1
|
Kranz TM, Lent KL, Miller KE, Chao MV, Brenowitz EA. Rapamycin blocks the neuroprotective effects of sex steroids in the adult birdsong system. Dev Neurobiol 2019; 79:794-804. [PMID: 31509642 DOI: 10.1002/dneu.22719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/06/2022]
Abstract
In adult songbirds, the telencephalic song nucleus HVC and its efferent target RA undergo pronounced seasonal changes in morphology. In breeding birds, there are increases in HVC volume and total neuron number, and RA neuronal soma area compared to nonbreeding birds. At the end of breeding, HVC neurons die through caspase-dependent apoptosis and thus, RA neuron size decreases. Changes in HVC and RA are driven by seasonal changes in circulating testosterone (T) levels. Infusing T, or its metabolites 5α-dihydrotestosterone (DHT) and 17 β-estradiol (E2), intracerebrally into HVC (but not RA) protects HVC neurons from death, and RA neuron size, in nonbreeding birds. The phosphoinositide 3-kinase (PI3K)-Akt (a serine/threonine kinase)-mechanistic target of rapamycin (mTOR) signaling pathway is a point of convergence for neuroprotective effects of sex steroids and other trophic factors. We asked if mTOR activation is necessary for the protective effect of hormones in HVC and RA of adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). We transferred sparrows from breeding to nonbreeding hormonal and photoperiod conditions to induce regression of HVC neurons by cell death and decrease of RA neuron size. We infused either DHT + E2, DHT + E2 plus the mTOR inhibitor rapamycin, or vehicle alone in HVC. Infusion of DHT + E2 protected both HVC and RA neurons. Coinfusion of rapamycin with DHT + E2, however, blocked the protective effect of hormones on HVC volume and neuron number, and RA neuron size. These results suggest that activation of mTOR is an essential downstream step in the neuroprotective cascade initiated by sex steroid hormones in the forebrain.
Collapse
Affiliation(s)
- Thorsten M Kranz
- Department of Psychiatry, Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, New York
| | - Karin L Lent
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Kimberly E Miller
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Moses V Chao
- Department of Psychiatry, Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, New York
| | - Eliot A Brenowitz
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
2
|
Micevych PE, Sinchak K. Extranuclear signaling by ovarian steroids in the regulation of sexual receptivity. Horm Behav 2018; 104:4-14. [PMID: 29753716 PMCID: PMC6240501 DOI: 10.1016/j.yhbeh.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Paul E Micevych
- Dept of Neurobiology, David Geffen School of Medicine at UCLA, Laboratory of Neuroendocrinology of the UCLA Brain Research Institute, United States
| | - Kevin Sinchak
- Dept of Biological Sciences, California State University, Long Beach, United States.
| |
Collapse
|
3
|
Micevych PE, Mermelstein PG, Sinchak K. Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction. Trends Neurosci 2017; 40:654-666. [PMID: 28969926 DOI: 10.1016/j.tins.2017.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 09/10/2017] [Indexed: 12/21/2022]
Abstract
Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity.
Collapse
Affiliation(s)
- Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), and Laboratory of Neuroendocrinology of the UCLA Brain Research Institute, Los Angeles, CA 90095, USA.
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
4
|
Fulford AJ. Endogenous nociceptin system involvement in stress responses and anxiety behavior. VITAMINS AND HORMONES 2015; 97:267-93. [PMID: 25677776 DOI: 10.1016/bs.vh.2014.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mechanisms underpinning stress-related behavior and dysfunctional events leading to the expression of neuropsychiatric disorders remain incompletely understood. Novel candidates involved in the neuromodulation of stress, mediated both peripherally and centrally, provide opportunities for improved understanding of the neurobiological basis of stress disorders and may represent targets for novel therapeutic development. This chapter provides an overview of the mechanisms by which the opioid-related peptide, nociceptin, regulates the neuroendocrine stress response and stress-related behavior. In our research, we have employed nociceptin receptor antagonists to investigate endogenous nociceptin function in tonic control over stress-induced activity of the hypothalamo-pituitary-adrenal axis. Nociceptin demonstrates a wide range of functions, including modulation of psychological and inflammatory stress responses, modulation of neurotransmitter release, immune homeostasis, in addition to anxiety and cognitive behaviors. Greater appreciation of the complexity of limbic-hypothalamic neuronal networks, together with attention toward gender differences and the roles of steroid hormones, provides an opportunity for deeper understanding of the importance of the nociceptin system in the context of the neurobiology of stress and behavior.
Collapse
Affiliation(s)
- Allison Jane Fulford
- Centre for Comparative and Clinical Anatomy, University of Bristol, Bristol, BS2 8EJ, United Kingdom.
| |
Collapse
|
5
|
Sinchak K, Dalhousay L, Sanathara N. Orphanin FQ-ORL-1 regulation of reproduction and reproductive behavior in the female. VITAMINS AND HORMONES 2015; 97:187-221. [PMID: 25677773 DOI: 10.1016/bs.vh.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Orphanin FQ (OFQ/N) and its receptor, opioid receptor-like receptor-1 (ORL-1), are expressed throughout steroid-responsive limbic and hypothalamic circuits that regulate female ovarian hormone feedback and reproductive behavior circuits. The arcuate nucleus of the hypothalamus (ARH) is a brain region that expresses OFQ/N and ORL-1 important for both sexual behavior and modulating estradiol feedback loops. Within the ARH, the activation of the OFQ/N-ORL-1 system facilitates sexual receptivity (lordosis) through the inhibition of β-endorphin neuronal activity. Estradiol initially activates ARH β-endorphin neurons to inhibit lordosis. Simultaneously, estradiol upregulates coexpression of OFQ/N and progesterone receptors and ORL-1 in ARH β-endorphin neurons. Ovarian hormones regulate pre- and postsynaptic coupling of ORL-1 to its G protein-coupled signaling pathways. When the steroid-primed rat is nonreceptive, estradiol acts pre- and postsynaptically to decrease the ability of the OFQ/N-ORL-1 system to inhibit ARH β-endorphin neurotransmission. Conversely, when sexually receptive, ORL-1 signaling is restored to inhibit β-endorphin neurotransmission. Although steroid signaling that facilitates lordosis converges to deactivate ARH β-endorphin neurons, estradiol-only facilitation of lordosis requires the activation of ORL-1, but estradiol+progesterone does not, indicating that multiple circuits mediate ovarian hormone signaling to deactivate ARH β-endorphin neurons. Research on the role of OFQ/N-ORL-1 in ovarian hormone feedback loops is just beginning. In the rat, OFQ/N may act to terminate gonadotropin-releasing hormone and luteinizing hormone release under positive and negative feedbacks. In the ewe, it appears to directly inhibit gonadotropin-releasing hormone release to mediate progesterone-negative feedback. As a whole, the localization and actions of OFQ/N-ORL-1 system indicate that it may mediate the actions of estradiol and progesterone to synchronize reproductive behavior and ovarian hormone feedback loops.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, California, USA.
| | - Lauren Dalhousay
- Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Nayna Sanathara
- Department of Pharmacological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
6
|
Sanathara NM, Moreas J, Mahavongtrakul M, Sinchak K. Estradiol upregulates progesterone receptor and orphanin FQ colocalization in arcuate nucleus neurons and opioid receptor-like receptor-1 expression in proopiomelanocortin neurons that project to the medial preoptic nucleus in the female rat. Neuroendocrinology 2014; 100:103-18. [PMID: 24821192 PMCID: PMC4225187 DOI: 10.1159/000363324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ovarian steroids regulate sexual receptivity in the female rat by acting on neurons that converge on proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). Estradiol rapidly activates these neurons to release β-endorphin that activates MPN μ-opioid receptors (MOP) to inhibit lordosis. Lordosis is facilitated by the subsequent action of progesterone that deactivates the estradiol-induced MPN MOP activation. Orphanin FQ (OFQ/N; also known as nociceptin) infusions into the ARH, like progesterone, deactivate MPN MOP and facilitate lordosis in estradiol-primed rats. OFQ/N reduces the activity of ARH β-endorphin neurons through post- and presynaptic mechanisms via its cognate receptor, ORL-1. METHODS We tested the hypotheses that progesterone receptors (PR) are expressed in ARH OFQ/N neurons by immunohistochemistry and ORL-1 is expressed in POMC neurons that project to the MPN by combining Fluoro-Gold injection into the MPN and double-label fluorescent in situ hybridization (FISH). We also hypothesized that estradiol increases coexpression of PR-OFQ/N and ORL-1-POMC in ARH neurons of ovariectomized rats. RESULTS The number of PR- and OFQ/N-immunopositive ARH neurons was increased as was their colocalization by estradiol treatment. FISH for ORL-1 and POMC mRNA revealed a subpopulation of ARH neurons that was triple labeled, indicating these neurons project to the MPN and coexpress ORL-1 and POMC mRNA. Estradiol was shown to upregulate ORL-1 and POMC expression in MPN-projecting ARH neurons. CONCLUSION Estradiol upregulates the ARH OFQ/N-ORL-1 system projecting to the MPN that regulates lordosis.
Collapse
Affiliation(s)
- Nayna M Sanathara
- Department of Biological Sciences, California State University, Long Beach, Long Beach, Calif., USA
| | | | | | | |
Collapse
|
7
|
Enright BP, McIntyre BS, Barat SA, Treinen KA, Kopytek SJ. Effects of SCH 486757, a nociceptin-1 receptor agonist, on fertility and reproductive hormone levels in female CRL:CD®[SD] rats. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2012; 95:12-22. [PMID: 21922640 DOI: 10.1002/bdrb.20334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND SCH 486757 is a nociceptin-1 receptor agonist that was in development as an antitussive. Studies were conducted to characterize its effects on female fertility and to examine its potential modes of action. METHODS Female rats were administered up to 20 mg/kg SCH 486757 before/during mating through gestation day (GD) 7; female fertility and embryonic development were assessed on GD 14. In a subsequent study, pregnant rats were dosed up to 50 mg/kg SCH 486757 from GD 0 to 7. Reproductive hormones were assessed on GD 1, 3, 5, and 7, and embryonic development was assessed on GD 14. A subset of dosed dams were allowed to deliver, were subsequently re-mated, and reproductive hormones and fertility were assessed on GD 7 and 14, respectively. To determine the effects of SCH 486757 on nonpregnant rats, doses of up to 50 mg/kg SCH 486757 were administered for 4 days beginning on the day of estrus; reproductive hormones were assessed after the final dose. RESULTS Female rats administered ≥20 mg/kg SCH 486757 exhibited abnormal estrous cycles; decreased fertility, number of corpora lutea, and implantation sites; and increased pre- and postimplantation loss. In general, administration of SCH486757 was associated with lower luteinizing hormone (LH) progesterone (P4), and estradiol (E2) levels in pregnant rats. These effects on fertility/embryonic development and reproductive hormones exhibited reversibility post dosing. Nonpregnant rats in the 50-mg/kg group exhibited apparent decreases in P4 and E2 levels, with no apparent effects on LH values. CONCLUSIONS The SCH 486757-related effects on fertility and embryonic development were likely the result of decreases in P4, E2, and/or LH, rather than being due to decreased prolactin levels.
Collapse
|
8
|
Sanathara NM, Moraes J, Kanjiya S, Sinchak K. Orphanin FQ in the mediobasal hypothalamus facilitates sexual receptivity through the deactivation of medial preoptic nucleus mu-opioid receptors. Horm Behav 2011; 60:540-8. [PMID: 21872598 PMCID: PMC3210402 DOI: 10.1016/j.yhbeh.2011.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/02/2011] [Accepted: 08/10/2011] [Indexed: 02/04/2023]
Abstract
Sexual receptivity, lordosis, can be induced by sequential estradiol and progesterone or extended exposure to high levels of estradiol in the female rat. In both cases estradiol initially inhibits lordosis through activation of β-endorphin (β-END) neurons of the arcuate nucleus of the hypothalamus (ARH) that activate μ-opioid receptors (MOP) in the medial preoptic nucleus (MPN). Subsequent progesterone or extended estradiol exposure deactivates MPN MOP to facilitate lordosis. Opioid receptor-like receptor-1 (ORL-1) is expressed in ARH and ventromedial hypothalamus (VMH). Infusions of its endogenous ligand, orphanin FQ (OFQ/N, aka nociceptin), into VMH-ARH region facilitate lordosis. Whether OFQ/N acts in ARH and/or VMH and whether OFQ/N is necessary for steroid facilitation of lordosis are unclear. In Exp I, OFQ/N infusions in VMH and ARH that facilitated lordosis also deactivated MPN MOP indicating that OFQ/N facilitation of lordosis requires deactivation of ascending ARH-MPN projections by directly inhibiting ARH β-END neurons and/or through inhibition of excitatory VMH-ARH pathways to proopiomelanocortin neurons. It is unclear whether OFQ/N activates the VMH output motor pathways directly or via the deactivation of MPN MOP. In Exp II we tested whether ORL-1 activation is necessary for estradiol-only or estradiol+progesterone lordosis facilitation. Blocking ORL-1 with UFP-101 inhibited estradiol-only lordosis and MPN MOP deactivation but had no effect on estradiol+progesterone facilitation of lordosis and MOP deactivation. In conclusion, steroid facilitation of lordosis inhibits ARH β-END neurons to deactivate MPN MOP, but estradiol-only and estradiol+progesterone treatments appear to use different neurotransmitter systems to inhibit ARH-MPN signaling.
Collapse
Affiliation(s)
- Nayna M Sanathara
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840-9502, USA
| | | | | | | |
Collapse
|
9
|
Finn DA, Beckley EH, Kaufman KR, Ford MM. Manipulation of GABAergic steroids: Sex differences in the effects on alcohol drinking- and withdrawal-related behaviors. Horm Behav 2010; 57:12-22. [PMID: 19615369 PMCID: PMC2813380 DOI: 10.1016/j.yhbeh.2009.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 12/16/2022]
Abstract
Alcoholism is a complex disorder that represents an important contributor to health problems worldwide and that is difficult to encompass with a single preclinical model. Additionally, alcohol (ethanol) influences the function of many neurotransmitter systems, with the interaction at gamma-aminobutyric acid(A) (GABA(A)) receptors being integral for ethanol's reinforcing and several withdrawal-related effects. Given that some steroid derivatives exert rapid membrane actions as potent positive modulators of GABA(A) receptors and exhibit a similar pharmacological profile to that of ethanol, studies in the laboratory manipulated GABAergic steroid levels and determined the impact on ethanol's rewarding- and withdrawal-related effects. Manipulations focused on the progesterone metabolite allopregnanolone (ALLO), since it is the most potent endogenous GABAergic steroid identified. The underlying hypothesis is that fluctuations in GABAergic steroid levels (and the resultant change in GABAergic inhibitory tone) alter sensitivity to ethanol, leading to changes in the positive motivational or withdrawal-related effects of ethanol. This review describes results that emphasize sex differences in the effects of ALLO and the manipulation of its biosynthesis on alcohol reward-versus withdrawal-related behaviors, with females being less sensitive to the modulatory effects of ALLO on ethanol-drinking behaviors but more sensitive to some steroid manipulations on withdrawal-related behaviors. These findings imply the existence of sex differences in the sensitivity of GABA(A) receptors to GABAergic steroids within circuits relevant to alcohol reward versus withdrawal. Thus, sex differences in the modulation of GABAergic neurosteroids may be an important consideration in understanding and developing therapeutic interventions in alcoholics.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Veterans Affairs Medical Research, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|