1
|
Lu J, Fan X, Lu L, Yu Y, Markiewicz E, Little JC, Sidebottom AM, Claud EC. Limosilactobacillus reuteri normalizes blood-brain barrier dysfunction and neurodevelopment deficits associated with prenatal exposure to lipopolysaccharide. Gut Microbes 2023; 15:2178800. [PMID: 36799469 PMCID: PMC9980478 DOI: 10.1080/19490976.2023.2178800] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Maternal immune activation (MIA) derived from late gestational infection such as seen in chorioamnionitis poses a significantly increased risk for neurodevelopmental deficits in the offspring. Manipulating early microbiota through maternal probiotic supplementation has been shown to be an effective means to improve outcomes; however, the mechanisms remain unclear. In this study, we demonstrated that MIA modeled by exposing pregnant dams to lipopolysaccharide (LPS) induced an underdevelopment of the blood vessels, an increase in permeability and astrogliosis of the blood-brain barrier (BBB) at prewean age. The BBB developmental and functional deficits early in life impaired spatial learning later in life. Maternal Limosilactobacillus reuteri (L. reuteri) supplementation starting at birth rescued the BBB underdevelopment and dysfunction-associated cognitive function. Maternal L. reuteri-mediated alterations in β-diversity of the microbial community and metabolic responses in the offspring provide mechanisms and potential targets for promoting BBB integrity and long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Xiaobing Fan
- Magnetic Resonance Imaging and Spectroscopy Laboratory, The University of Chicago, Department of Radiology, Chicago, IL, USA
| | - Lei Lu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Yueyue Yu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Erica Markiewicz
- Magnetic Resonance Imaging and Spectroscopy Laboratory, The University of Chicago, Department of Radiology, Chicago, IL, USA
| | - Jessica C. Little
- Duchossois Family Institute, The University of Chicago, Host-Microbe Metabolomics Facility, Chicago, IL, USA
| | - Ashley M. Sidebottom
- Duchossois Family Institute, The University of Chicago, Host-Microbe Metabolomics Facility, Chicago, IL, USA
| | - Erika C. Claud
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Animal Models of Chorioamnionitis: Considerations for Translational Medicine. Biomedicines 2022; 10:biomedicines10040811. [PMID: 35453561 PMCID: PMC9032938 DOI: 10.3390/biomedicines10040811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth is defined as any birth occurring before 37 completed weeks of gestation by the World Health Organization. Preterm birth is responsible for perinatal mortality and long-term neurological morbidity. Acute chorioamnionitis is observed in 70% of premature labor and is associated with a heavy burden of multiorgan morbidities in the offspring. Unfortunately, chorioamnionitis is still missing effective biomarkers and early placento- as well as feto-protective and curative treatments. This review summarizes recent advances in the understanding of the underlying mechanisms of chorioamnionitis and subsequent impacts on the pregnancy outcome, both during and beyond gestation. This review also describes relevant and current animal models of chorioamnionitis used to decipher associated mechanisms and develop much needed therapies. Improved knowledge of the pathophysiological mechanisms underpinning chorioamnionitis based on preclinical models is a mandatory step to identify early in utero diagnostic biomarkers and design novel anti-inflammatory interventions to improve both maternal and fetal outcomes.
Collapse
|
3
|
Al Amrani F, Sébire G, Chen MF, Wintermark P, Saint-Martin C. Distinctive Neuroimaging Pattern in Term Newborns With Neonatal Placental Encephalopathy: A Case Series. Pediatr Neurol 2022; 126:74-79. [PMID: 34740136 DOI: 10.1016/j.pediatrneurol.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Identifying antepartum versus intrapartum timing and the cause of neonatal encephalopathy (NE) often remains elusive owing to our limited understanding of the underlying pathophysiological processes and lack of appropriate biomarkers. OBJECTIVES This retrospective observational study describes a case series of term newborns with NE who displayed a recognizable magnetic resonance imaging pattern of immediately postnatal brain abnormalities that rapidly evolved toward cavitation. Our aim is to (1) report this neuroimaging pattern, (2) look for placental determinants, and (3) depict the outcome. DESIGN/METHODS This is a unicentric retrospective case series reporting the clinical, radiological, and laboratory findings of NE associated with a distinctive neuroimaging pattern, that is, immediately postnatal extensive corticosubcortical T2 hyperintensities, followed by rapid corticosubcortical cavitation that does not match the neuroimaging picture of intrapartum hypoxic-ischemic encephalopathy (HIE). RESULTS Seven term newborns presented bilateral corticosubcortical hyperintensities that were detected on T2 between day of life (DOL) 1-4, which rapidly evolved toward cystic encephalomalacia, that is, between DOL9 and DOL12. All these newborns presented with moderate/severe NE. The outcome was either neonatal death or quadriplegic cerebral palsy and epilepsy. None of the reported patients fulfilled the criteria of a high likelihood of acute intrapartum hypoxic-ischemic or quadriplegic cerebral palsy. All these newborns were exposed to chronic and/or acute placental inflammation and/or hypoxic-ischemic. CONCLUSIONS To further define the antepartum causes of NE, early neuroimaging and a placental examination are recommended. Brain T2 hyperintense injuries before DOL4 followed by rapid cavitation before DOL12 might be biomarkers of NE from an antepartum/placental origin.
Collapse
Affiliation(s)
- Fatema Al Amrani
- Division of Pediatric Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Pediatric Neurology Unit, Child Health Department, Sultan Qaboos University Hospital, Al Khod, Muscat, Sultanate of Oman
| | - Guillaume Sébire
- Division of Pediatric Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Child Health and Human Development Program, Research Institute of McGill University Health Center, Montreal, Quebec, Canada.
| | - Moy Fong Chen
- Department of Pathology, Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Pia Wintermark
- Child Health and Human Development Program, Research Institute of McGill University Health Center, Montreal, Quebec, Canada; Division of Neonatology, Department of Pediatrics, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Christine Saint-Martin
- Division of Pediatric Medical Imaging, Department of Radiology, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Kao YCJ, Chen SH, Lu CF, Hsieh BY, Chen CY, Chang YC, Huang CC. Early neuroimaging and ultrastructural correlates of injury outcome after neonatal hypoxic-ischaemia. Brain Commun 2021; 3:fcab048. [PMID: 33981995 PMCID: PMC8103732 DOI: 10.1093/braincomms/fcab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hypoxic ischaemia encephalopathy is the major cause of brain injury in new-borns. However, to date, useful biomarkers which may be used to early predict neurodevelopmental impairment for proper commencement of hypothermia therapy is still lacking. This study aimed to determine whether the early neuroimaging characteristics and ultrastructural correlates were associated with different injury progressions and brain damage severity outcomes after neonatal hypoxic ischaemia. Longitudinal 7 T MRI was performed within 6 h, 24 h and 7 days after hypoxic ischaemia in rat pups. The brain damage outcome at 7 days post-hypoxic ischaemia assessed using histopathology and MRI were classified as mild, moderate and severe. We found there was a spectrum of different brain damage severity outcomes after the same duration of hypoxic ischaemia. The severity of brain damage determined using MRI correlated well with that assessed by histopathology. Quantitative MRI characteristics denoting water diffusivity in the tissue showed significant differences in the apparent diffusion coefficient deficit volume and deficit ratios within 6 h, at 24 h and 7 days after hypoxic ischaemia among the 3 different outcome groups. The susceptible brain areas to hypoxic ischaemia were revealed by the temporal changes in regional apparent diffusion coefficient values among three outcome groups. Within 6 h post-hypoxic ischaemia, a larger apparent diffusion coefficient deficit volume and deficit ratios and lower apparent diffusion coefficient values were highly associated with adverse brain damage outcome. In the apparent diffusion coefficient deficit areas detected early after hypoxic ischaemia which were highly associated with severe damage outcome, transmission electron microscopy revealed fragmented nuclei; swollen rough endoplasmic reticulum and degenerating mitochondria in the cortex and prominent myelin loss and axon detraction in the white matter. Taken together, different apparent diffusion coefficient patterns obtained early after hypoxic ischaemia are highly associated with different injury progression leading to different brain damage severity outcomes, suggesting the apparent diffusion coefficient characteristics may be applicable to early identify the high-risk neonates for hypothermia therapy.
Collapse
Affiliation(s)
- Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Bao-Yu Hsieh
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan.,Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Cheng-Yu Chen
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.,Department of Pediatrics, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Wang T, Zhang Y, Chen W, Tao J, Xue Q, Ge W, Dou W, Ma C. Proteomic changes in the hippocampus and motor cortex in a rat model of cerebral palsy: Effects of topical treatment. Biomed Pharmacother 2021; 133:110844. [PMID: 33186793 DOI: 10.1016/j.biopha.2020.110844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cerebral palsy (CP) is a non-progressive motor-impairment disorder related to brain injury early in development. To gain new insights into the mechanisms of CP and the therapeutic efficacy of Baimai ointment, we used a high-throughput quantitative proteomic approach to evaluate proteomic changes in the hippocampus and motor cortex in a rat model of CP induced by lipopolysaccharide (LPS) combined with hypoxia/ischemia (H/I). More than 2000 proteins were identified in each brain region with high confidence. Quantitative analysis demonstrated profound disturbances in the proteomes of the hippocampus and motor cortex after LPS + H/I, in addition to the disruption of the motor system. In contrast, the topical application of Baimai ointment not only alleviated the motor deficit in the CP model rats, but also restored the proteomes in the brain cortex. Furthermore, astrocytes in the hippocampus were strongly activated in the Baimai-treated CP rat brains, associated with an increase in neurotrophic factors. Proteomic analysis demonstrated that the CP model induced neuroinflammatory responses in the brain which were reversed by the topical application of Baimai ointment. This study highlights the unexpected roles of hippocampus and motor cortex neurons in CP progress and treatment, thus providing potentially novel therapeutic targets for CP.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Yusheng Zhang
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Weiwu Chen
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Jin Tao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Qiao Xue
- Tibet Cheezheng Tibetan Medicine Co., Ltd., Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Wanchen Dou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chao Ma
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China.
| |
Collapse
|
6
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
7
|
Antecedents of Objectively Diagnosed Diffuse White Matter Abnormality in Very Preterm Infants. Pediatr Neurol 2020; 106:56-62. [PMID: 32139164 PMCID: PMC7500641 DOI: 10.1016/j.pediatrneurol.2020.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Diffuse white matter abnormality (diffuse excessive high signal intensity) is the most common finding on structural brain magnetic resonance imaging (MRI) at term-equivalent age in very preterm infants. Yet, there remains a large gap in our understanding of the etiology of diffuse white matter abnormality. Our objective was to evaluate perinatal and neonatal inflammation-associated antecedents of diffuse white matter abnormality on MRI. METHODS We prospectively enrolled 110 very preterm infants born at ≤31 weeks gestational age and collected data on multiple perinatal/neonatal exposures, especially inflammation initiating-illnesses. We performed structural MRI at term-equivalent age and quantified the volume of diffuse white matter abnormality objectively. Multivariable regression was used to identify clinical antecedents of diffuse white matter abnormality. RESULTS The mean (S.D.) birth gestational age of the final study sample of 98 very preterm infants was 28.3 (2.5) weeks. Multiple inflammation initiating-illnesses were associated with diffuse white matter abnormality in univariate analyses. In multivariable linear regression analyses controlling for gestational age, severe retinopathy of prematurity (P < 0.001) and bronchopulmonary dysplasia (P = 0.006) were independent risk factors, whereas maternal treatment with 17-hydroxyprogesterone (P < 0.001) was protective of later development of objectively quantified diffuse white matter abnormality. CONCLUSIONS We identified several perinatal and neonatal antecedent clinical factors associated with diffuse white matter abnormality. Although we found some support for inflammation as a common underlying mechanism, larger studies are needed to validate inflammation as a potential common pathway to the development of diffuse white matter abnormality in very preterm infants.
Collapse
|
8
|
McNamara NB, Miron VE. Microglia in developing white matter and perinatal brain injury. Neurosci Lett 2019; 714:134539. [PMID: 31614181 DOI: 10.1016/j.neulet.2019.134539] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
Perinatal brain injury (PBI) to the developing white matter results in hypomyelination of axons and can cause long-term motor and cognitive deficits e.g. cerebral palsy. There are currently no approved therapies aimed at repairing the white matter following insult, underscoring the need to investigate the mechanisms underlying the pathogenesis of PBI. Microglia have been strongly implicated, but their function and heterogeneity in this context remain poorly understood, posing a barrier to the development of microglia-targeted therapies for white matter repair following PBI. In this review, we discuss the roles of microglia in normal white matter development and in PBI, and potential drug strategies to influence microglial responses in this setting.
Collapse
Affiliation(s)
- Niamh B McNamara
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
9
|
Volpe JJ. Dysmaturation of Premature Brain: Importance, Cellular Mechanisms, and Potential Interventions. Pediatr Neurol 2019; 95:42-66. [PMID: 30975474 DOI: 10.1016/j.pediatrneurol.2019.02.016] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Prematurity, especially preterm birth (less than 32 weeks' gestation), is common and associated with high rates of both survival and neurodevelopmental disability, especially apparent in cognitive spheres. The neuropathological substrate of this disability is now recognized to be related to a variety of dysmaturational disturbances of the brain. These disturbances follow initial brain injury, particularly cerebral white matter injury, and involve many of the extraordinary array of developmental events active in cerebral white and gray matter structures during the premature period. This review delineates these developmental events and the dysmaturational disturbances that occur in premature infants. The cellular mechanisms involved in the genesis of the dysmaturation are emphasized, with particular focus on the preoligodendrocyte. A central role for the diffusely distributed activated microglia and reactive astrocytes in the dysmaturation is now apparent. As these dysmaturational cellular mechanisms appear to occur over a relatively long time window, interventions to prevent or ameliorate the dysmaturation, that is, neurorestorative interventions, seem possible. Such interventions include pharmacologic agents, especially erythropoietin, and particular attention has also been paid to such nutritional factors as quality and source of milk, breastfeeding, polyunsaturated fatty acids, iron, and zinc. Recent studies also suggest a potent role for interventions directed at various experiential factors in the neonatal period and infancy, i.e., provision of optimal auditory and visual exposures, minimization of pain and stress, and a variety of other means of environmental behavioral enrichment, in enhancing brain development.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Pregnolato S, Chakkarapani E, Isles AR, Luyt K. Glutamate Transport and Preterm Brain Injury. Front Physiol 2019; 10:417. [PMID: 31068830 PMCID: PMC6491644 DOI: 10.3389/fphys.2019.00417] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Preterm birth complications are the leading cause of child death worldwide and a top global health priority. Among the survivors, the risk of life-long disabilities is high, including cerebral palsy and impairment of movement, cognition, and behavior. Understanding the molecular mechanisms of preterm brain injuries is at the core of future healthcare improvements. Glutamate excitotoxicity is a key mechanism in preterm brain injury, whereby the accumulation of extracellular glutamate damages the delicate immature oligodendrocytes and neurons, leading to the typical patterns of injury seen in the periventricular white matter. Glutamate excitotoxicity is thought to be induced by an interaction between environmental triggers of injury in the perinatal period, particularly cerebral hypoxia-ischemia and infection/inflammation, and developmental and genetic vulnerabilities. To avoid extracellular build-up of glutamate, the brain relies on rapid uptake by sodium-dependent glutamate transporters. Astrocytic excitatory amino acid transporter 2 (EAAT2) is responsible for up to 95% of glutamate clearance, and several lines of evidence suggest that it is essential for brain functioning. While in the adult EAAT2 is predominantly expressed by astrocytes, EAAT2 is transiently upregulated in the immature oligodendrocytes and selected neuronal populations during mid-late gestation, at the peak time for preterm brain injury. This developmental upregulation may interact with perinatal hypoxia-ischemia and infection/inflammation and contribute to the selective vulnerability of the immature oligodendrocytes and neurons in the preterm brain. Disruption of EAAT2 may involve not only altered expression but also impaired function with reversal of transport direction. Importantly, elevated EAAT2 levels have been found in the reactive astrocytes and macrophages of human infant post-mortem brains with severe white matter injury (cystic periventricular leukomalacia), potentially suggesting an adaptive mechanism against excitotoxicity. Interestingly, EAAT2 is suppressed in animal models of acute hypoxic-ischemic brain injury at term, pointing to an important and complex role in newborn brain injuries. Enhancement of EAAT2 expression and transport function is gathering attention as a potential therapeutic approach for a variety of adult disorders and awaits exploration in the context of the preterm brain injuries.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elavazhagan Chakkarapani
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Karen Luyt
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Rodent Models of Developmental Ischemic Stroke for Translational Research: Strengths and Weaknesses. Neural Plast 2019; 2019:5089321. [PMID: 31093271 PMCID: PMC6476045 DOI: 10.1155/2019/5089321] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia can occur at any stage in life, but clinical consequences greatly differ depending on the developmental stage of the affected brain structures. Timing of the lesion occurrence seems to be critical, as it strongly interferes with neuronal circuit development and determines the way spontaneous plasticity takes place. Translational stroke research requires the use of animal models as they represent a reliable tool to understand the pathogenic mechanisms underlying the generation, progression, and pathological consequences of a stroke. Moreover, in vivo experiments are instrumental to investigate new therapeutic strategies and the best temporal window of intervention. Differently from adults, very few models of the human developmental stroke have been characterized, and most of them have been established in rodents. The models currently used provide a better understanding of the molecular factors involved in the effects of ischemia; however, they still hold many limitations due to matching developmental stages across different species and the complexity of the human disorder that hardly can be described by segregated variables. In this review, we summarize the key factors contributing to neonatal brain vulnerability to ischemic strokes and we provide an overview of the advantages and limitations of the currently available models to recapitulate different aspects of the human developmental stroke.
Collapse
|
12
|
Cytokine production pattern of T lymphocytes in neonatal arterial ischemic stroke during the first month of life-a case study. J Neuroinflammation 2018; 15:191. [PMID: 29933753 PMCID: PMC6015463 DOI: 10.1186/s12974-018-1229-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background The perinatal period carries the highest risk for stroke in childhood; however, the pathophysiology is poorly understood and preventive, prognostic, and therapeutic strategies are not available. A new pathophysiological model describes the development of neonatal arterial ischemic stroke (NAIS) as the combined result of prenatal inflammation and hypoxic–ischemic insult. Neuroinflammation and a systemic inflammatory response are also important features of NAIS. Identifying key players of the inflammatory system is in the limelight of current research. Case presentation We present four NAIS cases, in whom detailed analysis of intracellular and plasma cytokine levels are available from the first month of life. All neonates were admitted with the initial diagnosis of hypoxic ischemic encephalopathy (HIE); however, early MRI examination revealed NAIS. Blood samples were collected between 3 and 6 h of life, at 24 h, 72 h, 1 week, and 1 month of life. Peripheral blood mononuclear cells were assessed with flow cytometry and plasma cytokine levels were measured. Pooled data from the cohort of four NAIS patients were compared to infants with HIE. At 6 and 72 h of age, the prevalence of IL10+ CD8+ lymphocytes remained lower in NAIS. At 6 h, CD8+ lymphocytes in NAIS produced more IL-17. At 72 h, CD8+ cells produced more IL-6 in severe HIE than in NAIS, but IL-6 production remained elevated in CD8 cells at 1 month in NAIS, while it decreased in HIE. At 1 week, the prevalence of TGF-β + lymphocytes prone to enter the CNS was elevated in NAIS. On the other hand, by 1 month of age, the prevalence of TGF-β + CD4+ lymphocytes decreased in NAIS compared to HIE. At 72 h, we found elevated plasma levels of IL-5, MCP-1, and IL-17 in NAIS. By 1 month, plasma levels of IL-4, IL-12, and IL-17 decreased in NAIS but remained elevated in HIE. Conclusions Differences in the cytokine network are present between NAIS and HIE. CD8 lymphocytes appear to shift towards the pro-inflammatory direction in NAIS. The inflammatory response appears to be more pronounced at 72 h in NAIS but decreases faster, reaching lower plasma levels of inflammatory markers at 1 month.
Collapse
|
13
|
OH KJ, PARK JY, LEE J, HONG JS, ROMERO R, YOON BH. The combined exposure to intra-amniotic inflammation and neonatal respiratory distress syndrome increases the risk of intraventricular hemorrhage in preterm neonates. J Perinat Med 2018; 46:9-20. [PMID: 28672753 PMCID: PMC5848500 DOI: 10.1515/jpm-2016-0348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/12/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate the impact of combined exposure to intra-amniotic inflammation and neonatal respiratory distress syndrome (RDS) on the development of intraventricular hemorrhage (IVH) in preterm neonates. METHODS This retrospective cohort study includes 207 consecutive preterm births (24.0-33.0 weeks of gestation). Intra-amniotic inflammation was defined as an amniotic fluid matrix metalloproteinase-8 concentration >23 ng/mL. According to McMenamin's classification, IVH was defined as grade II or higher when detected by neurosonography within the first weeks of life. RESULTS (1) IVH was diagnosed in 6.8% (14/207) of neonates in the study population; (2) IVH was frequent among newborns exposed to intra-amniotic inflammation when followed by postnatal RDS [33% (6/18)]. The frequency of IVH was 7% (8/115) among neonates exposed to either of these conditions - intra-amniotic inflammation or RDS - and 0% (0/64) among those who were not exposed to these conditions; and (3) Neonates exposed to intra-amniotic inflammation and postnatal RDS had a significantly higher risk of IVH than those with only intra-amniotic inflammation [odds ratio (OR) 4.6, 95% confidence interval (CI) 1.1-19.3] and those with RDS alone (OR 5.6, 95% CI 1.0-30.9), after adjusting for gestational age. CONCLUSION The combined exposure to intra-amniotic inflammation and postnatal RDS markedly increased the risk of IVH in preterm neonates.
Collapse
Affiliation(s)
- Kyung Joon OH
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea,Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Jee Yoon PARK
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - JoonHo LEE
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Seok HONG
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea,Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Roberto ROMERO
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Bo Hyun YOON
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Giraud A, Guiraut C, Chevin M, Chabrier S, Sébire G. Role of Perinatal Inflammation in Neonatal Arterial Ischemic Stroke. Front Neurol 2017; 8:612. [PMID: 29201015 PMCID: PMC5696351 DOI: 10.3389/fneur.2017.00612] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Based on the review of the literature, perinatal inflammation often induced by infection is the only consistent independent risk factor of neonatal arterial ischemic stroke (NAIS). Preclinical studies show that acute inflammatory processes take place in placenta, cerebral arterial wall of NAIS-susceptible arteries and neonatal brain. A top research priority in NAIS is to further characterize the nature and spatiotemporal features of the inflammatory processes involved in multiple levels of the pathophysiology of NAIS, to adequately design randomized control trials using targeted anti-inflammatory vasculo- and neuroprotective agents.
Collapse
Affiliation(s)
- Antoine Giraud
- EA 4607 SNA EPIS, Jean Monnet University, Saint-Etienne, France.,Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Clémence Guiraut
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Mathilde Chevin
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Stéphane Chabrier
- French Center for Pediatric Stroke and Pediatric Rehabilitation Unit, Department of Pediatrics, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Guillaume Sébire
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC, Canada
| |
Collapse
|
15
|
Fernández de Cossío L, Guzmán A, van der Veldt S, Luheshi GN. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav Immun 2017; 63:88-98. [PMID: 27697456 DOI: 10.1016/j.bbi.2016.09.028] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022] Open
Abstract
Environmental challenges to the maternal immune system during pregnancy have been associated with an increase in the frequency of neurodevelopmental disorders such as Autism Spectrum Disorders (ASD) appearing in the offspring. Microglia, the brain's resident immune-cells, are now known to be critically involved in normal brain development, shaping connections between neurons by pruning superfluous synaptic spines. Our aim was to investigate whether maternal infection during critical stages of gestation compromises the role of microglia in sculpting neuronal circuits. Using a mouse model of maternal immune activation (MIA) induced by bacterial Lipopolysaccharide (LPS), we assayed the offspring's behavior during postnatal development. Additionally, we quantified spines within the offspring's brain and assessed alterations in some molecular signals involved in pruning. LPS-induced MIA led to behavioral changes relevant to ASD in the offspring in the absence of gross neurological problems. Prenatal LPS resulted in a significant increase in the number of spines in the granule cells of the dentate gyrus, as well as a reduction in hippocampal expression of the fractalkine microglial receptor (CX3CR1), involved in mediating the pruning process in the offspring. Interestingly, these changes were only noted in the male progeny of the LPS challenged dams. These results provide an early indicator that microglial function is altered in the brain of offspring from immune challenged mothers and that the effects in the brain appear to be specific along sex lines.
Collapse
Affiliation(s)
| | - Andrea Guzmán
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Quebec, Canada
| | - Suzanne van der Veldt
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Quebec, Canada; Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - Giamal N Luheshi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Quebec, Canada.
| |
Collapse
|
16
|
Santos AS, Almeida W, Popik B, Sbardelotto BM, Torrejais MM, Souza MA, Centenaro LA. Characterization of a cerebral palsy‐like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas. Int J Dev Neurosci 2017; 60:48-55. [DOI: 10.1016/j.ijdevneu.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Adriana Souza Santos
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Wellington Almeida
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Bruno Popik
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Bruno Marques Sbardelotto
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Márcia Miranda Torrejais
- Laboratório de Morfologia Experimental, Programa de Pós‐Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Marcelo Alves Souza
- Universidade Federal do Paraná, Rua General Rondon2195, ToledoParanáCEP: 85902‐090Brazil
| | - Lígia Aline Centenaro
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| |
Collapse
|
17
|
Patra A, Huang H, Bauer JA, Giannone PJ. Neurological consequences of systemic inflammation in the premature neonate. Neural Regen Res 2017; 12:890-896. [PMID: 28761416 PMCID: PMC5514858 DOI: 10.4103/1673-5374.208547] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite substantial progress in neonatal care over the past two decades leading to improved survival of extremely premature infants, extreme prematurity continues to be associated with long term neurodevelopmental impairments. Cerebral white matter injury is the predominant form of insult in preterm brain leading to adverse neurological consequences. Such brain injury pattern and unfavorable neurologic sequelae is commonly encountered in premature infants exposed to systemic inflammatory states such as clinical or culture proven sepsis with or without evidence of meningitis, prolonged mechanical ventilation, bronchopulmonary dysplasia, necrotizing enterocolitis and chorioamnionitis. Underlying mechanisms may include cytokine mediated processes without direct entry of pathogens into the brain, developmental differences in immune response and complex neurovascular barrier system that play a critical role in regulating the cerebral response to various systemic inflammatory insults in premature infants. Understanding of these pathologic mechanisms and clinical correlates of such injury based on serum biomarkers or brain imaging findings on magnetic resonance imaging will pave way for future research and translational therapeutic opportunities for the developing brain.
Collapse
Affiliation(s)
- Aparna Patra
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Hong Huang
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John A Bauer
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Peter J Giannone
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
18
|
Guiraut C, Cauchon N, Lepage M, Sébire G. Perinatal Arterial Ischemic Stroke Is Associated to Materno-Fetal Immune Activation and Intracranial Arteritis. Int J Mol Sci 2016; 17:ijms17121980. [PMID: 27898024 PMCID: PMC5187780 DOI: 10.3390/ijms17121980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022] Open
Abstract
The medium-size intra-cranial arteries arising from the carotid bifurcation are prone to perinatal arterial ischemic strokes (PAIS). PAIS’ physiopathology needs to be better understood to develop preventive and therapeutic interventions that are currently missing. We hypothesized that materno-fetal inflammation leads to a vasculitis affecting selectively the carotidian tree and promoting a focal thrombosis and subsequent stroke. Dams were injected with saline or lipopolysaccharide (LPS) from Escherichia coli. A prothrombotic stress was applied on LPS-exposed vs. saline (S)-exposed middle cerebral arteries (MCA). Immunolabeling detected the inflammatory markers of interest. In S-exposed newborn pups, a constitutive higher density of macrophages combined to higher expressions of tumor necrosis factor-α (TNF-α), and interleukin 1β (IL-1β) was observed within the wall of intra- vs. extra-cranial cervicocephalic arteries. LPS-induced maternal and placental inflammatory responses mediated by IL-1β, TNF-α and monocyte chemotactic protein 1 (MCP-1) were associated with: (i) increased density of pro-inflammatory macrophages (M1 phenotype); and (ii) pro-inflammatory orientation of the IL-1 system (IL-1β/IL-1 receptor antagonist (IL-1Ra) ratio) within the wall of LPS-, vs. S-exposed, intra-cranial arteries susceptible to PAIS. LPS plus photothrombosis, but not sole photothrombosis, triggered ischemic strokes and subsequent motor impairments. Based on these preclinical results, the combination of pro-thrombotic stress and selective intra-cranial arteritis arising from end gestational maternal immune activation seem to play a role in the pathophysiology of human PAIS.
Collapse
Affiliation(s)
- Clémence Guiraut
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Nicole Cauchon
- Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Martin Lepage
- Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Guillaume Sébire
- Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
- Child Neurology Division, Department of Pediatrics, McGill University, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
19
|
Binette A, Blouin S, Ardilouze A, Pasquier JC. Neuroprotective effects of antenatal magnesium sulfate under inflammatory conditions in a Sprague-Dawley pregnant rat model. J Matern Fetal Neonatal Med 2016; 30:1715-1720. [PMID: 27578415 DOI: 10.1080/14767058.2016.1223031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Antenatal magnesium sulfate (MgSO4) is recommended for fetal neuroprotection. The aim of this animal study was to assess the neuroprotective effect of in utero exposure to MgSO4, under inflammatory conditions. METHODS Timed pregnant Sprague-Dawley (SD) rats (n = 29) received four intra-peritoneal (IP) injections of lipopolysaccharides (LPS; 200 μg/kg), combined with increasing concentrations of MgSO4 (25, 50 or 100 mg/kg, n = 19) or saline solution (SS; n = 10). In the second set of experiments, animals (n = 8) received a single IP injection of i) LPS (500 μg/kg), MgSO4 (50 mg/kg) and SS (n = 4) or ii) LPS (500 μg/kg), MgSO4 (50 mg/kg) and IL-6 (12 μg/kg) (n = 4). Neurodevelopmental outcomes of surviving pups (n = 212) were assessed by the open field and the rotarod tests. RESULTS Pups' average weight at postnatal day (P) 25 was 75.77 g and 89.08 g in MgSO4 and control groups, respectively (p = 0.02). Pups in MgSO4 group have traveled a shorter distance and have shown reduced motor balance and coordination (p < 0.01). Average weight of pups receiving (LPS + MgSO4+ IL-6) was 92.26 g at P25, compared to 75.86 g in (LPS + MgSO4+SS) group (p < 0.05). CONCLUSIONS In our model, MgSO4 induces pup's growth retardation and motor deficits, which may partly be related to a lower IL-6 circulating concentration.
Collapse
Affiliation(s)
- Audrey Binette
- a Obstetrics and Gynecology, CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke , Sherbrooke , QC , Canada
| | - Simon Blouin
- a Obstetrics and Gynecology, CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke , Sherbrooke , QC , Canada
| | - Amélie Ardilouze
- a Obstetrics and Gynecology, CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke , Sherbrooke , QC , Canada
| | - Jean-Charles Pasquier
- a Obstetrics and Gynecology, CHUS, Faculty of Medicine and Health Sciences, Université de Sherbrooke , Sherbrooke , QC , Canada
| |
Collapse
|
20
|
Ko HS, Cheon JY, Choi SK, Lee HW, Lee A, Park IY, Shin JC. Placental histologic patterns and neonatal seizure, in preterm premature rupture of membrane. J Matern Fetal Neonatal Med 2016; 30:793-800. [PMID: 27145920 DOI: 10.1080/14767058.2016.1186634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the relationship between placenta and perinatal outcomes, in preterm infants born to mothers with preterm premature rupture of fetal membrane (PPROM). METHODS We report detailed histology of placentas and perinatal outcomes of infants from 79 PPROM pregnancies. Placental histologic pattern and adverse perinatal outcomes were assessed by logistic regression, adjusting for gestational age at birth, birth weight and interval from rupture of membrane to delivery. RESULTS Mean gestational age at membrane rupture was 29.5 ± 3.4 weeks. The incidence of histologic chorioamnionitis (HCA), fetal inflammatory response (FIR) and vascular thrombotic abnormalities in placental histologic examination were 63.3, 25.3 and 78.5%, respectively. Neonates with FIR showed significantly higher incidence of periventricular leukomalacia (PVL) (85% versus 59.3%, p = 0.0364) at brain ultrasonography, than neonates without FIR, in univariate analysis, but not in logistic regression analysis. In logistic regression analysis, the odds ratio of low Apgar score at 1 min in the neonates with clinical chorioamnionitis was 5.009 (95% CI, 1.242-20.195). The odds ratio of neonatal seizure in the neonates with FIR and vascular thrombotic problem was 7.486 (95% CI, 1.617-34.653). CONCLUSIONS Our findings support the association between FIR with vascular thrombotic problem in placenta and neonatal seizure, in pregnancies with PPROM.
Collapse
Affiliation(s)
- Hyun Sun Ko
- a Department of Obstetrics and Gynecology Catholic University of Korea , Seoul , Republic of Korea , and
| | - Ju Young Cheon
- a Department of Obstetrics and Gynecology Catholic University of Korea , Seoul , Republic of Korea , and
| | - Sae Kyung Choi
- a Department of Obstetrics and Gynecology Catholic University of Korea , Seoul , Republic of Korea , and
| | - Hye Won Lee
- b Department of Pathology , College of Medicine, Catholic University of Korea , Seoul , Republic of Korea
| | - Ahwon Lee
- b Department of Pathology , College of Medicine, Catholic University of Korea , Seoul , Republic of Korea
| | - In Yang Park
- a Department of Obstetrics and Gynecology Catholic University of Korea , Seoul , Republic of Korea , and
| | - Jong Chul Shin
- a Department of Obstetrics and Gynecology Catholic University of Korea , Seoul , Republic of Korea , and
| |
Collapse
|
21
|
Nguyen AT, Bahry AMA, Shen KQ, Armstrong EA, Yager JY. Consumption of broccoli sprouts during late gestation and lactation confers protection against developmental delay induced by maternal inflammation. Behav Brain Res 2016; 307:239-49. [PMID: 27038765 DOI: 10.1016/j.bbr.2016.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND The presence of a fetal inflammatory response is linked to cerebral palsy. Unfortunately no preventive therapies are available. In this study, we determined whether dietary supplementation with broccoli sprouts (BrSp), a phase-II enzyme inducer, would be effective in preventing the behavioural and pathologic manifestations in a rodent model of inflammation during late pregnancy. METHODS Pregnant Long-Evans rats were administered i.p. Injections of saline (100μl) or lipopolysaccharide (LPS, 200μg/kg), every 12h on embryonic day (E) 19 and 20. In the treatment groups, dams were supplemented with 200mg/day of dried BrSp from E14 until postnatal day 21. Pups underwent a series of neurodevelopmental reflex tests from postnatal day 3-21 followed by neuropathological analyses. RESULTS Pups born from the LPS group were significantly growth restricted (p<0.001) and delayed in hindlimb placing (p<0.05), cliff avoidance (p<0.05), and gait (p<0.001) compared to controls. In the open field behaviour analyses, LPS pups had an increase in grooming behaviour (p<0.05) and a decreased amount of time spent in the center of the box compared to controls. Dietary supplementation with BrSp to offspring exposed to LPS had increased birth weights (p<0.001), were no longer delayed in acquiring hindlimb placing, cliff avoidance, gait, and posture, and groomed less compared to LPS alone pups (p<0.01). Histological analyses revealed that LPS pups had reduced myelin basic protein compared to controls. CONCLUSIONS Our data suggest that BrSp dietary supplementation during pregnancy may be effective in preventing growth restriction and neurodevelopmental delays.
Collapse
Affiliation(s)
| | - Ashley M A Bahry
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Ke Qin Shen
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Edward A Armstrong
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jerome Y Yager
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride alters lipopolysaccharide-induced proinflammatory cytokines and neuronal morphology in mouse fetal brain. Neuropharmacology 2016; 102:32-41. [DOI: 10.1016/j.neuropharm.2015.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/01/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022]
|
23
|
Cao M, Cortes M, Moore CS, Leong SY, Durosier LD, Burns P, Fecteau G, Desrochers A, Auer RN, Barreiro LB, Antel JP, Frasch MG. Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation. Front Cell Neurosci 2015; 9:294. [PMID: 26300730 PMCID: PMC4524165 DOI: 10.3389/fncel.2015.00294] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
Objective: Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. Methods: Lipopolysaccharide (LPS) or saline were administered intravenously to non-anesthetized chronically instrumented near-term fetal sheep to model fetal inflammation in vivo. Microglia were then isolated from in vivo LPS and saline (naïve) exposed animals. To mimic the second hit of neuroinflammation, these microglia were then re-exposed to LPS in vitro. Cytokine responses were measured in vivo and subsequently in vitro in the primary microglia cultures derived from these animals. We sequenced the whole transcriptome of naïve and second hit microglia and profiled their genetic expression to define molecular pathways disrupted during neuroinflammation. Results:In vivo LPS exposure resulted in IL-6 increase in fetal plasma 3 h post LPS exposure. Even though not histologically apparent, microglia acquired a pro-inflammatory phenotype in vivo that was sustained and amplified in vitro upon second hit LPS exposure as measured by IL-1β response in vitro and RNAseq analyses. While NFKB and Jak-Stat inflammatory pathways were up regulated in naïve microglia, heme oxygenase 1 (HMOX1) and Fructose-1,6-bisphosphatase (FBP) genes were uniquely differentially expressed in the second hit microglia. Compared to the microglia exposed to LPS in vitro only, the transcriptome of the in vivo LPS pre-exposed microglia showed a diminished differential gene expression in inflammatory and metabolic pathways prior and upon re-exposure to LPS in vitro. Notably, this desensitization response was also observed in histone deacetylases (HDAC) 1, 2, 4, and 6. Microglial calreticulin/LRP genes implicated in microglia-neuronal communication relevant for the neuronal development were up regulated in second hit microglia. Discussion: We identified a unique HMOX1down and FBPup phenotype of microglia exposed to the double-hit suggesting interplay of inflammatory and metabolic pathways. Our findings suggest that epigenetic mechanisms mediate this immunological and metabolic memory of the prior inflammatory insult relevant to neuronal development and provide new therapeutic targets for early postnatal intervention to prevent brain injury.
Collapse
Affiliation(s)
- Mingju Cao
- Department of Obstetrics and Gynaecology, Faculty of Medicine, CHU Ste-Justine Research Centre, Université de Montréal Montréal, QC, Canada ; Department of Neurosciences, Faculty of Medicine, CHU Ste-Justine Research Centre, Université de Montréal Montréal, QC, Canada
| | - Marina Cortes
- Faculty of Veterinary Medicine, Animal Reproduction Research Centre, Université de Montréal Montréal, QC, Canada
| | - Craig S Moore
- Neuroimmunology Unit, Montréal Neurological Institute, McGill University Montréal, QC, Canada
| | - Soo Yuen Leong
- Neuroimmunology Unit, Montréal Neurological Institute, McGill University Montréal, QC, Canada
| | - Lucien D Durosier
- Department of Obstetrics and Gynaecology, Faculty of Medicine, CHU Ste-Justine Research Centre, Université de Montréal Montréal, QC, Canada ; Department of Neurosciences, Faculty of Medicine, CHU Ste-Justine Research Centre, Université de Montréal Montréal, QC, Canada
| | - Patrick Burns
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal QC, Canada
| | - Gilles Fecteau
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal QC, Canada
| | - Andre Desrochers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal QC, Canada
| | - Roland N Auer
- Département de Pathologie, University Hospital Ste-Justine, Université de Montréal QC, Canada
| | - Luis B Barreiro
- Department of Pediatrics, Faculty of Medicine, CHU Ste-Justine Research Centre, Université de Montréal Montréal, QC, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montréal Neurological Institute, McGill University Montréal, QC, Canada
| | - Martin G Frasch
- Department of Obstetrics and Gynaecology, Faculty of Medicine, CHU Ste-Justine Research Centre, Université de Montréal Montréal, QC, Canada ; Department of Neurosciences, Faculty of Medicine, CHU Ste-Justine Research Centre, Université de Montréal Montréal, QC, Canada ; Faculty of Veterinary Medicine, Animal Reproduction Research Centre, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
24
|
Savard A, Brochu ME, Chevin M, Guiraut C, Grbic D, Sébire G. Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia. J Neuroinflammation 2015; 12:111. [PMID: 26025257 PMCID: PMC4449972 DOI: 10.1186/s12974-015-0330-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/20/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Inflammation due to remote pathogen exposure combined to hypoxia/ischemia (HI) is one of the most common causes of neonatal encephalopathy affecting at-term or near-term human newborn, which will consequently develop cerebral palsy. Within term-equivalent rat brains exposed to systemic lipopolysaccharide (LPS) plus HI, it was previously showed that neurons produce IL-1β earlier than do glial cells, and that blocking IL-1 was neuroprotective. To further define the mechanisms whereby IL-1 exerts its neurotoxic effect, we hypothesize that IL-1β plays a pivotal role in a direct and/or indirect mechanistic loop of neuronal self-injury through matrix metalloproteinase (MMP)-9. METHODS An established preclinical rat model of LPS+HI-induced neonatal encephalopathy was used. In situ hybridization, ELISA, and immunolabeling techniques were employed. Selective blocking compounds allowed addressing the respective roles of IL-1 and MMP-9. RESULTS In LPS+HI-exposed forebrains, neuronal IL-1β was first detected in infarcted neocortical and striatal areas and later in glial cells of the adjacent white matter. Neuronal IL-1β played a key role: (i) in the early post-HI exacerbation of neuroinflammation and (ii) in generating both core and penumbral infarcted cerebral areas. Systemically administered IL-1 receptor antagonist (IL-1Ra) reached the brain and bound to the neocortical and deep gray neuronal membranes. Then, IL-1Ra down-regulated IL-1β mRNA and MMP-9 neuronal synthesis. Immediately post-HI, neuronal IL-1β up-regulated cytokine-induced neutrophil chemoattractant (CINC-1), monocyte chemoattractant protein-1 (MCP-1), and inducible nitric oxide synthase. MMP-9 would disrupt the blood-brain barrier, which, combined to CINC-1 up-regulation, would play a role in polymorphonuclear cell (PMN) infiltration into the LPS+HI-exposed brain. IL-1β blockade prevented PMN infiltration and oriented the phenotype of macrophagic/microglial cells towards anti-inflammatory and neurotrophic M2 profile. IL-1β increased the expression of activated caspase-3 and of receptor-interacting-protein (RIP)-3 within infarcted forebrain area. Such apoptotic and necroptotic pathway activations were prevented by IL-1Ra, as well as ensuing cerebral palsy-like brain damage and motor impairment. CONCLUSIONS This work uncovered a new paradigm of neuronal self-injury orchestrated by neuronal synthesis of IL-1β and MMP-9. In addition, it reinforced the translational neuroprotective potential of IL-1 blockers to alleviate human perinatal brain injuries.
Collapse
Affiliation(s)
- Alexandre Savard
- Laboratoire de Neurologie Pédiatrique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marie-Elsa Brochu
- Laboratoire de Neurologie Pédiatrique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Mathilde Chevin
- Laboratoire de Neurologie Pédiatrique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Clémence Guiraut
- Laboratoire de Neurologie Pédiatrique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Djordje Grbic
- Laboratoire de Neurologie Pédiatrique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Guillaume Sébire
- Laboratoire de Neurologie Pédiatrique, Université de Sherbrooke, Sherbrooke, QC, Canada.
- McGill University, 2300 Tupper street, H3H 1P3, Montreal, QC, Canada.
| |
Collapse
|
25
|
Armstrong-Wells J, Donnelly M, Post MD, Manco-Johnson MJ, Winn VD, Sébire G. Inflammatory predictors of neurologic disability after preterm premature rupture of membranes. Am J Obstet Gynecol 2015; 212:212.e1-9. [PMID: 25223243 DOI: 10.1016/j.ajog.2014.09.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/27/2014] [Accepted: 09/10/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The maternal-fetal inflammatory response contributes to both preterm premature rupture of membranes (PPROM) and adverse neurological outcomes. Additionally, cytokines associated with fetal placental inflammation can be detrimental to brain development regardless of inciting infection. We investigated whether differential patterns of cytokine markers in maternal and fetal plasma samples reflect subtypes of placental inflammation and neurological outcomes at 6 months in infants born to mothers with PPROM. STUDY DESIGN Within a prospective cohort study of 25 women with PPROM, plasma cytokines (interleukin [IL]-1β, IL-6, IL-8, and tumor necrosis factor-α) were measured by enzyme-linked immunosorbent assay from maternal blood samples at rupture and delivery, and from fetal umbilical cord blood samples. Patterns of cytokine expression were correlated with specific placenta pathologies. Infants underwent cranial ultrasound after birth and standardized neurological examinations at 6 months' corrected gestational age. Predictors of inflammation and adverse neurological outcome were assessed by logistic regression, adjusting for gestational age at birth. RESULTS Inflammation of the fetal side of the placenta was associated with elevated maternal IL-6 and IL-8 at delivery and fetal IL-1β, IL-6, IL-8, and tumor necrosis factor-α. Worse neurological outcome at 6 months was associated with inflammation of the fetal side of the placenta and shorter duration from rupture of membrane to delivery, independent of gestational age at birth or cranial ultrasound results. CONCLUSION Our findings support the connection between fetal inflammation with adverse neurological outcome with PPROM, regardless of cranial ultrasound results. Further longitudinal studies are needed to adequately examine these patterns, and will aid in risk assessment and intervention strategies.
Collapse
Affiliation(s)
- Jennifer Armstrong-Wells
- Department of Pediatrics (Neurology), University of Colorado School of Medicine/Children's Hospital Colorado, Aurora, CO; Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO.
| | - Meghan Donnelly
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO
| | - Miriam D Post
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Marilyn J Manco-Johnson
- Department of Pediatrics (Hematology/Oncology/BMT), University of Colorado School of Medicine, Aurora, CO
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO
| | - Guillaume Sébire
- Department of Pediatrics and Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
26
|
Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 2014; 10:643-60. [PMID: 25311587 DOI: 10.1038/nrneurol.2014.187] [Citation(s) in RCA: 636] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.
Collapse
|
27
|
Jantzie LL, Corbett CJ, Berglass J, Firl DJ, Flores J, Mannix R, Robinson S. Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function. J Neuroinflammation 2014; 11:131. [PMID: 25082427 PMCID: PMC4128546 DOI: 10.1186/1742-2094-11-131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/15/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Infants born preterm commonly suffer from a combination of hypoxia-ischemia (HI) and infectious perinatal inflammatory insults that lead to cerebral palsy, cognitive delay, behavioral issues and epilepsy. Using a novel rat model of combined late gestation HI and lipopolysaccharide (LPS)-induced inflammation, we tested our hypothesis that inflammation from HI and LPS differentially affects gliosis, white matter development and motor impairment during the first postnatal month. METHODS Pregnant rats underwent laparotomy on embryonic day 18 and transient systemic HI (TSHI) and/or intra-amniotic LPS injection. Shams received laparotomy and anesthesia only. Pups were born at term. Immunohistochemistry with stereological estimates was performed to assess regional glial loads, and western blots were performed for protein expression. Erythropoietin ligand and receptor levels were quantified using quantitative PCR. Digigait analysis detected gait deficits. Statistical analysis was performed with one-way analysis of variance and post-hoc Bonferonni correction. RESULTS Microglial and astroglial immunolabeling are elevated in TSHI + LPS fimbria at postnatal day 2 compared to sham (both P < 0.03). At postnatal day 15, myelin basic protein expression is reduced by 31% in TSHI + LPS pups compared to shams (P < 0.05). By postnatal day 28, white matter injury shifts from the acute injury pattern to a chronic injury pattern in TSHI pups only. Both myelin basic protein expression (P < 0.01) and the phosphoneurofilament/neurofilament ratio, a marker of axonal dysfunction, are reduced in postnatal day 28 TSHI pups (P < 0.001). Erythropoietin ligand to receptor ratios differ between brains exposed to TSHI and LPS. Gait analyses reveal that all groups (TSHI, LPS and TSHI + LPS) are ataxic with deficits in stride, paw placement, gait consistency and coordination (all P < 0.001). CONCLUSIONS Prenatal TSHI and TSHI + LPS lead to different patterns of injury with respect to myelination, axon integrity and gait deficits. Dual injury leads to acute alterations in glial response and cellular inflammation, while TSHI alone causes more prominent chronic white matter and axonal injury. Both injuries cause significant gait deficits. Further study will contribute to stratification of injury mechanisms in preterm infants, and guide the use of promising therapeutic interventions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Axons/pathology
- Brain/embryology
- Brain/growth & development
- Brain/metabolism
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Erythropoietin/genetics
- Erythropoietin/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Inflammation/chemically induced
- Inflammation/pathology
- Leukoencephalopathies/etiology
- Lipopolysaccharides/toxicity
- Microfilament Proteins/metabolism
- Myelin Basic Protein/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
Collapse
Affiliation(s)
- Lauren L Jantzie
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Current address: Department of Pediatrics, UNM, Office of Pediatric Research, MSC10 5590, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Christopher J Corbett
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jacqueline Berglass
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel J Firl
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Julian Flores
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rebekah Mannix
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shenandoah Robinson
- Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
28
|
Strunk T, Inder T, Wang X, Burgner D, Mallard C, Levy O. Infection-induced inflammation and cerebral injury in preterm infants. THE LANCET. INFECTIOUS DISEASES 2014; 14:751-762. [PMID: 24877996 DOI: 10.1016/s1473-3099(14)70710-8] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Preterm birth and infectious diseases are the most common causes of neonatal and early childhood deaths worldwide. The rates of preterm birth have increased over recent decades and account for 11% of all births worldwide. Preterm infants are at significant risk of severe infection in early life and throughout childhood. Bacteraemia, inflammation, or both during the neonatal period in preterm infants is associated with adverse outcomes, including death, chronic lung disease, and neurodevelopmental impairment. Recent studies suggest that bacteraemia could trigger cerebral injury even without penetration of viable bacteria into the CNS. Here we review available evidence that supports the concept of a strong association between bacteraemia, inflammation, and cerebral injury in preterm infants, with an emphasis on the underlying biological mechanisms, clinical correlates, and translational opportunities.
Collapse
Affiliation(s)
- Tobias Strunk
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, The University of Western Australia, Perth, WA, Australia; Neonatal Clinical Care Unit, King Edward Memorial Hospital, Perth, WA, Australia.
| | - Terrie Inder
- Department of Pediatrics, Neurology and Radiology, Washington University, St Louis, USA
| | - Xiaoyang Wang
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Shangjie, Henan, China
| | - David Burgner
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Carina Mallard
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Chau V, McFadden DE, Poskitt KJ, Miller SP. Chorioamnionitis in the pathogenesis of brain injury in preterm infants. Clin Perinatol 2014; 41:83-103. [PMID: 24524448 DOI: 10.1016/j.clp.2013.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chorioamnionitis (or placental infection) is suspected to be a risk factor for brain injury in premature infants. The suggested association between chorioamnionitis and cystic periventricular leukomalacia and cerebral palsy is uncertain because of the variability of study designs and definitions of chorioamnionitis. Improvements in neonatal intensive care may have attenuated the impact of chorioamnionitis on brain health outcomes. Large multicenter studies using rigorous definitions of chorioamnionitis on placental pathologies and quantitative magnetic resonance techniques may offer the optimal way to clarify the complex role of chorioamnionitis in modifying brain health and long-term outcomes.
Collapse
Affiliation(s)
- Vann Chau
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada; University of Toronto, Department of Pediatrics, 563 Spadina Crescent, Toronto, Ontario, M5S 2J7, Canada; Child & Family Research Institute, 950 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada.
| | - Deborah E McFadden
- Child & Family Research Institute, 950 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada; Department of Pathology, BC Children's & Women's Health Center, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada; University of British Columbia, Departments of Pediatrics, Pathology and Radiology, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Kenneth J Poskitt
- Child & Family Research Institute, 950 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada; University of British Columbia, Departments of Pediatrics, Pathology and Radiology, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Departments of Pediatrics and Radiology, BC Children's & Women's Health Center, 4480 Oak Street, Vancouver, British Columbia, V6H 3V4, Canada
| | - Steven P Miller
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada; Neurosciences and Mental Health Program, Research Institute, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada; University of Toronto, Department of Pediatrics, 563 Spadina Crescent, Toronto, Ontario, M5S 2J7, Canada; Child & Family Research Institute, 950 28th Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
30
|
Chicha L, Smith T, Guzman R. Stem cells for brain repair in neonatal hypoxia-ischemia. Childs Nerv Syst 2014; 30:37-46. [PMID: 24178233 DOI: 10.1007/s00381-013-2304-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/15/2022]
Abstract
Neonatal hypoxic-ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain's plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic-ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.
Collapse
Affiliation(s)
- L Chicha
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
31
|
Liu YH, Lai WS, Tsay HJ, Wang TW, Yu JY. Effects of maternal immune activation on adult neurogenesis in the subventricular zone-olfactory bulb pathway and olfactory discrimination. Schizophr Res 2013; 151:1-11. [PMID: 24113206 DOI: 10.1016/j.schres.2013.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/04/2013] [Accepted: 09/14/2013] [Indexed: 02/08/2023]
Abstract
Maternal infection and maternal immune activation (MIA) during pregnancy increase risks for psychiatric disorders such as schizophrenia and autism. Many deficits related to psychiatric disorders are observed in adult offspring of MIA animal models, including behavioral abnormalities, morphological defects in various brain regions, and dysregulation of neurotransmitter systems. It has previously been shown that MIA impairs adult neurogenesis in the dentate gyrus of the hippocampus. In this study, we examined whether MIA affects adult neurogenesis in the subventricular zone (SVZ)-olfactory bulb (OB) pathway. Polyinosinic-polycytidylic acid (PolyI:C), a synthetic analog of double-stranded RNA mimicking viral infection, was injected into pregnant mice on gestation day 9.5 to activate immune systems. In the SVZ-OB pathway of adult offspring, different cell types of the neural stem cell lineage responded differently to MIA. Neural stem cells and neuroblasts were decreased. Cell proliferation of transit-amplifying cells was impaired. Consequently, newborn neurons were reduced in the OB. Olfactory deficiency has been suggested as a biomarker for schizophrenia. Here we found that olfactory discrimination was compromised in adult MIA offspring. Taken together, these findings show that MIA leads to defective adult neurogenesis in the SVZ-OB pathway, and the impairment of adult neurogenesis may lead to deficits in olfactory functions.
Collapse
Affiliation(s)
- Yuan-Hsuan Liu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Crisham Janik MD, Newman TB, Cheng YW, Xing G, Gilbert WM, Wu YW. Maternal diagnosis of obesity and risk of cerebral palsy in the child. J Pediatr 2013; 163:1307-12. [PMID: 23932316 PMCID: PMC3812421 DOI: 10.1016/j.jpeds.2013.06.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/17/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To examine the association between maternal hospital diagnoses of obesity and risk of cerebral palsy (CP) in the child. STUDY DESIGN For all California hospital births from 1991-2001, we linked infant and maternal hospitalization discharge abstracts to California Department of Developmental Services records of children receiving services for CP. We identified maternal hospital discharge diagnoses of obesity (International Classification of Diseases, 9th edition 646.1, 278.00, or 278.01) and morbid obesity (International Classification of Diseases, 9th edition 278.01), and performed logistic regression to explore the relationship between maternal obesity diagnoses and CP. RESULTS Among 6.2 million births, 67 200 (1.1%) mothers were diagnosed with obesity, and 7878 (0.1%) with morbid obesity; 8798 (0.14%) children had CP. A maternal diagnosis of obesity (relative risk [RR] 1.30, 95% CI 1.09-1.55) or morbid obesity (RR 2.70, 95% CI 1.89-3.86) was associated with increased risk of CP. In multivariable analysis adjusting for maternal race, age, education, prenatal care, insurance status, and infant sex, both obesity (OR 1.27, 95% CI 1.06-1.52) and morbid obesity (OR 2.56, 95% CI 1.79-3.66) remained independently associated with CP. On stratified analyses, the association of obesity (RR 1.72, 95% CI 1.25-2.35) or morbid obesity (RR 3.79, 95% CI 2.35-6.10) with CP was only significant among women who were hospitalized prior to the birth admission. Adjusting for potential comorbidities and complications of obesity did not eliminate this association. CONCLUSIONS Maternal obesity may confer an increased risk of CP in some cases. Further studies are needed to confirm this finding.
Collapse
Affiliation(s)
| | - Thomas B. Newman
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA,Department of Pediatrics, UCSF, San Francisco, CA
| | - Yvonne W. Cheng
- Department of Obstetrics and Gynecology, UCSF, San Francisco, CA
| | - Guibo Xing
- Department of Obstetrics and Gynecology, UC Davis, Sacramento, CA
| | - William M. Gilbert
- Department of Obstetrics and Gynecology, Sutter Medical Center, Sacramento, CA
| | - Yvonne W. Wu
- Department of Neurology, UCSF, San Francisco, CA,Department of Pediatrics, UCSF, San Francisco, CA
| |
Collapse
|
33
|
Savard A, Lavoie K, Brochu ME, Grbic D, Lepage M, Gris D, Sebire G. Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation 2013; 10:110. [PMID: 24007297 PMCID: PMC3844447 DOI: 10.1186/1742-2094-10-110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. Methods An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. Results LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. Conclusion In rat pups at a neurodevelopmental age corresponding to full-term human newborns, a systemic pre-exposure to a pathogen component amplified HI-induced mortality and morbidities that are relevant to human pathology. Neuronal cells were the first cells to produce IL-1β in LPS + HI-exposed full-term brains. Such IL-1β production might be responsible for neuronal self-injuries via well-described neurotoxic mechanisms such as IL-1β-induced nitric oxide production, or IL-1β-dependent exacerbation of excitotoxic damage.
Collapse
Affiliation(s)
- Alexandre Savard
- Laboratoire de Neurologie Pédiatrique, Université de Sherbrooke, 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
34
|
Booth LC, Drury PP, Muir C, Jensen EC, Gunn AJ, Bennet L. Acute on chronic exposure to endotoxin is associated with enhanced chemoreflex responses in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2013; 304:R799-803. [DOI: 10.1152/ajpregu.00005.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is increasing evidence that exposure to infection can sensitize the fetus to subsequent hypoxic injury. However, it is unclear whether this involves compromise of the fetal cardiovascular adaptation to acute asphyxia. Chronically instrumented 103-day-old (0.7 gestational age, term is 147 days) fetal sheep in utero were randomized to receive either gram-negative lipopolysaccharide (LPS) as a continuous low-dose infusion for 120 h plus boluses of 1 μg LPS at 48, 72, and 96 h with asphyxia at 102 h (i.e., 6 h after the final LPS bolus) induced by umbilical cord occlusion for 15 min (LPS treated, n = 8), or the same volume of saline plus occlusion (saline treated, n = 7). Fetuses were killed 5 days after occlusion. LPS was associated with a more rapid fall in fetal heart rate at the onset of occlusion ( P < 0.05) and with minimally lower values during occlusion ( P < 0.05). The LPS-treated fetuses had lower fetal mean arterial blood pressure (BP) and greater carotid artery blood flow (CaBF) before occlusion ( P < 0.05) but showed an increase in BP and fall in CaBF to similar values as saline controls during occlusion. There were no differences between the groups in femoral blood flow before or during occlusion. Contrary to our initial hypothesis, acute on chronic exposure to LPS was associated with more rapid cardiovascular adaptation to umbilical cord occlusion.
Collapse
Affiliation(s)
- Lindsea C. Booth
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Paul P. Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Cameron Muir
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Ellen C. Jensen
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Hu Y, Chen G, Wan H, Zhang Z, Zhi H, Liu W, Qian X, Chen M, Wen L, Gao F, Li J, Zhao L. A rat pup model of cerebral palsy induced by prenatal inflammation and hypoxia. Neural Regen Res 2013; 8:817-24. [PMID: 25206729 PMCID: PMC4146090 DOI: 10.3969/j.issn.1673-5374.2013.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 01/09/2013] [Indexed: 02/05/2023] Open
Abstract
Animal models of cerebral palsy established by simple infection or the hypoxia/ischemia method cannot effectively simulate the brain injury of a premature infant. Healthy 17-day-pregnant Wistar rats were intraperitoneally injected with lipopolysaccharide then subjected to hypoxia. The pups were used for this study at 4 weeks of age. Simultaneously, a hypoxia/ischemia group and a control group were used for comparison. The results of the footprint test, the balance beam test, the water maze test, neuroelectrophysiological examination and neuropathological examination demonstrated that, at 4 weeks after birth, footprint repeat space became larger between the forelimbs and hindlimbs of the rats, the latency period on the balance beam and in the Morris water maze was longer, place navigation and ability were poorer, and the stimulus intensity that induced the maximal wave amplitude of the compound muscle action potential was greater in the lipopolysaccharide/hypoxia and hypoxia/ischemia groups than in the control group. We observed irregular cells around the periventricular area, periventricular leukomalacia and breakage of the nuclear membrane in the lipopolysaccharide/hypoxia and hypoxia/ischemia groups. These results indicate that we successfully established a Wistar rat pup model of cerebral palsy by intraperitoneal injection of lipopolysaccharide and hypoxia.
Collapse
Affiliation(s)
- Yanrong Hu
- Postdoctoral Research Station, School of Basic Medicine, CAMA and PUMC, Beijing 100000, China
- Postdoctoral Research Station, the People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Gang Chen
- Department of Neurosurgery, the Fourth People's Hospital of Wuxi (The Fourth Affiliated Hospital of Soochow University), Wuxi 214026, Jiangsu Province, China
- Corresponding author: Gang Chen, Associate chief physician, Department of Neurosurgery, the Fourth People's Hospital of Wuxi (the Fourth Affiliated Hospital of Soochow University), Wuxi 214026, Jiangsu Province, China, . (N20120413001/WJ)
| | - Hong Wan
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Zhiyou Zhang
- Department of Neurosurgery, Xinjiang Autonomous Region People's Hospital, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Hong Zhi
- Department of Neurosurgery, the Fourth People's Hospital of Wuxi (The Fourth Affiliated Hospital of Soochow University), Wuxi 214026, Jiangsu Province, China
| | - Wei Liu
- Department of Neurosurgery, Xinjiang Autonomous Region People's Hospital, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Xinwei Qian
- Department of Neurosurgery, the Fourth People's Hospital of Wuxi (The Fourth Affiliated Hospital of Soochow University), Wuxi 214026, Jiangsu Province, China
| | - Mingzhao Chen
- Department of Neurosurgery, the Fourth People's Hospital of Wuxi (The Fourth Affiliated Hospital of Soochow University), Wuxi 214026, Jiangsu Province, China
| | - Linbao Wen
- Department of Neurosurgery, Xinjiang Autonomous Region People's Hospital, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Feng Gao
- Department of Neurosurgery, Xinjiang Autonomous Region People's Hospital, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Jianxin Li
- Department of Neurology, Xinjiang Autonomous Region People's Hospital, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Lihui Zhao
- Department of Pathology, Xinjiang Autonomous Region People's Hospital, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
36
|
Bennet L, Davidson JO, Koome M, Gunn AJ. Glucocorticoids and preterm hypoxic-ischemic brain injury: the good and the bad. J Pregnancy 2012; 2012:751694. [PMID: 22970371 PMCID: PMC3431094 DOI: 10.1155/2012/751694] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/13/2012] [Indexed: 12/20/2022] Open
Abstract
Fetuses at risk of premature delivery are now routinely exposed to maternal treatment with synthetic glucocorticoids. In randomized clinical trials, these substantially reduce acute neonatal systemic morbidity, and mortality, after premature birth and reduce intraventricular hemorrhage. However, the overall neurodevelopmental impact is surprisingly unclear; worryingly, postnatal glucocorticoids are consistently associated with impaired brain development. We review the clinical and experimental evidence on how glucocorticoids may affect the developing brain and highlight the need for systematic research.
Collapse
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
37
|
Abstract
INTRODUCTION Infection is a risk factor for adverse neurodevelopmental outcome in preterm newborns. Our objective was to characterize the association of postnatal infection with adverse microstructural and metabolic brain development in premature newborns. RESULTS In 34/117 newborns studied, clinical signs were accompanied by positive cultures whereas 17 had clinical signs of sepsis alone. White matter injury (WMI) was identified in 34 newborns. In multivariate regression models, infected newborns had brain imaging measures indicative of delayed brain development: lower N-acetylaspartate/choline, elevated average diffusivity (D(AV)), and decreased white matter fractional anisotropy. These widespread brain abnormalities were found in both newborns with positive-culture infection and in those with clinical infection. DISCUSSION These findings suggest that postnatal infection, even without a positive culture, is an important risk factor for widespread abnormalities in brain development. These abnormalities extend beyond brain injuries apparent with conventional magnetic resonance injury (MRI). METHODS 117 preterm newborns (24-32 wk gestation) were studied prospectively at a median of 32.0 and 40.3 wk ostmenstrual age with MRI (WMI, hemorrhage), magnetic resonance (MR) spectroscopy (metabolism), and diffusion tensor imaging (microstructure). Newborns were categorized as having "no infection," "clinical infection," or "positive-culture infection." We compared brain injuries as well as metabolic and microstructural development across these infection groups.
Collapse
|
38
|
Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol 2012; 67:287-94. [PMID: 22380481 DOI: 10.1111/j.1600-0897.2012.01110.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/23/2012] [Indexed: 01/10/2023] Open
Abstract
Intrauterine infection and inflammation are known risk factors for brain damage in the neonate irrespective of the gestational age. Infection-induced maternal immune activation leads to a fetal inflammatory response mediated by cytokines that has been implicated in the development of not only periventricular leukomalacia and cerebral palsy but also a spectrum of neurodevelopmental disorders such as autism and schizophrenia (Behav Brain Res 2009; 204:313, Ann Neurol 2005; 57:67, Am J Obstet Gynecol 2000; 182:675). A common link among the neurobehavioral disorders associated with intrauterine inflammation appears to be the evidence for immune dysregulation in the developing brain (Behav Brain Res 2009; 204:313). The timing of the immune challenge with respect to the gestational age and neurologic development of the fetus may be crucial in the elicited response (J Neurosci 2006; 26:4752). Studies involving animal models of maternal inflammation serve a key role in elucidation of mechanisms involved in fetal brain injury associated with exposure to the maternal milieu. These animal models have been shown to result in fetal microglial activation, neurotoxicity as well motor deficits and behavioral abnormalities in the offspring (J Neurosci 2006; 26:4752, J Neurosci Res 2010; 88:172, Am J Obstet Gynecol 2009; 201:279, Am J Obstet Gynecol 2008; 199:651). A better understanding of the mechanisms of perinatal brain injury will allow discoveries of novel neuroprotective agents, better outcomes following preterm birth and stratification of fetuses and neonates for therapies in cases of preterm birth, preterm premature rupture of membranes, and chorioamnionitis.
Collapse
Affiliation(s)
- Irina Burd
- Department of Gynecology, Johns Hopkins University, Baltimore, MD 20905, USA.
| | | | | |
Collapse
|
39
|
Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 2012; 71:444-57. [PMID: 22334391 DOI: 10.1002/ana.22620] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/05/2011] [Accepted: 07/15/2011] [Indexed: 01/06/2023]
Abstract
Inflammation is increasingly recognized as being of both physiological and pathological importance in the immature brain. The rationale of this review is to present an update on this topic with focus on long-term consequences of inflammation during childhood and in adults. The immature brain can be exposed to inflammation in connection with viral or bacterial infection during pregnancy or as a result of sterile central nervous system (CNS) insults. Through efficient anti-inflammatory and reparative processes, inflammation may resolve without any harmful effects on the brain. Alternatively, inflammation contributes to injury or enhances CNS vulnerability. Acute inflammation can also be shifted to a chronic inflammatory state and/or adversely affect brain development. Hypothetically, microglia are the main immunocompetent cells in the immature CNS, and depending on the stimulus, molecular context, and timing, these cells will acquire various phenotypes, which will be critical regarding the CNS consequences of inflammation. Inflammation has long-term consequences and could speculatively modify the risk of a variety of neurological disorders, including cerebral palsy, autism spectrum disorders, schizophrenia, multiple sclerosis, cognitive impairment, and Parkinson disease. So far, the picture is incomplete, and data mostly experimental. Further studies are required to strengthen the associations in humans and to determine whether novel therapeutic interventions during the perinatal period can influence the occurrence of neurological disease later in life.
Collapse
Affiliation(s)
- Henrik Hagberg
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sweden.
| | | | | |
Collapse
|
40
|
Disruption of the serotonergic system after neonatal hypoxia-ischemia in a rodent model. Neurol Res Int 2012; 2012:650382. [PMID: 22474587 PMCID: PMC3306961 DOI: 10.1155/2012/650382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/26/2011] [Accepted: 11/01/2011] [Indexed: 12/16/2022] Open
Abstract
Identifying which specific neuronal phenotypes are vulnerable to neonatal hypoxia-ischemia, where in the brain they are damaged, and the mechanisms that produce neuronal losses are critical to determine the anatomical substrates responsible for neurological impairments in hypoxic-ischemic brain-injured neonates. Here we describe our current work investigating how the serotonergic network in the brain is disrupted in a rodent model of preterm hypoxia-ischemia. One week after postnatal day 3 hypoxia-ischemia, losses of serotonergic raphé neurons, reductions in serotonin levels in the brain, and reduced serotonin transporter expression are evident. These changes can be prevented using two anti-inflammatory interventions; the postinsult administration of minocycline or ibuprofen. However, each drug has its own limitations and benefits for use in neonates to stem damage to the serotonergic network after hypoxia-ischemia. By understanding the fundamental mechanisms underpinning hypoxia-ischemia-induced serotonergic damage we will hopefully move closer to developing a successful clinical intervention to treat neonatal brain injury.
Collapse
|
41
|
Volpe JJ. Systemic inflammation, oligodendroglial maturation, and the encephalopathy of prematurity. Ann Neurol 2012; 70:525-9. [PMID: 22028217 DOI: 10.1002/ana.22533] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Stolp H, Neuhaus A, Sundramoorthi R, Molnár Z. The Long and the Short of it: Gene and Environment Interactions During Early Cortical Development and Consequences for Long-Term Neurological Disease. Front Psychiatry 2012; 3:50. [PMID: 22701439 PMCID: PMC3372875 DOI: 10.3389/fpsyt.2012.00050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/01/2012] [Indexed: 01/21/2023] Open
Abstract
Cortical development is a complex amalgamation of proliferation, migration, differentiation, and circuit formation. These processes follow defined timescales and are controlled by a combination of intrinsic and extrinsic factors. It is currently unclear how robust and flexible these processes are and whether the developing brain has the capacity to recover from disruptions. What is clear is that there are a number of cognitive disorders or conditions that are elicited as a result of disrupted cortical development, although it may take a long time for the full pathophysiology of the conditions to be realized clinically. The critical window for the manifestation of a neurodevelopmental disorder is prolonged, and there is the potential for a complex interplay between genes and environment. While there have been extended investigations into the genetic basis of a number of neurological and mental disorders, limited definitive associations have been discovered. Many environmental factors, including inflammation and stress, have been linked to neurodevelopmental disorders, and it may be that a better understanding of the interplay between genes and environment will speed progress in this field. In particular, the development of the brain needs to be considered in the context of the whole materno-fetal unit as the degree of the metabolic, endocrine, or inflammatory responses, for example, will greatly influence the environment in which the brain develops. This review will emphasize the importance of extending neurodevelopmental studies to the contribution of the placenta, vasculature, cerebrospinal fluid, and to maternal and fetal immune response. These combined investigations are more likely to reveal genetic and environmental factors that influence the different stages of neuronal development and potentially lead to the better understanding of the etiology of neurological and mental disorders such as autism, epilepsy, cerebral palsy, and schizophrenia.
Collapse
Affiliation(s)
- Helen Stolp
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | | | | | |
Collapse
|
43
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. Reprint of "The developing oligodendrocyte: key cellular target in brain injury in the premature infant". Int J Dev Neurosci 2011; 29:565-82. [PMID: 21802506 DOI: 10.1016/j.ijdevneu.2011.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
44
|
Animal models of periventricular leukomalacia. Lab Anim Res 2011; 27:77-84. [PMID: 21826166 PMCID: PMC3145996 DOI: 10.5625/lar.2011.27.2.77] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 01/15/2023] Open
Abstract
Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the etiology of periventricular leukomalacia including cerebral palsy, a serious case exhibiting neurobehavioral deficits of periventricular leukomalacia. In order to explore the pathophysiological mechanisms of white matter injury and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, novel animal models have been developed using hypoperfusion, microbes or bacterial products (lipopolysaccharide) and excitotoxins. Such efforts have developed rat models that produce predominantly white matter lesions by adopting combined hypoxia-ischemia technique on postnatal days 1-7, in which unilateral or bilateral carotid arteries of animals are occluded (ischemia) followed by 1-2 hour exposure to 6-8% oxygen environment (hypoxia). Furthermore, low doses of lipopolysaccharide that by themselves have no adverse-effects in 7-day-old rats, dramatically increase brain injury to hypoxic-ischemic challenge, implying that inflammation sensitizes the immature central nervous system. Therefore, among numerous models of periventricular leukomalacia, combination of hypoxia-ischemia-lipopolysaccharide might be one of the most-acceptable rodent models to induce extensive white matter injury and ensuing neurobehavioral deficits for the evaluation of candidate therapeutics.
Collapse
|
45
|
Brochu ME, Girard S, Lavoie K, Sébire G. Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: An experimental study. J Neuroinflammation 2011; 8:55. [PMID: 21599903 PMCID: PMC3121616 DOI: 10.1186/1742-2094-8-55] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/20/2011] [Indexed: 12/02/2022] Open
Abstract
Background Preterm and term newborns are at high risk of brain damage as well as subsequent cerebral palsy and learning disabilities. Indeed, hypoxia-ischemia (HI), pathogen exposures, and associated intracerebral increase of pro-inflammatory cytokines have all been linked to perinatal brain damage. However, the developmental effects of potential variations of pro- and anti-inflammatory cytokine ratios remain unknown. Methods Using rat models of perinatal brain damage induced by exposures to lipopolysaccharide (LPS) and/or HI at distinct levels of maturity, we compared cytokine expression at stages of cerebral development equivalent to either preterm (postnatal day 1, P1) or term (P12) newborns. Results At P1, expression of anti-inflammatory cytokine within the brain was either not modulated (IL-6, IL-10) or down-regulated (IL-1ra, TGF-β1) by HI, LPS or LPS+HI. In contrast, there was at P12 an up-regulation of all anti-inflammatory cytokines studied in HI or LPS+HI condition, but not after LPS exposure. Interestingly, IL-1β was the main pro-inflammatory cytokine up-regulated moderately at P1, and strongly at P12, with a weak co-expression of TNF-α observed mainly at P12. These age-dependant inflammatory reactions were also accompanied, under HI and LPS+HI conditions, at P12 only, by combined: (i) expression of chemokines CINC-1 and MCP-1, (ii) blood-brain barrier (BBB) leakage, and (iii) intracerebral recruitment of systemic immune cells such as neutrophils. In contrast, sole LPS induced IL-1β responses mainly within white matter at P1 and mainly within gray matter at P12, that were only associated with early MCP-1 (but no CINC-1) induction at both ages, without any recruitment of neutrophils and CD68+ cells. Conclusion HI and LPS+HI induce pro-inflammatory oriented immune responses in both preterm and term like brains, with a maximal inflammatory response triggered by the combination of LPS+HI. The profile of these neuroinflammatory responses presented striking variations according to age: no or down-regulated anti-inflammatory responses associated with mainly IL-1β release in preterm-like brains (P1), in sharp contrast to term-like brains (P12) presenting stronger anti-and pro-inflammatory responses, including both IL-1β and TNF-α releases, and BBB leakage. These developmental-dependant variations of neuroinflammatory response could contribute to the differential pattern of brain lesions observed across gestational ages in humans. This also highlights the necessity to take into consideration the maturation stage, of both brain and immune systems, in order to develop new anti-inflammatory neuroprotective strategies.
Collapse
Affiliation(s)
- Marie-Elsa Brochu
- Child Neurology Laboratory, Université de Sherbrooke, Canada Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12eme avenue Nord, J1H5N4 Sherbrooke, Canada
| | | | | | | |
Collapse
|
46
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 2011; 29:423-40. [PMID: 21382469 DOI: 10.1016/j.ijdevneu.2011.02.012] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/10/2011] [Accepted: 02/27/2011] [Indexed: 01/16/2023] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
47
|
Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 2010; 24:881-97. [PMID: 20230889 DOI: 10.1016/j.bbi.2010.03.005] [Citation(s) in RCA: 469] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/31/2022] Open
Abstract
Epidemiological studies with human populations indicate associations between maternal infection during pregnancy and increased risk in offspring for central nervous system (CNS) disorders including schizophrenia, autism and cerebral palsy. Since 2000, a large number of studies have used rodent models of systemic prenatal infection or prenatal immune activation to characterize changes in brain function and behavior caused by the prenatal insult. This review provides a comprehensive summary of these findings, and examines consistencies and trends across studies in an effort to provide a perspective on our current state of understanding from this body of work. Results from these animal modeling studies clearly indicate that prenatal immune activation can cause both acute and lasting changes in behavior and CNS structure and function in offspring. Across laboratories, studies vary with respect to the type, dose and timing of immunogen administration during gestation, species used, postnatal age examined and specific outcome measure quantified. This makes comparison across studies and assessment of replicability difficult. With regard to mechanisms, evidence for roles for several acute mediators of effects of prenatal immune activation has emerged, including circulating interleukin-6, increased placental cytokines and oxidative stress in the fetal brain. However, information required to describe the complete mechanistic pathway responsible for acute effects of prenatal immune activation on fetal brain is lacking, and no studies have yet addressed the issue of how acute prenatal exposure to an immunogen is transduced into a long-term CNS change in the postnatal animal. Directions for further research are discussed.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Verdun, Quebec, Canada.
| |
Collapse
|
48
|
Long-term losses of amygdala corticotropin-releasing factor neurons are associated with behavioural outcomes following neonatal hypoxia-ischemia. Behav Brain Res 2010; 208:609-18. [DOI: 10.1016/j.bbr.2010.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/10/2009] [Accepted: 01/09/2010] [Indexed: 11/24/2022]
|
49
|
Girard S, Tremblay L, Lepage M, Sébire G. IL-1 Receptor Antagonist Protects against Placental and Neurodevelopmental Defects Induced by Maternal Inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 184:3997-4005. [DOI: 10.4049/jimmunol.0903349] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Roy M, Girard S, Larouche A, Kadhim H, Sébire G. TNF-alpha system response in a rat model of very preterm brain injuries induced by lipopolysaccharide and/or hypoxia-ischemia. Am J Obstet Gynecol 2009; 201:493.e1-10. [PMID: 19660730 DOI: 10.1016/j.ajog.2009.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/09/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this study was to determine, with the use of a rat model, the expression of tumor necrosis factor (TNF)-alpha, its receptors, and TNF-alpha-converting enzyme in perinatal brain lesions of early premature neonates. STUDY DESIGN Lipopolysaccharide (LPS) was injected intraperitoneally in pregnant rats at the end of gestation. At postnatal day 1, the right carotid artery was ligated and followed by exposure to hypoxia. Forebrains (n = 220) were collected to study the TNF-alpha system. RESULTS LPS alone or combined with hypoxia-ischemia (HI) led to a slight decrease of intracerebral TNF-alpha, whereas sole HI induced no variation. TNF-alpha-converting enzyme followed the same pattern of expression as TNF-alpha. TNF receptor 1 was up-regulated in forebrains that were submitted to LPS alone or combined with HI. No variation was observed in TNF receptor 2 expression. CONCLUSION The minimal expression of the TNF-alpha system that we observed may indicate that this pathway is not central in the pathogenesis of brain lesions in early premature neonates.
Collapse
|