1
|
Sodano F, Gazzano E, Fruttero R, Lazzarato L. NO in Viral Infections: Role and Development of Antiviral Therapies. Molecules 2022; 27:2337. [PMID: 35408735 PMCID: PMC9000700 DOI: 10.3390/molecules27072337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide is a ubiquitous signaling radical that influences critical body functions. Its importance in the cardiovascular system and the innate immune response to bacterial and viral infections has been extensively investigated. The overproduction of NO is an early component of viral infections, including those affecting the respiratory tract. The production of high levels of NO is due to the overexpression of NO biosynthesis by inducible NO synthase (iNOS), which is involved in viral clearance. The development of NO-based antiviral therapies, particularly gaseous NO inhalation and NO-donors, has proven to be an excellent antiviral therapeutic strategy. The aim of this review is to systematically examine the multiple research studies that have been carried out to elucidate the role of NO in viral infections and to comprehensively describe the NO-based antiviral strategies that have been developed thus far. Particular attention has been paid to the potential mechanisms of NO and its clinical use in the prevention and therapy of COVID-19.
Collapse
Affiliation(s)
- Federica Sodano
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (R.F.); (L.L.)
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Roberta Fruttero
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (R.F.); (L.L.)
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (R.F.); (L.L.)
| |
Collapse
|
2
|
Chirumbolo S, Bjørklund G. Wheat and chaffs in the interpretation of the current COVID19 outbreak in Italy. Virusdisease 2020; 31:85-93. [PMID: 32656304 PMCID: PMC7274266 DOI: 10.1007/s13337-020-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/24/2020] [Indexed: 11/30/2022] Open
Abstract
The COVID19 outbreak in Italy is still a big concern. The Italian Government has recommended citizens to respect faithfully any compulsory legal disposition in order to stay home and so contributing in escaping viral contacts and slowing down epidemic. Emergency has raised a widely animated debate about how to read and comprehend the daily case numbers, the medical and caregivers availability, the needs to swab asymptomatic subjects. In this review the authors discuss about the many wheat and chaffs of how this virus disease is addressed .
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
- CONEM Scientific Secretary, strada Le Grazie 9, 37134 Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
3
|
VEGF mediates fat embolism-induced acute lung injury via VEGF receptor 2 and the MAPK cascade. Sci Rep 2019; 9:11713. [PMID: 31406128 PMCID: PMC6690961 DOI: 10.1038/s41598-019-47276-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Fat embolism (FE) is a lethal medical emergency often caused by fracture of long bones and amputation of limbs. Vascular endothelial growth factor (VEGF) promotes angiogenesis and increases vascular permeability. We tested the hypothesis that VEGF plays a critical role in FE-induced acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). Fat tissues were collected from male Sprague-Dawley rats, and animal oil was extracted and mixed with water to form fatty micelles. The micelles were then injected into the tail vein to produce FE and ALI in rats. Lung weight gain was measured as the index of pulmonary edema. The expression of pulmonary VEGF was evaluated by real-time PCR and western blot analysis. Inducible nitric oxide synthase (iNOS) and phosphorylation of mitogen-activated protein kinase (MAPK) were determined by western blot analyses. Interleukin-1β (IL-1β) was quantified by ELISAs. Hematoxylin and eosin staining was used to evaluate the pathological damage of ALI. In this study, we found that animal oil-induced FE significantly increased pulmonary VEGF expression and MAPK phosphorylation. We also evaluated the inflammatory response after FE and found that iNOS and IL-1β significantly increased after FE. Systemic administration of SU-1498, an antagonist of VEGF receptor 2 (VEGFR-2), significantly attenuated the FE-induced inflammatory response and histological damage. This study suggested that VEGF is involved in FE-induced ARDS via the VEGFR-2 and MAPK cascades, which induce IL-1β release and iNOS upregulation. Blockade of could be used to treat FE-induced pulmonary damage.
Collapse
|
4
|
Mohamed HA, Elbastawisy YM, Elsaed WM. Attenuation of lipopolysaccharide-induced lung inflammation by ascorbic acid in rats: Histopathological and ultrastructural study. SAGE Open Med 2019; 7:2050312119828260. [PMID: 30783524 PMCID: PMC6365996 DOI: 10.1177/2050312119828260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction: Lipopolysaccharide is a bacterial endotoxin that induces acute lung injury in experimental animals, which is similar to acute respiratory distress syndrome in humans. The induced tissue trauma ends in fibrosis. Understanding the pathogenesis is important in the prevention and treatment of the complications. This study was assigned to investigate the long-term lipopolysaccharide-induced lung injury and the postulated protective effect of ascorbic acid on these changes. Materials and methods: Twenty-four adult male albino rats were divided into three groups. Group I was the controls, group II received lipopolysaccharide and group III received lipopolysaccharide and ascorbic acid. After 30 days of starting treatment, lung tissue samples were obtained. Results: Group II lung tissues showed marked thickening of the alveolar septa with collapsed alveolar sacs, detached bronchial epithelium, inflammatory cell infiltration and excessive deposition of collagen. Group III showed mild thickening of the alveolar walls, scanty inflammatory cell infiltration, mild parabronchial fibrosis and less marked collagen deposition. α-Smooth muscle actin staining of group II showed marked expression of the actin-positive cells. Less potential expression of the dye was found in group III. Ultrastructural examination of group II showed evident structural changes in pneumocytes with capillary basement membrane irregularity and interruption compared to uniform basement membrane in group III with less prominent intracellular changes in pneumocytes. Conclusion: Ascorbic acid attenuated the inflammatory response and fibrosis in the lungs of rats treated with lipopolysaccharide as evidenced by the histological, immunohistochemical and ultrastructural studies.
Collapse
Affiliation(s)
- Hazem Abdelhamid Mohamed
- Department of Anatomy and Embryology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.,Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yasser M Elbastawisy
- Department of Anatomy and Embryology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.,Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia.,Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
McGruder B, Leibowitz JL. A review of genetic methods and models for analysis of coronavirus-induced severe pneumonitis. J Gen Virol 2014; 96:494-506. [PMID: 25252685 PMCID: PMC4811657 DOI: 10.1099/vir.0.069732-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Coronaviruses (CoVs) have been studied for over 60 years, but have only recently gained notoriety as deadly human pathogens with the emergence of severe respiratory syndrome CoV and Middle East respiratory syndrome virus. The rapid emergence of these viruses has demonstrated the need for good models to study severe CoV respiratory infection and pathogenesis. There are, currently, different methods and models for the study of CoV disease. The available genetic methods for the study and evaluation of CoV genetics are reviewed here. There are several animal models, both mouse and alternative animals, for the study of severe CoV respiratory disease that have been examined, each with different pros and cons relative to the actual pathogenesis of the disease in humans. A current limitation of these models is that no animal model perfectly recapitulates the disease seen in humans. Through the review and analysis of the available disease models, investigators can employ the most appropriate available model to study various aspects of CoV pathogenesis and evaluate possible antiviral treatments that may potentially be successful in future treatment and prevention of severe CoV respiratory infections.
Collapse
Affiliation(s)
- Brenna McGruder
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, TX 77807, USA
| | - Julian L Leibowitz
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
6
|
Tseng TL, Chen MF, Tsai MJ, Hsu YH, Chen CP, Lee TJF. Oroxylin-A rescues LPS-induced acute lung injury via regulation of NF-κB signaling pathway in rodents. PLoS One 2012; 7:e47403. [PMID: 23071799 PMCID: PMC3468516 DOI: 10.1371/journal.pone.0047403] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/14/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Successful drug treatment for sepsis-related acute lung injury (ALI) remains a major clinical problem. This study was designed to assess the beneficial effects of post-treatment of oroxylin A (OroA), a flavonoid, in ameliorating lipopolysaccharides (LPS)-induced lung inflammation and fatality. EXPERIMENTAL APPROACH Rats were injected with LPS (10 mg/kg, iv) to induce ALI, and OroA was given (15 mg/kg, iv) 1 hr or 6 hrs after LPS challenge. Twenty four hrs after LPS challenge, biochemical changes in the blood and lung tissues, and morphological/histological alterations in the lung associated with inflammation and injury were examined. Therapeutic effect of OroA was assessed by measuring the survival rate in endotoxemic mice. KEY RESULTS LPS (10 mg/kg, iv) significantly altered WBC counts, elevated plasma tumor necrosis factor (TNF)-α and nitric oxide (NO), increased pulmonary edema, thickened alveolar septa, and decreased survival rate. These changes were ameliorated by OroA (15 mg/kg, iv) administered 1 hr or 6 hrs after LPS challenge. This post-treatment also significantly attenuated LPS-induced activation of nuclear factor-κB (NF-κB) and the release of high mobility group box 1 (HMGB1) in lung tissues. Furthermore, post-treatment with OroA (60 mg/kg, ip) administered 1 hr or 6 hrs after LPS challenge in mice significantly increased survival rate. CONCLUSION AND IMPLICATION OroA administered after induction of ALI by LPS significantly prevent and revere lung tissues injuries with increased survival rate. Positive post-treatment effects of OroA suggest that OroA is a potentially useful candidate for managing lung inflammation in LPS-induced endotoxemia and septic shock.
Collapse
Affiliation(s)
- Tzu-Ling Tseng
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- Center of Vascular Medicine, College of Life Science, Tzu-Chi University, Hualien, Taiwan
| | - Mei-Fang Chen
- Center of Vascular Medicine, College of Life Science, Tzu-Chi University, Hualien, Taiwan
- Department of Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
- Tzu-Chi College of Technology, Hualien, Taiwan
| | - Ming-Jen Tsai
- Institute of Pharmacology and Toxicology, Tzu-Chi University, Hualien, Taiwan
- Department of Emergency Medicine, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
| | - Yung-Hsiang Hsu
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- Department of Pathology, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Chin-Piao Chen
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Tony J. F. Lee
- Institute of Pharmacology and Toxicology, Tzu-Chi University, Hualien, Taiwan
- Department of Life Science, Tzu-Chi University, Hualien, Taiwan
- Center of Vascular Medicine, College of Life Science, Tzu-Chi University, Hualien, Taiwan
- Department of Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Acute lung injury and acute respiratory distress syndrome: experimental and clinical investigations. J Geriatr Cardiol 2012; 8:44-54. [PMID: 22783284 PMCID: PMC3390060 DOI: 10.3724/sp.j.1263.2011.00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/12/2011] [Accepted: 03/19/2011] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) can be associated with various disorders. Recent investigation has involved clinical studies in collaboration with clinical investigators and pathologists on the pathogenetic mechanisms of ALI or ARDS caused by various disorders. This literature review includes a brief historical retrospective of ALI/ARDS, the neurogenic pulmonary edema due to head injury, the long-term experimental studies and clinical investigations from our laboratory, the detrimental role of NO, the risk factors, and the possible pathogenetic mechanisms as well as therapeutic regimen for ALI/ARDS.
Collapse
|
8
|
Su CF, Kao SJ, Chen HI. Acute respiratory distress syndrome and lung injury: Pathogenetic mechanism and therapeutic implication. World J Crit Care Med 2012; 1:50-60. [PMID: 24701402 PMCID: PMC3953859 DOI: 10.5492/wjccm.v1.i2.50] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/14/2011] [Accepted: 03/10/2012] [Indexed: 02/06/2023] Open
Abstract
To review possible mechanisms and therapeutics for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). ALI/ARDS causes high mortality. The risk factors include head injury, intracranial disorders, sepsis, infections and others. Investigations have indicated the detrimental role of nitric oxide (NO) through the inducible NO synthase (iNOS). The possible therapeutic regimen includes extracorporeal membrane oxygenation, prone position, fluid and hemodynamic management and permissive hypercapnic acidosis etc. Other pharmacological treatments are anti-inflammatory and/or antimicrobial agents, inhalation of NO, glucocorticoids, surfactant therapy and agents facilitating lung water resolution and ion transports. β-adrenergic agonists are able to accelerate lung fluid and ion removal and to stimulate surfactant secretion. In conscious rats, regular exercise training alleviates the endotoxin-induced ALI. Propofol and N-acetylcysteine exert protective effect on the ALI induced by endotoxin. Insulin possesses anti-inflammatory effect. Pentobarbital is capable of reducing the endotoxin-induced ALI. In addition, nicotinamide or niacinamide abrogates the ALI caused by ischemia/reperfusion or endotoxemia. This review includes historical retrospective of ALI/ARDS, the neurogenic pulmonary edema due to head injury, the detrimental role of NO, the risk factors, and the possible pathogenetic mechanisms as well as therapeutic regimen for ALI/ARDS.
Collapse
Affiliation(s)
- Chain-Fa Su
- Chain-Fa Su, Department of Neurosurgery, Tzu Chi University Hospital, Hualien 97004, Taiwan, China
| | - Shang Jyh Kao
- Chain-Fa Su, Department of Neurosurgery, Tzu Chi University Hospital, Hualien 97004, Taiwan, China
| | - Hsing I Chen
- Chain-Fa Su, Department of Neurosurgery, Tzu Chi University Hospital, Hualien 97004, Taiwan, China
| |
Collapse
|
9
|
Deng W, Li CY, Tong J, Zhang W, Wang DX. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury. Respir Res 2012; 13:29. [PMID: 22458687 PMCID: PMC3362779 DOI: 10.1186/1465-9921-13-29] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/30/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Stimulation of epithelial sodium channel (ENaC) increases Na(+) transport, a driving force of alveolar fluid clearance (AFC) to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI). It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo. METHODS A model of ALI (LPS at a dose of 5.0 mg/kg) with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF), total lung water content(TLW), and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. RESULTS In vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway. CONCLUSIONS Our study demonstrated that insulin alleviated pulmonary edema and enhanced AFC by increasing the expression of ENaC that dependent upon PI3K/Akt pathway by inhibition of Nedd4-2.
Collapse
Affiliation(s)
- Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | | | | | | | | |
Collapse
|
10
|
Lin CC, Hsieh NK, Liou HL, Chen HI. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs. J Biomed Sci 2012; 19:27. [PMID: 22375599 PMCID: PMC3311060 DOI: 10.1186/1423-0127-19-27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/01/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes. METHODS The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g), PMA 4 μg/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined. RESULTS PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. CONCLUSIONS Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial, while PARP plays a deteriorative effect on the PMA-induced ALI. NAC exerts protective effects on the inflammatory cascade leading to pulmonary injury. This B complex compound may be applied for clinical usage and therapeutic regimen.
Collapse
Affiliation(s)
- Chia-Chih Lin
- Department of Physical Education and Kinesiology, National Dong Hwa University, Hualien, Taiwan
| | - Nan-Kuang Hsieh
- Department of Family Medicine, Tao-Yuan General Hospital, Department of Health, Executive Yuan, Taoyuan, Taiwan
- Department of Pathology, China Medical University, Taichung, Taiwan
| | - Huey Ling Liou
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsing I Chen
- Institute of Physiological and Anatomical Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Makarova AM, Lebedeva TV, Nassar T, Higazi AAR, Xue J, Carinato ME, Bdeir K, Cines DB, Stepanova V. Urokinase-type plasminogen activator (uPA) induces pulmonary microvascular endothelial permeability through low density lipoprotein receptor-related protein (LRP)-dependent activation of endothelial nitric-oxide synthase. J Biol Chem 2011; 286:23044-53. [PMID: 21540184 PMCID: PMC3123072 DOI: 10.1074/jbc.m110.210195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 04/19/2011] [Indexed: 01/11/2023] Open
Abstract
Urokinase plasminogen activator (uPA) and PA inhibitor type 1 (PAI-1) are elevated in acute lung injury, which is characterized by a loss of endothelial barrier function and the development of pulmonary edema. Two-chain uPA and uPA-PAI-1 complexes (1-20 nM) increased the permeability of monolayers of human pulmonary microvascular endothelial cells (PMVECs) in vitro and lung permeability in vivo. The effects of uPA-PAI-1 were abrogated by the nitric-oxide synthase (NOS) inhibitor L-NAME (N(D)-nitro-L-arginine methyl ester). Two-chain uPA (1-20 nM) and uPA-PAI-1 induced phosphorylation of endothelial NOS-Ser(1177) in PMVECs, which was followed by generation of NO and the nitrosylation and dissociation of β-catenin from VE-cadherin. uPA-induced phosphorylation of eNOS was decreased by anti-low density lipoprotein receptor-related protein-1 (LRP) antibody and an LRP antagonist, receptor-associated protein (RAP), and when binding to the uPA receptor was blocked by the isolated growth factor-like domain of uPA. uPA-induced phosphorylation of eNOS was also inhibited by the protein kinase A (PKA) inhibitor, myristoylated PKI, but was not dependent on PI3K-Akt signaling. LRP blockade and inhibition of PKA prevented uPA- and uPA-PAI-1-induced permeability of PMVEC monolayers in vitro and uPA-induced lung permeability in vivo. These studies identify a novel pathway involved in regulating PMVEC permeability and suggest the utility of uPA-based approaches that attenuate untoward permeability following acute lung injury while preserving its salutary effects on fibrinolysis and airway remodeling.
Collapse
Affiliation(s)
- Anastasia M. Makarova
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tatiana V. Lebedeva
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Taher Nassar
- the Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel, and
| | - Abd Al-Roof Higazi
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- the Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel, and
| | - Jing Xue
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- the Department of Laboratory Medicine, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Maria E. Carinato
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Khalil Bdeir
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Douglas B. Cines
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Victoria Stepanova
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
12
|
Abstract
OBJECTIVES Recently, many studies have investigated the immunomodulatory effects of insulin and glucose control in critical illness. This review examines evidence regarding the relationship between diabetes and the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS), reviews studies of lung injury related to glycemic and nonglycemic metabolic features of diabetes, and examines the effect of diabetic therapies. DATA SOURCES AND STUDY SELECTION A MEDLINE/PubMed search from inception to August 1, 2008, was conducted using the search terms acute lung injury, acute respiratory distress syndrome, hyperglycemia, diabetes mellitus, insulin, hydroxymethylglutaryl-CoA reductase inhibitors (statins), angiotensin-converting enzyme inhibitor, and peroxisome proliferator-activated receptors, including combinations of these terms. Bibliographies of retrieved articles were manually reviewed. DATA EXTRACTION AND SYNTHESIS Available studies were critically reviewed, and data were extracted with special attention to the human and animal studies that explored a) diabetes and ALI; b) hyperglycemia and ALI; c) metabolic nonhyperglycemic features of diabetes and ALI; and d) diabetic therapies and ALI. CONCLUSIONS Clinical and experimental data indicate that diabetes is protective against the development of ALI/ARDS. The pathways involved are complex and likely include effects of hyperglycemia on the inflammatory response, metabolic abnormalities in diabetes, and the interactions of therapeutic agents given to diabetic patients. Multidisciplinary, multifaceted studies, involving both animal models and clinical and molecular epidemiology techniques, are essential.
Collapse
|
13
|
Kao SJ, Yang FL, Hsu YH, Chen HI. Mechanism of fulminant pulmonary edema caused by enterovirus 71. Clin Infect Dis 2004; 38:1784-8. [PMID: 15227628 PMCID: PMC7107954 DOI: 10.1086/421021] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 02/23/2004] [Indexed: 01/10/2023] Open
Abstract
Pulmonary edema (PE) may occur with enterovirus 71 (EV71) infection. We monitored arterial pressure (AP) and heart rate (HR) in patients with EV71 infection and analyzed the variability of AP and HR. Sympathetic activity, AP, and HR increased with respiratory stress. Thereafter, parasympathetic activity increased with decreases in AP and HR. The lungs showed edema with inducible nitric oxide synthase (iNOS) expression. Destruction of the medial, ventral, and caudal medulla may lead to sympathetic overactivation, causing blood to shift to the lungs. The pathogenesis of PE may also involve iNOS and nitric oxide.
Collapse
Affiliation(s)
| | | | | | - Hsing I Chen
- Dr. Hsing I Chen, Institute of Medical Sciences, Tzu Chi University, 701, Section 3, Chung-Yang Rd., Hualien 97004, Taiwan, Republic of China ()
| |
Collapse
|