1
|
Giunti S, Blanco MG, De Rosa MJ, Rayes D. The ketone body β-hydroxybutyrate ameliorates neurodevelopmental deficits in the GABAergic system of daf-18/PTEN Caenorhabditis elegans mutants. eLife 2024; 13:RP94520. [PMID: 39422188 PMCID: PMC11488850 DOI: 10.7554/elife.94520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
A finely tuned balance between excitation and inhibition (E/I) is essential for proper brain function. Disruptions in the GABAergic system, which alter this equilibrium, are a common feature in various types of neurological disorders, including autism spectrum disorders (ASDs). Mutations in Phosphatase and Tensin Homolog (PTEN), the main negative regulator of the phosphatidylinositol 3-phosphate kinase/Akt pathway, are strongly associated with ASD. However, it is unclear whether PTEN deficiencies can differentially affect inhibitory and excitatory signaling. Using the Caenorhabditis elegans neuromuscular system, where both excitatory (cholinergic) and inhibitory (GABAergic) inputs regulate muscle activity, we found that daf-18/PTEN mutations impact GABAergic (but not cholinergic) neurodevelopment and function. This selective impact results in a deficiency in inhibitory signaling. The defects observed in the GABAergic system in daf-18/PTEN mutants are due to reduced activity of DAF-16/FOXO during development. Ketogenic diets (KGDs) have proven effective for disorders associated with E/I imbalances. However, the mechanisms underlying their action remain largely elusive. We found that a diet enriched with the ketone body β-hydroxybutyrate during early development induces DAF-16/FOXO activity, therefore improving GABAergic neurodevelopment and function in daf-18/PTEN mutants. Our study provides valuable insights into the link between PTEN mutations and neurodevelopmental defects and delves into the mechanisms underlying the potential therapeutic effects of KGDs.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| |
Collapse
|
2
|
Hager M, Chang P, Lee M, Burns CM, Endicott SJ, Miller RA, Li X. Recapitulation of anti-aging phenotypes by global overexpression of PTEN in mice. GeroScience 2024; 46:2653-2670. [PMID: 38114855 PMCID: PMC10828233 DOI: 10.1007/s11357-023-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The PTEN gene negatively regulates the oncogenic PI3K-AKT pathway by encoding a lipid and protein phosphatase that dephosphorylates lipid phosphatidylinositol-3,4,5-triphosphate (PIP3) resulting in the inhibition of PI3K and downstream inhibition of AKT. Overexpression of PTEN in mice leads to a longer lifespan compared to control littermates, although the mechanism is unknown. Here, we provide evidence that young adult PTENOE mice exhibit many characteristics shared by other slow-aging mouse models, including those with mutations that affect GH/IGF1 pathways, calorie-restricted mice, and mice treated with anti-aging drugs. PTENOE white adipose tissue (WAT) has increased UCP1, a protein linked to increased thermogenesis. WAT of PTENOE mice also shows a change in polarization of fat-associated macrophages, with elevated levels of arginase 1 (Arg1, characteristic of M2 macrophages) and decreased production of inducible nitric oxide synthase (iNOS, characteristic of M1 macrophages). Muscle and hippocampus showed increased expression of the myokine FNDC5, and higher levels of its cleavage product irisin in plasma, which has been linked to increased conversion of WAT to more thermogenic beige/brown adipose tissue. PTENOE mice also have an increase, in plasma and liver, of GPLD1, which is known to improve cognition in mice. Hippocampus of the PTENOE mice has elevation of both BDNF and DCX, indices of brain resilience and neurogenesis. These changes in fat, macrophages, liver, muscle, hippocampus, and plasma may be considered "aging rate indicators" in that they seem to be consistently changed across many of the long-lived mouse models and may help to extend lifespan by delaying many forms of late-life illness. Our new findings show that PTENOE mice can be added to the group of long-lived mice that share this multi-tissue suite of biochemical characteristics.
Collapse
Affiliation(s)
- Mary Hager
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Chang
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Lee
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Calvin M Burns
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - S Joseph Endicott
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA
| | - Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
4
|
de la Monte SM, Tong M, Delikkaya B. Differential Early Mechanistic Frontal Lobe Responses to Choline Chloride and Soy Isoflavones in an Experimental Model of Fetal Alcohol Spectrum Disorder. Int J Mol Sci 2023; 24:7595. [PMID: 37108779 PMCID: PMC10145811 DOI: 10.3390/ijms24087595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of neurodevelopmental defects, and white matter is a major target of ethanol neurotoxicity. Therapeutic interventions with choline or dietary soy could potentially supplement public health preventive measures. However, since soy contains abundant choline, it would be important to know if its benefits are mediated by choline or isoflavones. We compared early mechanistic responses to choline and the Daidzein+Genistein (D+G) soy isoflavones in an FASD model using frontal lobe tissue to assess oligodendrocyte function and Akt-mTOR signaling. Long Evans rat pups were binge administered 2 g/Kg of ethanol or saline (control) on postnatal days P3 and P5. P7 frontal lobe slice cultures were treated with vehicle (Veh), Choline chloride (Chol; 75 µM), or D+G (1 µM each) for 72 h without further ethanol exposures. The expression levels of myelin oligodendrocyte proteins and stress-related molecules were measured by duplex enzyme-linked immunosorbent assays (ELISAs), and mTOR signaling proteins and phosphoproteins were assessed using 11-plex magnetic bead-based ELISAs. Ethanol's main short-term effects in Veh-treated cultures were to increase GFAP and relative PTEN phosphorylation and reduce Akt phosphorylation. Chol and D+G significantly modulated the expression of oligodendrocyte myelin proteins and mediators of insulin/IGF-1-Akt-mTOR signaling in both control and ethanol-exposed cultures. In general, the responses were more robust with D+G; the main exception was that RPS6 phosphorylation was significantly increased by Chol and not D+G. The findings suggest that dietary soy, with the benefits of providing complete nutrition together with Choline, could be used to help optimize neurodevelopment in humans at risk for FASD.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
5
|
Pearson A, Ortiz C, Eisenbaum M, Arrate C, Browning M, Mullan M, Bachmeier C, Crawford F, Ojo JO. Deletion of PTEN in microglia ameliorates chronic neuroinflammation following repetitive mTBI. Mol Cell Neurosci 2023; 125:103855. [PMID: 37084991 DOI: 10.1016/j.mcn.2023.103855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Traumatic brain injury is a leading cause of morbidity and mortality in adults and children in developed nations. Following the primary injury, microglia, the resident innate immune cells of the CNS, initiate several inflammatory signaling cascades and pathophysiological responses that may persist chronically; chronic neuroinflammation following TBI has been closely linked to the development of neurodegeneration and neurological dysfunction. Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that have been shown to regulate several key mechanisms in the inflammatory response to TBI. Increasing evidence has shown that the modulation of the PI3K/AKT signaling pathway has the potential to influence the cellular response to inflammatory stimuli. However, directly targeting PI3K signaling poses several challenges due to its regulatory role in several cell survival pathways. We have previously identified that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), the major negative regulator of PI3K/AKT signaling, is dysregulated following exposure to repetitive mild traumatic brain injury (r-mTBI). Moreover, this dysregulated PI3K/AKT signaling was correlated with chronic microglial-mediated neuroinflammation. Therefore, we interrogated microglial-specific PTEN as a therapeutic target in TBI by generating a microglial-specific, Tamoxifen inducible conditional PTEN knockout model using a CX3CR1 Cre recombinase mouse line PTENfl/fl/CX3CR1+/CreERT2 (mcg-PTENcKO), and exposed them to our 20-hit r-mTBI paradigm. Animals were treated with tamoxifen at 76 days post-last injury, and the effects of microglia PTEN deletion on immune-inflammatory responses were assessed at 90-days post last injury. We observed that the deletion of microglial PTEN ameliorated the proinflammatory response to repetitive brain trauma, not only reducing chronic microglial activation and proinflammatory cytokine production but also rescuing TBI-induced reactive astrogliosis, demonstrating that these effects extended beyond microglia alone. Additionally, we observed that the pharmacological inhibition of PTEN with BpV(HOpic) ameliorated the LPS-induced activation of microglial NFκB signaling in vitro. Together, these data provide support for the role of PTEN as a regulator of chronic neuroinflammation following repetitive mild TBI.
Collapse
Affiliation(s)
- Andrew Pearson
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom.
| | - Camila Ortiz
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Max Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Clara Arrate
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | | | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Joseph O Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA; The Open University, Walton Hall, Kents Hill, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
6
|
Frazier TW, Busch RM, Klaas P, Lachlan K, Jeste S, Kolevzon A, Loth E, Harris J, Speer L, Pepper T, Anthony K, Graglia JM, Delagrammatikas C, Bedrosian-Sermone S, Beekhuyzen J, Smith-Hicks C, Sahin M, Eng C, Hardan AY, Uljarević M. Development of informant-report neurobehavioral survey scales for PTEN hamartoma tumor syndrome and related neurodevelopmental genetic syndromes. Am J Med Genet A 2023. [PMID: 37045800 DOI: 10.1002/ajmg.a.63195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
There are few well-validated measures that are appropriate for assessing the full range of neurobehavioral presentations in PTEN hamartoma tumor syndrome (PHTS) and other neurodevelopmental genetic syndromes (NDGS). As potential therapeutics are developed, having reliable, valid, free, and easily accessible measures to track a range of neurobehavioral domains will be crucial for future clinical trials. This study focused on the development and initial psychometric evaluation of a set of freely available informant-report survey scales for PHTS-the Neurobehavioral Evaluation Tool (NET). Concept elicitation, quantitative ratings, and cognitive interviewing processes were conducted with stakeholders and clinician-scientist experts, used to identify the most important neurobehavioral domains for this population, and to ensure items were appropriate for the full range of individuals with PHTS. Results of this process identified a PHTS neurobehavioral impact model with 11 domains. The final NET scales assessing these domains were administered to a sample of 384 participants (median completion time = 20.6 min), including 32 people with PHTS, 141 with other NDGS, 47 with idiopathic neurodevelopmental disorder (NDD), and 164 neurotypical controls. Initial psychometric results for the total scores of each scale indicated very good model (ω = 0.83-0.99) and internal consistency reliability (α = 0.82-0.98) as well as excellent test-retest reproducibility at 1-month follow-up (r = 0.78-0.98) and stability at 4-month follow-up (r = 0.76-0.96). Conditional reliability estimates indicated very strong measurement precision in key score ranges for assessing PHTS and other people with NDGS and/or idiopathic NDD. Comparisons across domains between PHTS and the other groups revealed specific patterns of symptoms and functioning, including lower levels of challenging behavior and more developed daily living and executive functioning skills relative to other NDGS. The NET appears to be a reliable and potentially useful tool for clinical characterization and monitoring of neurobehavioral symptoms in PHTS and may also have utility in the assessment of other NDGS and idiopathic NDD. Additional validation work, including convergent and discriminant validity analyses, are needed to replicate and extend these observations.
Collapse
Affiliation(s)
- Thomas W Frazier
- Department of Psychology, John Carroll University, University Heights, Ohio, USA
- Departments of Pediatrics and Psychiatry,, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Robyn M Busch
- Department of Neurology, Neurological Institute, Clinic Cleveland, Cleveland, Ohio, USA
- Genomic Medicine Institute, Lerner Research Institute, Clinic Cleveland, Cleveland, Ohio, USA
| | - Patricia Klaas
- Department of Neurology, Neurological Institute, Clinic Cleveland, Cleveland, Ohio, USA
| | - Katherine Lachlan
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Shafali Jeste
- Division of Neurology, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Alexander Kolevzon
- Departments of Psychiatry and Pediatrics, Seaver Autism Center for Research and Treatment Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience Kings College London, London, UK
| | - Jacqueline Harris
- Krieger Institute and Johns Hopkins University School of Medicine, Department of Neurology Kennedy, Baltimore, Maryland, USA
| | - Leslie Speer
- Department of Psychology, Frazier Behavioral Health, Cleveland, Ohio, USA
| | - Tom Pepper
- PTEN Research Foundation, Cheltenham, UK
| | - Kristin Anthony
- PTEN Hamartoma Tumor Syndrome Foundation, Huntsville, Alabama, USA
| | | | | | | | | | - Constance Smith-Hicks
- Krieger Institute and Johns Hopkins University School of Medicine, Department of Neurology Kennedy, Baltimore, Maryland, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Clinic Cleveland, Cleveland, Ohio, USA
| | - Antonia Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Mirko Uljarević
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
7
|
de la Monte SM. Malignant Brain Aging: The Formidable Link Between Dysregulated Signaling Through Mechanistic Target of Rapamycin Pathways and Alzheimer's Disease (Type 3 Diabetes). J Alzheimers Dis 2023; 95:1301-1337. [PMID: 37718817 PMCID: PMC10896181 DOI: 10.3233/jad-230555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Malignant brain aging corresponds to accelerated age-related declines in brain functions eventually derailing the self-sustaining forces that govern independent vitality. Malignant brain aging establishes the path toward dementing neurodegeneration, including Alzheimer's disease (AD). The full spectrum of AD includes progressive dysfunction of neurons, oligodendrocytes, astrocytes, microglia, and the microvascular systems, and is mechanistically driven by insulin and insulin-like growth factor (IGF) deficiencies and resistances with accompanying deficits in energy balance, increased cellular stress, inflammation, and impaired perfusion, mimicking the core features of diabetes mellitus. The underlying pathophysiological derangements result in mitochondrial dysfunction, abnormal protein aggregation, increased oxidative and endoplasmic reticulum stress, aberrant autophagy, and abnormal post-translational modification of proteins, all of which are signature features of both AD and dysregulated insulin/IGF-1-mechanistic target of rapamycin (mTOR) signaling. This article connects the dots from benign to malignant aging to neurodegeneration by reviewing the salient pathologies associated with initially adaptive and later dysfunctional mTOR signaling in the brain. Effective therapeutic and preventive measures must be two-pronged and designed to 1) address complex and shifting impairments in mTOR signaling through the re-purpose of effective anti-diabetes therapeutics that target the brain, and 2) minimize the impact of extrinsic mediators of benign to malignant aging transitions, e.g., inflammatory states, obesity, systemic insulin resistance diseases, and repeated bouts of general anesthesia, by minimizing exposures or implementing neuroprotective measures.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Ledderose JMT, Benitez JA, Roberts AJ, Reed R, Bintig W, Larkum ME, Sachdev RNS, Furnari F, Eickholt BJ. The impact of phosphorylated PTEN at threonine 366 on cortical connectivity and behaviour. Brain 2022; 145:3608-3621. [PMID: 35603900 DOI: 10.1093/brain/awac188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
The lipid phosphatase PTEN (phosphatase and tensin homologue on chromosome 10) is a key tumour suppressor gene and an important regulator of neuronal signalling. PTEN mutations have been identified in patients with autism spectrum disorders, characterized by macrocephaly, impaired social interactions and communication, repetitive behaviour, intellectual disability, and epilepsy. PTEN enzymatic activity is regulated by a cluster of phosphorylation sites at the C-terminus of the protein. Here, we focussed on the role of PTEN T366 phosphorylation and generated a knock-in mouse line in which Pten T366 was substituted with alanine (PtenT366A/T366A). We identify that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing. We show in behavioural tests that PtenT366/T366A mice exhibit cognitive deficits and selective sensory impairments, with significant differences in male individuals. We identify restricted cellular overgrowth of cortical neurons in PtenT366A/T366A brains, linked to increases in both dendritic arborization and soma size. In a combinatorial approach of anterograde and retrograde monosynaptic tracing using rabies virus, we characterize differences in connectivity to the primary somatosensory cortex of PtenT366A/T366A brains, with imbalances in long-range cortico-cortical input to neurons. We conclude that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing and propose that PTEN T366 signalling may account for a subset of autism-related functions of PTEN.
Collapse
Affiliation(s)
- Julia M T Ledderose
- Institute for Biochemistry, Charité Universitätsmedizin Berlin, Germany.,Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jorge A Benitez
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California, 92121, USA
| | - Amanda J Roberts
- The Scripps Research Institute, Animal Models Core, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rachel Reed
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California, 92121, USA
| | - Willem Bintig
- Institute for Biochemistry, Charité Universitätsmedizin Berlin, Germany
| | - Matthew E Larkum
- Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Germany
| | | | - Frank Furnari
- Ludwig Cancer Institute, San Diego, USA.,University of California San Diego, La Jolla, USA
| | - Britta J Eickholt
- Institute for Biochemistry, Charité Universitätsmedizin Berlin, Germany.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
9
|
Schrank S, Satkunendrarajah K. Viral tools for mapping and modulating neural networks after spinal cord injury. Exp Neurol 2022; 351:113995. [DOI: 10.1016/j.expneurol.2022.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
|
10
|
Kosillo P, Bateup HS. Dopaminergic Dysregulation in Syndromic Autism Spectrum Disorders: Insights From Genetic Mouse Models. Front Neural Circuits 2021; 15:700968. [PMID: 34366796 PMCID: PMC8343025 DOI: 10.3389/fncir.2021.700968] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by altered social interaction and communication, and repetitive, restricted, inflexible behaviors. Approximately 1.5-2% of the general population meet the diagnostic criteria for ASD and several brain regions including the cortex, amygdala, cerebellum and basal ganglia have been implicated in ASD pathophysiology. The midbrain dopamine system is an important modulator of cellular and synaptic function in multiple ASD-implicated brain regions via anatomically and functionally distinct dopaminergic projections. The dopamine hypothesis of ASD postulates that dysregulation of dopaminergic projection pathways could contribute to the behavioral manifestations of ASD, including altered reward value of social stimuli, changes in sensorimotor processing, and motor stereotypies. In this review, we examine the support for the idea that cell-autonomous changes in dopaminergic function are a core component of ASD pathophysiology. We discuss the human literature supporting the involvement of altered dopamine signaling in ASD including genetic, brain imaging and pharmacologic studies. We then focus on genetic mouse models of syndromic neurodevelopmental disorders in which single gene mutations lead to increased risk for ASD. We highlight studies that have directly examined dopamine neuron number, morphology, physiology, or output in these models. Overall, we find considerable support for the idea that the dopamine system may be dysregulated in syndromic ASDs; however, there does not appear to be a consistent signature and some models show increased dopaminergic function, while others have deficient dopamine signaling. We conclude that dopamine dysregulation is common in syndromic forms of ASD but that the specific changes may be unique to each genetic disorder and may not account for the full spectrum of ASD-related manifestations.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
11
|
Shen Y, Chen L, Zhang Y, Du J, Hu J, Bao H, Xing Y, Si Y. Phosphatase and Tensin Homolog Deleted on Chromosome Ten Knockdown Attenuates Cognitive Deficits by Inhibiting Neuroinflammation in a Mouse Model of Perioperative Neurocognitive Disorder. Neuroscience 2021; 468:199-210. [PMID: 34166762 DOI: 10.1016/j.neuroscience.2021.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a crucial regulator of neuronal development, neuronal survival, axonal regeneration, and synaptic plasticity. In this study we examined the potential role of PTEN in cognitive function in a mouse model of perioperative neurocognitive disorder (PND). Adult male C57BL/6J mice received intracerebroventricular injections of small interfering RNA (siRNA) against PTEN or control siRNA 3 days prior to exploratory laparotomy (n = 8 per group). A group of healthy mice not undergoing surgery included as additional control. Barnes maze and fear conditioning tests were conducted 7 days after surgery. Mice were then sacrificed to examine the expression of PTEN, AMP-activated protein kinase (AMPK), ionized calcium binding adaptor molecule (Iba)-1, B-cell lymphoma (Bcl)-2, Bcl2-associated X protein (Bax), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α in the hippocampus. The microglial activation was examined by immunohistochemistry using Iba-1 as a microglia maker. Nissl and terminal transferase deoxyuridine triphosphate nick-end labeling (TUNEL) staining were used to measure cell death and apoptosis. In comparison to the healthy controls, surgically treated mice had longer latency to identify the target box in both training and testing sessions in the Barnes maze test and shorter freezing time in the fear conditioning test. Surgically treated mice had increased expression of PTEN, AMPK, Bax, IL-1β, and TNF-α, as well as increasing number of activated microglia and apoptosis neurons in the hippocampus. PTEN knockdown significantly attenuated the behavioral deficits in Barnes maze and fear conditioning tests, as well as over-expression of PTEN, AMPK, Bax, IL-1β, and TNF-α induced by surgery. PTEN knockdown could attenuate cognitive deficits induced by trauma, likely through inhibiting the activation of microglia.
Collapse
Affiliation(s)
- Yanan Shen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Lihai Chen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Yuan Zhang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Jiayue Du
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Jing Hu
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Yan Xing
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211118, People's Republic of China
| | - Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.
| |
Collapse
|
12
|
Frazier TW, Jaini R, Busch RM, Wolf M, Sadler T, Klaas P, Hardan AY, Martinez-Agosto JA, Sahin M, Eng C. Cross-level analysis of molecular and neurobehavioral function in a prospective series of patients with germline heterozygous PTEN mutations with and without autism. Mol Autism 2021; 12:5. [PMID: 33509259 PMCID: PMC7841880 DOI: 10.1186/s13229-020-00406-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
Background PTEN is a well-established risk gene for autism spectrum disorder (ASD). Yet, little is known about how PTEN mutations and associated molecular processes influence neurobehavioral function in mutation carriers with (PTEN-ASD) and without ASD (PTEN no-ASD). The primary aim of the present study was to examine group differences in peripheral blood-derived PTEN pathway protein levels between PTEN-ASD, PTEN no-ASD, and idiopathic macrocephalic ASD patients (macro-ASD). Secondarily, associations between protein levels and neurobehavioral functions were examined in the full cohort.
Methods Patients were recruited at four tertiary medical centers. Peripheral blood-derived protein levels from canonical PTEN pathways (PI3K/AKT and MAPK/ERK) were analyzed using Western blot analyses blinded to genotype and ASD status. Neurobehavioral measures included standardized assessments of global cognitive ability and multiple neurobehavioral domains. Analysis of variance models examined group differences in demographic, neurobehavioral, and protein measures. Bivariate correlations, structural models, and statistical learning procedures estimated associations between molecular and neurobehavioral variables. To complement patient data, Western blots for downstream proteins were generated to evaluate canonical PTEN pathways in the PTEN-m3m4 mouse model.
Results Participants included 61 patients (25 PTEN-ASD, 16 PTEN no-ASD, and 20 macro-ASD). Decreased PTEN and S6 were observed in both PTEN mutation groups. Reductions in MnSOD and increases in P-S6 were observed in ASD groups. Elevated neural P-AKT/AKT and P-S6/S6 from PTEN murine models parallel our patient observations. Patient PTEN and AKT levels were independently associated with global cognitive ability, and p27 expression was associated with frontal sub-cortical functions. As a group, molecular measures added significant predictive value to several neurobehavioral domains over and above PTEN mutation status. Limitations Sample sizes were small, precluding within-group analyses. Protein and neurobehavioral data were limited to a single evaluation. A small number of patients were excluded with invalid protein data, and cognitively impaired patients had missing data on some assessments. Conclusions Several canonical PTEN pathway molecules appear to influence the presence of ASD and modify neurobehavioral function in PTEN mutation patients. Protein assays of the PTEN pathway may be useful for predicting neurobehavioral outcomes in PTEN patients. Future longitudinal analyses are needed to replicate these findings and evaluate within-group relationships between protein and neurobehavioral measures. Trial registration ClinicalTrials.gov Identifier NCT02461446
Collapse
Affiliation(s)
- Thomas W Frazier
- Department of Psychology, John Carroll University, University Heights, OH, 44118, USA. .,Autism Speaks, Cleveland, OH, USA. .,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Robyn M Busch
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Neurology and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Matthew Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tammy Sadler
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Patricia Klaas
- Department of Neurology and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Antonio Y Hardan
- Department of Child Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Mustafa Sahin
- Translational Neurosciences Center, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Cleveland Clinic Genomic Medicine Institute, 9500 Euclid Avenue, NE-50, Cleveland, OH, 44195, USA.
| | | |
Collapse
|
13
|
Trovato F, Parra R, Pracucci E, Landi S, Cozzolino O, Nardi G, Cruciani F, Pillai V, Mosti L, Cwetsch AW, Cancedda L, Gritti L, Sala C, Verpelli C, Maset A, Lodovichi C, Ratto GM. Modelling genetic mosaicism of neurodevelopmental disorders in vivo by a Cre-amplifying fluorescent reporter. Nat Commun 2020; 11:6194. [PMID: 33273479 PMCID: PMC7713426 DOI: 10.1038/s41467-020-19864-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mosaicism, a condition in which an organ includes cells with different genotypes, is frequently present in monogenic diseases of the central nervous system caused by the random inactivation of the X-chromosome, in the case of X-linked pathologies, or by somatic mutations affecting a subset of neurons. The comprehension of the mechanisms of these diseases and of the cell-autonomous effects of specific mutations requires the generation of sparse mosaic models, in which the genotype of each neuron is univocally identified by the expression of a fluorescent protein in vivo. Here, we show a dual-color reporter system that, when expressed in a floxed mouse line for a target gene, leads to the creation of mosaics with tunable degree. We demonstrate the generation of a knockout mosaic of the autism/epilepsy related gene PTEN in which the genotype of each neuron is reliably identified, and the neuronal phenotype is accurately characterized by two-photon microscopy.
Collapse
Affiliation(s)
- Francesco Trovato
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy.
| | - Riccardo Parra
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Enrico Pracucci
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Silvia Landi
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
- Institute of Neuroscience CNR, Pisa, Italy
| | - Olga Cozzolino
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Gabriele Nardi
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Federica Cruciani
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Laura Mosti
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Andrzej W Cwetsch
- Istituto Italiano di Tecnologia, Genoa, Italy
- Università degli studi di Genova, Genoa, Italy
| | - Laura Cancedda
- Istituto Italiano di Tecnologia, Genoa, Italy
- Istituto Telethon Dulbecco, Rome, Italy
| | | | - Carlo Sala
- Institute of Neuroscience CNR, Milan, Italy
| | | | - Andrea Maset
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padova Università di Padova, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padova Università di Padova, Padua, Italy
- Institute of Neuroscience CNR, Padua, Italy
| | - Gian Michele Ratto
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy.
| |
Collapse
|
14
|
Rademacher S, Detering NT, Schüning T, Lindner R, Santonicola P, Wefel IM, Dehus J, Walter LM, Brinkmann H, Niewienda A, Janek K, Varela MA, Bowerman M, Di Schiavi E, Claus P. A Single Amino Acid Residue Regulates PTEN-Binding and Stability of the Spinal Muscular Atrophy Protein SMN. Cells 2020; 9:cells9112405. [PMID: 33153033 PMCID: PMC7692393 DOI: 10.3390/cells9112405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Nora T. Detering
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Tobias Schüning
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Robert Lindner
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Pamela Santonicola
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Inga-Maria Wefel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Janina Dehus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Lisa M. Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
| | - Agathe Niewienda
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Katharina Janek
- Shared Facility for Mass Spectrometry, Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (A.N.); (K.J.)
| | - Miguel A. Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK; (M.A.V.); (M.B.)
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, 80131 Naples, Italy; (P.S.); (E.D.S.)
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; (S.R.); (N.T.D.); (T.S.); (R.L.); (I.-M.W.); (J.D.); (L.M.W.); (H.B.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
15
|
Frazier TW. Autism Spectrum Disorder Associated with Germline Heterozygous PTEN Mutations. Cold Spring Harb Perspect Med 2019; 9:a037002. [PMID: 31307976 PMCID: PMC6771360 DOI: 10.1101/cshperspect.a037002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review examines our current understanding of autism spectrum disorder (ASD), its prevalence, impact, behavioral treatment, and outcomes. Building on this knowledge, ASD associated with PTEN mutations is introduced and recent human studies of neurobehavioral and neuroimaging findings in patients with PTEN mutations with and without ASD are reviewed. In doing so, we present evidence supporting a model of PTEN loss leading to neurobehavioral deficits, including ASD and intellectual disability. Next, we describe the neurobehavioral spectrum observed across PTEN mutation cases, adding specificity where possible, based on data from recent studies of child and adult PTEN patients. Finally, we end with a discussion of potential clinical recommendations for improving interventions and supports for people with PTEN-ASD and future research avenues for understanding and treating the functional and cognitive deficits in PTEN-ASD.
Collapse
|
16
|
Raghu P, Joseph A, Krishnan H, Singh P, Saha S. Phosphoinositides: Regulators of Nervous System Function in Health and Disease. Front Mol Neurosci 2019; 12:208. [PMID: 31507376 PMCID: PMC6716428 DOI: 10.3389/fnmol.2019.00208] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositides, the seven phosphorylated derivatives of phosphatidylinositol have emerged as regulators of key sub-cellular processes such as membrane transport, cytoskeletal function and plasma membrane signaling in eukaryotic cells. All of these processes are also present in the cells that constitute the nervous system of animals and in this setting too, these are likely to tune key aspects of cell biology in relation to the unique structure and function of neurons. Phosphoinositides metabolism and function are mediated by enzymes and proteins that are conserved in evolution, and analysis of knockouts of these in animal models implicate this signaling system in neural function. Most recently, with the advent of human genome analysis, mutations in genes encoding components of the phosphoinositide signaling pathway have been implicated in human diseases although the cell biological basis of disease phenotypes in many cases remains unclear. In this review we evaluate existing evidence for the involvement of phosphoinositide signaling in human nervous system diseases and discuss ways of enhancing our understanding of the role of this pathway in the human nervous system's function in health and disease.
Collapse
Affiliation(s)
- Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | | | | | | | | |
Collapse
|
17
|
Zahedi Abghari F, Moradi Y, Akouchekian M. PTEN gene mutations in patients with macrocephaly and classic autism: A systematic review. Med J Islam Repub Iran 2019; 33:10. [PMID: 31086789 PMCID: PMC6504940 DOI: 10.34171/mjiri.33.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Indexed: 11/05/2022] Open
Abstract
Background: Autism Spectrum Disorder (ASD) is a neurological disorder characterized by massive damage in various fields of development. Impaired social interaction and communication skills, unusual behavior or interests, and repetitive activities are considerably disabling in these patients. There are several challenges in diagnosis of ASD patients such as co-existing epilepsy, difference in clinician attitudes and possibly multifactorial etiology of autistic behavior among children and adults. Research in recent years has emphasized a possible connection between mutations in PTEN and macrocephaly (head circumference > 97th centile). Methods: Articles in English Language were searched from international databases including Medline (PubMed), Google Scholar, Scopus, and CINHAL from January 1998 to January 2016. Results: The results showed that among 2940 patients with behavioral disorders, 2755 individuals had ASD, and 35 cases with macrocephaly had mutations in PTEN. About 77% of the articles (7/9) analyzed mutations in PTEN in patients with head circumference more than 2SD away from the mean, but did not check mutations in this gene in other ASD patients without macrocephaly. To the best of our knowledge, this study is the first systematic review on human PTEN mutations and classical autistic behavior. Conclusion: We conclude that the presence of macrocephaly may not be sufficient to examine the PTEN mutation in this group; however, surveying this gene in all cases of macrocephaly seems to be necessary.
Collapse
Affiliation(s)
- Fateme Zahedi Abghari
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mansoureh Akouchekian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Abstract
Polyphosphoinositides (PPIn) are essential signaling phospholipids that make remarkable contributions to the identity of all cellular membranes and signaling cascades in mammalian cells. They exert regulatory control over membrane homeostasis via selective interactions with cellular proteins at the membrane–cytoplasm interface. This review article briefly summarizes our current understanding of the key roles that PPIn play in orchestrating and regulating crucial electrical and chemical signaling events in mammalian neurons and the significant neuro-pathophysiological conditions that arise following alterations in their metabolism.
Collapse
Affiliation(s)
- Eamonn James Dickson
- Department Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
19
|
Na +/Ca 2+ exchanger 1 on nuclear envelope controls PTEN/Akt pathway via nucleoplasmic Ca 2+ regulation during neuronal differentiation. Cell Death Discov 2018. [PMID: 29531809 PMCID: PMC5841316 DOI: 10.1038/s41420-017-0018-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nuclear envelope (NE) is a Ca2+-storing organelle controlling neuronal differentiation through nuclear Ca2+ concentrations ([Ca2+]n). However, how [Ca2+]n regulates this important function remains unknown. Here, we investigated the role of the nuclear form of the Na+/Ca2+ exchanger 1(nuNCX1) during the different stages of neuronal differentiation and the involvement of PTEN/PI3'K/Akt pathway. In neuronal cells, nuNCX1 was detected on the inner membrane of the NE where protein expression and activity of the exchanger increased during NGF-induced differentiation. nuNCX1 activation by Na+-free perfusion induced a time-dependent activation of nuclear-resident PI3K/Akt pathway in isolated nuclei. To discriminate the contribution of nuNCX1 from those of plasma membrane NCX, we generated a chimeric protein composed of the fluorophore EYFP, the exchanger inhibitory peptide, and the nuclear localization signal, named XIP-NLS. Fura-2 measurements on single nuclei and patch-clamp experiments in whole-cell configuration showed that XIP-NLS selectively inhibited nuNCX1. Once it reached the nuclear compartment, XIP-NLS increased the nucleoplasmic Ca2+ peak elicited by ATP and reduced Akt phosphorylation, GAP-43 and MAP-2 expression through nuclear-resident PTEN induction. Furthermore, in accordance with the prevention of the neuronal phenotype, XIP-NLS significantly reduced TTX-sensitive Na+ currents and membrane potential during neuronal differentiation. The selective inhibition of nuNCX1 by XIP-NLS increased the percentage of β III tubulin-positive immature neurons in mature cultures of MAP-2-positive cortical neurons, thus unraveling a new function for nuNCX1 in regulating neuronal differentiation through [Ca2+]n-dependent PTEN/PI3K/Akt pathway.
Collapse
|
20
|
Xu L, Xing Q, Huang T, Zhou J, Liu T, Cui Y, Cheng T, Wang Y, Zhou X, Yang B, Yang GL, Zhang J, Zang X, Ma S, Guan F. HDAC1 Silence Promotes Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Mouse Model of Traumatic Brain Injury via PI3K/AKT Pathway. Front Cell Neurosci 2018; 12:498. [PMID: 30662396 PMCID: PMC6328439 DOI: 10.3389/fncel.2018.00498] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
Stem cell transplantation is a promising therapy for traumatic brain injury (TBI), but low efficiency of survival and differentiation of transplanted stem cells limits its clinical application. Histone deacetylase 1 (HDAC1) plays important roles in self-renewal of stem cells as well as the recovery of brain disorders. However, little is known about the effects of HDAC1 on the survival and efficacy of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in vivo. In this study, our results showed that HDAC1 silence promoted hUC-MSCs engraftment in the hippocampus and increased the neuroprotective effects of hUC-MSCs in TBI mouse model, which was accompanied by improved neurological function, enhanced neurogenesis, decreased neural apoptosis, and reduced oxidative stress in the hippocampus. Further mechanistic studies revealed that the expressions of phosphorylated PTEN (p-PTEN), phosphorylated Akt (p-Akt), and phosphorylated GSK-3β (p-GSK-3β) were upregulated. Intriguingly, the neuroprotective effects of hUC-MSCs with HDAC1 silence on behavioral performance of TBI mice was markedly attenuated by LY294002, an inhibitor of the PI3K/AKT pathway. Taken together, our findings suggest that hUC-MSCs transplantation with HDAC1 silence may provide a potential strategy for treating TBI in the future.
Collapse
Affiliation(s)
- Ling Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiankang Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tengfei Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Tian Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinkui Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Jiewen Zhang
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Einstein College of Medicine, Bronx, NY, United States
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Shanshan Ma Fangxia Guan
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shanshan Ma Fangxia Guan
| |
Collapse
|
21
|
Mahmood U, Ahn S, Yang EJ, Choi M, Kim H, Regan P, Cho K, Kim HS. Dendritic spine anomalies and PTEN alterations in a mouse model of VPA-induced autism spectrum disorder. Pharmacol Res 2017; 128:110-121. [PMID: 28823725 DOI: 10.1016/j.phrs.2017.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 11/18/2022]
Abstract
Mounting evidence suggests that the etiology of autism spectrum disorders (ASDs) is profoundly influenced by exposure to environmental factors, although the precise molecular and cellular links remain ill-defined. In this study, we examined how exposure to valproic acid (VPA) during pregnancy is associated with an increased incidence of ASD. A mouse model was established by injecting VPA at embryonic day 13, and its behavioral phenotypes including impaired social interaction, increased repetitive behaviors and decreased nociception were observed at postnatal days 21-42. VPA-treated mice showed dysregulation of synaptic structure in cortical neurons, including a reduced proportion of filopodium-type and stubby spines and increased proportions of thin and mushroom-type spines, along with a decreased spine head size. We also found that VPA-treatment led to decreased expression of phosphate and tensin homolog (PTEN) and increased levels of p-AKT protein in the hippocampus and cortex. Our data suggest that there is a correlation between VPA exposure and dysregulation of PTEN with ASD-like behavioral and neuroanatomical changes, and this may be a potential mechanism of VPA-induced ASD.
Collapse
Affiliation(s)
- Usman Mahmood
- Interdisciplinary Program in Brain Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Present address: Department of Pharmacology, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Eun-Jeong Yang
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Moonseok Choi
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyunju Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Philip Regan
- School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Kwangwook Cho
- School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Hye-Sun Kim
- Interdisciplinary Program in Brain Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea; Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Seoul National University Bundang Hospital, Seoul National University College of Medicine, Sungnam, 13620, Republic of Korea.
| |
Collapse
|
22
|
Gutilla EA, Buyukozturk MM, Steward O. Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice. Exp Neurol 2016; 279:27-39. [PMID: 26896833 DOI: 10.1016/j.expneurol.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/18/2022]
Abstract
Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable neuropathology.
Collapse
Affiliation(s)
- Erin A Gutilla
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States
| | - Melda M Buyukozturk
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; Neurobiology and Behavior, University of California, Irvine, United States; Neurosurgery, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States.
| |
Collapse
|
23
|
Ketschek A, Spillane M, Dun XP, Hardy H, Chilton J, Gallo G. Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches. Dev Neurobiol 2016; 76:1092-110. [PMID: 26731339 DOI: 10.1002/dneu.22377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 01/01/2016] [Indexed: 11/10/2022]
Abstract
Drebrin is a cytoskeleton-associated protein which can interact with both actin filaments and the tips of microtubules. Its roles have been studied mostly in dendrites, and the functions of drebrin in axons are less well understood. In this study, we analyzed the role of drebrin, through shRNA-mediated depletion and overexpression, in the collateral branching of chicken embryonic sensory axons. We report that drebrin promotes the formation of axonal filopodia and collateral branches in vivo and in vitro. Live imaging of cytoskeletal dynamics revealed that drebrin promotes the formation of filopodia from precursor structures termed axonal actin patches. Endogenous drebrin localizes to actin patches and depletion studies indicate that drebrin contributes to the development of patches. In filopodia, endogenous drebrin localizes to the proximal portion of the filopodium. Drebrin was found to promote the stability of axonal filopodia and the entry of microtubule plus tips into axonal filopodia. The effects of drebrin on the stabilization of filopodia are independent of its effects on promoting microtubule targeting to filopodia. Inhibition of myosin II induces a redistribution of endogenous drebrin distally into filopodia, and further increases branching in drebrin overexpressing neurons. Finally, a 30 min treatment with the branch-inducing signal nerve growth factor increases the levels of axonal drebrin. This study determines the specific roles of drebrin in the regulation of the axonal cytoskeleton, and provides evidence that drebrin contributes to the coordination of the actin and microtubule cytoskeleton during the initial stages of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1092-1110, 2016.
Collapse
Affiliation(s)
- Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| | - Mirela Spillane
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| | - Xin-Peng Dun
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, United Kingdom
| | - Holly Hardy
- RILD Building, University of Exeter Medical School, Wellcome Wolfson Medical Research Centre, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - John Chilton
- RILD Building, University of Exeter Medical School, Wellcome Wolfson Medical Research Centre, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
24
|
An W, Jackson RE, Hunter P, Gögel S, van Diepen M, Liu K, Meyer MP, Eickholt BJ. Engineering FKBP-Based Destabilizing Domains to Build Sophisticated Protein Regulation Systems. PLoS One 2015; 10:e0145783. [PMID: 26717575 PMCID: PMC4696822 DOI: 10.1371/journal.pone.0145783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022] Open
Abstract
Targeting protein stability with small molecules has emerged as an effective tool to control protein abundance in a fast, scalable and reversible manner. The technique involves tagging a protein of interest (POI) with a destabilizing domain (DD) specifically controlled by a small molecule. The successful construction of such fusion proteins may, however, be limited by functional interference of the DD epitope with electrostatic interactions required for full biological function of proteins. Another drawback of this approach is the remaining endogenous protein. Here, we combined the Cre-LoxP system with an advanced DD and generated a protein regulation system in which the loss of an endogenous protein, in our case the tumor suppressor PTEN, can be coupled directly with a conditionally fine-tunable DD-PTEN. This new system will consolidate and extend the use of DD-technology to control protein function precisely in living cells and animal models.
Collapse
Affiliation(s)
- Wenlin An
- MRC Centre for Developmental Neurobiology, King’s College London, London, SE1 1UL, United Kingdom
- Charité - Universitätsmedizin Berlin, Cluster of Excellence NeuroCure and Institute of Biochemistry, Berlin, 10117, Germany
| | - Rachel E. Jackson
- MRC Centre for Developmental Neurobiology, King’s College London, London, SE1 1UL, United Kingdom
| | - Paul Hunter
- MRC Centre for Developmental Neurobiology, King’s College London, London, SE1 1UL, United Kingdom
| | - Stefanie Gögel
- Charité - Universitätsmedizin Berlin, Cluster of Excellence NeuroCure and Institute of Biochemistry, Berlin, 10117, Germany
| | - Michiel van Diepen
- MRC Centre for Developmental Neurobiology, King’s College London, London, SE1 1UL, United Kingdom
| | - Karen Liu
- Department of Craniofacial Development, King’s College London, London, SE1 1UL, United Kingdom
| | - Martin P. Meyer
- MRC Centre for Developmental Neurobiology, King’s College London, London, SE1 1UL, United Kingdom
| | - Britta J. Eickholt
- MRC Centre for Developmental Neurobiology, King’s College London, London, SE1 1UL, United Kingdom
- Charité - Universitätsmedizin Berlin, Cluster of Excellence NeuroCure and Institute of Biochemistry, Berlin, 10117, Germany
- * E-mail:
| |
Collapse
|
25
|
Frazier TW, Embacher R, Tilot AK, Koenig K, Mester J, Eng C. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry 2015; 20:1132-8. [PMID: 25288137 PMCID: PMC4388743 DOI: 10.1038/mp.2014.125] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/07/2014] [Accepted: 08/28/2014] [Indexed: 12/30/2022]
Abstract
PTEN is a tumor suppressor associated with an inherited cancer syndrome and an important regulator of ongoing neural connectivity and plasticity. The present study examined molecular and phenotypic characteristics of individuals with germline heterozygous PTEN mutations and autism spectrum disorder (ASD) (PTEN-ASD), with the aim of identifying pathophysiologic markers that specifically associate with PTEN-ASD and that may serve as targets for future treatment trials. PTEN-ASD patients (n=17) were compared with idiopathic (non-PTEN) ASD patients with (macro-ASD, n=16) and without macrocephaly (normo-ASD, n=38) and healthy controls (n=14). Group differences were evaluated for PTEN pathway protein expression levels, global and regional structural brain volumes and cortical thickness measures, neurocognition and adaptive behavior. RNA expression patterns and brain characteristics of a murine model of Pten mislocalization were used to further evaluate abnormalities observed in human PTEN-ASD patients. PTEN-ASD had a high proportion of missense mutations and showed reduced PTEN protein levels. Compared with the other groups, prominent white-matter and cognitive abnormalities were specifically associated with PTEN-ASD patients, with strong reductions in processing speed and working memory. White-matter abnormalities mediated the relationship between PTEN protein reductions and reduced cognitive ability. The Pten(m3m4) murine model had differential expression of genes related to myelination and increased corpus callosum. Processing speed and working memory deficits and white-matter abnormalities may serve as useful features that signal clinicians that PTEN is etiologic and prompting referral to genetic professionals for gene testing, genetic counseling and cancer risk management; and could reveal treatment targets in trials of treatments for PTEN-ASD.
Collapse
|
26
|
Stavarache MA, Musatov S, McGill M, Vernov M, Kaplitt MG. The tumor suppressor PTEN regulates motor responses to striatal dopamine in normal and Parkinsonian animals. Neurobiol Dis 2015; 82:487-494. [PMID: 26232589 DOI: 10.1016/j.nbd.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/03/2023] Open
Abstract
Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) is a dual lipid-protein phosphatase known primarily as a growth preventing tumor suppressor. PTEN is also expressed in neurons, and pathways modulated by PTEN can influence neuronal function. Here we report a novel function of PTEN as a regulator of striatal dopamine signaling in a model of Parkinson's disease (PD). Blocking PTEN expression with an adeno-associated virus (AAV) vector expressing a small hairpin RNA (shRNA) resulted in reduced responses of cultured striatal neurons to dopamine, which appeared to be largely due to reduction in D2 receptor activation. Co-expression of shRNA-resistant wild-type and mutant forms of PTEN indicated that the lipid-phosphatase activity was essential for this effect. In both normal and Parkinsonian rats, inhibition of striatal PTEN in vivo resulted in motor dysfunction and impaired responses to dopamine, particularly D2 receptor agonists. Expression of PTEN mutants confirmed the lipid-phosphatase activity as critical, while co-expression of a dominant-negative form of Akt overcame the PTEN shRNA effect. These results identify PTEN as a key mediator of striatal responses to dopamine, and suggest that drugs designed to potentiate PTEN expression or activity, such as cancer chemotherapeutics, may also be useful for improving striatal responses to dopamine in conditions of dopamine depletion such as PD. This also suggests that strategies which increase Akt or decrease PTEN expression or function, such as growth factors to prevent neuronal death, may have a paradoxical effect on neurological functioning by inhibiting striatal responses to dopamine.
Collapse
Affiliation(s)
- Mihaela A Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sergei Musatov
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Marlon McGill
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary Vernov
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
27
|
AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J Neurosci 2014; 34:9951-62. [PMID: 25057197 DOI: 10.1523/jneurosci.1996-14.2014] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Conditional genetic deletion of phosphatase and tensin homolog (PTEN) in the sensorimotor cortex of neonatal mice enables regeneration of corticospinal tract (CST) axons after spinal cord injury (SCI). The present study addresses three questions: (1) whether PTEN knockdown in adult rats by nongenetic techniques enables CST regeneration, (2) whether interventions to enable CST regeneration enhance recovery of voluntary motor function, and (3) whether delivery of salmon fibrin into the injury site further enhances CST regeneration and motor recovery. Adult rats were trained in a staircase-reaching task and then received either intracortical injections of AAVshPTEN to delete PTEN or a control vector expressing shRNA for luciferase (AAVshLuc). Rats then received cervical dorsal hemisection injuries and salmon fibrin was injected into the injury site in half the rats, yielding four groups (AAVshPTEN, AAVshLuc, AAVshPTEN + fibrin, and AAVshLuc + fibrin). Forepaw function was assessed for 10 weeks after injury and CST axons were traced by injecting biotin-conjugated dextran amine into the sensorimotor cortex. Rats that received AAVshPTEN alone did not exhibit improved motor function, whereas rats that received AAVshPTEN and salmon fibrin had significantly higher forelimb-reaching scores. Tract tracing revealed that CST axons extended farther caudally in the group that received AAVshPTEN and salmon fibrin versus other groups. There were no significant differences in lesion size between the groups. Together, these data suggest that the combination of PTEN deletion and salmon fibrin injection into the lesion can significantly improve voluntary motor function after SCI by enabling regenerative growth of CST axons.
Collapse
|
28
|
Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth. Proc Natl Acad Sci U S A 2014; 111:13205-10. [PMID: 25157163 DOI: 10.1073/pnas.1400737111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons. However, in contrast to previously published data, we demonstrate that PTEN is not a substrate of Nedd4-1 and Nedd4-2, and that aberrant PTEN ubiquitination is not involved in the impaired axon growth upon deletion of Nedd4-1 and Nedd4-2. Rather, PTEN limits Nedd4-1 protein levels by modulating the activity of mTORC1, a protein complex that controls protein synthesis and cell growth. Our data demonstrate that Nedd4-family E3 ligases promote axonal growth and branching in the developing mammalian brain, where PTEN is not a relevant substrate. Instead, PTEN controls neurite growth by regulating Nedd4-1 expression.
Collapse
|
29
|
Ueda Y. The Role of Phosphoinositides in Synapse Function. Mol Neurobiol 2014; 50:821-38. [DOI: 10.1007/s12035-014-8768-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 06/01/2014] [Indexed: 11/30/2022]
|
30
|
Tolkovsky AM. Is PTEN hyperactivity behind poor regeneration in diabetic neuropathy? ACTA ACUST UNITED AC 2014; 137:977-8. [PMID: 24648055 DOI: 10.1093/brain/awu048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Yokoyama A, Igarashi K, Sato T, Takagi K, Otsuka I M, Shishido Y, Baba T, Ito R, Kanno J, Ohkawa Y, Morohashi KI, Sugawara A. Identification of myelin transcription factor 1 (MyT1) as a subunit of the neural cell type-specific lysine-specific demethylase 1 (LSD1) complex. J Biol Chem 2014; 289:18152-62. [PMID: 24828497 DOI: 10.1074/jbc.m114.566448] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Regulation of spatiotemporal gene expression in higher eukaryotic cells is critical for the precise and orderly development of undifferentiated progenitors into committed cell types of the adult. It is well known that dynamic epigenomic regulation (including chromatin remodeling and histone modifications by transcriptional coregulator complexes) is involved in transcriptional regulation. Precisely how these coregulator complexes exert their cell type and developing stage-specific activity is largely unknown. In this study we aimed to isolate the histone demethylase lysine-specific demethylase 1 (LSD1) complex from neural cells by biochemical purification. In so doing, we identified myelin transcription factor 1 (MyT1) as a novel LSD1 complex component. MyT1 is a neural cell-specific zinc finger factor, and it forms a stable multiprotein complex with LSD1 through direct interaction. Target gene analysis using microarray and ChIP assays revealed that the Pten gene was directly regulated by the LSD1-MyT1 complex. Knockdown of either LSD1 or MyT1 derepressed the expression of endogenous target genes and inhibited cell proliferation of a neuroblastoma cell line, Neuro2a. We propose that formation of tissue-specific combinations of coregulator complexes is a critical mechanism for tissue-specific transcriptional regulation.
Collapse
Affiliation(s)
- Atsushi Yokoyama
- From the Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan,
| | - Katsuhide Igarashi
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan, Life Science Tokyo Advanced Research center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Science, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Maky Otsuka I
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan, Life Science Tokyo Advanced Research center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Science, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yurina Shishido
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| | - Takashi Baba
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| | - Ryo Ito
- From the Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yasuyuki Ohkawa
- Division of Epigenetics, Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| | - Akira Sugawara
- From the Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
32
|
Kreis P, Leondaritis G, Lieberam I, Eickholt BJ. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders. Front Mol Neurosci 2014; 7:23. [PMID: 24744697 PMCID: PMC3978343 DOI: 10.3389/fnmol.2014.00023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/12/2014] [Indexed: 01/13/2023] Open
Abstract
PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease.
Collapse
Affiliation(s)
- Patricia Kreis
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - George Leondaritis
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Ivo Lieberam
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - Britta J Eickholt
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
33
|
Kleijer KTE, Schmeisser MJ, Krueger DD, Boeckers TM, Scheiffele P, Bourgeron T, Brose N, Burbach JPH. Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology (Berl) 2014; 231:1037-62. [PMID: 24419271 DOI: 10.1007/s00213-013-3403-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 12/14/2013] [Indexed: 12/22/2022]
Abstract
RATIONALE The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets. OBJECTIVE The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms. METHOD Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions. RESULTS The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity. CONCLUSIONS ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.
Collapse
Affiliation(s)
- Kristel T E Kleijer
- Department Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3984 CG, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Clipperton-Allen AE, Page DT. Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests. Hum Mol Genet 2014; 23:3490-505. [PMID: 24497577 DOI: 10.1093/hmg/ddu057] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accelerated head and brain growth (macrocephaly) during development is a replicated biological finding in a subset of individuals with autism spectrum disorder (ASD). However, the relationship between brain overgrowth and the behavioral and cognitive symptoms of ASD is poorly understood. The PI3K-Akt-mTOR pathway regulates cellular growth; several genes encoding negative regulators of this pathway are ASD risk factors, including PTEN. Mutations in PTEN have been reported in individuals with ASD and macrocephaly. We report that brain overgrowth is widespread in Pten germline haploinsufficient (Pten(+/-)) mice, reflecting Pten mRNA expression in the developing brain. We then ask if broad brain overgrowth translates into general or specific effects on the development of behavior and cognition by testing Pten(+/-) mice using assays relevant to ASD and comorbidities. Deficits in social behavior were observed in both sexes. Males also showed abnormalities related to repetitive behavior and mood/anxiety. Females exhibited circadian activity and emotional learning phenotypes. Widespread brain overgrowth together with selective behavioral impairments in Pten(+/-) mice raises the possibility that most brain areas and constituent cell types adapt to an altered trajectory of growth with minimal impact on the behaviors tested in our battery; however, select areas/cell types relevant to social behavior are more vulnerable or less adaptable, thus resulting in social deficits. Probing dopaminergic neurons as a candidate vulnerable cell type, we found social behavioral impairments in mice with Pten conditionally inactivated in dopaminergic neurons that are consistent with the possibility that desynchronized growth in key cell types may contribute to ASD endophenotypes.
Collapse
Affiliation(s)
- Amy E Clipperton-Allen
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter 33458, FL, USA
| |
Collapse
|
35
|
Kennedy LM, Pham SCDL, Grishok A. Nonautonomous regulation of neuronal migration by insulin signaling, DAF-16/FOXO, and PAK-1. Cell Rep 2013; 4:996-1009. [PMID: 23994474 DOI: 10.1016/j.celrep.2013.07.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/02/2013] [Accepted: 07/30/2013] [Indexed: 01/29/2023] Open
Abstract
Neuronal migration is essential for nervous system development in all organisms and is regulated in the nematode, C. elegans, by signaling pathways that are conserved in humans. Here, we demonstrate that the insulin/IGF-1-PI3K signaling pathway modulates the activity of the DAF-16/FOXO transcription factor to regulate the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. When signaling is reduced, DAF-16 is activated and promotes migration; conversely, when signaling is enhanced, DAF-16 is inactivated, and migration is inhibited. We show that DAF-16 acts nonautonomously in the hypodermis to promote HSN migration. Furthermore, we identify PAK-1, a p21-activated kinase, as a downstream mediator of insulin/IGF-1-DAF-16 signaling in the nonautonomous control of HSN migration. Because a FOXO-Pak1 pathway was recently shown to regulate mammalian neuronal polarity, our findings indicate that the roles of FOXO and Pak1 in neuronal migration are most likely conserved from C. elegans to higher organisms.
Collapse
Affiliation(s)
- Lisa M Kennedy
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
36
|
Abstract
This minireview focuses on recent studies implicating class V myosins in organelle and macromolecule transport within neurons. These studies reveal that class V myosins play important roles in a wide range of fundamental processes occurring within neurons, including the transport into dendritic spines of organelles that support synaptic plasticity, the establishment of neuronal shape, the specification of polarized cargo transport, and the subcellular localization of mRNA.
Collapse
Affiliation(s)
- John A Hammer
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | | |
Collapse
|
37
|
Kim HJ, Woo HM, Ryu J, Bok J, Kim JW, Choi SB, Park MH, Park HY, Koo SK. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS One 2013; 8:e55609. [PMID: 23393595 PMCID: PMC3564925 DOI: 10.1371/journal.pone.0055609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 01/02/2013] [Indexed: 12/25/2022] Open
Abstract
All cellular phenomena and developmental events, including inner ear development, are modulated through harmonized signaling networks. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a major signaling component involved in cross talk with key regulators of development; i.e., Wnt, Notch, and bone morphogenetic proteins. Although Pten function has been studied in various systems, its role in inner ear development is poorly understood. Here, we used inner ear-specific Pten conditional knockout mice and examined the characteristics of the inner ear. In a detailed analysis of the phenotype, reduced cochlear turning and widened epithelia were observed. Phalloidin staining of sensory epithelium revealed that hair cell patterns were disturbed; i.e., additional rows of hair cells were discovered. The neural abnormality revealed a reduction in and disorganization of nerve fibers, including apoptosis at the neural precursor stage. Pten deficiency induced increased phosphorylation of Akt at Ser473. The elevation of inhibitory glycogen synthase kinase 3β Ser9 phosphorylation (pGSK3β) was sustained until the neuronal differentiation stage at embryonic day 14.5, instead of pGSK3β downregulation. This is the first report on the influence of Pten/Akt/GSK3β signaling on the development of spiral ganglia. These results suggest that Pten is required for the maintenance of neuroblast number, neural precursors, and differentiation in the inner ear.
Collapse
Affiliation(s)
- Hyung Jin Kim
- Center for Biomedical Sciences, National Institute of Health, Osong Health Technology Administration Complex 643, Yeonje-ri, Osong-eup, Cheongwon-gun, Chungcheongbuk-do, South Korea
| | - Hae-Mi Woo
- Center for Biomedical Sciences, National Institute of Health, Osong Health Technology Administration Complex 643, Yeonje-ri, Osong-eup, Cheongwon-gun, Chungcheongbuk-do, South Korea
| | - Jihee Ryu
- Center for Biomedical Sciences, National Institute of Health, Osong Health Technology Administration Complex 643, Yeonje-ri, Osong-eup, Cheongwon-gun, Chungcheongbuk-do, South Korea
| | - Jinwoong Bok
- Department of Anatomy, BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Sang Back Choi
- Center for Biomedical Sciences, National Institute of Health, Osong Health Technology Administration Complex 643, Yeonje-ri, Osong-eup, Cheongwon-gun, Chungcheongbuk-do, South Korea
| | - Mi-Hyun Park
- Center for Biomedical Sciences, National Institute of Health, Osong Health Technology Administration Complex 643, Yeonje-ri, Osong-eup, Cheongwon-gun, Chungcheongbuk-do, South Korea
| | - Hyun-Young Park
- Center for Biomedical Sciences, National Institute of Health, Osong Health Technology Administration Complex 643, Yeonje-ri, Osong-eup, Cheongwon-gun, Chungcheongbuk-do, South Korea
| | - Soo Kyung Koo
- Center for Biomedical Sciences, National Institute of Health, Osong Health Technology Administration Complex 643, Yeonje-ri, Osong-eup, Cheongwon-gun, Chungcheongbuk-do, South Korea
- * E-mail:
| |
Collapse
|
38
|
Morigaki R, Pooh KH, Shouno K, Taniguchi H, Endo S, Nakagawa Y. Choroid plexus papilloma in a girl with hypomelanosis of Ito. J Neurosurg Pediatr 2012; 10:182-5. [PMID: 22793165 DOI: 10.3171/2012.5.peds11556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors report a case of choroid plexus papilloma in a girl with hypomelanosis of Ito, and they review the literature in brief. Hypomelanosis of Ito is a rare neurocutaneous syndrome characterized by cutaneous hypopigmented whorls, streaks, and patches along lines of Blaschko. Most patients exhibit CNS manifestations, including psychomotor retardation, seizures, hypotonia, and ataxia. A 6-year-old girl with hypomelanosis of Ito was referred to the authors' hospital with bilateral tumors in the lateral ventricles. The right lateral ventricle tumor was surgically removed. Immunohistochemical investigations revealed the tumor to be a choroid plexus papilloma (WHO Grade I). A chromosomal investigation revealed that the tumor tissue demonstrated a large loss of heterozygosity at chromosome 10. The case reported here serves as a reminder that de novo brain tumors may arise in patients with chromosomal mosaicism.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Neurosurgery, Institute of Health Biosciences, University of Tokushima, Kagawa, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Kazdoba TM, Sunnen CN, Crowell B, Lee GH, Anderson AE, D'Arcangelo G. Development and characterization of NEX- Pten, a novel forebrain excitatory neuron-specific knockout mouse. Dev Neurosci 2012; 34:198-209. [PMID: 22572802 DOI: 10.1159/000337229] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/13/2012] [Indexed: 01/15/2023] Open
Abstract
The phosphatase and tensin homolog located on chromosome 10 (PTEN) suppresses the activity of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, a signaling cascade critically involved in the regulation of cell proliferation and growth. Human patients carrying germ line PTEN mutations have an increased predisposition to tumors, and also display a variety of neurological symptoms and increased risk of epilepsy and autism, implicating PTEN in neuronal development and function. Consistently, loss of Pten in mouse neural cells results in ataxia, seizures, cognitive abnormalities, increased soma size and synaptic abnormalities. To better understand how Pten regulates the excitability of principal forebrain neurons, a factor that is likely to be altered in cognitive disorders, epilepsy and autism, we generated a novel conditional knockout mouse line (NEX-Pten) in which Cre, under the control of the NEX promoter, drives the deletion of Pten specifically in early postmitotic, excitatory neurons of the developing forebrain. Homozygous mutant mice exhibited a massive enlargement of the forebrain, and died shortly after birth due to excessive mTOR activation. Analysis of the neonatal cerebral cortex further identified molecular defects resulting from Pten deletion that likely affect several aspects of neuronal development and excitability.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- Department of Cell Biology and Neuroscience, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
40
|
Christensen R, de la Torre-Ubieta L, Bonni A, Colón-Ramos DA. A conserved PTEN/FOXO pathway regulates neuronal morphology during C. elegans development. Development 2012; 138:5257-67. [PMID: 22069193 PMCID: PMC3210501 DOI: 10.1242/dev.069062] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a conserved signal transduction cascade that is fundamental for the correct development of the nervous system. The major negative regulator of PI3K signaling is the lipid phosphatase DAF-18/PTEN, which can modulate PI3K pathway activity during neurodevelopment. Here, we identify a novel role for DAF-18 in promoting neurite outgrowth during development in Caenorhabditis elegans. We find that DAF-18 modulates the PI3K signaling pathway to activate DAF-16/FOXO and promote developmental neurite outgrowth. This activity of DAF-16 in promoting outgrowth is isoform-specific, being effected by the daf-16b isoform but not the daf-16a or daf-16d/f isoform. We also demonstrate that the capacity of DAF-16/FOXO in regulating neuron morphology is conserved in mammalian neurons. These data provide a novel mechanism by which the conserved PI3K signaling pathway regulates neuronal cell morphology during development through FOXO.
Collapse
Affiliation(s)
- Ryan Christensen
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | | | | | | |
Collapse
|
41
|
Phosphoinositide 3-kinase enhancer regulates neuronal dendritogenesis and survival in neocortex. J Neurosci 2011; 31:8083-92. [PMID: 21632930 DOI: 10.1523/jneurosci.1129-11.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphoinositide 3-kinase enhancer (PIKE) binds and enhances phosphatidylinositol 3-kinase (PI3K)/Akt activities. However, its physiological functions in brain have never been explored. Here we show that PIKE is important in regulating the neuronal survival and development of neocortex. During development, enhanced apoptosis is observed in the ventricular zone of PIKE knock-out (PIKE(-/-)) cortex. Moreover, PIKE(-/-) neurons show reduced dendritic complexity, dendritic branch length, and soma size. These defects are due to the reduced PI3K/Akt activities in PIKE(-/-) neurons, as the impaired dendritic arborization can be rescued when PI3K/Akt cascade is augmented in vitro or in PIKE(-/-)PTEN(-/-) double-knock-out mice. Interestingly, PIKE(-/-) mice display behavioral abnormality in locomotion and spatial navigation. Because of the diminished PI3K/Akt activities, PIKE(-/-) neurons are more vulnerable to glutamate- or stroke-induced neuronal cell death. Together, our data established the critical role of PIKE in regulating neuronal survival and development by substantiating the PI3K/Akt pathway.
Collapse
|
42
|
Domanskyi A, Geiβler C, Vinnikov IA, Alter H, Schober A, Vogt MA, Gass P, Parlato R, Schütz G. Pten
ablation in adult dopaminergic neurons is neuroprotective in Parkinson's disease models. FASEB J 2011; 25:2898-910. [DOI: 10.1096/fj.11-181958] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrii Domanskyi
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Christin Geiβler
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Ilya A. Vinnikov
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Heike Alter
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Andreas Schober
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology IIUniversity of FreiburgFreiburgGermany
| | - Miriam A. Vogt
- Central Institute of Mental HealthRG Animal Models in PsychiatryUniversity of HeidelbergMannheimGermany
| | - Peter Gass
- Central Institute of Mental HealthRG Animal Models in PsychiatryUniversity of HeidelbergMannheimGermany
| | - Rosanna Parlato
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Günther Schütz
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| |
Collapse
|
43
|
Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 2010; 30:8953-64. [PMID: 20592216 DOI: 10.1523/jneurosci.0219-10.2010] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the developing nervous system, constitutive activation of the AKT/mTOR (mammalian target of rapamycin) pathway in myelinating glial cells is associated with hypermyelination of the brain, but is reportedly insufficient to drive myelination by Schwann cells. We have hypothesized that it requires additional mechanisms downstream of NRG1/ErbB signaling to trigger myelination in the peripheral nervous system. Here, we demonstrate that elevated levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3) have developmental effects on both oligodendrocytes and Schwann cells. By generating conditional mouse mutants, we found that Pten-deficient Schwann cells are enhanced in number and can sort and myelinate axons with calibers well below 1 microm. Unexpectedly, mutant glial cells also spirally enwrap C-fiber axons within Remak bundles and even collagen fibrils, which lack any membrane surface. Importantly, PIP3-dependent hypermyelination of central axons, which is observed when targeting Pten in oligodendrocytes, can also be induced after tamoxifen-mediated Cre recombination in adult mice. We conclude that it requires distinct PIP3 effector mechanisms to trigger axonal wrapping. That myelin synthesis is not restricted to early development but can occur later in life is relevant to developmental disorders and myelin disease.
Collapse
|
44
|
Achanta P, Sedora Roman NI, Quiñones-Hinojosa A. Gliomagenesis and the use of neural stem cells in brain tumor treatment. Anticancer Agents Med Chem 2010; 10:121-30. [PMID: 20184546 DOI: 10.2174/187152010790909290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 12/29/2009] [Indexed: 01/08/2023]
Abstract
The role of neural stem cells (NSCs) in both the physiological and pathological processes in the brain has been refined through recent studies within the neuro-oncological field. Alterations in NSC regulatory mechanisms may be fundamental for the development and progression of malignant gliomas. A subpopulation of cells within the tumor known as brain tumor stem cells (BTSCs) have been shown to share key properties with NSCs. The BTSC hypothesis has significantly contributed to a potential understanding as to why brain tumors hold such dismal prognosis. On the other hand, the normal NSCs possess the capacity to migrate extensively towards the tumor bulk as well as to lingering neoplastic regions of the brain. The tropism of NSCs towards brain tumors may provide an additional tool for the treatment of brain cancer. The creation of potential therapies through the use of NSCs has been studied and includes the delivery of gene products to specific locations of the central nervous system selectively targeting malignant brain tumor cells and maximizing the efficiency of their delivery. Here, the proposed mechanisms of how brain tumors emerge, the molecular pathways interrupted in NSC pathogenesis and the most recent preclinical results in the use of NSCs for glioma treatment are reviewed.
Collapse
Affiliation(s)
- Pragathi Achanta
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, CRB II, Room 272, 1550 Orleans Street, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
45
|
Rodrigues de Amorim MA, Garcia-Segura LM, Goya RG, Portiansky EL. Decrease in PTEN and increase in Akt expression and neuron size in aged rat spinal cord. Exp Gerontol 2010; 45:457-63. [PMID: 20347952 DOI: 10.1016/j.exger.2010.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 01/17/2023]
Abstract
PTEN is a tumor suppressor gene known to play an important role in the regulation of cell size. In this study we compared PTEN expression in the spinal cord of young (5 months old) vs. aged (32 months old) female rats and correlated them with alterations in neuron size and morphology in the same animals. Total and phosphorylated PTEN (pPTEN) as well as its downstream target phosphorylated Akt (pAkt) were assessed by Western blotting. Spinal cord neurons were morphometrically characterized. Total PTEN, pPTEN and total Akt expression were significantly higher in young rats than in aged animals. Expression of pAkt was stronger in aged animals. A significant increase in neuronal size was observed in large motoneurons of aged as compared with young rats. Our data show that in the spinal cord of rats, neuronal PTEN expression diminishes with advanced age while neuronal size increases. These results suggest that in the spinal cord, an age-related reduction in PTEN and increase of pAkt expression may be involved in the progressive enlargement of neurons.
Collapse
|
46
|
Fu M, Sato Y, Lyons-Warren A, Zhang B, Kane MA, Napoli JL, Heuckeroth RO. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development 2010; 137:631-40. [PMID: 20110328 PMCID: PMC2827616 DOI: 10.1242/dev.040550] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2009] [Indexed: 01/14/2023]
Abstract
Hirschsprung disease is a serious disorder of enteric nervous system (ENS) development caused by the failure of ENS precursor migration into the distal bowel. We now demonstrate that retinoic acid (RA) is crucial for GDNF-induced ENS precursor migration, cell polarization and lamellipodia formation, and that vitamin A depletion causes distal bowel aganglionosis in serum retinol-binding-protein-deficient (Rbp4(-/-)) mice. Ret heterozygosity increases the incidence and severity of distal bowel aganglionosis induced by vitamin A deficiency in Rbp4(-/-) animals. Furthermore, RA reduces phosphatase and tensin homolog (Pten) accumulation in migrating cells, whereas Pten overexpression slows ENS precursor migration. Collectively, these data support the hypothesis that vitamin A deficiency is a non-genetic risk factor that increases Hirschsprung disease penetrance and expressivity, suggesting that some cases of Hirschsprung disease might be preventable by optimizing maternal nutrition.
Collapse
Affiliation(s)
- Ming Fu
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Yoshiharu Sato
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Ariel Lyons-Warren
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Bin Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Maureen A. Kane
- Department of Nutritional Science and Toxicology, University of California, Berkeley, 119 Morgan Hall, MC#3104, Berkeley, CA 94720, USA
| | - Joseph L. Napoli
- Department of Nutritional Science and Toxicology, University of California, Berkeley, 119 Morgan Hall, MC#3104, Berkeley, CA 94720, USA
| | - Robert O. Heuckeroth
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
- Department of HOPE Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| |
Collapse
|
47
|
Kwak YD, Wang B, Pan W, Xu H, Jiang X, Liao FF. Functional interaction of phosphatase and tensin homologue (PTEN) with the E3 ligase NEDD4-1 during neuronal response to zinc. J Biol Chem 2010; 285:9847-9857. [PMID: 20100827 DOI: 10.1074/jbc.m109.091637] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The contribution of zinc-mediated neuronal death in the process of both acute and chronic neurodegeneration has been increasingly appreciated. Phosphatase and tensin homologue, deleted on chromosome 10 (PTEN), the major tumor suppressor and key regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, plays a critical role in neuronal death in response to various insults. NEDD4-1-mediated PTEN ubiquitination and subsequent degradation via the ubiquitin proteosomal system have recently been demonstrated to be the important regulatory mechanism for PTEN in several cancer types. We now demonstrate that PTEN is also the key mediator of the PI3K/Akt pathway in the neuronal response to zinc insult. We used primary cortical neurons and neuroblastoma N2a cells to show that zinc treatment results in a reduction of the PTEN protein level in parallel with increased NEDD4-1 gene/protein expression. The reduced PTEN level is associated with an activated PI3K pathway as determined by elevated phosphorylation of both Akt and GSK-3 as well as by the attenuating effect of a specific PI3K inhibitor (wortmannin). The reduction of PTEN can be attributed to increased protein degradation via the ubiquitin proteosomal system, as we show NEDD4-1 to be the major E3 ligase responsible for PTEN ubiquitination in neurons. Moreover, PTEN and NEDD4-1 appear to be able to counter-regulate each other to mediate the neuronal response to zinc. This reciprocal regulation requires the PI3K signaling pathway, suggesting a feedback loop mechanism. This study demonstrates that NEDD4-1-mediated PTEN ubiquitination is crucial in the regulation of PI3K/Akt signaling by PTEN during the neuronal response to zinc, which may represent a common mechanism in neurodegeneration.
Collapse
Affiliation(s)
- Young-Don Kwak
- Neurodegenerative Disease Program, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Bin Wang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Wei Pan
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Huaxi Xu
- Neurodegenerative Disease Program, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Francesca-Fang Liao
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| |
Collapse
|
48
|
Abstract
Our understanding of the mechanisms involved in the formation of the complex arrangement of neurons and their interconnections within the brain has made significant progress in recent years. Current research has uncovered a network of intracellular signaling events that provide precise coordination of a diverse array of cellular responses, including trafficking events, cytoskeletal remodeling, gene transcription, and protein ubiquitination and translation. This chapter considers the specific cellular responses controlled by the phosphatidylinositol 3-kinase (PI3K) signaling pathway, which is instructive with regard to a number of important steps involved in the development of the brain. These range from the mediation of extrinsic signals - such as growth factors, axon guidance cues, and extracellular matrix components - to intrinsic effectors, such as downstream signaling components that act, for example, at the translation level. PI3K signaling is, consequently, at the heart of controlling neuronal migration and neuronal morphogenesis, as well as dendrite and synapse development. Many neurobehavioral disorders arise as a consequence of subtle developmental abnormalities. Unsurprisingly, therefore, aberrant PI3K signaling has been indicated by many studies to be a contributing factor to the pathophysiology of disorders such as schizophrenia and autism. In this chapter, we will focus on the specific, yet divergent, cellular processes that are achieved through PI3K signaling in neurons and are key to brain development.
Collapse
Affiliation(s)
- Kathryn Waite
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, London, UK
| | | |
Collapse
|
49
|
|
50
|
van Diepen MT, Parsons M, Downes CP, Leslie NR, Hindges R, Eickholt BJ. MyosinV controls PTEN function and neuronal cell size. Nat Cell Biol 2009; 11:1191-6. [PMID: 19767745 PMCID: PMC2756284 DOI: 10.1038/ncb1961] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/08/2009] [Indexed: 12/15/2022]
Abstract
The tumour suppressor PTEN can inhibit proliferation and migration as well as control cell growth in different cell types1. PTEN functions predominately as a lipid phsophatase, converting PI(3,4,5)P3 to PI(4,5)P2, thereby antagonizing PI3K (Phosphoinositide 3-kinase) and its established downstream effector pathways2. However, much is unclear concerning the mechanisms that regulate PTEN movement to the cell membrane necessary for PTEN’s activity towards PI(3,4,5)P33-5. Here we show a requirement for functional motor proteins in the control of PI3K signalling, involving a previously unknown association between PTEN and MyosinV. FRET measurements revealed that PTEN interacts directly with MyosinV, dependent on PTEN phosphorylation mediated by CK2 and/or GSK3. Inactivation of MyosinV-transport function in neurons increased cell size, which – in line with known attributes of PTEN-loss6, 7 - required PI3K and mTor. Our data demonstrate a myosin-based transport mechanism regulating PTEN function, providing new insights into the signalling networks regulating cell growth.
Collapse
Affiliation(s)
- Michiel T van Diepen
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|