1
|
von Creytz I, Rohde C, Biedenkopf N. The cellular protein phosphatase 2A is a crucial host factor for Marburg virus transcription. J Virol 2024; 98:e0104724. [PMID: 39194238 PMCID: PMC11406900 DOI: 10.1128/jvi.01047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known regarding the molecular mechanisms that highly pathogenic Marburg virus (MARV) utilizes to transcribe and replicate its genome. Previous studies assumed that dephosphorylation of the filoviral transcription factor VP30 supports transcription, while phosphorylated VP30 reduces transcription. Here, we focused on the role of the host protein phosphatase 2A (PP2A) for VP30 dephosphorylation and promotion of viral transcription. We could show that MARV NP interacts with the subunit B56 of PP2A, as previously shown for the Ebola virus, and that this interaction is important for MARV transcription activity. Inhibition of the interaction between PP2A and NP either by mutating the B56 binding motif encoded on NP, or the use of a PP2A inhibitor, induced VP30 hyperphosphorylation, and as a consequence a decrease of MARV transcription as well as viral growth. These results suggest that NP plays a key role in the dephosphorylation of VP30 by recruiting PP2A. Generation of recombinant (rec) MARV lacking the PP2A-B56 interaction motif on NP was not possible suggesting an essential role of PP2A-mediated VP30 dephosphorylation for the MARV replication cycle. Likewise, we were not able to generate recMARV containing VP30 phosphomimetic mutants indicating that dynamic cycles of VP30 de- and rephosphorylation are a prerequisite for an efficient viral life cycle. As the specific binding motifs of PP2A-B56 and VP30 within NP are highly conserved among the filoviral family, our data suggest a conserved mechanism for filovirus VP30 dephosphorylation by PP2A, revealing the host factor PP2A as a promising target for pan-filoviral therapies. IMPORTANCE Our study elucidates the crucial role of host protein phosphatase 2A (PP2A) in Marburg virus (MARV) transcription. The regulatory subunit B56 of PP2A facilitates VP30 dephosphorylation, and hence transcription activation, via binding to NP. Our results, together with previous data, reveal a conserved mechanism of filovirus VP30 dephosphorylation by host factor PP2A at the NP interface and provide novel insights into potential pan-filovirus therapies.
Collapse
Affiliation(s)
- Isabel von Creytz
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Sizikova TE, Lebedev VN, Borisevich SV. [Comparative analysis of the taxonomic classification criteria for a number of groups of pathogenic DNA and RNA viruses based on genomic data]. Vopr Virusol 2024; 69:203-218. [PMID: 38996370 DOI: 10.36233/0507-4088-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 07/14/2024]
Abstract
The basis for criteria of the taxonomic classification of DNA and RNA viruses based on data of the genomic sequencing are viewed in this review. The genomic sequences of viruses, which have genome represented by double-stranded DNA (orthopoxviruses as example), positive-sense single-stranded RNA (alphaviruses and flaviviruses as example), non-segmented negative-sense single-stranded RNA (filoviruses as example), segmented negative-sense single-stranded RNA (arenaviruses and phleboviruses as example) are analyzed. The levels of genetic variability that determine the assignment of compared viruses to taxa of various orders are established for each group of viruses.
Collapse
Affiliation(s)
- T E Sizikova
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| | - V N Lebedev
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| | - S V Borisevich
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| |
Collapse
|
3
|
Zhang M, Zhang Y, Wu H, Wang X, Zheng H, Feng J, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Shi Y, Feng J, Chen G. Functional characterization of AF-04, an afucosylated anti-MARV GP antibody. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166964. [PMID: 37995774 DOI: 10.1016/j.bbadis.2023.166964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Marburg virus (MARV), one member of the Filoviridae family, cause sporadic outbreaks of hemorrhagic fever with high mortality rates. No countermeasures are currently available for the prevention or treatment of MARV infection. Monoclonal antibodies (mAbs) are promising candidates to display high neutralizing activity against MARV infection in vitro and in vivo. Recently, growing evidence has shown that immune effector function including antibody-dependent cell-mediated cytotoxicity (ADCC) is also required for in vivo efficacy of a panel of antibodies. Glyco-engineered methods are widely utilized to augment ADCC function of mAbs. In this study, we generated a fucose-knockout MARV GP-specific mAb named AF-04 and showed that afucosylation dramatically increased its binding affinity to polymorphic FcγRIIIa (F176/V176) compared with the parental AF-03. Accordingly, AF-04-mediated NK cell activation and NFAT expression downstream of FcγRIIIa in effector cells were also augmented. In conclusion, this work demonstrates that AF-04 represents a novel avenue for the treatment of MARV-caused disease.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100089, China
| | - Yuting Zhang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100089, China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China
| | - Hang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China
| | - Junjuan Feng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100089, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100089, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100089, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100089, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100089, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 102600, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing 102600, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China.
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010110, China.
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100089, China.
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100089, China.
| |
Collapse
|
4
|
Debroy B, Chowdhury S, Pal K. Designing a novel and combinatorial multi-antigenic epitope-based vaccine "MarVax" against Marburg virus-a reverse vaccinology and immunoinformatics approach. J Genet Eng Biotechnol 2023; 21:143. [PMID: 38012426 PMCID: PMC10681968 DOI: 10.1186/s43141-023-00575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
CONTEXT Marburg virus (MARV) is a member of the Filoviridae family and causes Marburg virus disease (MVD) among humans and primates. With fatality rates going up to 88%, there is currently no commercialized cure or vaccine to combat the infection. The National Institute of Allergy and Infectious Diseases (NIAID) classified MARV as priority pathogen A, which presages the need for a vaccine candidate which can provide stable, long-term adaptive immunity. The surface glycoprotein (GP) and fusion protein (FP) mediate the adherence, fusion, and entry of the virus into the host cell via the TIM-I receptor. Being important antigenic determinants, studies reveal that GP and FP are prone to evolutionary mutations, underscoring the requirement of a vaccine construct capable of eliciting a robust and sustained immune response. In this computational study, a reverse vaccinology approach was employed to design a combinatorial vaccine from conserved and antigenic epitopes of essential viral proteins of MARV, namely GP, VP24, VP30, VP35, and VP40 along with an endogenous protein large polymerase (L). METHODS Epitopes for T-cell and B-cell were predicted using TepiTool and ElliPro, respectively. The surface-exposed TLRs like TLR2, TLR4, and TLR5 were used to screen high-binding affinity epitopes using the protein-peptide docking platform MdockPeP. The best binding epitopes were selected and assembled with linkers to design a recombinant multi-epitope vaccine construct which was then modeled in Robetta. The in silico biophysical and biochemical analyses of the recombinant vaccine were performed. The docking and MD simulation of the vaccine using WebGro and CABS-Flex against TLRs support the stable binding of vaccine candidates. A virtual immune simulation to check the immediate and long-term immunogenicity was carried out using the C-ImmSim server. RESULTS The biochemical characteristics and docking studies with MD simulation establish the recombinant protein vaccine construct MarVax as a stable, antigenic, and potent vaccine molecule. Immune simulation studies reveal 1-year passive immunity which needs to be validated by in vivo studies.
Collapse
Affiliation(s)
- Bishal Debroy
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India
| | - Sribas Chowdhury
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India
| | - Kuntal Pal
- Cancer Biology Laboratory, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal, 700126, India.
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Srivastava D, Kutikuppala LVS, Shanker P, Sahoo RN, Pattnaik G, Dash R, Kandi V, Ansari A, Mishra S, Desai DN, Mohapatra RK, Rabaan AA, Kudrat‐E‐Zahan M. The neglected continuously emerging Marburg virus disease in Africa: A global public health threat. Health Sci Rep 2023; 6:e1661. [PMID: 37908639 PMCID: PMC10613755 DOI: 10.1002/hsr2.1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Background and Aim Severe viral hemorrhagic fever (VHF) is caused by Marburg virus which is a member of the Filoviridae (filovirus) family. Many Marburg virus disease (MVD) outbreaks are reported in five decades. A major notable outbreak with substantial reported cases of infections and deaths was in 2022 in Uganda. The World Health Organisation (WHO) reported MVD outbreak in Ghana in July 2022 following the detection of two probable VHF patients there. Further, the virus was reported from two other African countries, the Equatorial Guinea (February 2023) and Tanzania (March 2023). There have been 35 deaths out of 40 reported cases in Equatorial Guinea, and six of the nine confirmed cases in Tanzania so far. Methods Data particularly on the several MVD outbreaks as reported from the African countries were searched on various databases including the Pubmed, Scopus, and Web-of-science. Also, the primary data and reports from health agencies like the WHO and the Centers for Disease Control and Prevention CDC) were evaluated and the efficacy reviewed. Results Chiroptera in general and bat species like Rousettus aegyptiacus and Hipposideros caffer in particular are natural reservoirs of the Marburg virus. MVD-infected nonhuman primate African fruit-bat and the MVD-infected humans pose significant risk in human infections. Cross-border viral transmission and its potential further international ramification concerns raise the risk of its rapid spread and a potential outbreak. Occurrence of MVD is becoming more frequent in Africa with higher case fatality rates. Effective prophylactic and therapeutic interventions to counter this deadly virus are suggested. Conclusion In the face of the lack of effective therapeutics and preventives against MVD, supportive care is the only available option which contributes to the growing concern and disease severity. In view of the preventive approaches involving effective surveillance and monitoring system following the "One Health" model is extremely beneficial to ensure a healthy world for all, this article aims at emphasizing several MVD outbreaks, epidemiology, zoonosis of the virus, current treatment strategies, risk assessments, and the mitigation strategies against MVD.
Collapse
Affiliation(s)
- Devang Srivastava
- Department of General MedicineKakatiya Medical CollegeRangam Peta StreetWarangalTelanganaIndia
| | | | - Pooja Shanker
- Department of MicrobiologySMS Medical CollegeGangawal Park, Adarsh NagarJaipurRajastanIndia
| | - Rudra Narayan Sahoo
- School of Pharmaceutical SciencesSiksha‐O‐Anusandhan Deemed‐to‐be‐UniversityBhubaneswarOdishaIndia
| | - Gurudutta Pattnaik
- School of Pharmacy and Life SciencesCenturion University of Technology and ManagementOdishaIndia
| | - Rasmita Dash
- School of Pharmacy and Life SciencesCenturion University of Technology and ManagementOdishaIndia
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Azaj Ansari
- Department of ChemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Snehasish Mishra
- School of BiotechnologyKIIT Deemed‐to‐be UniversityBhubaneswarOdishaIndia
| | - Dhruv N. Desai
- School of Veterinary Medicine, Ryan Veterinary HospitalUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Ali A. Rabaan
- Molecular Diagnostic LaboratoryJohns Hopkins Aramco HealthcareDhahranSaudi Arabia
- Department of Medicine, College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
- Department of Public Health and NutritionThe University of HaripurHaripurPakistan
| | | |
Collapse
|
6
|
von Creytz I, Gerresheim GK, Lier C, Schneider J, Schauflinger M, Benz M, Kämper L, Rohde C, Eickmann M, Biedenkopf N. Rescue and characterization of the first West African Marburg virus 2021 from Guinea. Heliyon 2023; 9:e19613. [PMID: 37810116 PMCID: PMC10558868 DOI: 10.1016/j.heliyon.2023.e19613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Marburg virus (MARV) is a causative agent of a severe hemorrhagic fever with high fatality rates endemic in central Africa. Current outbreaks of MARV in Equatorial Guinea and Tanzania underline the relevance of MARV as a public health emergency pathogen. In 2021, the first known human MARV case was confirmed in Guinea, West Africa. Since no infectious virus could be isolated from that fatal case in 2021, we generated recombinant (rec) MARV Guinea by reverse genetics in order to study and characterize this new MARV, which occurred in West Africa for the first time, in terms of its growth properties, detection by antibodies, and therapeutic potential compared to known MARV strains. Our results showed a solid viral replication of recMARV Guinea in human, bat, and monkey cell lines in comparison to other known MARV strains. We further demonstrated that replication of recMARV Guinea in cells can be inhibited by the nucleoside analogue remdesivir. Taken together, we could successfully reconstitute de novo the first West African MARV from Guinea showing similar replication kinetics in cells compared to other central African MARV strains. Our reverse genetics approach has proven successful in characterizing emerging viruses, especially when virus isolates are missing and viral genome sequences are incomplete.
Collapse
Affiliation(s)
- Isabel von Creytz
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | | | - Clemens Lier
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Jana Schneider
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | | | - Marcel Benz
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Lennart Kämper
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Markus Eickmann
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| |
Collapse
|
7
|
Islam MR, Akash S, Rahman MM, Sharma R. Epidemiology, pathophysiology, transmission, genomic structure, treatment, and future perspectives of the novel Marburg virus outbreak. Int J Surg 2023; 109:36-38. [PMID: 36799786 PMCID: PMC10389455 DOI: 10.1097/js9.0000000000000096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/20/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Albaqami FF, Altharawi A, Althurwi HN, Alharthy KM, Qasim M, Muhseen ZT, Tahir ul Qamar M. Computational Modeling and Evaluation of Potential mRNA and Peptide-Based Vaccine against Marburg Virus (MARV) to Provide Immune Protection against Hemorrhagic Fever. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5560605. [PMID: 37101690 PMCID: PMC10125739 DOI: 10.1155/2023/5560605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 04/28/2023]
Abstract
A hemorrhagic fever caused by the Marburg virus (MARV) belongs to the Filoviridae family and has been classified as a risk group 4 pathogen. To this day, there are no approved effective vaccinations or medications available to prevent or treat MARV infections. Reverse vaccinology-based approach was formulated to prioritize B and T cell epitopes utilizing a numerous immunoinformatics tools. Potential epitopes were systematically screened based on various parameters needed for an ideal vaccine such as allergenicity, solubility, and toxicity. The most suitable epitopes capable of inducing immune response were shortlisted. Epitopes with population coverage of 100% and fulfilling set parameters were selected for docking with human leukocyte antigen molecules, and binding affinity of each peptide was analyzed. Finally, 4 CTL and HTL each while 6 B cell 16-mers were used for designing multiepitope subunit (MSV) and mRNA vaccine joined via suitable linkers. Immune simulations were used to validate the constructed vaccine's capacity to induce a robust immune response whereas molecular dynamics simulations were used to confirm epitope-HLA complex stability. Based on these parameter's studies, both the vaccines constructed in this study offer a promising choice against MARV but require further experimental verification. This study provides a rationale point to begin with the development of an efficient vaccine against Marburg virus; however, the findings need further experimental validation to confirm the computational finding of this study.
Collapse
Affiliation(s)
- Faisal F. Albaqami
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M. Alharthy
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ziyad Tariq Muhseen
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon 51001, Iraq
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| |
Collapse
|
9
|
Fujita-Fujiharu Y, Sugita Y, Takamatsu Y, Houri K, Igarashi M, Muramoto Y, Nakano M, Tsunoda Y, Taniguchi I, Becker S, Noda T. Structural insight into Marburg virus nucleoprotein-RNA complex formation. Nat Commun 2022; 13:1191. [PMID: 35246537 PMCID: PMC8897395 DOI: 10.1038/s41467-022-28802-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
The nucleoprotein (NP) of Marburg virus (MARV), a close relative of Ebola virus (EBOV), encapsidates the single-stranded, negative-sense viral genomic RNA (vRNA) to form the helical NP-RNA complex. The NP-RNA complex constitutes the core structure for the assembly of the nucleocapsid that is responsible for viral RNA synthesis. Although appropriate interactions among NPs and RNA are required for the formation of nucleocapsid, the structural basis of the helical assembly remains largely elusive. Here, we show the structure of the MARV NP-RNA complex determined using cryo-electron microscopy at a resolution of 3.1 Å. The structures of the asymmetric unit, a complex of an NP and six RNA nucleotides, was very similar to that of EBOV, suggesting that both viruses share common mechanisms for the nucleocapsid formation. Structure-based mutational analysis of both MARV and EBOV NPs identified key residues for helical assembly and subsequent viral RNA synthesis. Importantly, most of the residues identified were conserved in both viruses. These findings provide a structural basis for understanding the nucleocapsid formation and contribute to the development of novel antivirals against MARV and EBOV.
Collapse
Affiliation(s)
- Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuki Takamatsu
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-city, Tokyo, 208-0011, Japan
| | - Kazuya Houri
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yugo Tsunoda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ichiro Taniguchi
- Laboratory of RNA system, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Stephan Becker
- Institute of Virology, University of Marburg, 35043, Marburg, Germany
- German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, University of Marburg, 35043, Marburg, Germany
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
10
|
Bhattacharyya S. Mechanisms of Immune Evasion by Ebola Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:15-22. [PMID: 34661889 DOI: 10.1007/978-3-030-67452-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The 2013-2016 Ebola virus epidemic in West Africa, which also spread to the USA, UK and Europe, was the largest reported outbreak till date (World Health Organization. 2016. https://apps.who.int/iris/bitstream/handle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;jsessionid=8B7D74BC9D82D2BE1B110BAFFAD3A6E6?sequence=1 ). The recent Ebola outbreak in the Democratic Republic of the Congo has raised immense global concern on this severe and often fatal infection. Although sporadic, the severity and lethality of Ebola virus disease outbreaks has led to extensive research worldwide on this virus. Vaccine (World Health Organization. 2016. https://www.who.int/en/news-room/detail/23-12-2016-final-trial-results-confirm-ebola-vaccine-provides-high-protection-against-disease ; Henao-Restrepo et al. Lancet 389:505-518, 2017) and drug (Hayden. Nature, 557, 475-476, 2018; Dyall et al. J Infect Dis 218(suppl_5), S672-S678, 2018) development efforts against Ebola virus are research hotspots, and a few approved therapeutics are currently available (Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/clinicians/vaccine/index.html; Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/treatment/index.html). Ebola virus has evolved several mechanisms of host immune evasion, which facilitate its replication and pathogenesis. This chapter describes the Ebola virus morphology, genome, entry, replication, pathogenesis and viral proteins involved in host immune evasion. Further understanding of the underlying molecular mechanisms of immune evasion may facilitate development of additional novel and sustainable strategies against this deadly virus.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
11
|
Wang LL, Palermo N, Estrada L, Thompson C, Patten JJ, Anantpadma M, Davey RA, Xiang SH. Identification of filovirus entry inhibitors targeting the endosomal receptor NPC1 binding site. Antiviral Res 2021; 189:105059. [PMID: 33705865 PMCID: PMC8088776 DOI: 10.1016/j.antiviral.2021.105059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Filoviruses, mainly consisting of Ebola viruses (EBOV) and Marburg viruses (MARV), are enveloped negative-strand RNA viruses which can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. The filovirus infection is mediated by the interaction of viral envelope glycoprotein (GP) and the human endosomal receptor Niemann-Pick C1 (NPC1). Blocking this interaction will prevent the infection. Therefore, we utilized an In silico screening approach to conduct virtual compound screening against the NPC1 receptor-binding site (RBS). Twenty-six top-hit compounds were purchased and evaluated by in vitro cell based inhibition assays against pseudotyped or replication-competent filoviruses. Two classes (A and U) of compounds were identified to have potent inhibitory activity against both Ebola and Marburg viruses. The IC50 values are in the lower level of micromolar concentrations. One compound (compd-A) was found to have a sub-micromolar IC50 value (0.86 μM) against pseudotyped Marburg virus. The cytotoxicity assay (MTT) indicates that compd-A has a moderate cytotoxicity level but the compd-U has much less toxicity and the CC50 value was about 100 μM. Structure-activity relationship (SAR) study has found some analogs of compd-A and -U have reduced the toxicity and enhanced the inhibitory activity. In conclusion, this work has identified several qualified lead-compounds for further drug development against filovirus infection.
Collapse
Affiliation(s)
- Leah Liu Wang
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Nicholas Palermo
- Computational Chemistry Core Facility, VCR Cores, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Leslie Estrada
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Colton Thompson
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - J J Patten
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 0211, USA
| | - Manu Anantpadma
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 0211, USA
| | - Robert A Davey
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 0211, USA
| | - Shi-Hua Xiang
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
12
|
Mustafa MI, Shantier SW, Abdelmageed MI, Makhawi AM. Epitope-based peptide vaccine against Bombali Ebolavirus viral protein 40: An immunoinformatics combined with molecular docking studies. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
Lane TR, Massey C, Comer JE, Freiberg AN, Zhou H, Dyall J, Holbrook MR, Anantpadma M, Davey RA, Madrid PB, Ekins S. Pyronaridine tetraphosphate efficacy against Ebola virus infection in guinea pig. Antiviral Res 2020; 181:104863. [PMID: 32682926 PMCID: PMC8194506 DOI: 10.1016/j.antiviral.2020.104863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Abstract
The recent outbreaks of the Ebola virus (EBOV) in Africa have brought global visibility to the shortage of available therapeutic options to treat patients infected with this or closely related viruses. We have recently computationally identified three molecules which have all demonstrated statistically significant efficacy in the mouse model of infection with mouse adapted Ebola virus (ma-EBOV). One of these molecules is the antimalarial pyronaridine tetraphosphate (IC50 range of 0.82-1.30 μM against three strains of EBOV and IC50 range of 1.01-2.72 μM against two strains of Marburg virus (MARV)) which is an approved drug in the European Union and used in combination with artesunate. To date, no small molecule drugs have shown statistically significant efficacy in the guinea pig model of EBOV infection. Pharmacokinetics and range-finding studies in guinea pigs directed us to a single 300 mg/kg or 600 mg/kg oral dose of pyronaridine 1hr after infection. Pyronaridine resulted in statistically significant survival of 40% at 300 mg/kg and protected from a lethal challenge with EBOV. In comparison, oral favipiravir (300 mg/kg dosed once a day) had 43.5% survival. All animals in the vehicle treatment group succumbed to disease by study day 12 (100% mortality). The in vitro metabolism and metabolite identification of pyronaridine and another of our EBOV active molecules, tilorone, suggested significant species differences which may account for the efficacy or lack thereof, respectively in guinea pig. In summary, our studies with pyronaridine demonstrates its utility for repurposing as an antiviral against EBOV and MARV.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Christopher Massey
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Jason E. Comer
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Huanying Zhou
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Julie Dyall
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Robert A. Davey
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Peter B. Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
14
|
Affiliation(s)
- Heinz Feldmann
- From the Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, MT (H.F.); Médecins sans Frontières, Brussels (A.S.); and the Department of Microbiology and Immunology and Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston (T.W.G.)
| | - Armand Sprecher
- From the Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, MT (H.F.); Médecins sans Frontières, Brussels (A.S.); and the Department of Microbiology and Immunology and Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston (T.W.G.)
| | - Thomas W Geisbert
- From the Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, MT (H.F.); Médecins sans Frontières, Brussels (A.S.); and the Department of Microbiology and Immunology and Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston (T.W.G.)
| |
Collapse
|
15
|
Ullah MA, Sarkar B, Islam SS. Exploiting the reverse vaccinology approach to design novel subunit vaccines against Ebola virus. Immunobiology 2020; 225:151949. [PMID: 32444135 DOI: 10.1016/j.imbio.2020.151949] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023]
Abstract
Ebola virus is a highly pathogenic RNA virus that causes the Ebola haemorrhagic fever in human. This virus is considered as one of the dangerous viruses in the world with very high mortality rate. To date, no epitope-based subunit vaccine has yet been discovered to fight against Ebola although the outbreaks of this deadly virus took many lives in the past. In this study, approaches of reverse vaccinology were utilized in combination with different tools of immunoinformatics to design subunit vaccines against Ebola virus strain Mayinga-76. Three potential antigenic proteins of this virus i.e., matrix protein VP40, envelope glycoprotein and nucleoprotein were selected to construct the subunit vaccine. The MHC class-I, MHC class-II and B-cell epitopes were determined initially and after some robust analysis i.e., antigenicity, allergenicity, toxicity, conservancy and molecular docking study, EV-1, EV-2 and EV-3 were constructed as three potential vaccine constructs. These vaccine constructs are also expected to be effective on few other strains of Ebola virus since the highly conserved epitopes were used for vaccine construction. Thereafter, molecular docking study was conducted on these vaccines and EV-1 emerged as the best vaccine construct. Afterward, molecular dynamics simulation study revealed the good performances and stability of the intended vaccine protein. Finally, codon adaptation and in silico cloning were carried out to design a possible plasmid (pET-19b plasmid vector was used) for large scale production of the EV-1 vaccine. However, further in vitro and in vivo studies might be required on the predicted vaccines for final validation.
Collapse
Affiliation(s)
- Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | - Syed Sajidul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
16
|
Yu M, Ye J, Cao S, Liu X, Chen Z. Production and Characterization of Monoclonal Antibodies Against Gp Protein of Ebola Virus. Monoclon Antib Immunodiagn Immunother 2020; 39:12-16. [PMID: 32004438 DOI: 10.1089/mab.2019.0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DNA fragment encoding predicted main antigenic region, aa 1-300 on Gp protein of Ebola virus (EBOV) was cloned into the vector pGEX-KG. The recombinant GST-tagged Gp-300 was expressed in Escherichia coli BL21 (DE3) by induction with 1 mM isopropyl-1-thio-b-d-galactoside and purified by dialysis. Four monoclonal antibodies (mAbs) named 1C4, 2A3, 2G7, and 2H9 against Gp protein were generated by fusing mouse myeloma cell line SP2/0 with spleen lymphocytes from Gp-300 protein-immunized mice. The activity of the mAbs was then characterized by enzyme-linked immunosorbent assay, indirect immunofluorescent assays (IFA), and western blot analysis. The results demonstrated that all the mAbs showed high specificity and sensitivity in IFA and in western blot analysis, which indicated that these mAbs against Gp protein of EBOV may be used as valuable tools for analysis of the protein functions and pathogenesis of EBOV.
Collapse
Affiliation(s)
- Muchuan Yu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jing Ye
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zheng Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
[Structural studies on negative-strand RNA virus]. Uirusu 2020; 70:91-100. [PMID: 33967118 DOI: 10.2222/jsv.70.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Negative-strand RNA viruses do not possess a rigid viral shell, and their structures are flexible and fragile. We have applied various electron microscopies to analyze the morphologies of influenza and Ebola virus. Our studies have revealed the native interior and exterior ultrastructures of influenza virus as well as the assembly of Ebola virus core in atomic detail.
Collapse
|
18
|
Lane TR, Massey C, Comer JE, Anantpadma M, Freundlich JS, Davey RA, Madrid PB, Ekins S. Repurposing the antimalarial pyronaridine tetraphosphate to protect against Ebola virus infection. PLoS Negl Trop Dis 2019; 13:e0007890. [PMID: 31751347 PMCID: PMC6894882 DOI: 10.1371/journal.pntd.0007890] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/05/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Recent outbreaks of the Ebola virus (EBOV) have focused attention on the dire need for antivirals to treat these patients. We identified pyronaridine tetraphosphate as a potential candidate as it is an approved drug in the European Union which is currently used in combination with artesunate as a treatment for malaria (EC50 between 420 nM—1.14 μM against EBOV in HeLa cells). Range-finding studies in mice directed us to a single 75 mg/kg i.p. dose 1 hr after infection which resulted in 100% survival and statistically significantly reduced viremia at study day 3 from a lethal challenge with mouse-adapted EBOV (maEBOV). Further, an EBOV window study suggested we could dose pyronaridine 2 or 24 hrs post-exposure to result in similar efficacy. Analysis of cytokine and chemokine panels suggests that pyronaridine may act as an immunomodulator during an EBOV infection. Our studies with pyronaridine clearly demonstrate potential utility for its repurposing as an antiviral against EBOV and merits further study in larger animal models with the added benefit of already being used as a treatment against malaria. To date there is no approved drug for Ebola Virus infection. Our approach has been to assess drugs that are already approved for other uses in various countries. Using computational models, we have previously identified three such drugs and demonstrated their activity against the Ebola virus in vitro. We now report on the in vitro absorption, metabolism, distribution, excretion and pharmacokinetic properties of one of these molecules, namely the antimalarial pyronaridine. We justify efficacy testing in the mouse model of ebola infection. We also demonstrate that a single dose of this drug is 100% effective against the virus. This study provides important preclinical evaluation of this already approved drug and justifies its selection for larger animal efficacy studies.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States of America
| | - Christopher Massey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Joel S. Freundlich
- Departments of Pharmacology, Physiology, and Neuroscience & Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University–New Jersey Medical School, NJ, United States of America
| | - Robert A. Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | | | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States of America
- * E-mail:
| |
Collapse
|
19
|
Languon S, Quaye O. Filovirus Disease Outbreaks: A Chronological Overview. Virology (Auckl) 2019; 10:1178122X19849927. [PMID: 31258326 PMCID: PMC6589952 DOI: 10.1177/1178122x19849927] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/18/2019] [Indexed: 12/04/2022] Open
Abstract
Filoviruses cause outbreaks which lead to high fatality in humans and non-human primates, thus tagging them as major threats to public health and species conservation. In this review, we give account of index cases responsible for filovirus disease outbreaks that have occurred over the past 52 years in a chronological fashion, by describing the circumstances that led to the outbreaks, and how each of the outbreaks broke out. Since the discovery of Marburg virus and Ebola virus in 1967 and 1976, respectively, more than 40 filovirus disease outbreaks have been reported; majority of which have occurred in Africa. The chronological presentation of this review is to provide a concise overview of filovirus disease outbreaks since the discovery of the viruses, and highlight the patterns in the occurrence of the outbreaks. This review will help researchers to better appreciate the need for surveillance, especially in areas where there have been no filovirus disease outbreaks. We conclude by summarizing some recommendations that have been proposed by health and policy decision makers over the years.
Collapse
Affiliation(s)
- Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Stellenbosch Institute for Advance Study (STIAS), Stellenbosch, South Africa
| |
Collapse
|
20
|
Beam EL, Schwedhelm MM, Boulter KC, Vasa AM, Larson L, Cieslak TJ, Lowe JJ, Herstein JJ, Kratochvil CJ, Hewlett AL. Ebola Virus Disease: Clinical Challenges, Recognition, and Management. Nurs Clin North Am 2019; 54:169-180. [PMID: 31027659 PMCID: PMC7096726 DOI: 10.1016/j.cnur.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 2014 to 2016 Ebola outbreak response resulted in many lessons learned about biocontainment patient care, leading to enhanced domestic capabilities for highly infectious and hazardous communicable diseases. However, additional opportunities for improvement remain. The article identifies and describes key considerations and challenges for laboratory analysis, clinical management, transportation, and personnel management during the care of patients infected with Ebola or other special pathogens. Dedication to maintaining preparedness enables biocontainment patient care teams to perform at the highest levels of safety and confidence.
Collapse
Affiliation(s)
- Elizabeth L. Beam
- College of Nursing, University of Nebraska Medical Center, 985330 Nebraska Medical Center, Omaha, NE 68198, USA,Corresponding author
| | - Michelle M. Schwedhelm
- Emergency Management and Biopreparedness, Nebraska Medicine, 987422 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kathleen C. Boulter
- Nebraska Biocontainment Unit, Nebraska Medicine, 982470 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angela M. Vasa
- Nebraska Biocontainment Unit, Nebraska Medicine, 982470 Nebraska Medical Center, Omaha, NE 68198, USA
| | - LuAnn Larson
- University of Nebraska Medical Center, 986814 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Theodore J. Cieslak
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, 984395 Nebraska Medical Center, Omaha, NE 68198, USA
| | - John J. Lowe
- College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jocelyn J. Herstein
- Global Center for Health Security, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher J. Kratochvil
- University of Nebraska Medical Center, Nebraska Medicine, 987878 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angela L. Hewlett
- Division of Infectious Diseases, Nebraska Biocontainment Unit, Nebraska Medicine, University of Nebraska Medical Center, 985400 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
Jin X, Zhang H, Li YT, Xiao MM, Zhang ZL, Pang DW, Wong G, Zhang ZY, Zhang GJ. A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus. Mikrochim Acta 2019; 186:223. [DOI: 10.1007/s00604-019-3256-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/16/2019] [Indexed: 11/25/2022]
|
22
|
Smither SJ, Eastaugh L, Filone CM, Freeburger D, Herzog A, Lever MS, Miller DM, Mitzel D, Noah JW, Reddick-Elick MS, Reese A, Schuit M, Wlazlowski CB, Hevey M, Wahl-Jensen V. Two-Center Evaluation of Disinfectant Efficacy against Ebola Virus in Clinical and Laboratory Matrices. Emerg Infect Dis 2018; 24. [PMID: 29261093 PMCID: PMC5749448 DOI: 10.3201/eid2401.170504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.
Collapse
|
23
|
Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening. Antiviral Res 2018; 156:46-54. [PMID: 29870771 PMCID: PMC6371959 DOI: 10.1016/j.antiviral.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 02/02/2023]
Abstract
Ebola virus (EBOV) causes a severe haemorrhagic fever in humans and has a mortality rate over 50%. With no licensed drug treatments available, EBOV poses a significant threat. Investigations into possible therapeutics have been severely hampered by the classification of EBOV as a BSL4 pathogen. Here, we describe a drug discovery pathway combining in silico screening of compounds predicted to bind to a hydrophobic pocket on the nucleoprotein (NP); with a robust and rapid EBOV minigenome assay for inhibitor validation at BSL2. One compound (MCCB4) was efficacious (EC50 4.8 μM), exhibited low cytotoxicity (CC50 > 100 μM) and was specific, with no effect on either a T7 RNA polymerase driven firefly luciferase or a Bunyamwera virus minigenome. Further investigations revealed that this small molecule inhibitor was able to outcompete established replication complexes, an essential aspect for a potential EBOV treatment. An EBOV drug discovery pathway which is performed at BSL2 and successfully identifies SMIs. MCCB4 is a SMI of EBOV which is effective, specific and not cytotoxic. The effect of MCCB4 was demonstrated in two cell types. MCCB4 is able to outcompete established EBOV replication complexes. SAR analysis was performed with 2nd generation compounds.
Collapse
|
24
|
Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A review on current status of antiviral siRNA. Rev Med Virol 2018; 28:e1976. [PMID: 29656441 PMCID: PMC7169094 DOI: 10.1002/rmv.1976] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 01/12/2023]
Abstract
Viral diseases like influenza, AIDS, hepatitis, and Ebola cause severe epidemics worldwide. Along with their resistant strains, new pathogenic viruses continue to be discovered so creating an ongoing need for new antiviral treatments. RNA interference is a cellular gene‐silencing phenomenon in which sequence‐specific degradation of target mRNA is achieved by means of complementary short interfering RNA (siRNA) molecules. Short interfering RNA technology affords a potential tractable strategy to combat viral pathogenesis because siRNAs are specific, easy to design, and can be directed against multiple strains of a virus by targeting their conserved gene regions. In this review, we briefly summarize the current status of siRNA therapy for representative examples from different virus families. In addition, other aspects like their design, delivery, medical significance, bioinformatics resources, and limitations are also discussed.
Collapse
Affiliation(s)
- Abid Qureshi
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Vaqar Gani Tantray
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Altaf Rehman Kirmani
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Abdul Ghani Ahangar
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| |
Collapse
|
25
|
|
26
|
Efficacy of Tilorone Dihydrochloride against Ebola Virus Infection. Antimicrob Agents Chemother 2018; 62:AAC.01711-17. [PMID: 29133569 DOI: 10.1128/aac.01711-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022] Open
Abstract
Tilorone dihydrochloride (tilorone) is a small-molecule, orally bioavailable drug that is used clinically as an antiviral outside the United States. A machine-learning model trained on anti-Ebola virus (EBOV) screening data previously identified tilorone as a potent in vitro EBOV inhibitor, making it a candidate for the treatment of Ebola virus disease (EVD). In the present study, a series of in vitro ADMET (absorption, distribution, metabolism, excretion, toxicity) assays demonstrated the drug has excellent solubility, high Caco-2 permeability, was not a P-glycoprotein substrate, and had no inhibitory activity against five human CYP450 enzymes (3A4, 2D6, 2C19, 2C9, and 1A2). Tilorone was shown to have 52% human plasma protein binding with excellent plasma stability and a mouse liver microsome half-life of 48 min. Dose range-finding studies in mice demonstrated a maximum tolerated single dose of 100 mg/kg of body weight. A pharmacokinetics study in mice at 2- and 10-mg/kg dose levels showed that the drug is rapidly absorbed, has dose-dependent increases in maximum concentration of unbound drug in plasma and areas under the concentration-time curve, and has a half-life of approximately 18 h in both males and females, although the exposure was ∼2.5-fold higher in male mice. Tilorone doses of 25 and 50 mg/kg proved efficacious in protecting 90% of mice from a lethal challenge with mouse-adapted with once-daily intraperitoneal (i.p.) dosing for 8 days. A subsequent study showed that 30 mg/kg/day of tilorone given i.p. starting 2 or 24 h postchallenge and continuing through day 7 postinfection was fully protective, indicating promising activity for the treatment of EVD.
Collapse
|
27
|
Dehghani B, Ghasabi F, Hashempoor T, Joulaei H, Hasanshahi Z, Halaji M, Chatrabnous N, Mousavi Z, Moayedi J. Functional and structural characterization of Ebola virus glycoprotein (1976–2015) — Anin silicostudy. INT J BIOMATH 2017. [DOI: 10.1142/s179352451750108x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever disease associated with high mortality rates in humans. This virus has five strains of which Zaire Ebola virus (ZEBOV) is the first and most important strain. It can be transmitted through contact with contaminated surfaces and objects. The genome of EBOV codes one non-structural and seven structural proteins consisting of two forms of glycoprotein (GP): soluble glycoprotein (sGP) and GP (spike). In this paper, we attempted to characterize and predict physicochemical properties, B-cell epitopes, mutation sites, phosphorylation sites, glycosylation sites, and different protein structures of EBOV GP to provide comprehensive data about changes of this GP during a 40-years course (1976–2015). GP sequences were obtained from NCBI gene bank from 1976–2015. Expasy’sProtParam, PROTSCALE, immuneepitope, Bepipred, BcePred, ABCpred, VaxiJen, DISPHOS, NetPhos, and numerous programs were used to predict and analyze all sequences. More variety of mutations were found in 2015 sequences and mutations were related to huge changes in B-cell epitopes, phosphorylation and glycosylation sites. In addition, our results determined different sites of disulfide bonds and an important mutation related to IgE epitope as well as four potent B-cell epitopes (380–387, 318–338, 405–438 and 434–475). In this study, we suggested the effect of mutations on GP properties, six positions for disulfide bonds and four phosphorylation sites for protein kinase C enzyme. Selected sequences were shown different sites for O-link and N-link glycosylation. A mutation that changed GP to an allergen protein and has a significant role in vaccine designing as well as four potent B-cell epitopes in GP protein were found.
Collapse
Affiliation(s)
- Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzane Ghasabi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Hashempoor
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Joulaei
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Halaji
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Nazanin Chatrabnous
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mousavi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Abstract
Emerging infections have threatened humanity since times immemorial. The dramatic anthropogenic, behavioral and social changes that have affected humanity and the environment in the past century have accelerated the intrusion of novel pathogens into the global human population, sometimes with devastating consequences. The AIDS and influenza pandemics have claimed and will continue to claim millions of lives. The recent SARS and Ebola epidemics have threatened populations across borders. The emergence of MERS may well be warning signals of a nascent pandemic threat, while the potential for geographical spread of vector-borne diseases, such as Zika, but also Dengue and Chikungunya is unprecedented. Novel technologies and innovative approaches have multiplied to address and improve response preparedness towards the increasing yet unpredictable threat posed by emerging pathogens.
Collapse
Affiliation(s)
| | - Albert D M E Osterhaus
- Artemis One Health Research Foundation, Utrecht, The Netherlands; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany.
| |
Collapse
|
29
|
Bào Y, Amarasinghe GK, Basler CF, Bavari S, Bukreyev A, Chandran K, Dolnik O, Dye JM, Ebihara H, Formenty P, Hewson R, Kobinger GP, Leroy EM, Mühlberger E, Netesov SV, Patterson JL, Paweska JT, Smither SJ, Takada A, Towner JS, Volchkov VE, Wahl-Jensen V, Kuhn JH. Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses. Viruses 2017; 9:E106. [PMID: 28492506 PMCID: PMC5454419 DOI: 10.3390/v9050106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022] Open
Abstract
The mononegaviral family Filoviridae has eight members assigned to three genera and seven species. Until now, genus and species demarcation were based on arbitrarily chosen filovirus genome sequence divergence values (≈50% for genera, ≈30% for species) and arbitrarily chosen phenotypic virus or virion characteristics. Here we report filovirus genome sequence-based taxon demarcation criteria using the publicly accessible PAirwise Sequencing Comparison (PASC) tool of the US National Center for Biotechnology Information (Bethesda, MD, USA). Comparison of all available filovirus genomes in GenBank using PASC revealed optimal genus demarcation at the 55-58% sequence diversity threshold range for genera and at the 23-36% sequence diversity threshold range for species. Because these thresholds do not change the current official filovirus classification, these values are now implemented as filovirus taxon demarcation criteria that may solely be used for filovirus classification in case additional data are absent. A near-complete, coding-complete, or complete filovirus genome sequence will now be required to allow official classification of any novel "filovirus." Classification of filoviruses into existing taxa or determining the need for novel taxa is now straightforward and could even become automated using a presented algorithm/flowchart rooted in RefSeq (type) sequences.
Collapse
Affiliation(s)
- Yīmíng Bào
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302-3965, USA.
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0144, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, 35032 Marburg, Germany.
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Roger Hewson
- Public Health England, Porton Down, Wiltshire, Salisbury SP4 0JG, UK.
| | - Gary P Kobinger
- Department of Microbiology, Immunology & Infectious Diseases, Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville, Institut de Recherche pour le Développement, BP 769 Franceville, Gabon.
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia 630090.
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA.
| | - Janusz T Paweska
- Center for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg 2131, Gauteng, South Africa.
| | - Sophie J Smither
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA.
| | - Viktor E Volchkov
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| | - Victoria Wahl-Jensen
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD 21702, USA.
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
30
|
Lam P, Keri RA, Steinmetz NF. A Bioengineered Positive Control for Rapid Detection of the Ebola Virus by Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP). ACS Biomater Sci Eng 2017; 3:452-459. [DOI: 10.1021/acsbiomaterials.6b00769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patricia Lam
- Department of Biomedical Engineering, ‡Department of Pharmacology, §Department of Genetics, ⊥Case Comprehensive
Cancer Center, Division of General Medical Sciences-Oncology,
- Department of Radiology, #Department of Materials
Science and Engineering, and △Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ruth A. Keri
- Department of Biomedical Engineering, ‡Department of Pharmacology, §Department of Genetics, ⊥Case Comprehensive
Cancer Center, Division of General Medical Sciences-Oncology,
- Department of Radiology, #Department of Materials
Science and Engineering, and △Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, ‡Department of Pharmacology, §Department of Genetics, ⊥Case Comprehensive
Cancer Center, Division of General Medical Sciences-Oncology,
- Department of Radiology, #Department of Materials
Science and Engineering, and △Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
31
|
Abstract
The International Committee on Taxonomy of Viruses (ICTV) currently recognizes three genera and seven species as part of the mononegaviral family Filoviridae. Eight distinct filoviruses (Bundibugyo virus, Ebola virus, Lloviu virus, Marburg virus, Ravn virus, Reston virus, Sudan virus, and Taï Forest virus) have been assigned to these seven species. This chapter briefly summarizes the status quo of filovirus classification and focuses on the importance of differentiating between filoviral species and filoviruses and the correct use of taxonomic and vernacular filovirus names and abbreviations in written and oral discourse.
Collapse
|
32
|
Groseth A, Hoenen T. Forty Years of Ebolavirus Molecular Biology: Understanding a Novel Disease Agent Through the Development and Application of New Technologies. Methods Mol Biol 2017; 1628:15-38. [PMID: 28573608 DOI: 10.1007/978-1-4939-7116-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular biology is a broad discipline that seeks to understand biological phenomena at a molecular level, and achieves this through the study of DNA, RNA, proteins, and/or other macromolecules (e.g., those involved in the modification of these substrates). Consequently, it relies on the availability of a wide variety of methods that deal with the collection, preservation, inactivation, separation, manipulation, imaging, and analysis of these molecules. As such the state of the art in the field of ebolavirus molecular biology research (and that of all other viruses) is largely intertwined with, if not driven by, advancements in the technical methodologies available for these kinds of studies. Here we review of the current state of our knowledge regarding ebolavirus biology and emphasize the associated methods that made these discoveries possible.
Collapse
Affiliation(s)
- Allison Groseth
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Thomas Hoenen
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
33
|
Koepsell SA, Winkler AM, Roback JD. The Role of the Laboratory and Transfusion Service in the Management of Ebola Virus Disease. Transfus Med Rev 2016; 31:149-153. [PMID: 27894669 PMCID: PMC7126423 DOI: 10.1016/j.tmrv.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023]
Abstract
The Ebola outbreak that began in 2013 infected and killed record numbers of individuals and created unprecedented challenges, including containment and treatment of the virus in resource-strained West Africa as well as the repatriation and treatment for patients in the United States and Europe. Valuable lessons were learned, especially the important role that the laboratory and transfusion service plays in the treatment for patients with Ebola virus disease (EVD) by providing data for supportive care and fluid resuscitation as well as the generation of investigational therapies such as convalescent plasma (CP). To provide treatment support, laboratories had to evaluate and update procedures to ensure the safety of laboratory personnel. Because there is no licensed EVD-specific treatment, CP was used in more than 99 patients with only 1 possible severe adverse event reported. However, given the biologic variability inherent in CP as well as the small number of patient treated in a nonrandomized fashion, the efficacy of CP in the treatment of EVD remains unknown. Patients with Ebola virus disease were treated in the United States and Europe for the first time. Laboratories played a vital role in supportive care and experimental therapies for Ebola virus disease. Convalescent plasma has unknown efficacy in treating Ebola virus disease.
Collapse
Affiliation(s)
- Scott A Koepsell
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE.
| | | | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
34
|
Rivera A, Messaoudi I. Molecular mechanisms of Ebola pathogenesis. J Leukoc Biol 2016; 100:889-904. [PMID: 27587404 PMCID: PMC6608070 DOI: 10.1189/jlb.4ri0316-099rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
Ebola viruses (EBOVs) and Marburg viruses (MARVs) are among the deadliest human viruses, as highlighted by the recent and widespread Ebola virus outbreak in West Africa, which was the largest and longest epidemic of Ebola virus disease (EVD) in history, resulting in significant loss of life and disruptions across multiple continents. Although the number of cases has nearly reached its nadir, a recent cluster of 5 cases in Guinea on March 17, 2016, has extended the enhanced surveillance period to June 15, 2016. New, enhanced 90-d surveillance windows replaced the 42-d surveillance window to ensure the rapid detection of new cases that may arise from a missed transmission chain, reintroduction from an animal reservoir, or more important, reemergence of the virus that has persisted in an EVD survivor. In this review, we summarize our current understanding of EBOV pathogenesis, describe vaccine and therapeutic candidates in clinical trials, and discuss mechanisms of viral persistence and long-term health sequelae for EVD survivors.
Collapse
Affiliation(s)
- Andrea Rivera
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California, USA
| | - Ilhem Messaoudi
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
35
|
Moekotte AL, Huson MAM, van der Ende AJ, Agnandji ST, Huizenga E, Goorhuis A, Grobusch MP. Monoclonal antibodies for the treatment of Ebola virus disease. Expert Opin Investig Drugs 2016; 25:1325-1335. [PMID: 27676206 DOI: 10.1080/13543784.2016.1240785] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION To date, the management of patients with suspected or confirmed Ebolavirus disease (EVD) depends on quarantine, symptomatic management and supportive care, as there are no approved vaccines or treatments available for human use. However, accelerated by the recent large outbreak in West Africa, significant progress has been made towards vaccine development but also towards specific treatment with convalescent plasma and monoclonal antibodies. Areas covered: We describe recent developments in monoclonal antibody treatment for EVD, encompassing mAb114 and the MB-003, ZMAb, ZMapp™ and MIL-77E cocktails. Expert opinion: Preventive measures, are, and will remain essential to curb EVD outbreaks; even more so with vaccine development progressing. However, research for treatment options must not be neglected. Small-scale animal and individual human case studies show that monoclonal antibodies (mAbs) can be effective for EVD treatment; thus justifying exploration in clinical trials. Potential limitations are that high doses may be needed to yield clinical efficacy; epitope mutations might reduce efficacy; and constant evolution of (outbreak-specific) mAb mixtures might be required. Interim advice based on the clinical experience to date is that treatment of patients with mAbs is sensible, provided those could be made available in the necessary amounts in time.
Collapse
Affiliation(s)
- A L Moekotte
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - M A M Huson
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - A J van der Ende
- b Lion Heart Medical Center , Yele , Sierra Leone.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - S T Agnandji
- d Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,e Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany
| | - E Huizenga
- b Lion Heart Medical Center , Yele , Sierra Leone.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - A Goorhuis
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - M P Grobusch
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,c Lion Heart Medical Research Unit , Yele , Sierra Leone.,d Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,e Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany
| |
Collapse
|
36
|
Schlereth J, Grünweller A, Biedenkopf N, Becker S, Hartmann RK. RNA binding specificity of Ebola virus transcription factor VP30. RNA Biol 2016; 13:783-98. [PMID: 27315567 DOI: 10.1080/15476286.2016.1194160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.
Collapse
Affiliation(s)
- Julia Schlereth
- a Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marburg , Germany
| | - Arnold Grünweller
- a Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marburg , Germany
| | - Nadine Biedenkopf
- b Institut für Virologie, Philipps-Universität Marburg , Marburg , Germany
| | - Stephan Becker
- b Institut für Virologie, Philipps-Universität Marburg , Marburg , Germany
| | - Roland K Hartmann
- a Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marburg , Germany
| |
Collapse
|
37
|
Lago M, Rodríguez JF, Bandín I, Dopazo CP. Aquabirnavirus polyploidy: a new strategy to modulate virulence? J Gen Virol 2016; 97:1168-1177. [PMID: 26902908 DOI: 10.1099/jgv.0.000434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the main research issues regarding infectious pancreatic necrosis virus (IPNV) is its virulence mechanisms. The basis for understanding the molecular virulence determinants of this virus was established over the last decade when it was demonstrated that certain amino acid domains in the VP2 and VP2-NS inter-region determined the level of virulence of IPNV. However, certain variability was still inexplicable and therefore other factors may also be involved. To this end, it was demonstrated recently that infectious bursal disease virus (IBDV), a virus in a different genus of the same family as IPNV, can package more than two dsRNA segments, and that polyploidy may be associated with virulence. In the present report, we analysed the viral fractions obtained after gradient centrifugation to demonstrate that IPNV virions can also package more than two segments, thus indicating that polyploidy is a common birnavirus trait. The differential replication ex vivo and virulence in vivo additionally suggested that such a characteristic is involved in the modulation of virus infectivity. However, although the ex vivo results clearly demonstrated that the replication capacity was enhanced as the viral ploidy increased, the in vivo results could not strongly support a direct relationship between ploidy and virulence to the host, thus suggesting that other virulence determinants are also involved.
Collapse
Affiliation(s)
- M Lago
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura,Universidad de Santiago de Compostela, Santiago de Compostela 15706,Spain
| | - José F Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/CSIC,Cantoblanco, 28049 Madrid,Spain
| | - I Bandín
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura,Universidad de Santiago de Compostela, Santiago de Compostela 15706,Spain
| | - C P Dopazo
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura,Universidad de Santiago de Compostela, Santiago de Compostela 15706,Spain
| |
Collapse
|
38
|
Yasmin T, Nabi AHMN. B and T Cell Epitope-Based Peptides Predicted from Evolutionarily Conserved and Whole Protein Sequences of Ebola Virus as Vaccine Targets. Scand J Immunol 2016; 83:321-37. [PMID: 26939891 DOI: 10.1111/sji.12425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 01/21/2023]
Affiliation(s)
- T. Yasmin
- Department of Biochemistry and Molecular Biology; University of Dhaka; Dhaka 1000 Bangladesh
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology; University of Dhaka; Dhaka 1000 Bangladesh
| |
Collapse
|
39
|
Zhou N, Pan T, Zhang J, Li Q, Zhang X, Bai C, Huang F, Peng T, Zhang J, Liu C, Tao L, Zhang H. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J Biol Chem 2016; 291:9218-32. [PMID: 26953343 PMCID: PMC4861487 DOI: 10.1074/jbc.m116.716100] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 01/18/2023] Open
Abstract
Ebola virus infection can cause severe hemorrhagic fever with a high mortality in
humans. The outbreaks of Ebola viruses in 2014 represented the most serious
Ebola epidemics in history and greatly threatened public health worldwide. The
development of additional effective anti-Ebola therapeutic agents is therefore
quite urgent. In this study, via high throughput screening of Food and Drug
Administration-approved drugs, we identified that teicoplanin, a glycopeptide
antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses
into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on
transcription- and replication-competent virus-like particles, with an
IC50 as low as 330 nm. Comparative analysis further
demonstrated that teicoplanin is able to block the entry of Middle East
respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS)
envelope pseudotyped viruses as well. Teicoplanin derivatives such as
dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola,
MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola
virus entry by specifically inhibiting the activity of cathepsin L, opening a
novel avenue for the development of additional glycopeptides as potential
inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has
routinely been used in the clinic with low toxicity, our work provides a
promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS
virus infection.
Collapse
Affiliation(s)
- Nan Zhou
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Ting Pan
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Junsong Zhang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Qianwen Li
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Xue Zhang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Chuan Bai
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Feng Huang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Tao Peng
- the Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510182, Guangdong, and
| | - Jianhua Zhang
- the CAS Key Laboratory for Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Liu
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine
| | - Hui Zhang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong,
| |
Collapse
|
40
|
Singh G, Kumar A, Singh K, Kaur J. Retracted: Ebola virus: an introduction and its pathology. Rev Med Virol 2016; 26:49-56. [PMID: 26558534 DOI: 10.1002/rmv.1863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/10/2022]
Abstract
The Ebola viruses are causative agent of a severe Ebola virus disease (EVD) or Ebola hemorrhagic fever (EHF) in human and other primates. Transmission of EVD occurs through the contact of body fluids from infected persons or animals, making it one of the most epidemic diseases worldwide. Underestimating the Ebola virus has cost loss of precious human lives in recent years. Ebola virus outbreak in year 2014 created a history, affecting a larger population in a wide geographical region of African sub-continent. EVD outbreaks have a case fatality rate of up to 70%. Ebola viruses are endemic in regions of Africa. Ebola viruses mainly target the hepatocytes, endothelial, and macrophage-rich lymphoid tissues and are characterized by immune suppression and a systemic inflammatory response that causes impairment of the vascular, coagulation, and immune systems. This impairment leads to multifocal necrosis and multi organ failure, and thus, in some ways, resembling septic shock. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. This review is focused on general characteristic of Ebola viruses, its pathogenesis, immunological response of host, and recent approaches for vaccine development against EVD. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
41
|
Periodic global One Health threats update. One Health 2015; 2:1-7. [PMID: 28616469 PMCID: PMC5441380 DOI: 10.1016/j.onehlt.2015.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 01/10/2023] Open
Abstract
Emerging infectious diseases continue to impose unpredictable burdens on global health and economy. Infectious disease surveillance and pandemic preparedness are essential to mitigate the impact of future threats. Global surveillance networks provide unprecedented monitoring data on plant, animal and human infectious diseases. Using such sources, we report on current major One Health threats and update on their epidemiological status.
Collapse
|
42
|
Izawa K, Aceña JL, Wang J, Soloshonok VA, Liu H. Small-Molecule Therapeutics for Ebola Virus (EBOV) Disease Treatment. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus. Med Microbiol Immunol 2015; 205:173-83. [DOI: 10.1007/s00430-015-0438-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
44
|
Abstract
OBJECTIVE The recent Ebola virus disease (EVD) outbreak in 2014-2015 has been the largest and longest lasting to date. Media coverage about the outbreak has been extensive, but there are large gaps in our understanding of the ways in which widely accessed social media sites are used during times of public health crisis. The purpose of this study was to analyze widely viewed videos about EVD on the YouTube video-sharing site. METHODS We coded the source, content, and characteristics of the 100 most widely viewed videos about EVD on YouTube. RESULTS The videos included in the sample were viewed more than 73 million times. The death toll in West Africa was mentioned in nearly one-third of the videos. Over one-third of the videos mentioned how EVD was generally transmitted. There was little mention of treatment and no mention of the need for US funding of disaster preparedness; coordination between local, state, and federal governments; or beds ready for containment. No significant differences in the number of views were identified between video sources with the exception of a significantly higher number of views for "consumer videos" compared with "commercial television videos." CONCLUSIONS With 1 billion unique users a month, YouTube has potential for both enhancing education and spreading misinformation.
Collapse
|
45
|
Elshabrawy HA, Erickson TB, Prabhakar BS. Ebola virus outbreak, updates on current therapeutic strategies. Rev Med Virol 2015; 25:241-53. [PMID: 25962887 PMCID: PMC7169053 DOI: 10.1002/rmv.1841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/26/2022]
Abstract
Filoviruses are enveloped negative‐sense single‐stranded RNA viruses, which include Ebola and Marburg viruses, known to cause hemorrhagic fever in humans with a case fatality of up to 90%. There have been several Ebola virus outbreaks since the first outbreak in the Democratic Republic of Congo in 1976 of which, the recent 2013–2015 epidemic in Guinea, Liberia, and Sierra Leone is the largest in recorded history. Within a few months of the start of the outbreak in December 2013, thousands of infected cases were reported with a significant number of deaths. As of March 2015, according to the Centers for Disease Control and Prevention, there have been nearly 25 000 suspected cases, with 15 000 confirmed by laboratory testing, and over 10 000 deaths. The large number of cases and the high mortality rate, combined with the lack of effective Food and Drug Administration‐approved treatments, necessitate the development of potent and safe therapeutic measures to combat the current and future outbreaks. Since the beginning of the outbreak, there have been considerable efforts to develop and characterize protective measures including vaccines and antiviral small molecules, and some have proven effective in vitro and in animal models. Most recently, a cocktail of monoclonal antibodies has been shown to be highly effective in protecting non‐human primates from Ebola virus infection. In this review, we will discuss what is known about the nature of the virus, phylogenetic classification, genomic organization and replication, disease transmission, and viral entry and highlight the current approaches and efforts, in the development of therapeutics, to control the outbreak. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA.,Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Timothy B Erickson
- Department of Emergency Medicine, University of Illinois College of Medicine, Chicago, IL, USA.,Center for Global Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA.,Center for Global Health, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
46
|
Ebola virus disease 2013-2014 outbreak in west Africa: an analysis of the epidemic spread and response. Int J Microbiol 2015; 2015:769121. [PMID: 25852754 PMCID: PMC4380098 DOI: 10.1155/2015/769121] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/16/2015] [Indexed: 11/17/2022] Open
Abstract
The Ebola virus epidemic burst in West Africa in late 2013, started in Guinea, reached in a few months an alarming diffusion, actually involving several countries (Liberia, Sierra Leone, Nigeria, Senegal, and Mali). Guinea and Liberia, the first nations affected by the outbreak, have put in place measures to contain the spread, supported by international organizations; then they were followed by the other nations affected. In the present EVD outbreak, the geographical spread of the virus has followed a new route: the achievement of large urban areas at an early stage of the epidemic has led to an unprecedented diffusion, featuring the largest outbreak of EVD of all time. This has caused significant concerns all over the world: the potential reaching of far countries from endemic areas, mainly through fast transports, induced several countries to issue information documents and health supervision for individuals going to or coming from the areas at risk. In this paper the geographical spread of the epidemic was analyzed, assessing the sequential appearance of cases by geographic area, considering the increase in cases and mortality according to affected nations. The measures implemented by each government and international organizations to contain the outbreak, and their effectiveness, were also evaluated.
Collapse
|
47
|
Dangerous Viral Pathogens of Animal Origin: Risk and Biosecurity. ZOONOSES - INFECTIONS AFFECTING HUMANS AND ANIMALS 2015. [PMCID: PMC7121609 DOI: 10.1007/978-94-017-9457-2_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Morphologic differentiation of viruses beyond the family level. Viruses 2014; 6:4902-13. [PMID: 25502324 PMCID: PMC4276935 DOI: 10.3390/v6124902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/22/2022] Open
Abstract
Electron microscopy has been instrumental in the identification of viruses by being able to characterize a virus to the family level. There are a few cases where morphologic or morphogenesis factors can be used to differentiate further, to the genus level. These include viruses in the families Poxviridae, Reoviridae, Retroviridae, Herpesviridae, Filoviridae, and Bunyaviridae.
Collapse
|
49
|
Chakraborty S, Rao BJ, Asgeirsson B, Dandekar A. Characterizing alpha helical properties of Ebola viral proteins as potential targets for inhibition of alpha-helix mediated protein-protein interactions. F1000Res 2014; 3:251. [PMID: 25717367 PMCID: PMC4329671 DOI: 10.12688/f1000research.5573.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 01/28/2023] Open
Abstract
Ebola, considered till recently as a rare and endemic disease, has dramatically transformed into a potentially global humanitarian crisis. The genome of Ebola, a member of the Filoviridae family, encodes seven proteins. Based on the recently implemented software (PAGAL) for analyzing the hydrophobicity and amphipathicity properties of alpha helices (AH) in proteins, we characterize the helices in the Ebola proteome. We demonstrate that AHs with characteristically unique features are involved in critical interactions with the host proteins. For example, the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain has an AH with a large hydrophobic moment. The neutralizing antibody (KZ52) derived from a human survivor of the 1995 Kikwit outbreak recognizes a protein epitope on this AH, emphasizing the critical nature of this secondary structure in the virulence of the Ebola virus. Our method ensures a comprehensive list of such `hotspots'. These helices probably are or can be the target of molecules designed to inhibit AH mediated protein-protein interactions. Further, by comparing the AHs in proteins of the related Marburg viruses, we are able to elicit subtle changes in the proteins that might render them ineffective to previously successful drugs. Such differences are difficult to identify by a simple sequence or structural alignment. Thus, analyzing AHs in the small Ebola proteome can aid rational design aimed at countering the `largest Ebola epidemic, affecting multiple countries in West Africa' (
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html).
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, 95616, USA ; Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| | - Abhaya Dandekar
- Plant Sciences Department, University of California, Davis, 95616, USA
| |
Collapse
|
50
|
Chakraborty S, Rao BJ, Asgeirsson B, Dandekar A. Characterizing alpha helical properties of Ebola viral proteins as potential targets for inhibition of alpha-helix mediated protein-protein interactions. F1000Res 2014; 3:251. [PMID: 25717367 PMCID: PMC4329671 DOI: 10.12688/f1000research.5573.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 08/06/2023] Open
Abstract
Ebola, considered till recently as a rare and endemic disease, has dramatically transformed into a potentially global humanitarian crisis. The genome of Ebola, a member of the Filoviridae family, encodes seven proteins. Based on the recently implemented software (PAGAL) for analyzing the hydrophobicity and amphipathicity properties of alpha helices (AH) in proteins, we characterize the helices in the Ebola proteome. We demonstrate that AHs with characteristically unique features are involved in critical interactions with the host proteins. For example, the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain has an AH with a large hydrophobic moment. The neutralizing antibody (KZ52) derived from a human survivor of the 1995 Kikwit outbreak recognizes a protein epitope on this AH, emphasizing the critical nature of this secondary structure in the virulence of the Ebola virus. Our method ensures a comprehensive list of such `hotspots'. These helices probably are or can be the target of molecules designed to inhibit AH mediated protein-protein interactions. Further, by comparing the AHs in proteins of the related Marburg viruses, we are able to elicit subtle changes in the proteins that might render them ineffective to previously successful drugs. Such differences are difficult to identify by a simple sequence or structural alignment. Thus, analyzing AHs in the small Ebola proteome can aid rational design aimed at countering the `largest Ebola epidemic, affecting multiple countries in West Africa' ( http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html).
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, 95616, USA
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| | - Abhaya Dandekar
- Plant Sciences Department, University of California, Davis, 95616, USA
| |
Collapse
|