1
|
Souza ACD, Silva DGD, Jezuíno JDS, Ferreira ARO, Ribeiro MVG, Vidigal CB, Moura KF, Erthal RP, Mathias PCDF, Fernandes GSA, Palma-Rigo K, Ceravolo GS. Protein restriction during peripubertal period impairs endothelial aortic function in adult male Wistar rats. J Dev Orig Health Dis 2023; 14:451-458. [PMID: 37198976 DOI: 10.1017/s2040174423000119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein restriction during early phases of body development, such as intrauterine life can favor the development of vascular disorders. However, it is not known if peripubertal protein restriction can favor vascular dysfunction in adulthood. The present study aimed to evaluated whether a protein restriction diet during peripubertal period favors endothelial dysfunction in adulthood. Male Wistar rats from postnatal day (PND) 30 until 60 received a diet with either 23% protein (CTR group) or with 4% protein (LP group). At PND 120, the thoracic aorta reactivity to phenylephrine, acetylcholine, and sodium nitroprusside was evaluated in the presence or absence of: endothelium, indomethacin, apocynin and tempol. The maximum response (Rmax) and pD2 (-log of the concentration of the drug that causes 50% of the Rmax) were calculated. The lipid peroxidation and catalase activity were also evaluated in the aorta. The data were analyzed by ANOVA (one or two-ways and Tukey's) or independent t-test; the results were expressed as mean ± S.E.M., p < 0.05. The Rmax to phenylephrine in aortic rings with endothelium were increased in LP rats when compared with the Rmax in CTR rats. Apocynin and tempol reduced Rmax to phenylephrine in LP aortic rings but not in CTR. The aortic response to the vasodilators was similar between the groups. Aortic catalase activity was lower and lipid peroxidation was greater in LP compared to CTR rats. Therefore, protein restriction during the peripubertal period causes endothelial dysfunction in adulthood through a mechanism related to oxidative stress.
Collapse
Affiliation(s)
- Amanda Cristina de Souza
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Deborah Gomes da Silva
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Juliana da Silva Jezuíno
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringa, Maringa, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringa, Maringa, Brazil
| | - Camila Borecki Vidigal
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Kawane Fabricio Moura
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Rafaela Pires Erthal
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Glaura Scantamburlo Alves Fernandes
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Kesia Palma-Rigo
- Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringa, Maringa, Brazil
- Adventist College of Parana, Ivatuba, Brazil
| | - Graziela Scalianti Ceravolo
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
- Graduation Program of Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
2
|
SenthilKumar G, Katunaric B, Zirgibel Z, Lindemer B, Jaramillo-Torres MJ, Bordas-Murphy H, Schulz ME, Pearson PJ, Freed JK. Necessary Role of Acute Ceramide Formation in The Human Microvascular Endothelium During Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543341. [PMID: 37333082 PMCID: PMC10274701 DOI: 10.1101/2023.06.02.543341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Elevated plasma ceramides independently predict adverse cardiac events and we have previously shown that exposure to exogenous ceramide induces microvascular endothelial dysfunction in arterioles from otherwise healthy adults (0-1 risk factors for heart disease). However, evidence also suggests that activation of the shear-sensitive, ceramide forming enzyme neutral sphingomyelinase (NSmase) enhances vasoprotective nitric oxide (NO) production. Here we explore a novel hypothesis that acute ceramide formation through NSmase is necessary for maintaining NO signaling within the human microvascular endothelium. We further define the mechanism through which ceramide exerts beneficial effects and discern key mechanistic differences between arterioles from otherwise healthy adults and patients with coronary artery disease (CAD). Methods Human arterioles were dissected from otherwise discarded surgical adipose tissue (n=123), and vascular reactivity to flow and C2-ceramide was assessed. Shear-induced NO production was measured in arterioles using fluorescence microscopy. Hydrogen peroxide (H2O2) fluorescence was assessed in isolated human umbilical vein endothelial cells. Results Inhibition of NSmase in arterioles from otherwise healthy adults induced a switch from NO to H2O2-mediated flow-induced dilation within 30 minutes. In endothelial cells, NSmase inhibition acutely increased H2O2 production. Endothelial dysfunction in both models was prevented by treatment with C2-ceramide, S1P, and an agonist of S1P-receptor 1 (S1PR1), while the inhibition of S1P/S1PR1 signaling axis induced endothelial dysfunction. Ceramide increased NO production in arterioles from healthy adults, an effect that was diminished with inhibition of S1P/S1PR1/S1PR3 signaling. In arterioles from patients with CAD, inhibition of NSmase impaired dilation to flow. This effect was not restored with exogenous S1P. Although, inhibition of S1P/S1PR3 signaling impaired normal dilation to flow. Acute ceramide administration to arterioles from patients with CAD also promoted H2O2 as opposed to NO production, an effect dependent on S1PR3 signaling. Conclusion These data suggest that despite key differences in downstream signaling between health and disease, acute NSmase-mediated ceramide formation and its subsequent conversion to S1P is necessary for proper functioning of the human microvascular endothelium. As such, therapeutic strategies that aim to significantly lower ceramide formation may prove detrimental to the microvasculature.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology, Medical College of Wisconsin
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | | | - Zachary Zirgibel
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Brian Lindemer
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Maria J. Jaramillo-Torres
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Henry Bordas-Murphy
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Mary E. Schulz
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| | - Paul J. Pearson
- Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin
| | - Julie K. Freed
- Department of Physiology, Medical College of Wisconsin
- Cardiovasular Center, Medical College of Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin
| |
Collapse
|
3
|
Yang KJ, Choi WJ, Chang YK, Park CW, Kim SY, Hong YA. Inhibition of Xanthine Oxidase Protects against Diabetic Kidney Disease through the Amelioration of Oxidative Stress via VEGF/VEGFR Axis and NOX-FoxO3a-eNOS Signaling Pathway. Int J Mol Sci 2023; 24:ijms24043807. [PMID: 36835220 PMCID: PMC9961241 DOI: 10.3390/ijms24043807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Xanthine oxidase (XO) is an important source of reactive oxygen species. This study investigated whether XO inhibition exerts renoprotective effects by inhibiting vascular endothelial growth factor (VEGF) and NADPH oxidase (NOX) in diabetic kidney disease (DKD). Febuxostat (5 mg/kg) was administered to streptozotocin (STZ)-treated 8-week-old male C57BL/6 mice via intraperitoneal injection for 8 weeks. The cytoprotective effects, its mechanism of XO inhibition, and usage of high-glucose (HG)-treated cultured human glomerular endothelial cells (GECs) were also investigated. Serum cystatin C, urine albumin/creatinine ratio, and mesangial area expansion were significantly improved in febuxostat-treated DKD mice. Febuxostat reduced serum uric acid, kidney XO levels, and xanthine dehydrogenase levels. Febuxostat suppressed the expression of VEGF mRNA, VEGF receptor (VEGFR)1 and VEGFR3, NOX1, NOX2, and NOX4, and mRNA levels of their catalytic subunits. Febuxostat caused downregulation of Akt phosphorylation, followed by the enhancement of dephosphorylation of transcription factor forkhead box O3a (FoxO3a) and the activation of endothelial nitric oxide synthase (eNOS). In an in vitro study, the antioxidant effects of febuxostat were abolished by a blockade of VEGFR1 or VEGFR3 via NOX-FoxO3a-eNOS signaling in HG-treated cultured human GECs. XO inhibition attenuated DKD by ameliorating oxidative stress through the inhibition of the VEGF/VEGFR axis. This was associated with NOX-FoxO3a-eNOS signaling.
Collapse
Affiliation(s)
- Keum-Jin Yang
- Clinical Research Institute, Daejeon St. Mary’s Hospital, 64, Daeheung-ro, Jung-gu, Daejeon 34943, Republic of Korea
| | - Won Jung Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Yoon-Kyung Chang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Suk Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Yu Ah Hong
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Correspondence: ; Tel.: +82-42-220-9255
| |
Collapse
|
4
|
Bowdridge EC, DeVallance E, Garner KL, Griffith JA, Schafner K, Seaman M, Engels KJ, Wix K, Batchelor TP, Goldsmith WT, Hussain S, Nurkiewicz TR. Nano-titanium dioxide inhalation exposure during gestation drives redox dysregulation and vascular dysfunction across generations. Part Fibre Toxicol 2022; 19:18. [PMID: 35260159 PMCID: PMC8905816 DOI: 10.1186/s12989-022-00457-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants. Engineered nanomaterials (ENM) are commonly used in household and industrial products as well as in medicinal applications. As such, the potential risk of exposure remains a concern, especially during pregnancy. We have previously reported that ENM inhalation leads to upregulation in the production of oxidative species. Therefore, we aimed to determine if F0 dam maternal nano-TiO2 inhalation exposure (exclusively) resulted in altered H2O2 production capacity and changes in downstream redox pathways in the F0 dams and subsequent F1 pups. Additionally, we investigated whether this persisted into adulthood within the F1 generation and how this impacted F1 gestational outcomes and F2 fetal health and development. We hypothesized that maternal nano-TiO2 inhalation exposure during gestation in the F0 dams would result in upregulated H2O2 production in the F0 dams as well as her F1 offspring. Additionally, this toxicological insult would result in gestational vascular dysfunction in the F1 dams yielding smaller F2 generation pups. RESULTS Our results indicate upregulation of hepatic H2O2 production capacity in F0 dams, F1 offspring at 8 weeks and F1 females at gestational day 20. H2O2 production capacity was accompanied by a twofold increase in phosphorylation of the redox sensitive transcription factor NF-κB. In cell culture, naïve hepatocytes exposed to F1-nano-TiO2 plasma increased H2O2 production. Overnight exposure of these hepatocytes to F1 plasma increased H2O2 production capacity in a partially NF-κB dependent manner. Pregnant F1- nano-TiO2 females exhibited estrogen disruption (12.12 ± 3.1 pg/ml vs. 29.81 ± 8.8 pg/ml sham-control) and vascular dysfunction similar to their directly exposed mothers. F1-nano-TiO2 uterine artery H2O2 production capacity was also elevated twofold. Dysfunctional gestational outcomes in the F1-nano-TiO2 dams resulted in smaller F1 (10.22 ± 0.6 pups vs. sham-controls 12.71 ± 0.96 pups) and F2 pups (4.93 ± 0.47 g vs. 5.78 ± 0.09 g sham-control pups), and fewer F1 male pups (4.38 ± 0.3 pups vs. 6.83 ± 0.84 sham-control pups). CONCLUSION In conclusion, this manuscript provides critical evidence of redox dysregulation across generations following maternal ENM inhalation. Furthermore, dysfunctional gestational outcomes are observed in the F1-nano-TiO2 generation and impact the development of F2 offspring. In total, this data provides strong initial evidence that maternal ENM exposure has robust biological impacts that persists in at least two generations.
Collapse
Affiliation(s)
- Elizabeth C. Bowdridge
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Evan DeVallance
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Krista L. Garner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Julie A. Griffith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Kallie Schafner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Madison Seaman
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kevin J. Engels
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kimberley Wix
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Thomas P. Batchelor
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - William T. Goldsmith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Salik Hussain
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Timothy R. Nurkiewicz
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
5
|
Ogiso K, Shayo SC, Kawade S, Hashiguchi H, Deguchi T, Nishio Y. Repeated glucose spikes and insulin resistance synergistically deteriorate endothelial function and bardoxolone methyl ameliorates endothelial dysfunction. PLoS One 2022; 17:e0263080. [PMID: 35073378 PMCID: PMC8786204 DOI: 10.1371/journal.pone.0263080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Both insulin resistance and postprandial glucose spikes are known for their potential to induce vascular endothelial dysfunction in individuals with metabolic syndrome. However, these factors are inextricable, and therefore, their relative contributions to inducing endothelial dysfunction remain elusive. In this study, we aimed to disentangle the effects of these factors and clarify whether bardoxolone methyl (CDDO-Me), a novel nuclear factor erythroid 2-related factor 2 (Nrf2) activator, protects against glucose spike-induced endothelial dysfunction. METHODS We induced glucose spikes twice daily for a duration of 1 week to rats fed a standard/control diet (CD) and Western-type diet (WTD). Endothelium-dependent relaxation (EDR) was evaluated using isolated thoracic aortas. Gene expression and dihydroethidium (DHE)-fluorescence studies were carried out; the effect of CDDO-Me on aortic endothelial dysfunction in vivo was also evaluated. RESULTS Neither WTD-induced insulin resistance nor pure glucose spikes significantly deteriorated EDR. However, under high-glucose (20 mM) conditions, the EDR of thoracic aortas of WTD-fed rats subjected to glucose spikes was significantly impaired. In this group of rats, we observed significantly enhanced DHE fluorescence as a marker of reactive oxygen species, upregulation of an oxidative stress-related gene (NOX2), and downregulation of an antioxidant gene (SOD2) in the thoracic aortas. As expected, treatment of the thoracic aorta of this group of rats with antioxidant agents significantly improved EDR. We also noted that pretreatment of aortas from the same group with CDDO-Me attenuated endothelial dysfunction, accompanied by a correction of the redox imbalance, as observed in gene expression and DHE fluorescence studies. CONCLUSIONS For the first time, we showed that insulin resistance and glucose spikes exert a synergistic effect on aortic endothelial dysfunction. Furthermore, our study reveals that CDDO-Me ameliorates endothelial dysfunction caused by glucose spikes in a rat model of metabolic syndrome.
Collapse
Affiliation(s)
- Kazuma Ogiso
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Sigfrid Casmir Shayo
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Shigeru Kawade
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Hiroshi Hashiguchi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Takahisa Deguchi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| |
Collapse
|
6
|
Mude L, Sanapalli BKR, V AN, Singh SK, Karri VVSR. Overview of in situ gelling injectable hydrogels for diabetic wounds. Drug Dev Res 2021; 82:503-522. [PMID: 33432634 DOI: 10.1002/ddr.21788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023]
Abstract
Diabetes mellitus (DM) is an endocrine disorder that causes increased blood glucose than usual due to insulin impairment. In DM, several complications arise in which diabetic wound (DW) is the most devastating complication. About 25% of patients with DM expected to develop DWs in their lifetime and undergo limb amputations. Even though several treatments such as surgery, debridement, wound dressings, advanced therapies were available, the overall conclusion has been that with very few exceptions, patients still suffer from limitations like pain, frequent dress changing, high rates of failure, and cost involvement. Further, the treatments involving the delivery of therapeutic agents in treating DWs have limited success due to abnormal levels of proteases in the DW environment. In this backdrop, in situ gelling injectable hydrogels have gained special attention due to their easy encapsulation of therapeutic medications and prolonged release, filling the wound defect areas, ease of handling, and minimally invasive surgical procedures. Though the in situ gelling injectable hydrogels are developed a couple of decades ago, their use for treating DW has not yet been explored thoroughly. Thus, in this review, we have covered the sequential events of DW healing, pathophysiology, current treatments, and its limitations, along with a particular emphasis on the mechanism of action of these in situ gelling injectable hydrogels treating DWs.
Collapse
Affiliation(s)
- Lavanya Mude
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Anoop Narayanan V
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Deralakatte, Mangalore, Karnataka, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | |
Collapse
|
7
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
8
|
Fels J, Kusche-Vihrog K. Endothelial Nanomechanics in the Context of Endothelial (Dys)function and Inflammation. Antioxid Redox Signal 2019; 30:945-959. [PMID: 29433330 PMCID: PMC6354603 DOI: 10.1089/ars.2017.7327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Stiffness of endothelial cells is closely linked to the function of the vasculature as it regulates the release of vasoactive substances such as nitric oxide (NO) and reactive oxygen species. The outer layer of endothelial cells, consisting of the glycocalyx above and the cortical zone beneath the plasma membrane, is a vulnerable compartment able to adapt its nanomechanical properties to any changes of forces exerted by the adjacent blood stream. Sustained stiffening of this layer contributes to the development of endothelial dysfunction and vascular pathologies. Recent Advances: The development of specific techniques to quantify the mechanical properties of cells enables the detailed investigation of the mechanistic link between structure and function of cells. CRITICAL ISSUES Challenging the mechanical stiffness of cells, for instance, by inflammatory mediators can lead to the development of endothelial dysfunction. Prevention of sustained stiffening of the outer layer of endothelial cells in turn improves endothelial function. FUTURE DIRECTIONS The mechanical properties of cells can be used as critical marker and test system for the proper function of the vascular system. Pharmacological substances, which are able to improve endothelial nanomechanics and function, could take a new importance in the prevention and treatment of vascular diseases. Thus, detailed knowledge acquisition about the structure/function relationship of endothelial cells and the underlying signaling pathways should be promoted.
Collapse
Affiliation(s)
- Johannes Fels
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany
| | | |
Collapse
|
9
|
Levels of Soluble Endothelium Adhesion Molecules and Complications among Sickle Cell Disease Patients in Ghana. Diseases 2018; 6:diseases6020029. [PMID: 29690499 PMCID: PMC6023299 DOI: 10.3390/diseases6020029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Soluble adhesion molecules are involved in the gathering and joining of inflammatory cells to vascular endothelium. Therefore, they serve as potential markers of endothelial dysfunction in vascular diseases including sickle cell disease (SCD). In Ghana, there are scarcely any report on the levels of adhesion molecules among SCD patients. The current study aimed to determine plasma levels of ICAM-1, VCAM-1 and E-Selectin as markers of endothelial dysfunction in SCD patients in steady state, complications and controls. METHODOLOGY This was a cross-sectional study involving 60 HbAA controls, 46 HbSS steady state, 57 HbSS VOC, 18 HbSC VOC, 21 HbSS with leg ulcer and 11 HbSS with priapism. Blood samples were collected from all the study subjects (n = 213) and processed into plasma. The plasma levels of VCAM-1, ICAM-1 and E-Selectin concentrations of SCD patients and controls were measured using a double sandwich ELISA technique. Demographic information was also collected from the study subjects. RESULTS Levels of all soluble proteins (ICAM-1, VCAM-1 and E-Selectin) were significantly higher in HbSS steady-state patients compared to non-SCD controls (p < 0.001). Generally, SCD patients with complications had relatively higher levels of the soluble proteins compared to those in the steady-state. Of the SCD patients with complications, those with vaso-occlusion crisis (HbSS VOC) had relatively higher levels of ICAM-1, VCAM-1 and E-Selectin at (62.42 ng/mL ± 26.09), (634.99 ng/mL ± 324.31) and (236.77 ng/mL ± 114.40) respectively; Conclusion: Although levels of adhesion molecules were high in all the SCD patients with complications, those with vaso-occlusive crisis had higher levels. This might reflect an ongoing endothelial dysfunction in these patients. SCD patients with vaso-occlusive crisis presents with a more severe pathophysiology condition.
Collapse
|
10
|
NADPH Oxidase Deficiency: A Multisystem Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4590127. [PMID: 29430280 PMCID: PMC5753020 DOI: 10.1155/2017/4590127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis.
Collapse
|
11
|
Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I. Allopurinol protects human glomerular endothelial cells from high glucose-induced reactive oxygen species generation, p53 overexpression and endothelial dysfunction. Int Urol Nephrol 2017; 50:179-186. [PMID: 29094329 DOI: 10.1007/s11255-017-1733-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Mitochondrial reactive oxygen species (ROS) overproduction in capillary endothelial cells is a prerequisite for the development of diabetic nephropathy. Inhibition of xanthine oxidase, another ROS generator, ameliorates experimental diabetic nephropathy. To test the hypothesis that the initial high glucose-induced ROS production by the mitochondria activates xanthine oxidase, which afterward remains as the major source of ROS, we cultured primary human glomerular endothelial cells (GEnC) under normal or high-glucose conditions, with or without the xanthine oxidase inhibitor allopurinol. METHODS ROS generation and nitric oxide synthase (NOS) activity were assessed by chemiluminescence or colorimetrically. Levels of intercellular adhesion molecule 1 (ICAM-1), p53 and phosphorylated p53 (p-p53) were assessed by western blotting. RESULTS Allopurinol prevented high glucose-induced ROS generation indicating that xanthine oxidase is the major source of ROS. Allopurinol protected GEnC from endothelial dysfunction since it prevented the high glucose-induced decrease in NOS activity and increase in ICAM-1 expression. Allopurinol reduced p53 and p-p53 levels induced by high glucose suggesting an axis of xanthine oxidase-derived ROS, DNA damage, p53 stabilization and endothelial dysfunction that may contribute to the pathogenesis of diabetic nephropathy. CONCLUSIONS Allopurinol protects GEnC from high glucose-induced ROS generation, p53 overexpression and endothelial dysfunction. These data provide a pathogenetic mechanism that supports the results of experimental and clinical studies about the beneficial effect of xanthine oxidase inhibitors on the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Neo Ktirio, Mezourlo Hill, 41110, Larissa, Greece.
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Neo Ktirio, Mezourlo Hill, 41110, Larissa, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Neo Ktirio, Mezourlo Hill, 41110, Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Neo Ktirio, Mezourlo Hill, 41110, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Neo Ktirio, Mezourlo Hill, 41110, Larissa, Greece
| |
Collapse
|
12
|
Levy-Ontman O, Huleihel M, Hamias R, Wolak T, Paran E. An anti-inflammatory effect of red microalga polysaccharides in coronary artery endothelial cells. Atherosclerosis 2017; 264:11-18. [DOI: 10.1016/j.atherosclerosis.2017.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 01/25/2023]
|
13
|
Schröder K, Weissmann N, Brandes RP. Organizers and activators: Cytosolic Nox proteins impacting on vascular function. Free Radic Biol Med 2017; 109:22-32. [PMID: 28336130 DOI: 10.1016/j.freeradbiomed.2017.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 01/25/2023]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Ryu JH, Yu M, Lee S, Ryu DR, Kim SJ, Kang DH, Choi KB. AST-120 Improves Microvascular Endothelial Dysfunction in End-Stage Renal Disease Patients Receiving Hemodialysis. Yonsei Med J 2016; 57:942-9. [PMID: 27189289 PMCID: PMC4951472 DOI: 10.3349/ymj.2016.57.4.942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/19/2015] [Accepted: 09/30/2015] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Endothelial dysfunction (ED) is a pivotal phenomenon in the development of cardiovascular disease (CVD) in patients receiving hemodialysis (HD). Indoxyl sulfate (IS) is a known uremic toxin that induces ED in patients with chronic kidney disease. The aim of this study was to investigate whether AST-120, an absorbent of IS, improves microvascular or macrovascular ED in HD patients. MATERIALS AND METHODS We conducted a prospective, case-controlled trial. Fourteen patients each were enrolled in respective AST-120 and control groups. The subjects in the AST-120 group were treated with AST-120 (6 g/day) for 6 months. Microvascular function was assessed by laser Doppler flowmetry using iontophoresis of acetylcholine (Ach) and sodium nitroprusside (SNP) at baseline and again at 3 and 6 months. Carotid arterial intima-media thickness (cIMT) and flow-mediated vasodilation were measured at baseline and 6 months. The Wilcoxon rank test was used to compare values before and after AST-120 treatment. RESULTS Ach-induced iontophoresis (endothelium-dependent response) was dramatically ameliorated at 3 months and 6 months in the AST-120 group. SNP-induced response showed delayed improvement only at 6 months in the AST-120 group. The IS level was decreased at 3 months in the AST-120 group, but remained stable thereafter. cIMT was significantly reduced after AST-120 treatment. No significant complications in patients taking AST-120 were reported. CONCLUSION AST-120 ameliorated microvascular ED and cIMT in HD patients. A randomized study including a larger population will be required to establish a definitive role of AST-120 as a preventive medication for CVD in HD patients.
Collapse
Affiliation(s)
- Jung Hwa Ryu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Mina Yu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Sihna Lee
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Dong Ryeol Ryu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Seung Jung Kim
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Duk Hee Kang
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyu Bok Choi
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
15
|
Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The Human Microcirculation: Regulation of Flow and Beyond. Circ Res 2016; 118:157-72. [PMID: 26837746 DOI: 10.1161/circresaha.115.305364] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microcirculation is responsible for orchestrating adjustments in vascular tone to match local tissue perfusion with oxygen demand. Beyond this metabolic dilation, the microvasculature plays a critical role in modulating vascular tone by endothelial release of an unusually diverse family of compounds including nitric oxide, other reactive oxygen species, and arachidonic acid metabolites. Animal models have provided excellent insight into mechanisms of vasoregulation in health and disease. However, there are unique aspects of the human microcirculation that serve as the focus of this review. The concept is put forth that vasculoparenchymal communication is multimodal, with vascular release of nitric oxide eliciting dilation and preserving normal parenchymal function by inhibiting inflammation and proliferation. Likewise, in disease or stress, endothelial release of reactive oxygen species mediates both dilation and parenchymal inflammation leading to cellular dysfunction, thrombosis, and fibrosis. Some pathways responsible for this stress-induced shift in mediator of vasodilation are proposed. This paradigm may help explain why microvascular dysfunction is such a powerful predictor of cardiovascular events and help identify new approaches to treatment and prevention.
Collapse
Affiliation(s)
- David D Gutterman
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee.
| | - Dawid S Chabowski
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andrew O Kadlec
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Durand
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Julie K Freed
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Karima Ait-Aissa
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| | - Andreas M Beyer
- From the Cardiovascular Center (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A., M.J.D.), Departments of Medicine (A.M.B., A.O.K., D.D.G., D.S.C., J.K.F., K.A.-A.), Pharmacology and Toxicology (D.S.C., J.K.F.), Physiology (A.M.B., A.O.K.), Physical Medicine and Rehabilitation (M.J.D.), and Anesthesiology (J.K.F.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
16
|
Pioglitazone ameliorates methotrexate-induced renal endothelial dysfunction via amending detrimental changes in some antioxidant parameters, systemic cytokines and Fas production. Vascul Pharmacol 2015; 74:139-150. [DOI: 10.1016/j.vph.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/29/2015] [Accepted: 07/04/2015] [Indexed: 02/07/2023]
|
17
|
de Windt TS, Saris DBF, Slaper-Cortenbach ICM, van Rijen MHP, Gawlitta D, Creemers LB, de Weger RA, Dhert WJA, Vonk LA. Direct Cell-Cell Contact with Chondrocytes Is a Key Mechanism in Multipotent Mesenchymal Stromal Cell-Mediated Chondrogenesis. Tissue Eng Part A 2015; 21:2536-47. [PMID: 26166387 DOI: 10.1089/ten.tea.2014.0673] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Using a combination of articular chondrocytes (ACs) and mesenchymal stromal cells (MSCs) has shown to be a viable option for a single-stage cell-based treatment of focal cartilage defects. However, there is still considerable debate whether MSCs differentiate or have a chondroinductive role through trophic factors. In addition, it remains unclear whether direct cell-cell contact is necessary for chondrogenesis. Therefore, the aim of this study was to investigate whether direct or indirect cell-cell contact between ACs and MSCs is essential for increased cartilage production in different cellular environments and elucidate the mechanisms behind these cellular interactions. Human ACs and MSCs were cultured in a 10:90 ratio in alginate beads, fibrin scaffolds, and pellets. Cells were mixed in direct cocultures, separated by a Transwell filter (indirect cocultures), or cultured with conditioned medium. Short tandem repeat analysis revealed that the percentages of ACs increased during culture, while those of MSCs decreased, with the biggest change in fibrin glue scaffolds. For alginate, where the lack of cell-cell contact could be confirmed by histological analysis, no difference was found in matrix production between direct and indirect cocultures. For fibrin scaffolds and pellet cultures, an increased glycosaminoglycan production and type II collagen deposition were found in direct cocultures compared with indirect cocultures and conditioned medium. Positive connexin 43 staining and transfer of cytosolic calcein indicated communication through gap junctions in direct cocultures. Taken together, these results suggest that MSCs stimulate cartilage formation when placed in close proximity to chondrocytes and that direct cell-cell contact and communication through gap junctions are essential in this chondroinductive interplay.
Collapse
Affiliation(s)
- Tommy S de Windt
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Daniel B F Saris
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands .,2 MIRA Institute for Biotechnology and Technical Medicine, University Twente , Enschede, The Netherlands
| | - Ineke C M Slaper-Cortenbach
- 3 Cell Therapy Facility, Department of Clinical Pharmacy, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Mattie H P van Rijen
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Debby Gawlitta
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Laura B Creemers
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Roel A de Weger
- 4 Department of Pathology, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Wouter J A Dhert
- 5 Faculty of Veterinary Medicine, University of Utrecht , Utrecht, The Netherlands
| | - Lucienne A Vonk
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
18
|
Zhang Q, Wang G, Yuan W, Wu J, Wang M, Li C. The effects of phosphodiesterase-5 inhibitor sildenafil against post-resuscitation myocardial and intestinal microcirculatory dysfunction by attenuating apoptosis and regulating microRNAs expression: essential role of nitric oxide syntheses signaling. J Transl Med 2015; 13:177. [PMID: 26040988 PMCID: PMC4467614 DOI: 10.1186/s12967-015-0550-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023] Open
Abstract
Background Recent experimental and clinical studies have indicated the cardioprotective role of sildenafil during ischemia/reperfusion (I/R) injury. Sildenafil has been shown to attenuate postresuscitation myocardial dysfunction in piget models of ventricular fibrillation. This study was designed to investigate if administration of sildenafil will attenuate post-resuscitation myocardial dysfunction by attenuating apoptosis and regulating miRNA expressions, furthermore, ameliorating the severity of post-microcirculatory dysfunction. Methods Twenty-four male pigs (weighing 30 ± 2 kg) were randomly divided into groups, sildenafil pretreatment (n = 8), saline (n = 8) and sham operation (sham, n = 8). Sildenafil pretreatment consisted of 0.5 mg/kg sildenafil, administered once intraperitoneally 30 min prior to ventricular fibrillation (VF). Eight minutes of untreated VF was followed by defibrillation in anesthetized, closed-chest pigs. Hemodynamic status and blood samples were obtained at 0 min, 0.5, 1, 2, 4 and 6 h after return of spontaneous circulation (ROSC). Surviving pigs were euthanatized at 24 h after ROSC, and hearts were removed for analysis by electron microscopy, western blotting, quantitative real-time polymerase chain reaction (PCR), and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Intestinal microcirculatory blood flow was visualized by a sidestream dark-field imaging device at baseline and 0.5, 1, 2, 4, and 6 h after ROSC. Results Compared with the saline group, the sildenafil group had a higher 24-hour survival (7/8 versus 3/8 survivors, p < 0.05) and a better outcome in hemodynamic parameters. The protective effect of sildenafil also correlated with reduced cardiomyocyte apoptosis, as evidenced by reduced TUNEL-positive cells, increased anti-apoptotic Bcl-2/Bax ratio and inhibited caspase-3 activity in myocardium. Additionally, sildenafil treatment inhibited the increases in the microRNA-1 levels and alleviated the decreases in the microRNA-133a levels which negatively regulates pro-apoptotic genes. At 6 h after ROSC, post-resuscitation perfused vessel density and microcirculatory flow index were significantly lower in the saline group than in the sildenafil group. Conclusions The major findings of this study are as follows: (1) sildenafil improved post-resuscitation perfusion of the heart, and thus reduced cardiac myocyte apoptosis and improved cardiac function; (2) sildenafil treatment inhibited the increases in the microRNA-1 levels, but alleviated the decreases in the microRNA-133a levels.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Emergency Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Guoxing Wang
- Department of Emergency Medicine, Beijing You-yi Hospital, Capital Medical University, Beijing, 100050, China.
| | - Wei Yuan
- Department of Emergency Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Junyuan Wu
- Department of Emergency Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Miaomiao Wang
- Department of Emergency Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - ChunSheng Li
- Department of Emergency Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
19
|
Sathanoori R, Swärd K, Olde B, Erlinge D. The ATP Receptors P2X7 and P2X4 Modulate High Glucose and Palmitate-Induced Inflammatory Responses in Endothelial Cells. PLoS One 2015; 10:e0125111. [PMID: 25938443 PMCID: PMC4418812 DOI: 10.1371/journal.pone.0125111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/20/2015] [Indexed: 12/20/2022] Open
Abstract
Endothelial cells lining the blood vessels are principal players in vascular inflammatory responses. Dysregulation of endothelial cell function caused by hyperglycemia, dyslipidemia, and hyperinsulinemia often result in impaired vasoregulation, oxidative stress, inflammation, and altered barrier function. Various stressors including high glucose stimulate the release of nucleotides thus initiating signaling via purinergic receptors. However, purinergic modulation of inflammatory responses in endothelial cells caused by high glucose and palmitate remains unclear. In the present study, we investigated whether the effect of high glucose and palmitate is mediated by P2X7 and P2X4 and if they play a role in endothelial cell dysfunction. Transcript and protein levels of inflammatory genes as well as reactive oxygen species production, endothelial-leukocyte adhesion, and cell permeability were investigated in human umbilical vein endothelial cells exposed to high glucose and palmitate. We report high glucose and palmitate to increase levels of extracellular ATP, expression of P2X7 and P2X4, and inflammatory markers. Both P2X7 and P2X4 antagonists inhibited high glucose and palmitate-induced interleukin-6 levels with the former having a significant effect on interleukin-8 and cyclooxygenase-2. The effect of the antagonists was confirmed with siRNA knockdown of the receptors. In addition, P2X7 mediated both high glucose and palmitate-induced increase in reactive oxygen species levels and decrease in endothelial nitric oxide synthase. Blocking P2X7 inhibited high glucose and palmitate-induced expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as leukocyte-endothelial cell adhesion. Interestingly, high glucose and palmitate enhanced endothelial cell permeability that was dependent on both P2X7 and P2X4. Furthermore, antagonizing the P2X7 inhibited high glucose and palmitate-mediated activation of p38-mitogen activated protein kinase. These findings support a novel role for P2X7 and P2X4 coupled to induction of inflammatory molecules in modulating high glucose and palmitate-induced endothelial cell activation and dysfunction.
Collapse
Affiliation(s)
- Ramasri Sathanoori
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Björn Olde
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Im GI. Coculture in Musculoskeletal Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:545-54. [DOI: 10.1089/ten.teb.2013.0731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
21
|
Hackenhaar FS, Fumagalli F, Li Volti G, Sorrenti V, Russo I, Staszewsky L, Masson S, Latini R, Ristagno G. Relationship between post-cardiac arrest myocardial oxidative stress and myocardial dysfunction in the rat. J Biomed Sci 2014; 21:70. [PMID: 25134966 PMCID: PMC4237821 DOI: 10.1186/s12929-014-0070-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023] Open
Abstract
Background Reperfusion after resuscitation from cardiac arrest (CA) is an event that increases reactive oxygen species production leading to oxidative stress. More specifically, myocardial oxidative stress may play a role in the severity of post-CA myocardial dysfunction. This study investigated the relationship between myocardial oxidative stress and post-CA myocardial injury and dysfunction in a rat model of CA and cardiopulmonary resuscitation (CPR). Ventricular fibrillation was induced in 26 rats and was untreated for 6 min. CPR, including mechanical chest compression, ventilation, and epinephrine, was then initiated and continued for additional 6 min prior to defibrillations. Resuscitated animals were sacrificed at two h (n = 9), 4 h (n = 6) and 72 h (n = 8) following resuscitation, and plasma collected for assessment of: high sensitivity cardiac troponin T (hs-cTnT), as marker of myocardial injury; isoprostanes (IsoP), as marker of lipid peroxidation; and 8-hydroxyguanosine (8-OHG), as marker of DNA oxidative damage. Hearts were also harvested for measurement of tissue IsoP and 8-OHG. Myocardial function was assessed by echocardiography at the corresponding time points. Additional 8 rats were not subjected to CA and served as baseline controls. Results Compared to baseline, left ventricular ejection fraction (LVEF) was reduced at 2 and 4 h following resuscitation (p < 0.01), while it was similar at 72 h. Inversely, plasma hs-cTnT increased, compared to baseline, at 2 and 4 h post-CA (p < 0.01), and then recovered at 72 h. Similarly, plasma and myocardial tissue IsoP and 8-OHG levels increased at 2 and 4 h post-resuscitation (p < 0.01 vs. baseline), while returned to baseline 72 h later. Myocardial IsoP were directly related to hs-cTnT levels (r = 0.760, p < 0.01) and inversely related to LVEF (r = -0.770, p < 0.01). Myocardial 8-OHG were also directly related to hs-cTnT levels (r = 0.409, p < 0.05) and inversely related to LVEF (r = -0.548, p < 0.01). Conclusions The present study provides evidence that lipid peroxidation and DNA oxidative damage in myocardial tissue are closely related to myocardial injury and LV dysfunction during the initial hours following CA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Giuseppe Ristagno
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| |
Collapse
|
22
|
Duong TTH, Chami B, McMahon AC, Fong GM, Dennis JM, Freedman SB, Witting PK. Pre-treatment with the synthetic antioxidant T-butyl bisphenol protects cerebral tissues from experimental ischemia reperfusion injury. J Neurochem 2014; 130:733-47. [PMID: 24766199 DOI: 10.1111/jnc.12747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 04/16/2014] [Accepted: 04/20/2014] [Indexed: 12/30/2022]
Abstract
Treatments to inhibit or repair neuronal cell damage sustained during focal ischemia/reperfusion injury in stroke are largely unavailable. We demonstrate that dietary supplementation with the antioxidant di-tert-butyl-bisphenol (BP) before injury decreases infarction and vascular complications in experimental stroke in an animal model. We confirm that BP, a synthetic polyphenol with superior radical-scavenging activity than vitamin E, crosses the blood-brain barrier and accumulates in rat brain. Supplementation with BP did not affect blood pressure or endogenous vitamin E levels in plasma or cerebral tissue. Pre-treatment with BP significantly lowered lipid, protein and thiol oxidation and decreased infarct size in animals subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. This neuroprotective action was accompanied by down-regulation of hypoxia inducible factor-1α and glucose transporter-1 mRNA levels, maintenance of neuronal tissue ATP concentration and inhibition of pro-apoptotic factors that together enhanced cerebral tissue viability after injury. That pre-treatment with BP ameliorates oxidative damage and preserves cerebral tissue during focal ischemic insult indicates that oxidative stress plays at least some causal role in promoting tissue damage in experimental stroke. The data strongly suggest that inhibition of oxidative stress through BP scavenging free radicals in vivo contributes significantly to neuroprotection. We demonstrate that pre-treatment with ditert-butyl bisphenol(Di-t-Bu-BP) inhibits lipid, protein, and total thiol oxidation and decreases caspase activation and infarct size in rats subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. These data suggest that inhibition of oxidative stress contributes significantly to neuroprotection.
Collapse
Affiliation(s)
- Thi Thuy Hong Duong
- Vascular Biology Group, ANZAC Research Institute, Concord Hospital, Concord, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:596-608. [PMID: 24749845 DOI: 10.1089/ten.teb.2013.0771] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Articular cartilage repair and regeneration provides a substantial challenge in Regenerative Medicine because of the high degree of morphological and mechanical complexity intrinsic to hyaline cartilage due, in part, to its extracellular matrix. Cartilage remains one of the most difficult tissues to heal; even state-of-the-art regenerative medicine technology cannot yet provide authentic cartilage resurfacing. Mesenchymal stem cells (MSCs) were once believed to be the panacea for cartilage repair and regeneration, but despite years of research, they have not fulfilled these expectations. It has been observed that MSCs have an intrinsic differentiation program reminiscent of endochondral bone formation, which they follow after exposure to specific reagents as a part of current differentiation protocols. Efforts have been made to avoid the resulting hypertrophic fate of MSCs; however, so far, none of these has recreated a fully functional articular hyaline cartilage without chondrocytes exhibiting a hypertrophic phenotype. We reviewed the current literature in an attempt to understand why MSCs have failed to regenerate articular cartilage. The challenges that must be overcome before MSC-based tissue engineering can become a front-line technology for successful articular cartilage regeneration are highlighted.
Collapse
Affiliation(s)
- Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio
| | | | | | | |
Collapse
|
24
|
Coates EE, Fisher JP. Engineering superficial zone chondrocytes from mesenchymal stem cells. Tissue Eng Part C Methods 2014; 20:630-40. [PMID: 24279336 DOI: 10.1089/ten.tec.2013.0224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent cartilage engineering efforts have focused on development of zonally organized tissue. However, there remains a need for protocols that differentiate progenitor populations into chondrocytes of zonal phenotype. Here, we evaluate the potential of coculture of bovine mesenchymal stem cells (MSCs) and zonal explants of bovine cartilage tissue to drive MSC differentiation to chondrocytes with the superficial zone phenotype. Two coculture systems were set up: one between alginate encapsulated MSCs and superficial zone cartilage explants, and one between MSCs and middle/deep zone cartilage explants. Chondrogenic and superficial zone markers were monitored over a 21-day differentiation period via gene and protein expression. A control conditioned media study was used to determine the impact of communication via soluble factors between cell populations during differentiation. At day 21, results show superficial zone explant coculture without transforming-growth factor β3 supplementation induces upregulation of chondrogenic gene expression markers SOX9 and type II collagen 3.4-fold and 11.4-fold, respectively, over standard chondrogenic control media. Further, coculture of MSCs and superficial zone explants can be used to upregulate mRNA expression of the superficial zone marker proteoglycan-4 in MSCs (1.75-fold over chondrogenic control at day 21), indicating the superficial zone chondrocyte phenotype. Gene expression data show middle/deep zone explant and MSC coculture did not induce the chondrogenesis observed in superficial zone explant coculture. Likewise, poor chondrogenesis was observed in all conditioned media groups. Results highlight the importance of superficial zone cartilage and cells in guiding stem cell fate and regulating differentiation of MSCs to chondrocytes of the superficial zone type.
Collapse
Affiliation(s)
- Emily E Coates
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland
| | | |
Collapse
|
25
|
Selenite-mediated production of superoxide radical anions in A549 cancer cells is accompanied by a selective increase in SOD1 concentration, enhanced apoptosis and Se-Cu bonding. J Biol Inorg Chem 2014; 19:813-28. [PMID: 24535002 DOI: 10.1007/s00775-014-1113-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/23/2014] [Indexed: 12/29/2022]
Abstract
Selenite may exert its cytotoxic effects against cancer cells via the generation of reactive oxygen species (ROS). We investigated sources of, and the cellular response to, superoxide radical anion (O2 (·-)) generated in human A549 lung cancer cells after treatment with selenite. A temporal delay was observed between selenite treatment and increases in O2 (·-) production and biomarkers of apoptosis/necrosis, indicating that the reduction of selenite by the glutathione reductase/NADPH system (yielding O2 (·-)) is a minor contributor to ROS production under these conditions. By contrast, mitochondrial and NADPH oxidase O2 (·-) generation were the major contributors. Treatment with a ROS scavenger [poly(ethylene glycol)-conjugated superoxide dismutase (SOD) or sodium 4,5-dihydroxybenzene-1,3-disulfonate] 20 h after the initial selenite treatment inhibited both ROS generation and apoptosis determined at 24 h. In addition, SOD1 was selectively upregulated and its perinuclear cytoplasmic distribution was colocalised with the cellular distribution of selenium. Interestingly, messenger RNA for manganese superoxide dismutase, catalase, inducible haem oxygenase 1 and glutathione peroxidase either remained unchanged or showed a delayed response to selenite treatment. Colocalisation of Cu and Se in these cells (Weekley et al. in J. Am. Chem. Soc. 133:18272-18279, 2011) potentially results from the formation of a Cu-Se species, as indicated by Cu K-edge extended X-ray absorption fine structure spectra. Overall, SOD1 is upregulated in response to selenite-mediated ROS generation, and this likely leads to an accumulation of toxic hydrogen peroxide that is temporally related to decreased cancer cell viability. Increased expression of SOD1 gene/protein coupled with formation of a Cu-Se species may explain the colocalisation of Cu and Se observed in these cells.
Collapse
|
26
|
Yao CW, Piao MJ, Kim KC, Zheng J, Cha JW, Hyun JW. 6'-o-galloylpaeoniflorin protects human keratinocytes against oxidative stress-induced cell damage. Biomol Ther (Seoul) 2013; 21:349-57. [PMID: 24244822 PMCID: PMC3825198 DOI: 10.4062/biomolther.2013.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023] Open
Abstract
6'-O-galloylpaeoniflorin (GPF) is a galloylated derivate of paeoniflorin and a key chemical constituent of the peony root, a perennial flowering plant that is widely used as an herbal medicine in East Asia. This study is the first investigation of the cytoprotective effects of GPF against hydrogen peroxide (H2O2)-induced cell injury and death in human HaCaT keratinocytes. GPF demonstrated a significant scavenging capacity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, H2O2-generated intracellular reactive oxygen species (ROS), the superoxide anion radical (O2-), and the hydroxyl radical (•OH). GPF also safeguarded HaCaT keratinocytes against H2O2-provoked apoptotic cell death and attenuated oxidative macromolecular damage to DNA, lipids, and proteins. The compound exerted its cytoprotective actions in keratinocytes at least in part by decreasing the number of DNA strand breaks, the levels of 8-isoprostane (a stable end-product of lipid peroxidation), and the formation of carbonylated protein species. Taken together, these results indicate that GPF may be developed as a cytoprotector against ROS-mediated oxidative stress.
Collapse
Affiliation(s)
- Cheng Wen Yao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Hua S, Song C, Geczy CL, Freedman SB, Witting PK. A role for acute-phase serum amyloid A and high-density lipoprotein in oxidative stress, endothelial dysfunction and atherosclerosis. Redox Rep 2013; 14:187-96. [DOI: 10.1179/135100009x12525712409490] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
29
|
Singh A, Ramnath RD, Foster RR, Wylie EC, Fridén V, Dasgupta I, Haraldsson B, Welsh GI, Mathieson PW, Satchell SC. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One 2013; 8:e55852. [PMID: 23457483 PMCID: PMC3573029 DOI: 10.1371/journal.pone.0055852] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 01/05/2013] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx. The aim of this study is to investigate the direct effects of ROS on the structure and function of GEnC glycocalyx using conditionally immortalised human GEnC. ROS were generated by exogenous hydrogen peroxide. Biosynthesis and cleavage of GAG chains was analyzed by radiolabelling (S(35) and (3)H-glucosamine). GAG chains were quantified on GEnC surface and in the cell supernatant using liquid chromatography and immunofluorescence techniques. Barrier properties were estimated by measuring trans-endothelial passage of albumin. ROS caused a significant loss of WGA lectin and heparan sulphate staining from the surface of GEnC. This lead to an increase in trans-endothelial albumin passage. The latter could be inhibited by catalase and superoxide dismutase. The effect of ROS on GEnC was not mediated via the GAG biosynthetic pathway. Quantification of radiolabelled GAG fractions in the supernatant confirmed that ROS directly caused shedding of HS GAG. This finding is clinically relevant and suggests a mechanism by which ROS may cause proteinuria in clinical conditions associated with high oxidative stress.
Collapse
Affiliation(s)
- Anurag Singh
- Academic Renal Unit, Clinical Sciences North Bristol, Southmead Hospital, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Leijten JC, Georgi N, Wu L, van Blitterswijk CA, Karperien M. Cell Sources for Articular Cartilage Repair Strategies: Shifting from Monocultures to Cocultures. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:31-40. [DOI: 10.1089/ten.teb.2012.0273] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jeroen C.H. Leijten
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Nicole Georgi
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ling Wu
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens A. van Blitterswijk
- Faculty of Science and Technology, Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
31
|
Bulman SE, Barron V, Coleman CM, Barry F. Enhancing the Mesenchymal Stem Cell Therapeutic Response: Cell Localization and Support for Cartilage Repair. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:58-68. [DOI: 10.1089/ten.teb.2012.0101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sarah E. Bulman
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
- Smith&Nephew, York Science Park, Heslington, York, United Kingdom
| | - Valerie Barron
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Cynthia M. Coleman
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland Galway, Galway City, County Galway, Ireland
| |
Collapse
|
32
|
Cheng NC, Estes BT, Young TH, Guilak F. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A 2012; 19:484-96. [PMID: 23088537 DOI: 10.1089/ten.tea.2012.0384] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autologous cell-based tissue engineering using three-dimensional scaffolds holds much promise for the repair of cartilage defects. Previously, we reported on the development of a porous scaffold derived solely from native articular cartilage, which can induce human adipose-derived stem cells (ASCs) to differentiate into a chondrogenic phenotype without exogenous growth factors. However, this ASC-seeded cartilage-derived matrix (CDM) contracts over time in culture, which may limit certain clinical applications. The present study aimed to investigate the ability of chemical crosslinking using a natural biologic crosslinker, genipin, to prevent scaffold contraction while preserving the chondrogenic potential of CDM. CDM scaffolds were crosslinked in various genipin concentrations, seeded with ASCs, and then cultured for 4 weeks to evaluate the influence of chemical crosslinking on scaffold contraction and ASC chondrogenesis. At the highest crosslinking degree of 89%, most cells failed to attach to the scaffolds and resulted in poor formation of a new extracellular matrix. Scaffolds with a low crosslinking density of 4% experienced cell-mediated contraction similar to our original report on noncrosslinked CDM. Using a 0.05% genipin solution, a crosslinking degree of 50% was achieved, and the ASC-seeded constructs exhibited no significant contraction during the culture period. Moreover, expression of cartilage-specific genes, synthesis, and accumulation of cartilage-related macromolecules and the development of mechanical properties were comparable to the original CDM. These findings support the potential use of a moderately (i.e., approximately one-half of the available lysine or hydroxylysine residues being crosslinked) crosslinked CDM as a contraction-free biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
33
|
Maghzal GJ, Krause KH, Stocker R, Jaquet V. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 2012; 53:1903-18. [PMID: 22982596 DOI: 10.1016/j.freeradbiomed.2012.09.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022]
Abstract
NADPH oxidases (NOX) are superoxide anion radical (O(2)(-•))-generating enzymes. They form a family of seven members, each with a specific tissue distribution. They function as electron transport chains across membranes, using NADPH as electron donor to reduce molecular oxygen to O(2)(-•). NOX have multiple biological functions, ranging from host defense to inflammation and cellular signaling. Measuring NOX activity is crucial in understanding the roles of these enzymes in physiology and pathology. Many of the methods used to measure NOX activity are based on the detection of small molecules that react with NOX-generated O(2)(-•) or its direct dismutation product hydrogen peroxide (H(2)O(2)) to form fluorescent, luminescent, or colored products. Initial techniques were developed to measure the activity of the phagocyte isoform NOX2 during the oxidative burst of stimulated polymorphonuclear leukocytes, which generate large quantities of O(2)(-•). However, other members of the NOX family generate much less O(2)(-•) and hence H(2)O(2), and their activity is difficult to distinguish from other sources of these reactive species. In addition, O(2)(-•) and H(2)O(2) are reactive molecules and most probes are prone to artifacts and therefore should be used with appropriate controls and the data carefully interpreted. This review gives an overview of current methods used to measure NOX activity and NOX-derived O(2)(-•) and H(2)O(2) in cells, tissues, isolated systems, and living organisms, describing the advantages and caveats of many established methods with emphasis on more recent technologies and future perspectives.
Collapse
Affiliation(s)
- Ghassan J Maghzal
- Centre for Vascular Research, School of Medical Sciences (Pathology) and Bosch Institute, The University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
34
|
Al Ghouleh I, Frazziano G, Rodriguez AI, Csányi G, Maniar S, St Croix CM, Kelley EE, Egaña LA, Song GJ, Bisello A, Lee YJ, Pagano PJ. Aquaporin 1, Nox1, and Ask1 mediate oxidant-induced smooth muscle cell hypertrophy. Cardiovasc Res 2012; 97:134-42. [PMID: 22997161 DOI: 10.1093/cvr/cvs295] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Reactive oxygen species (ROS)-mediated intracellular signalling is well described in the vasculature, yet the precise roles of ROS in paracrine signalling are not known. Studies implicate interstitial ROS hydrogen peroxide (H(2)O(2)) in vascular disease, and plasma H(2)O(2) levels in the micromolar range are detectable in animal models and humans with hypertension. Recently, H(2)O(2) was shown to cross biological membranes of non-vascular cells via aquaporin (Aqp) water channels. Previous findings suggest that H(2)O(2) activates NADPH oxidase (Nox) enzymes in vascular cells and apoptosis signal-regulating kinase 1 (Ask1) in non-vascular cells. We hypothesized that extracellular H(2)O(2) induces smooth muscle cell (SMC) hypertrophy by a mechanism involving Aqp1, Nox1, and Ask1. METHODS AND RESULTS Treatment of rat aortic SMCs (rASMC) with exogenous H(2)O(2) resulted in a concentration-dependent increase in Nox-derived superoxide (O(2)(•-)), determined by L-012 chemiluminescence, cytochrome c and electron paramagnetic resonance. Nox1 was verified as the source of O(2)(·-) by siRNA. Aqp1 siRNA attenuated H(2)O(2) cellular entry and H(2)O(2)-induced O(2)(•-) production. H(2)O(2) treatment increased Ask1 activation and induced rASMC hypertrophy in a Nox1-dependent mechanism. Adenoviral-dominant-negative Ask1 attenuated H(2)O(2)-induced rASMC hypertrophy and adenoviral overexpression of Ask1 augmented it. CONCLUSION Our results demonstrate for the first time that extracellular H(2)O(2), at pathophysiological concentrations, stimulates rASMC Nox1-derived O(2)(•-), subsequent Ask1 activation and SMC hypertrophy. The data demonstrate a novel pathway by which H(2)O(2) enters vascular cells via aquaporins and activates Nox, leading to hypertrophy, and provide multiple novel targets for combinatorial therapeutics development targeting hypertrophy and vascular disease.
Collapse
Affiliation(s)
- Imad Al Ghouleh
- Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu J, Zhou H, Weir MD, Xu HHK, Chen Q, Trotman CA. Fast-degradable microbeads encapsulating human umbilical cord stem cells in alginate for muscle tissue engineering. Tissue Eng Part A 2012; 18:2303-14. [PMID: 22697426 DOI: 10.1089/ten.tea.2011.0658] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) are inexhaustible and can be obtained without an invasive surgery. To date, there has been no report on seeding hUCMSCs in three-dimensional scaffolds for muscle tissue engineering. The objectives of this study were to (1) investigate hUCMSC seeding in a scaffold for muscle engineering and (2) develop a novel construct consisting of hUCMSC-encapsulating and fast-degradable microbeads inside a hydrogel matrix. The rationale was that the hydrogel matrix would maintain the defect volume, while the microbeads would degrade to release the cells and concomitantly create macropores in the matrix. hUCMSCs were encapsulated in alginate-fibrin microbeads, which were packed in an Arg-Gly-Asp (RGD)-modified alginate matrix (AM). This construct is referred to as hUCMSC-microbead-AM. The control consisted of the usual cell encapsulation in AM without microbeads (referred to as hUCMSC-AM). In the hUCMSC-AM construct, the hUCMSCs showed as round dots with no spreading at 1-14 days. In contrast, cells in the hUCMSC-microbead-AM construct had a healthy spreading and elongated morphology. The microbeads successfully degraded and released the cells at 8 days. Myogenic expressions for hUCMSC-microbead-AM were more than threefold those of hUCMSC-AM (p<0.05). Immunofluorescence for myogenic markers was much stronger for hUCMSC-microbead-AM than hUCMSC-AM. Muscle creatine kinase of hUCMSC-microbead-AM at 14 days was twofold that of hUCMSC-AM (p<0.05). In conclusion, hUCMSC encapsulation in novel fast-degradable microbeads inside a hydrogel matrix was investigated for muscle engineering. Compared to the usual method of seeding cells in a hydrogel matrix, hUCMSC-microbead-AM construct had greatly improved cell viability and myogenic differentiation, and hence, is promising to enhance muscle regeneration.
Collapse
Affiliation(s)
- Jun Liu
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
36
|
Janardhanan S, Wang MO, Fisher JP. Coculture strategies in bone tissue engineering: the impact of culture conditions on pluripotent stem cell populations. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:312-21. [PMID: 22655979 DOI: 10.1089/ten.teb.2011.0681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of pluripotent stem cell populations for bone tissue regeneration provides many opportunities and challenges within the bone tissue engineering field. For example, coculture strategies have been utilized to mimic embryological development of bone tissue, and particularly the critical intercellular signaling pathways. While research in bone biology over the last 20 years has expanded our understanding of these intercellular signaling pathways, we still do not fully understand the impact of the system's physical characteristics (orientation, geometry, and morphology). This review of coculture literature delineates the various forms of coculture systems and their respective outcomes when applied to bone tissue engineering. To understand fully the key differences between the different coculture methods, we must appreciate the underlying paradigms of physiological interactions. Recent advances have enabled us to extrapolate these techniques to larger dimensions and higher geometric resolutions. Finally, the contributions of bioreactors, micropatterned biomaterials, and biomaterial interaction platforms are evaluated to give a sense of the sophistication established by a combination of these concepts with coculture systems.
Collapse
Affiliation(s)
- Sathyanarayana Janardhanan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
37
|
Chandra S, Romero MJ, Shatanawi A, Alkilany AM, Caldwell RB, Caldwell RW. Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway. Br J Pharmacol 2012; 165:506-19. [PMID: 21740411 DOI: 10.1111/j.1476-5381.2011.01584.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE NO produced by endothelial NOS is needed for normal vascular function. During diabetes, aging and hypertension, elevated levels of arginase can compete with NOS for available l-arginine, reducing NO and increasing superoxide (O(2) (.-)) production via NOS uncoupling. Elevated O(2) (.-) combines with NO to form peroxynitrite (ONOO(-)), further reducing NO. Oxidative species increase arginase activity, but the mechanism(s) involved are not known. Our study determined the mechanism involved in peroxynitrite and hydrogen peroxide-induced enhancement in endothelial arginase activity. We hypothesized that oxidative species increase arginase activity through PKC-activated RhoA/Rho kinase (ROCK) pathway. EXPERIMENTAL APPROACH Arginase activity/expression was analysed in bovine aortic endothelial cells (BAEC) treated with an ONOO(-) generator (SIN-1) or H(2) O(2). Pretreatment with inhibitors of Rho kinase (Y-27632) or PKC (Gö6976) was used to investigate the mechanism involved in arginase activation. KEY RESULTS Exposure to SIN-1 (25 µM, 24 h) or H(2) O(2) (25 µM, 8 h) increased arginase I expression and arginase activity (35% and 50%, respectively), which was prevented by ROCK inhibitor, Y-27632, PKC inhibitor, Gö6976 or siRNA to p115-Rho GEF. There was an early activation of p115-Rho GEF (SIN-1, 2 h; H(2) O(2), 1 h) and Rho A (SIN-1, 4 h; H(2) O(2), 1 h) that was prevented by using the PKC inhibitor. Exposure to SIN-1 and H(2) O(2 ) also reduced NOS activity, which was blocked by pretreatment with p115-RhoGEF siRNA. CONCLUSIONS AND IMPLICATIONS Our data indicate that the oxidative species ONOO(-) and H(2) O(2) increase arginase activity/expression through PKC-mediated activation of RhoA/Rho kinase pathway.
Collapse
Affiliation(s)
- S Chandra
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012; 2012:918267. [PMID: 22611498 PMCID: PMC3348526 DOI: 10.1155/2012/918267] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes.
Collapse
Affiliation(s)
| | | | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
39
|
Targeting endothelial dysfunction in vascular complications associated with diabetes. Int J Vasc Med 2011; 2012:750126. [PMID: 22013533 PMCID: PMC3195347 DOI: 10.1155/2012/750126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular complications associated with diabetes remain a significant health issue in westernized societies. Overwhelming evidence from clinical and laboratory investigations have demonstrated that these cardiovascular complications are initiated by a dysfunctional vascular endothelium. Indeed, endothelial dysfunction is one of the key events that occur during diabetes, leading to the acceleration of cardiovascular mortality and morbidity. In a diabetic milieu, endothelial dysfunction occurs as a result of attenuated production of endothelial derived nitric oxide (EDNO) and augmented levels of reactive oxygen species (ROS). Thus, in this review, we discuss novel therapeutic targets that either upregulate EDNO production or increase antioxidant enzyme capacity in an effort to limit oxidative stress and restore endothelial function. In particular, endogenous signaling molecules that positively modulate EDNO synthesis and mimetics of endogenous antioxidant enzymes will be highlighted. Consequently, manipulation of these unique targets, either alone or in combination, may represent a novel strategy to confer vascular protection, with the ultimate goal of improved outcomes for diabetes-associated vascular complications.
Collapse
|
40
|
Witting PK, Song C, Hsu K, Hua S, Parry SN, Aran R, Geczy C, Freedman SB. The acute-phase protein serum amyloid A induces endothelial dysfunction that is inhibited by high-density lipoprotein. Free Radic Biol Med 2011; 51:1390-8. [PMID: 21784147 DOI: 10.1016/j.freeradbiomed.2011.06.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 06/24/2011] [Accepted: 06/25/2011] [Indexed: 11/17/2022]
Abstract
The acute-phase protein serum amyloid A (SAA) is elevated during inflammation and may be deposited in atheroma where it promotes atherosclerosis. We investigated the proatherogenic effects of SAA on the vascular endothelium and their regulation by high-density lipoprotein (HDL). Exposure of human aortic endothelial cells (HAEC) to SAA (0.25-25μg/ml) decreased nitric oxide ((•)NO) synthesis/bioavailability, although the endothelial NO synthase monomer-to-dimer ratio was unaffected. SAA (10μg/ml) stimulated a Ca(2+) influx linked to apocynin-sensitive superoxide radical anion (O(2)(•-)) production. Gene expression for arginase-1, nuclear factor κB (NF-κB), interleukin-8, and tissue factor (TF) increased within 4h of SAA stimulation. Enzymatically active Arg-1/2 was detected in HAEC cultured with SAA for 24h. Therefore, in addition to modulating (•)NO bioavailability by stimulating O(2)(•-) production in the endothelium, SAA modulated vascular l-Arg bioavailability. SAA also diminished relaxation of preconstricted aortic rings induced by acetylcholine, and added superoxide dismutase restored the vascular response. Preincubation of HAEC with HDL (100 or 200, but not 50, μg/ml) before (not after) SAA treatment ameliorated the Ca(2+) influx and O(2)(•-) production; decreased TF, NF-κB, and Arg-1 gene expression; and preserved overall vascular function. Thus, SAA may promote endothelial dysfunction by modulating (•)NO and l-Arg bioavailability, and HDL pretreatment may be protective. The relative HDL to SAA concentrations may regulate the proatherogenic properties of SAA on the vascular endothelium.
Collapse
Affiliation(s)
- Paul K Witting
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Velayutham M, Hemann C, Zweier JL. Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH. Free Radic Biol Med 2011; 51:160-70. [PMID: 21545835 PMCID: PMC3112007 DOI: 10.1016/j.freeradbiomed.2011.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/10/2011] [Accepted: 04/04/2011] [Indexed: 11/20/2022]
Abstract
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe³⁺cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H₂O₂) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe³⁺cyt c in the presence of H₂O₂. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe³⁺cyt c, and H₂O₂ in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe³⁺cyt c increased with NADH and H₂O₂ concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe³⁺cyt c oxidizes NADH to NAD(•), which in turn donates an electron to O₂, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe³⁺cyt c is reduced in the presence of both NADH and H₂O₂. Our results suggest that Fe³⁺cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe³⁺cyt c may play a key role in the mitochondrial "ROS-induced ROS-release" signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.
Collapse
Affiliation(s)
- Murugesan Velayutham
- Address correspondence to: Murugesan Velayutham, Ph.D, TMRF, Room 130, 420, W. 12th Avenue, The Ohio State University, Columbus, OH - 43210, Phone: 614-292-9082, Fax: 614-292-8454, , Jay L. Zweier, MD, Davis Heart and Lung Research Institute, 473 W. 12th Ave, Room 611C, The Ohio State University, Columbus, OH - 43210, Phone: 614-247-7788, Fax: 614-292-8778,
| | | | - Jay L. Zweier
- Address correspondence to: Murugesan Velayutham, Ph.D, TMRF, Room 130, 420, W. 12th Avenue, The Ohio State University, Columbus, OH - 43210, Phone: 614-292-9082, Fax: 614-292-8454, , Jay L. Zweier, MD, Davis Heart and Lung Research Institute, 473 W. 12th Ave, Room 611C, The Ohio State University, Columbus, OH - 43210, Phone: 614-247-7788, Fax: 614-292-8778,
| |
Collapse
|
42
|
Cho JG, Witting PK, Verma M, Wu BJ, Shanu A, Kairaitis K, Amis TC, Wheatley JR. Tissue vibration induces carotid artery endothelial dysfunction: a mechanism linking snoring and carotid atherosclerosis? Sleep 2011; 34:751-7. [PMID: 21629363 DOI: 10.5665/sleep.1042] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES We have previously identified heavy snoring as an independent risk factor for carotid atherosclerosis. In order to explore the hypothesis that snoring-associated vibration of the carotid artery induces endothelial dysfunction (an established atherogenic precursor), we utilized an animal model to examine direct effects of peri-carotid tissue vibration on carotid artery endothelial function and structure. DESIGN In supine anesthetized, ventilated rabbits, the right carotid artery (RCA) was directly exposed to vibrations for 6 h (peak frequency 60 Hz, energy matched to that of induced snoring in rabbits). Similarly instrumented unvibrated rabbits served as controls. Features of OSA such as hypoxemia, large intra-pleural swings and blood pressure volatility were prevented. Carotid endothelial function was then examined: (1) biochemically by measurement of tissue cyclic guanosine monophosphate (cGMP) to acetylcholine (ACh) and sodium nitroprusside (SNP); and (2) functionally by monitoring vessel relaxation with acetylcholine in a myobath. MEASUREMENT AND RESULTS Vessel cGMP after stimulation with ACh was reduced in vibrated RCA compared with unvibrated (control) arteries in a vibration energy dose-dependent manner. Vibrated RCA also showed decreased vasorelaxation to ACh compared with control arteries. Notably, after addition of SNP (nitric oxide donor), cGMP levels did not differ between vibrated and control arteries, thereby isolating vibration-induced dysfunction to the endothelium alone. This dysfunction occurred in the presence of a morphologically intact endothelium without increased apoptosis. CONCLUSIONS Carotid arteries subjected to 6 h of continuous peri-carotid tissue vibration displayed endothelial dysfunction, suggesting a direct plausible mechanism linking heavy snoring to the development of carotid atherosclerosis.
Collapse
Affiliation(s)
- Jin-Gun Cho
- Ludwig Engel Centre for Respiratory Research, Westmead Millennium Institute, Westmead, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kemeny SF, Figueroa DS, Andrews AM, Barbee KA, Clyne AM. Glycated collagen alters endothelial cell actin alignment and nitric oxide release in response to fluid shear stress. J Biomech 2011; 44:1927-35. [PMID: 21555127 DOI: 10.1016/j.jbiomech.2011.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/24/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
People with diabetes suffer from early accelerated atherosclerosis, which contributes to morbidity and mortality from myocardial infarction, stroke, and peripheral vascular disease. Atherosclerosis is thought to initiate at sites of endothelial cell injury. Hyperglycemia, a hallmark of diabetes, leads to non-enzymatic glycosylation (or glycation) of extracellular matrix proteins. Glycated collagen alters endothelial cell function and could be an important factor in atherosclerotic plaque development. This study examined the effect of collagen glycation on endothelial cell response to fluid shear stress. Porcine aortic endothelial cells were grown on native or glycated collagen and exposed to shear stress using an in vitro parallel plate system. Cells on native collagen elongated and aligned in the flow direction after 24 h of 20 dynes/cm(2) shear stress, as indicated by a 13% decrease in actin fiber angle distribution standard deviation. However, cells on glycated collagen did not align. Shear stress-mediated nitric oxide release by cells on glycated collagen was half that of cells on native collagen, which correlated with decreased endothelial nitric oxide synthase (eNOS) phosphorylation. Glycated collagen likely inhibited cell shear stress response through altered cell-matrix interactions, since glycated collagen attenuated focal adhesion kinase activation with shear stress. When focal adhesion kinase was pharmacologically blocked in cells on native collagen, eNOS phosphorylation with flow was reduced in a manner similar to that of glycated collagen. These detrimental effects of glycated collagen on endothelial cell response to shear stress may be an important contributor to accelerated atherosclerosis in people with diabetes.
Collapse
Affiliation(s)
- Steven F Kemeny
- Drexel University, Department of Mechanical Engineering and Mechanics, USA
| | | | | | | | | |
Collapse
|
44
|
Wolin MS. Plasma glutathione peroxidase activity is potentially a key regulator of vascular disease-associated thrombosis. Circulation 2011; 123:1923-4. [PMID: 21518984 DOI: 10.1161/circulationaha.111.028688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Shanu A, Parry SN, Wood S, Rodas E, Witting PK. The synthetic polyphenol tert-butyl-bisphenol inhibits myoglobin-induced dysfunction in cultured kidney epithelial cells. Free Radic Res 2011; 44:843-53. [PMID: 20528578 DOI: 10.3109/10715762.2010.485993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract Rhabdomyolysis caused by severe burn releases extracellular myoglobin (Mb) that accumulates in the kidney and urine (maximum [Mb] approximately 50 microM) (termed myoglobinuria). Extracellular Mb can be a pro-oxidant. This study cultured Madin-Darby-canine-kidney-Type-II (MDCK II) cells in the presence of Mb and tested whether supplementation with a synthetic tert-butyl-polyphenol (tert-butyl-bisphenol; t-BP) protects these renal cells from dysfunction. In the absence of t-BP, cells exposed to 0-100 microM Mb for 24 h showed a dose-dependent decrease in ATP and the total thiol (TSH) redox status without loss of viability. Gene expression of superoxide dismutases-1/2, haemoxygenase-1 and tumour necrosis factor increased and receptor-mediated endocytosis of transferrin and monolayer permeability decreased significantly. Supplementation with t-BP before Mb-insult maintained ATP and the TSH redox status, diminished antioxidant/pro-inflammatory gene responses, enhanced monolayer permissiveness and restored transferrin uptake. Overall, bolstering the total antioxidant capacity of the kidney may protect against oxidative stress induced by experimental myoglobinuria.
Collapse
Affiliation(s)
- Anu Shanu
- Discipline of Pathology, Redox Biology Group, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
46
|
Bian L, Zhai DY, Mauck RL, Burdick JA. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng Part A 2011; 17:1137-45. [PMID: 21142648 DOI: 10.1089/ten.tea.2010.0531] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair; however, it still remains a challenge to recapitulate the functional properties of native articular cartilage using only MSCs. Additionally, MSCs may exhibit a hypertrophic phenotype under chondrogenic induction, resulting in calcification after ectopic transplantation. With this in mind, the objective of this study was to assess whether the addition of chondrocytes to MSC cultures influences the properties of tissue-engineered cartilage and MSC hypertrophy when cultured in hyaluronic acid hydrogels. Mixed cell populations (human MSCs and human chondrocytes at a ratio of 4:1) were encapsulated in the hydrogels and exhibited significantly higher Young's moduli, dynamic moduli, glycosaminoglycan levels, and collagen content than did constructs seeded with only MSCs or chondrocytes. Furthermore, the deposition of collagen X, a marker of MSC hypertrophy, was significantly lower in the coculture constructs than in the constructs seeded with MSCs alone. When MSCs and chondrocytes were cultured in distinct gels, but in the same wells, there was no improvement in biomechanical and biochemical properties of the engineered tissue, implying that a close proximity is essential. This approach can be used to improve the properties and prevent calcification of engineered cartilage formed from MSC-seeded hydrogels with the addition of lower fractions of chondrocytes, leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Liming Bian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
47
|
Lee JS, Im GI. Influence of Chondrocytes on the Chondrogenic Differentiation of Adipose Stem Cells. Tissue Eng Part A 2010; 16:3569-77. [DOI: 10.1089/ten.tea.2010.0218] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jai-Sun Lee
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
48
|
Taylor DW, Ahmed N, Gan L, Gross AE, Kandel RA. Proteoglycan and Collagen Accumulation by Passaged Chondrocytes Can Be Enhanced Through Side-by-Side Culture with Primary Chondrocytes. Tissue Eng Part A 2010; 16:643-51. [DOI: 10.1089/ten.tea.2009.0236] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Drew W. Taylor
- CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Nazish Ahmed
- CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Lu Gan
- CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Allan E. Gross
- CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Rita A. Kandel
- CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| |
Collapse
|
49
|
Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Redox-active radical scavenging nanomaterials. Chem Soc Rev 2010; 39:4422-32. [DOI: 10.1039/b919677n] [Citation(s) in RCA: 397] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 2009; 15:231-41. [PMID: 18950290 DOI: 10.1089/ten.tea.2008.0253] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adipose-derived adult stem cells (ASCs) have the ability to differentiate into a chondrogenic phenotype in response to specific environmental signals such as growth factors or artificial biomaterial scaffolds. In this study, we examined the hypothesis that a porous scaffold derived exclusively from articular cartilage can induce chondrogenesis of ASCs. Human ASCs were seeded on porous scaffolds derived from adult porcine articular cartilage and cultured in standard medium without exogenous growth factors. Chondrogenesis of ASCs seeded within the scaffold was evident by quantitative RT-PCR analysis for cartilage-specific extracellular matrix (ECM) genes. Histological and immunohistochemical examination showed abundant production of cartilage-specific ECM components-particularly, type II collagen-after 4 or 6 weeks of culture. After 6 weeks of culture, the cellular morphology in the ASC-seeded constructs resembled those in native articular cartilage tissue, with rounded cells residing in the glycosaminoglycan-rich regions of the scaffolds. Biphasic mechanical testing showed that the aggregate modulus of the ASC-seeded constructs increased over time, reaching 150 kPa by day 42, more than threefold higher than that of the unseeded controls. These results suggest that a porous scaffold derived from articular cartilage has the ability to induce chondrogenic differentiation of ASCs without exogenous growth factors, with significant synthesis and accumulation of ECM macromolecules, and the development of mechanical properties approaching those of native cartilage. These findings support the potential for a processed cartilage ECM as a biomaterial scaffold for cartilage tissue engineering. Additional in vivo evaluation is necessary to fully recognize the clinical implication of these observations.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Departments of Surgery and Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|