsequent activation of Ca(2+)-permeable cation channels, Ca(2+) entry, activation of Ca(2+)-sensitive K(+) channels, and cell membrane scrambling, as well as phospholipase A2 stimulation with release of platelet-activating factor, sphingomyelinase activation, and ceramide formation. Eryptosis may involve stimulation of caspases and calpain with subsequent degradation of the cytoskeleton. It is regulated by AMP-activated kinase, cGMP-dependent protein kinase, Janus-activated kinase 3, casein kinase 1α, p38 kinase, and p21-activated kinase 2. It is inhibited by erythropoietin, antioxidants, and further small molecules. CRITICAL ISSUES It remains uncertain for most disorders whether eryptosis is rather beneficial because it precedes and thus prevents hemolysis or whether it is harmful because of induction of anemia and impairment of microcirculation. FUTURE DIRECTIONS This will address the significance of eryptosis, further mechanisms underlying eryptosis, and additional pharmacological tools fostering or inhibiting eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Tübingen, Germany
| | | | | | | |
Collapse
|
35
|
Fukumoto R, Burns TM, Kiang JG. Ciprofloxacin enhances stress erythropoiesis in spleen and increases survival after whole-body irradiation combined with skin-wound trauma. PLoS One 2014; 9:e90448. [PMID: 24587369 PMCID: PMC3938753 DOI: 10.1371/journal.pone.0090448] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/02/2014] [Indexed: 02/04/2023] Open
Abstract
Severe hematopoietic loss is one of the major therapeutic targets after radiation-combined injury (CI), a kind of injury resulting from radiation exposure combined with other traumas. In this study, we tested the use of ciprofloxacin (CIP) as a treatment, because of recently reported immunomodulatory effects against CI that may improve hematopoiesis. The CIP regimen was a daily, oral dose for 3 weeks, with the first dose 2 h after CI. CIP treatment improved 30-day survival in mice at 80% compared to 35% for untreated controls. Study of early changes in hematological parameters identified CI-induced progressive anemia by 10 days that CIP significantly ameliorated. CI induced erythropoietin (EPO) mRNA in kidney and protein in kidney and serum; CIP stimulated EPO mRNA expression. In spleens of CI mice, CIP induced bone morphogenetic protein 4 (BMP4) in macrophages with EPO receptors. Splenocytes from CIP-treated CI mice formed CD71+ colony-forming unit-erythroid significantly better than those from controls. Thus, CIP-mediated BMP4-dependent stress erythropoiesis may play a role in improving survival after CI.
Collapse
Affiliation(s)
- Risaku Fukumoto
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - True M. Burns
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
- Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Chiou SS, Tsao CJ, Tsai SM, Wu YR, Liao YM, Lin PC, Tsai LY. Metabolic pathways related to oxidative stress in patients with hemoglobin h disease and iron overload. J Clin Lab Anal 2014; 28:261-8. [PMID: 24577940 DOI: 10.1002/jcla.21676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/14/2013] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Iron overload is a major complication in patients with hemoglobin H (Hb H) disease and causes damage of tissues. METHODS We investigated 26 Hb H patients and 75 controls to evaluate their oxidative stress and antioxidant statuses. RESULTS There were significantly increased levels of superoxide anion in leucocytes, nitrite (NO2-), and malondialdehyde (MDA) in plasma, and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRx) and oxidized glutathione (GSSG) in erythrocytes, decreased levels of nitrate (NO3-) and vitamin C in plasma, and reduced glutathione (GSH) in erythrocytes, in addition to the abnormal iron status in the patients when compared with those in the controls. Meanwhile, levels of serum ferritin were positively correlated with serum iron, plasma MDA, and erythrocyte SOD in the patients. In addition, the activities of SOD were positively correlated with those of GPx and GRx, and the levels of GSSG and MDA, but negatively correlated with those of GSH. Furthermore, the levels of MDA were negatively correlated those of vitamin C. CONCLUSIONS These results demonstrate the presence of oxidative stress and decreased levels of antioxidants; moreover, the related metabolic antioxidant pathway is active in Hb H patients with iron overload.
Collapse
Affiliation(s)
- Shyh-Shin Chiou
- Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Alzoubi K, Alktifan B, Oswald G, Fezai M, Abed M, Lang F. Breakdown of phosphatidylserine asymmetry following treatment of erythrocytes with lumefantrine. Toxins (Basel) 2014; 6:650-64. [PMID: 24561477 PMCID: PMC3942757 DOI: 10.3390/toxins6020650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 01/26/2023] Open
Abstract
Background: Lumefantrine, a commonly used antimalarial drug, inhibits hemozoin formation in parasites. Several other antimalarial substances counteract parasitemia by triggering suicidal death or eryptosis of infected erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i), formation of ceramide, oxidative stress and/or activation of p38 kinase, protein kinase C (PKC), or caspases. The present study explored, whether lumefantrine stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, content of reduced glutathione (GSH) from mercury orange fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 48 h exposure to lumefantrine (3 µg/mL) was followed by a significant increase of annexin-V-binding without significantly altering forward scatter, [Ca2+]i, ROS formation, reduced GSH, or ceramide abundance. The annexin-V-binding following lumefantrine treatment was not significantly modified by p38 kinase inhibitors SB203580 (2 μM) and p38 Inh III (1 μM), PKC inhibitor staurosporine (1 µM) or pancaspase inhibitor zVAD (1 or 10 µM). Conclusions: Lumefantrine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca2+, ceramide formation, ROS formation, glutathione content, p38 kinase, PKC or caspases.
Collapse
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Bassel Alktifan
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Gergely Oswald
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Myriam Fezai
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Majed Abed
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | - Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| |
Collapse
|
38
|
Abstract
Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.
Collapse
Affiliation(s)
- Florian Lang
- Institute of Physiology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
39
|
Silva DGH, Belini Junior E, de Almeida EA, Bonini-Domingos CR. Oxidative stress in sickle cell disease: an overview of erythrocyte redox metabolism and current antioxidant therapeutic strategies. Free Radic Biol Med 2013; 65:1101-1109. [PMID: 24002011 DOI: 10.1016/j.freeradbiomed.2013.08.181] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 01/19/2023]
Abstract
Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2(-)) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications.
Collapse
Affiliation(s)
- Danilo Grunig Humberto Silva
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil; Laboratory of Aquatic Contamination Biomarkers, Department of Chemistry and Environmental Sciences, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Edis Belini Junior
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Eduardo Alves de Almeida
- Laboratory of Aquatic Contamination Biomarkers, Department of Chemistry and Environmental Sciences, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Claudia Regina Bonini-Domingos
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
40
|
Inhibitors of second messenger pathways and Ca(2+)-induced exposure of phosphatidylserine in red blood cells of patients with sickle cell disease. Pflugers Arch 2013; 466:1477-85. [PMID: 24158429 PMCID: PMC4062833 DOI: 10.1007/s00424-013-1343-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/25/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023]
Abstract
The present work investigates the contribution of various second messenger systems to Ca2+-induced phosphatidylserine (PS) exposure in red blood cells (RBCs) from sickle cell disease (SCD) patients. The Ca2+ dependence of PS exposure was confirmed using the Ca2+ ionophore bromo-A23187 to clamp intracellular Ca2+ over 4 orders of magnitude in high or low potassium-containing (HK or LK) saline. The percentage of RBCs showing PS exposure was significantly increased in LK over HK saline. This effect was reduced by the Gardos channel inhibitors, clotrimazole and charybdotoxin. Nevertheless, although Ca2+ loading in the presence of an outwardly directed electrochemical gradient for K+ stimulated PS exposure, substantial exposure still occurred in HK saline. Under the conditions used inhibitors of other second messenger systems (ABT491, quinacrine, acetylsalicylic acid, 3,4-dichloroisocoumarin, GW4869 and zVAD-fmk) did not inhibit the relationship between [Ca2+] and PS exposure. Inhibitors of phospholipase A2, cyclooxygenase, platelet-activating factor, sphingomyelinase and caspases, therefore, were without effect on Ca2+-induced PS exposure in RBCs, incubated in either HK or LK saline.
Collapse
|
41
|
Maellaro E, Leoncini S, Moretti D, Del Bello B, Tanganelli I, De Felice C, Ciccoli L. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol 2013; 50:489-95. [PMID: 21437568 DOI: 10.1007/s00592-011-0274-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
An increased oxidative stress and a decreased life span of erythrocytes (RBCs) are reported in patients with diabetes. Aim of this study was to assess in RBCs from patients with type 2 diabetes whether downstream effector mechanisms of apoptosis, such as activation of caspase-3, is operative, and whether an iron-related oxidative imbalance, occurring inside RBCs and in plasma, could be involved in caspase-3 activation. In 26 patients with type 2 diabetes and in 12 healthy subjects, oxidative stress was evaluated by means of different markers; non-protein-bound iron, methemoglobin and glutathione were determined in RBCs, and non-protein-bound iron was also determined in plasma. Erythrocyte caspase-3 activation was evaluated by an immunosorbent enzyme assay. Arterial hypertension, demographic and standard biochemical data were also evaluated. The results show, for the first time, that type 2 diabetic RBCs put into motion caspase-3 activation, which is significantly higher than in control RBCs. Such an effector mechanism of "eryptosis" was positively correlated to blood glucose levels and to the increased plasma NPBI level. Caspase-3 activation was also positively correlated to occurrence of arterial hypertension. The results suggest that an extracellular oxidative milieu can be responsible for erythrocyte caspase-3 activation in patients with type 2 diabetes. In turn, caspase-3 activation can be envisaged as a novel mechanism which, by impairing the maintenance of erythrocyte shape and function, might contribute to the shortened life span of RBCs from patients with type 2 diabetes and to hemorheological disorders observed in these patients.
Collapse
Affiliation(s)
- Emilia Maellaro
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Functional significance of glutamate-cysteine ligase modifier for erythrocyte survival in vitro and in vivo. Cell Death Differ 2013; 20:1350-8. [PMID: 23787995 DOI: 10.1038/cdd.2013.70] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/24/2013] [Accepted: 05/14/2013] [Indexed: 01/21/2023] Open
Abstract
Erythrocytes endure constant exposure to oxidative stress. The major oxidative stress scavenger in erythrocytes is glutathione. The rate-limiting enzyme for glutathione synthesis is glutamate-cysteine ligase, which consists of a catalytic subunit (GCLC) and a modifier subunit (GCLM). Here, we examined erythrocyte survival in GCLM-deficient (gclm(-/-)) mice. Erythrocytes from gclm(-/-) mice showed greatly reduced intracellular glutathione. Prolonged incubation resulted in complete lysis of gclm(-/-) erythrocytes, which could be reversed by exogenous delivery of the antioxidant Trolox. To test the importance of GCLM in vivo, mice were treated with phenylhydrazine (PHZ; 0.07 mg/g b.w.) to induce oxidative stress. Gclm(-/-) mice showed dramatically increased hemolysis compared with gclm(+/+) controls. In addition, PHZ-treated gclm(-/-) mice displayed markedly larger accumulations of injured erythrocytes in the spleen than gclm(+/+) mice within 24 h of treatment. Iron staining indicated precipitations of the erythrocyte-derived pigment hemosiderin in kidney tubules of gclm(-/-) mice and none in gclm(+/+) controls. In fact, 24 h after treatment, kidney function began to diminish in gclm(-/-) mice as evident from increased serum creatinine and urea. Consequently, while all PHZ-treated gclm(+/+) mice survived, 90% of PHZ-treated gclm(-/-) mice died within 5 days of treatment. In vitro, upon incubation in the absence or presence of additional oxidative stress, gclm(-/-) erythrocytes exposed significantly more phosphatidylserine, a cell death marker, than gclm(+/+) erythrocytes, an effect at least partially due to increased cytosolic Ca(2+) concentration. Under resting conditions, gclm(-/-) mice exhibited reticulocytosis, indicating that the enhanced erythrocyte death was offset by accelerated erythrocyte generation. GCLM is thus indispensable for erythrocyte survival, in vitro and in vivo, during oxidative stress.
Collapse
|
43
|
Elalfy MS, Adly AAM, Attia AAM, Ibrahim FA, Mohammed AS, Sayed AM. Effect of antioxidant therapy on hepatic fibrosis and liver iron concentrations in β-thalassemia major patients. Hemoglobin 2013; 37:257-76. [PMID: 23565660 DOI: 10.3109/03630269.2013.778866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To assess the effects of combined vitamin therapy on oxidant-antioxidant hepatic status and hemoglobin (Hb) derivatives on β-thalassemia major (β-TM), a prospective study of 60 β-TM patients aged 4 to 17 years, was conducted. Thirty-nine patients with initial low serum vitamins E, C and A, were treated with oral combined vitamins for 1 year compared to 21 patients with normal vitamin levels. Serum transaminases, serum ferritin, hepatic fibroscan elastography (TE) and magnetic resonance imaging R2* (MRI R2*) for liver iron concentration (LIC), were assessed before and after 6 and 12 months of therapy. Antioxidant capacity was assessed by levels of reduced glutathione (GSH), malondialdehyde (MDA), catalase, superoxide dismutase and GSH enzymes. The studied vitamins, reduced GSH and Hb levels were significantly elevated and paralleled by progressive decline in MDA and ferritin during therapy (p <0.001). Serum transaminase and superoxide dismutase were significantly decreased, while GSH reductase was significantly elevated during therapy (p <0.001). Improvement of hepatic fibrosis as 23.0% had TE (>12 kPa) at baseline compared to 20.5% after therapy (p >0.05), although LIC values were significantly decreased (p <0.001). Combined vitamin therapy improves the antioxidant/oxidant balance, LIC and hepatic fibrosis in young β-TM patients.
Collapse
Affiliation(s)
- Mohsen S Elalfy
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
It is common knowledge that thalassemic patients are under significant oxidative stress. Chronic hemolysis, frequent blood transfusion, and increased intestinal absorption of iron are the main factors that result in iron overload with its subsequent pathophysiologic complications. Iron overload frequently associates with the generation of redox-reactive labile iron, which in turn promotes the production of other reactive oxygen species (ROS). If not neutralized, uncontrolled production of ROS often leads to damage of various intra- and extracellular components such as DNA, proteins, lipids, and small antioxidant molecules among others. A number of endogenous and exogenous defense mechanisms can neutralize and counteract the damaging effects of labile iron and the reactive substances associated with it. Endogenous antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and ferroxidase, may directly or sequentially terminate the activities of ROS. Nonenzymatic endogenous defense mechanisms include metal binding proteins (ceruloplasmin, haptoglobin, albumin, and others) and endogenously produced free radical scavengers (glutathione (GSH), ubiquinols, and uric acid). Exogenous agents that are known to function as antioxidants (vitamins C and E, selenium, and zinc) are mostly diet-derived. In this review, we explore recent findings related to various antioxidative mechanisms operative in thalassemic patients with special emphasis on protein antioxidants.
Collapse
Affiliation(s)
- Samir Awadallah
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
45
|
Ghashghaeinia M, Toulany M, Saki M, Rodemann HP, Mrowietz U, Lang F, Wieder T. Potential roles of the NFκB and glutathione pathways in mature human erythrocytes. Cell Mol Biol Lett 2012; 17:11-20. [PMID: 22105338 PMCID: PMC6275705 DOI: 10.2478/s11658-011-0032-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/09/2011] [Indexed: 12/24/2022] Open
Abstract
Anucleated erythrocytes were long considered as oxygen-transporting cells with limited regulatory functions. Components of different nuclear signaling pathways have not been investigated in those cells, yet. Surprisingly, we repeatedly found significant amounts of transcription factors in purified erythrocyte preparations, i.e. nuclear factor κB (NFκB), and major components of the canonical NFκB signaling pathway. To investigate the functional role of NFκB signaling, the effects of the preclinical compounds Bay 11-7082 and parthenolide on the survival of highly purified erythrocytes were investigated. Interestingly, both inhibitors of the NFκB pathway triggered erythrocyte programmed cell death as demonstrated by enhanced phospholipid scrambling (phosphatidylserine exposure) and cell shrinkage. Anucleated erythrocytes are an ideal cellular model allowing the study of nongenomic mechanisms contributing to suicidal cell death. As NFκB inhibitors might also interfere with the anti-oxidative defense systems of the cell, we measured the levels of reduced glutathione (GSH) after challenge with the inhibitors. Indeed, incubation of erythrocytes with Bay 11-7082 clearly decreased erythrocyte GSH levels. In conclusion, the pharmacological inhibitors of the NFκB pathway Bay 11-7082 and parthenolide interfere with the survival of erythrocytes involving mechanisms other than disruption of NFκB-dependent gene expression. Besides affecting erythrocyte survival, NFκB inhibition and induction of erythrocyte phosphatidylserine exposure may influence blood clotting. Future studies will be aimed at discriminating between NFκB-dependent and NFκB-independent GSH-mediated effects of Bay 11-7082 and parthenolide on erythrocyte death.
Collapse
Affiliation(s)
- Mehrdad Ghashghaeinia
- Department of Physiology, Eberhard Karls University Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
- Department of Dermatology, University Medical Center Kiel, Schittenhelmstr. 7, D-24105 Kiel, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University Medical Center Tübingen, Röntgenweg 11, D-72076 Tübingen, Germany
| | - Mohammad Saki
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University Medical Center Tübingen, Röntgenweg 11, D-72076 Tübingen, Germany
| | - H. Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University Medical Center Tübingen, Röntgenweg 11, D-72076 Tübingen, Germany
| | - Ulrich Mrowietz
- Department of Dermatology, University Medical Center Kiel, Schittenhelmstr. 7, D-24105 Kiel, Germany
| | - Florian Lang
- Department of Physiology, Eberhard Karls University Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | - Thomas Wieder
- Department of Dermatology, University Medical Center Tübingen, Röntgenweg 13/1, D-72076 Tübingen, Germany
| |
Collapse
|
46
|
Weiss E, Cytlak UM, Rees DC, Osei A, Gibson JS. Deoxygenation-induced and Ca(2+) dependent phosphatidylserine externalisation in red blood cells from normal individuals and sickle cell patients. Cell Calcium 2011; 51:51-6. [PMID: 22197026 DOI: 10.1016/j.ceca.2011.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/29/2011] [Accepted: 10/23/2011] [Indexed: 01/03/2023]
Abstract
Phosphatidylserine (PS) is usually confined to the inner leaflet of the red blood cell (RBC) membrane. It may become externalised in various conditions, however, notably in RBCs from patients with sickle cell disease (SCD) where exposed PS may contribute to anaemic and ischaemic complications. PS externalisation requires both inhibition of the aminophospholipid translocase (or flippase) and activation of the scramblase. Both may follow from elevation of intracellular Ca(2+). Flippase inhibition occurs at low [Ca(2+)](i), about 1μM, but [Ca(2+)](i) required for scrambling is reported to be much higher (around 100μM). In this work, FITC-labelled lactadherin and FACS were used to measure externalised PS, with [Ca(2+)](i) altered using bromo-A23187 and EGTA/Ca(2+) mixtures. Two components of Ca(2+)-induced scrambling were apparent, of high (EC(50) 1.8±0.3μM) and low (306±123μM) affinity, in RBCs from normal individuals and the commonest SCD genotypes, HbSS and HbSC. The high affinity component was lost in the presence of unphysiologically high [Mg(2+)] but was unaffected by high K(+) (90mM) or vanadate (1mM). The high affinity component accounted for PS scrambling in ≥2/3rd RBCs. It is likely to be most significant in vivo and may be involved in the pathophysiology of SCD or other conditions involving eryptosis.
Collapse
Affiliation(s)
- Erwin Weiss
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
47
|
Felder KM, Hoelzle K, Ritzmann M, Kilchling T, Schiele D, Heinritzi K, Groebel K, Hoelzle LE. Hemotrophic mycoplasmas induce programmed cell death in red blood cells. Cell Physiol Biochem 2011; 27:557-64. [PMID: 21691073 DOI: 10.1159/000329957] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 01/06/2023] Open
Abstract
Hemotrophic mycoplasmas (HM) are uncultivable bacteria found on and in the red blood cells (RBCs). The main clinical sign of HM infections is the hemolytic anemia. However, anemia-inducing pathogenesis has not been totally clarified. In this work we used the splenectomized pig as animal model and Mycoplasma suis as a representative for hemotrophic mycoplasmas to study anemia pathogenesis. Eryptosis, i.e. programmed cell death of RBCs, is characterized by cell shrinkage, microvesiculation and phosphatidylserine (PS) exposure on the outer membrane. The eryptosis occurrence and its influence on anemia pathogenesis was observed over the time-course of M. suis infections in pigs using 3 M. suis isolates of differing virulence. All 3 isolates induced eryptosis, but with different characteristics. The occurrence of eryptosis could as well be confirmed in vitro: serum and plasma of an acutely ill pig induced PS exposure on erythrocytes drawn from healthy pigs. Since M. suis is able to induce eryptotic processes it is concluded that eryptosis is one anemia-inducing factor during M. suis infections and, therefore, plays a significant role in the pathogenesis of infectious anemia due to HM infection.
Collapse
Affiliation(s)
- Kathrin M Felder
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Background Gum Arabic (GA), a nonabsorbable nutrient from the exudate of Acacia senegal, exerts a powerful immunomodulatory effect on dendritic cells, antigen-presenting cells involved in the initiation of both innate and adaptive immunity. On the other hand GA degradation delivers short chain fatty acids, which in turn have been shown to foster the expression of foetal haemoglobin in erythrocytes. Increased levels of erythrocyte foetal haemoglobin are known to impede the intraerythrocytic growth of Plasmodium and thus confer some protection against malaria. The present study tested whether gum arabic may influence the clinical course of malaria. Methods Human erythrocytes were in vitro infected with Plasmodium falciparum in the absence and presence of butyrate and mice were in vivo infected with Plasmodium berghei ANKA by injecting parasitized murine erythrocytes (1 × 106) intraperitoneally. Half of the mice received gum arabic (10% in drinking water starting 10 days before the day of infection). Results According to the in vitro experiments butyrate significantly blunted parasitaemia only at concentrations much higher (3 mM) than those encountered in vivo following GA ingestion (<1 μM). According to the in vivo experiments the administration of gum arabic slightly but significantly decreased the parasitaemia and significantly extended the life span of infected mice. Discussion GA moderately influences the parasitaemia and survival of Plasmodium-infected mice. The underlying mechanism remained, however, elusive. Conclusions Gum arabic favourably influences the course of murine malaria.
Collapse
|
49
|
Philippova MM, Khachin DP, Sazonova OV, Blishchenko EY, Yatskin ON, Nazimov IV, Karelin AA, Ivanov VT, Rasstrigin NA, Pivnik AV. Fragments of functional proteins in a primary culture of human erythrocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1068162008020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Abstract
Lithium (Li+), an effective drug for treatment of bipolar disorders, is known to alter several Ca²+ transporting systems. Increased cellular Ca²+ has in turn been shown to stimulate eryptosis, the suicidal death of erythrocytes. Eryptosis is characterised by exposure of phosphatidylserine (PS) at the erythrocyte surface and by cell shrinkage. The present experiments explored whether Li+ influences eryptosis. In erythrocytes from healthy volunteers, cytosolic Ca²+ activity (Fluo-3 fluorescence), cell volume (forward scatter) and PS exposure (annexin V binding) were determined by fluorescence-activated cell sorting analysis. Exposure to Li+ (≥ 1 mM) did not significantly modify forward scatter but significantly increased cytosolic Ca²+ activity (within 3 h) and annexin binding (within 48 h). The effect was paralleled by increase of cellular adenosine triphosphate concentration. Glucose depletion (24 h) strongly increased PS exposure, an effect significantly enhanced in the presence of Li+ (≥ 1 mM). In conclusion, Li+ triggers suicidal erythrocyte death, an effect at least partially due to increase of cytosolic Ca²+ activity.
Collapse
Affiliation(s)
- J P Nicolay
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|