1
|
Villa PA, Ruggiero-Ruff RE, Jamieson BB, Campbell RE, Coss D. Obesity Alters POMC and Kisspeptin Neuron Cross Talk Leading to Reduced Luteinizing Hormone in Male Mice. J Neurosci 2024; 44:e0222242024. [PMID: 38744532 PMCID: PMC11236585 DOI: 10.1523/jneurosci.0222-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Obesity is associated with hypogonadism in males, characterized by low testosterone and sperm number. Previous studies determined that these stem from dysregulation of hypothalamic circuitry that regulates reproduction, by unknown mechanisms. Herein, we used mice fed chronic high-fat diet, which mimics human obesity, to determine mechanisms of impairment at the level of the hypothalamus, in particular gonadotropin-releasing hormone (GnRH) neurons that regulate luteinizing hormone (LH), which then regulates testosterone. Consistent with obese humans, we demonstrated lower LH, and lower pulse frequency of LH secretion, but unchanged pituitary responsiveness to GnRH. LH pulse frequency is regulated by pulsatile GnRH secretion, which is controlled by kisspeptin. Peripheral and central kisspeptin injections, and DREADD-mediated activation of kisspeptin neurons, demonstrated that kisspeptin neurons were suppressed in obese mice. Thus, we investigated regulators of kisspeptin secretion. We determined that the LH response to NMDA was lower in obese mice, corresponding to fewer glutamate receptors in kisspeptin neurons, which may be critical for kisspeptin synchronization. Given that kisspeptin neurons also interact with anorexigenic POMC neurons, which are affected by obesity, we examined their cross talk, and determined that the LH response to either DREADD-mediated activation of POMC neurons or central injection of αMSH, a product of POMC, is abolished in obese mice. This was accompanied by diminished levels of αMSH receptor, MC4R, in kisspeptin neurons. Together, our studies determined that obesity leads to the downregulation of receptors that regulate kisspeptin neurons, which is associated with lower LH pulse frequency, leading to lower LH and hypogonadism.
Collapse
Affiliation(s)
- Pedro A Villa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California 92521
| | - Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California 92521
| | - Bradley B Jamieson
- Centre for Neuroendocrinology, and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
2
|
Liu S, Lu H, Mao S, Zhang Z, Zhu W, Cheng J, Xue Y. Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model. Front Nutr 2023; 10:1251936. [PMID: 38035344 PMCID: PMC10684748 DOI: 10.3389/fnut.2023.1251936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Undernutrition spontaneously occurs in ewes during late gestation and the pituitary is an important hinge in the neurohumoral regulatory system. However, little is known about the effect of undernutrition on pituitary metabolism. Methods Here, 10 multiparous ewes were restricted to a 30% feeding level during late gestation to establish an undernutrition model while another 10 ewes were fed normally as controls. All the ewes were sacrificed, and pituitary samples were collected to perform transcriptome, metabolome, and quantitative real-time PCR analysis and investigate the metabolic changes. Results PCA and PLS-DA of total genes showed that undernutrition changed the total transcriptome profile of the pituitary gland, and 581 differentially expressed genes (DEGs) were identified between the two groups. Clusters of orthologous groups for eukaryotic complete genomes demonstrated that substance transport and metabolism, including lipids, carbohydrates, and amino acids, energy production and conversion, ribosomal structure and biogenesis, and the cytoskeleton were enriched by DEGs. Kyoto encyclopedia of genes and genomes pathway enrichment analysis displayed that the phagosome, intestinal immune network, and oxidative phosphorylation were enriched by DEGs. Further analysis found that undernutrition enhanced the lipid degradation and amino acid transport, repressing lipid synthesis and transport and amino acid degradation of the pituitary gland. Moreover, the general metabolic profiles and metabolic pathways were affected by undernutrition, repressing the 60S, 40S, 28S, and 39S subunits of the ribosomal structure for translation and myosin and actin synthesis for cytoskeleton. Undernutrition was found also to be implicated in the suppression of oxidative phosphorylation for energy production and conversion into a downregulation of genes related to T cell function and the immune response and an upregulation of genes involved in inflammatory reactions enriching phagosomes. Discussion This study comprehensively analyses the effect of undernutrition on the pituitary gland in a pregnant sheep model, which provides a foundation for further research into the mechanisms of undernutrition-caused hormone secretion and metabolic disorders.
Collapse
Affiliation(s)
- Shuai Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Simpson EM, Clarke IJ, Scott CJ, Stephen CP, Rao A, Gunn AJ. The GLP-1 agonist, exendin-4, stimulates LH secretion in female sheep. J Endocrinol 2023; 259:e230105. [PMID: 37466202 PMCID: PMC10448581 DOI: 10.1530/joe-23-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Our previous studies showed that microinjection into the median eminence of the sheep of glucagon-like peptide- 1 (GLP-1) or its receptor agonist exendin-4 stimulates luteinising hormone (LH) secretion, but it is unknown whether the same effect may be obtained by systemic administration of the same. The present study measured the response in terms of plasma LH concentrations to intravenous (iv) infusion of exendin-4. A preliminary study showed that infusion of 2 mg exendin-4 into ewes produced a greater LH response in the follicular phase of the oestrous cycle than the luteal phase. Accordingly, the main study monitored plasma LH levels in response to either 0.5 mg or 2 mg exendin-4 or vehicle (normal saline) delivered by jugular infusion for 1 h in the follicular phase of the oestrous cycle. Blood samples were collected at 10 min intervals before, during and after infusion. Both doses of exendin-4 increased mean plasma LH concentrations and increased LH peripheral pulse amplitude. There was no effect on inter-pulse interval or timing of the preovulatory LH surge. These doses of exendin-4 did not alter plasma insulin or glucose concentrations. Quantitative PCR of the gastrointestinal tract samples from a population of ewes confirmed the expression of the preproglucagon gene (GCG). Expression increased aborally and was greatest in the rectum. It is concluded that endogenous GLP-1, most likely derived from the hindgut, may act systemically to stimulate LH secretion. The present data suggest that this effect may be obtained with levels of agonist that are lower than those functioning as an incretin.
Collapse
Affiliation(s)
- Elizabeth M Simpson
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Iain J Clarke
- School of Agriculture Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher J Scott
- School of Dentistry and Medical Science, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Cyril P Stephen
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Alexandra Rao
- School of Agriculture Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Allan J Gunn
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
4
|
Nestor CC, Merkley CM, Lehman MN, Hileman SM, Goodman RL. KNDy neurons as the GnRH pulse generator: Recent studies in ruminants. Peptides 2023; 164:171005. [PMID: 36990389 PMCID: PMC10164117 DOI: 10.1016/j.peptides.2023.171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
This review considers three aspects of recent work on the role of KNDy neurons in GnRH pulse generation in ruminants. First, work on basic mechanisms of pulse generation includes several tests of this hypothesis, all of which support it, and evidence that Kiss1r-containing neurons form a positive feedback circuit with the KNDy neural network that strengthen the activity of this network. The second section on pathways mediating external inputs focuses on the influence of nutrition and photoperiod, and describes the evidence supporting roles for proopiomelanocortin (POMC) and agouti-related peptide (AgRP) afferents to KNDy cells in each of these. Finally, we review studies exploring the potential applications of manipulating signaling by kisspeptin, and the other KNDy peptides, to control reproductive function in domestic animals and conclude that, although these approaches show some promise, they do not have major advantages over current practices at this time.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | | - Michael N Lehman
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Stanley M Hileman
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University, Morgantown, WV, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
5
|
Harlow K, Griesgraber MJ, Seman AD, Shuping SL, Sommer JR, Griffith EH, Hileman SM, Nestor CC. The impact of undernutrition on KNDy (kisspeptin/neurokinin B/dynorphin) neurons in female lambs. J Neuroendocrinol 2022; 34:e13135. [PMID: 35579068 PMCID: PMC9286635 DOI: 10.1111/jne.13135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
Undernutrition limits reproduction through inhibition of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) secretion. Because KNDy neurons coexpress neuropeptides that play stimulatory (kisspeptin and neurokinin B [NKB]) and inhibitory (dynorphin) roles in pulsatile GnRH/LH release, we hypothesized that undernutrition would inhibit kisspeptin and NKB expression at the same time as increasing dynorphin expression. Fifteen ovariectomized lambs were either fed to maintain pre-study body weight (controls) or feed-restricted to lose 20% of pre-study body weight (FR) over 13 weeks. Blood samples were collected and plasma from weeks 0 and 13 were assessed for LH by radioimmunoassay. At week 13, animals were killed, and brain tissue was processed for assessment of KNDy peptide mRNA or protein expression. Mean LH and LH pulse amplitude were lower in FR lambs compared to controls. We observed lower mRNA abundance for kisspeptin within KNDy neurons of FR lambs compared to controls with no significant change in mRNA for NKB or dynorphin. We also observed that FR lambs had fewer numbers of arcuate nucleus kisspeptin and NKB perikarya compared to controls. These findings support the idea that KNDy neurons are important for regulating reproduction during undernutrition in female sheep.
Collapse
Affiliation(s)
- KaLynn Harlow
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| | - Max J. Griesgraber
- Department of Physiology and PharmacologyWest Virginia UniversityMorgantownWVUSA
| | - Andrew D. Seman
- Department of Physiology and PharmacologyWest Virginia UniversityMorgantownWVUSA
| | - Sydney L. Shuping
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| | - Jeffrey R. Sommer
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| | | | - Stanley M. Hileman
- Department of Physiology and PharmacologyWest Virginia UniversityMorgantownWVUSA
- Department of NeuroscienceWest Virginia UniversityMorgantownWVUSA
| | - Casey C Nestor
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
6
|
Merkley CM, Shuping SL, Nestor CC. Neuronal networks that regulate gonadotropin-releasing hormone/luteinizing hormone secretion during undernutrition: evidence from sheep. Domest Anim Endocrinol 2020; 73:106469. [PMID: 32247618 DOI: 10.1016/j.domaniend.2020.106469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/19/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final common conduit from the central nervous system in the reproductive axis, controlling luteinizing hormone (LH) secretion from the gonadotropes of the anterior pituitary. Although it is generally accepted that undernutrition inhibits GnRH/LH secretion, the central mechanisms that underlie the link between energy balance and reproduction remain to be fully elucidated. Sheep have been a longstanding and invaluable animal model for examination of the nutritional regulation of GnRH/LH secretion, given their ability to serve a biomedical and agricultural purpose. In this review, we summarize work that has used the ovine model to examine the central mechanisms whereby undernutrition regulates GnRH/LH secretion. Specifically, we focus our attention to the arcuate nucleus of the hypothalamus and on neurons that express kisspeptin, neurokinin B, dynorphin, proopiomelanocortin, and neuropeptide y/agouti-related peptide (NPY/AgRP). We examine their roles in mediating the effects of leptin and insulin and their effects on LH during undernutrition, as well as their regulation under conditions of undernutrition. This review will also highlight the interactions between the aforementioned neuronal networks themselves, which may be important for our understanding of the roles each play in relaying information regarding energy status during times of undernutrition to ultimately regulate GnRH/LH secretion.
Collapse
Affiliation(s)
- C M Merkley
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - S L Shuping
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - C C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Merkley CM, Renwick AN, Shuping SL, Harlow K, Sommer JR, Nestor CC. Undernutrition reduces kisspeptin and neurokinin B expression in castrated male sheep. REPRODUCTION AND FERTILITY 2020; 1:1-13. [PMID: 35128420 PMCID: PMC8812452 DOI: 10.1530/raf-20-0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Undernutrition impairs reproductive success through suppression of gonadotropin-releasing hormone (GnRH), and subsequently luteinizing hormone (LH), secretion. Given that kisspeptin and neurokinin B (NKB) neurons in the arcuate nucleus (ARC) of the hypothalamus are thought to play key stimulatory roles in the generation of GnRH/LH pulses, we hypothesized that feed restriction would reduce the ARC mRNA abundance and protein expression of kisspeptin and NKB in young, male sheep. Fourteen wethers (castrated male sheep five months of age) were either fed to maintain (FM; n = 6) pre-study body weight or feed-restricted (FR; n = 8) to lose 20% of pre-study body weight over 13 weeks. Throughout the study, weekly blood samples were collected and assessed for LH concentration using RIA. At Week 13 of the experiment, animals were killed, heads were perfused with 4% paraformaldehyde, and brain tissue containing the hypothalamus was collected, sectioned, and processed for detection of mRNA (RNAscope) and protein (immunohistochemistry) for kisspeptin and NKB. Mean LH was significantly lower and LH inter-pulse interval was significantly higher in FR wethers compared to FM wethers at the end of the experiment (Week 13). RNAscope analysis revealed significantly fewer cells expressing mRNA for kisspeptin and NKB in FR wethers compared to FM controls, and immunohistochemical analysis revealed significantly fewer immunopositive kisspeptin and NKB cells in FR wethers compared to FM wethers. Taken together, this data supports the idea that long-term feed restriction regulates GnRH/LH secretion through central suppression of kisspeptin and NKB in male sheep. LAY SUMMARY While undernutrition is known to impair reproduction at the level of the brain, the components responsible for this in the brain remain to be fully understood. Using male sheep we examined the effect of undernutrition on two stimulatory molecules in the brain critical for reproduction: kisspeptin and neurokinin B. Feed restriction for several weeks resulted in decreased luteinizing hormone in the blood indicating reproductive function was suppressed. In addition, undernutrition also reduced both kisspeptin and neurokinin B levels within a region of the brain involved in reproduction, the hypothalamus. Given that they have stimulatory roles in reproduction, we believe that undernutrition acts in the brain to reduce kisspeptin and neurokinin B levels leading to the reduction in luteinizing hormone secretion. In summary, long-term undernutrition inhibits reproductive function in sheep through suppression of kisspeptin and neurokinin B within the brain.
Collapse
Affiliation(s)
- Christina M Merkley
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Allison N Renwick
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Sydney L Shuping
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - KaLynn Harlow
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeffrey R Sommer
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
8
|
Parker CG, Cheung E. Metabolic control of teleost reproduction by leptin and its complements: Understanding current insights from mammals. Gen Comp Endocrinol 2020; 292:113467. [PMID: 32201232 DOI: 10.1016/j.ygcen.2020.113467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Reproduction is expensive. Hence, reproductive physiology is sensitive to an array of endogenous signals that provide information on metabolic and nutritional sufficiency. Although metabolic gating of reproductive function in mammals, as evidenced by studies demonstrating delayed puberty and perturbed fertility, has long been understood to be a function of energy sufficiency, an understanding of the endocrine regulators of this relationship have emerged only within recent decades. Peripheral signals including leptin and cortisol have long been implicated in the physiological integration of metabolism and reproduction. Recent studies have begun to explore possible roles for these two hormones in the regulation of reproduction in teleost fishes, as well as a role for leptin as a catabolic stress hormone. In this review, we briefly explore the reproductive actions of leptin and cortisol in mammals and teleost fishes and possible role of both hormones as putative modulators of the reproductive axis during stress events.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| | - Eugene Cheung
- Department of Biological Sciences, David Clark Labs, 100 Brooks Avenue, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Talbi R, Navarro VM. Novel insights into the metabolic action of Kiss1 neurons. Endocr Connect 2020; 9:R124-R133. [PMID: 32348961 PMCID: PMC7274555 DOI: 10.1530/ec-20-0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
Kiss1 neurons are essential regulators of the hypothalamic-pituitary-gonadal (HPG) axis by regulating gonadotropin-releasing hormone (GnRH) release. Compelling evidence suggests that Kiss1 neurons of the arcuate nucleus (Kiss1ARC), recently identified as the hypothalamic GnRH pulse generator driving fertility, also participate in the regulation of metabolism through kisspeptinergic and glutamatergic interactions with, at least, proopiomelanocortin (POMC) and agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons, located in close apposition with Kiss1ARC. This review offers a comprehensive overview of the recent developments, mainly derived from animal models, on the role of Kiss1 neurons in the regulation of energy balance, including food intake, energy expenditure and the influence of circadian rhythms on this role. Furthermore, the possible neuroendocrine pathways underlying this effect, and the existing controversies related to the anorexigenic action of kisspeptin in the different experimental models, are also discussed.
Collapse
Affiliation(s)
- Rajae Talbi
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Victor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Correspondence should be addressed to V M Navarro:
| |
Collapse
|
10
|
Liu K, Cao H, Dong X, Liu H, Wen Y, Mao H, Lu L, Yin Z. Polymorphisms of pro-opiomelanocortin gene and the association with reproduction traits in chickens. Anim Reprod Sci 2019; 210:106196. [PMID: 31635770 DOI: 10.1016/j.anireprosci.2019.106196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
Pro-opiomelanocortin (POMC) is a member of prohormone family and has important functions in stress response, skin pigmentation, thermoregulation and reproduction. In this study, the single nucleotide polymorphisms (SNPs) of POMC gene exons were detected by direct sequencing in 317 Zhenning yellow chickens. The sequencing results indicated there were seven mutation sites (g.1140C > T, g.1185 T > C, g.2085 T > C, g.3566A > C, g.3572 G > A, g.3594 G > A and g.3628 G > A) and all of these were synonymous. Furthermore, seven haplotypes were formed and sixteen diplotypes were obtained. The associations between the POMC gene polymorphisms or diplotypes and reproduction traits were also analyzed. The association analysis results indicated that the SNP of g.1140C > T was associated with egg production at 300 d of age (E300), fertilization rate (FR), hatching rate of hatching eggs (HEHR) and hatching rate of fertilized eggs (FEHR; P < 0.05). The SNP of g.3566A>C was associated with FR (P < 0.05), SNP of g.3594G>A was associated with egg weight at 300d of age (EW300; P < 0.05), and SNP of g.3628G>A was associated with HEHR and FEHR (P < 0.01), respectively. Furthermore, chickens with H2H3 diplotype had greater EW300 and FR than those with H1H7 and H3H4 diplotypes (P < 0.05). These results indicate the expression of the POMC gene had significant genotype effects on the reproduction traits of Zhenning yellow chickens, and that the H2H3 diplotype could be used as a potential genetic marker to improve the reproduction traits in chicken breeding.
Collapse
Affiliation(s)
- Ke Liu
- College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiyue Cao
- College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinyang Dong
- College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Honghua Liu
- College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yaya Wen
- College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiguang Mao
- College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Lei Lu
- Ningbo Zhenning Animal Husbandry Co. Ltd, Ningbo 315000, China
| | - Zhaozheng Yin
- College of Animal Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
11
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
12
|
Nestor CC, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. Regulation of GnRH pulsatility in ewes. Reproduction 2018; 156:R83-R99. [PMID: 29880718 DOI: 10.1530/rep-18-0127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 01/21/2023]
Abstract
Early work in ewes provided a wealth of information on the physiological regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by internal and external inputs. Identification of the neural systems involved, however, was limited by the lack of information on neural mechanisms underlying generation of GnRH pulses. Over the last decade, considerable evidence supported the hypothesis that a group of neurons in the arcuate nucleus that contain kisspeptin, neurokinin B and dynorphin (KNDy neurons) are responsible for synchronizing secretion of GnRH during each pulse in ewes. In this review, we describe our current understanding of the neural systems mediating the actions of ovarian steroids and three external inputs on GnRH pulsatility in light of the hypothesis that KNDy neurons play a key role in GnRH pulse generation. In breeding season adults, estradiol (E2) and progesterone decrease GnRH pulse amplitude and frequency, respectively, by actions on KNDy neurons, with E2 decreasing kisspeptin and progesterone increasing dynorphin release onto GnRH neurons. In pre-pubertal lambs, E2 inhibits GnRH pulse frequency by decreasing kisspeptin and increasing dynorphin release, actions that wane as the lamb matures to allow increased pulsatile GnRH secretion at puberty. Less is known about mediators of undernutrition and stress, although some evidence implicates kisspeptin and dynorphin, respectively, in the inhibition of GnRH pulse frequency by these factors. During the anoestrus, inhibitory photoperiod acting via melatonin activates A15 dopaminergic neurons that innervate KNDy neurons; E2 increases dopamine release from these neurons to inhibit KNDy neurons and suppress the frequency of kisspeptin and GnRH release.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Michelle N Bedenbaugh
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Stanley M Hileman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Lique M Coolen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael N Lehman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
13
|
Fuller-Jackson JP, Henry BA. Adipose and skeletal muscle thermogenesis: studies from large animals. J Endocrinol 2018; 237:R99-R115. [PMID: 29703782 DOI: 10.1530/joe-18-0090] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Abstract
The balance between energy intake and energy expenditure establishes and preserves a 'set-point' body weight. The latter is comprised of three major components including metabolic rate, physical activity and thermogenesis. Thermogenesis is defined as the cellular dissipation of energy via heat production. This process has been extensively characterised in brown adipose tissue (BAT), wherein uncoupling protein 1 (UCP1) creates a proton leak across the inner mitochondrial membrane, diverting protons away from ATP synthesis and resulting in heat dissipation. In beige adipocytes and skeletal muscle, thermogenesis can occur independent of UCP1. Beige adipocytes have been shown to produce heat via UCP1 as well as via both futile creatine and calcium cycling pathways. On the other hand, the UCP1 homologue UCP3 is abundant in skeletal muscle and post-prandial thermogenesis has been associated with UCP3 and the futile calcium cycling. This review will focus on the differential contributions of adipose tissue and skeletal muscle in determining total thermogenic output and energy expenditure in large mammals. Sheep and pigs do not have a circumscribed brown fat depot but rather possess white fat depots that contain brown and beige adipocytes interspersed amongst white adipose tissue. This is representative of humans, where brown, beige and white adipocytes have been identified in the neck and supraclavicular regions. This review will describe the mechanisms of thermogenesis in pigs and sheep and the relative roles of skeletal muscle and adipose tissue thermogenesis in controlling body weight in larger mammals.
Collapse
Affiliation(s)
| | - Belinda A Henry
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Thorson JF, Prezotto LD, Adams H, Petersen SL, Clapper JA, Wright EC, Oliver WT, Freking BA, Foote AP, Berry ED, Nonneman DJ, Lents CA. Energy balance affects pulsatile secretion of luteinizing hormone from the adenohypophesis and expression of neurokinin B in the hypothalamus of ovariectomized gilts†. Biol Reprod 2018; 99:433-445. [DOI: 10.1093/biolre/ioy069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Ligia D Prezotto
- Nutritional & Reproductive Physiology Laboratory, Montana State University, Havre, Montana, USA
| | - Hillary Adams
- Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Sandra L Petersen
- Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jeffrey A Clapper
- Animal Science, South Dakota State University, Brookings, South Dakota, USA
| | - Elane C Wright
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - William T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Bradley A Freking
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Andrew P Foote
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Elaine D Berry
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Danny J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| |
Collapse
|
15
|
Fuller-Jackson JP, Clarke IJ, Rao A, Henry BA. Exercise counteracts the homeostatic decrease in thermogenesis caused by caloric restriction in sheep. FASEB J 2018; 32:3859-3869. [PMID: 29455575 DOI: 10.1096/fj.201701504r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Caloric restriction causes a homeostatic reduction in thermogenesis. We aimed to determine whether exercise could counteract this. We studied four groups of normal-weight ewes ( n = 5), including control sedentary fed ad libitum, exercise fed ad libitum (30 min/d, 5 d/wk), diet-restricted (70% of ad libitum food intake), and combined diet and exercise. Temperature probes implanted in sternal and retroperitoneal adipose tissue and skeletal muscle measured thermogenesis. After the 4-wk intervention, hypothalami were collected for in situ hybridization, and fat and muscle biopsies were collected for real-time PCR and Western blotting. Combined diet and exercise reduced adiposity ( P < 0.05). Caloric restriction alone reduced overnight temperatures in sternal and retroperitoneal fat ( P < 0.05), which was counteracted by exercise ( P < 0.05). Exercise did not induce expression of cellular markers of browning in adipose tissue. There was no effect of diet or exercise on skeletal muscle thermogenesis. Combined diet and exercise increased the expression of neuropeptide Y and agouti-related protein in the hypothalamic arcuate nucleus ( P < 0.05), consistent with reduced adiposity. Gene expressions of key hypothalamic appetite-regulating peptides were not associated with altered thermogenesis. We demonstrate that exercise counteracts the inhibitory effect of caloric restriction to restore thermogenesis in adipose tissue of sheep.-Fuller-Jackson, J.-P., Clarke, I. J., Rao, A., Henry, B. A. Exercise counteracts the homeostatic decrease in thermogenesis caused by caloric restriction in sheep.
Collapse
Affiliation(s)
- John-Paul Fuller-Jackson
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Iain J Clarke
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Alexandra Rao
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Belinda A Henry
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Venancio JC, Margatho LO, Rorato R, Rosales RRC, Debarba LK, Coletti R, Antunes-Rodrigues J, Elias CF, Elias LLK. Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice. Endocrinology 2017; 158:3929-3942. [PMID: 28938405 PMCID: PMC5695829 DOI: 10.1210/en.2017-00452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/30/2017] [Indexed: 11/19/2022]
Abstract
Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD.
Collapse
Affiliation(s)
- Jade Cabestre Venancio
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Lisandra Oliveira Margatho
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Rodrigo Rorato
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | | | - Lucas Kniess Debarba
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Ricardo Coletti
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lucila Leico K. Elias
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| |
Collapse
|
17
|
Foradori CD, Whitlock BK, Daniel JA, Zimmerman AD, Jones MA, Read CC, Steele BP, Smith JT, Clarke IJ, Elsasser TH, Keisler DH, Sartin JL. Kisspeptin Stimulates Growth Hormone Release by Utilizing Neuropeptide Y Pathways and Is Dependent on the Presence of Ghrelin in the Ewe. Endocrinology 2017; 158:3526-3539. [PMID: 28977590 DOI: 10.1210/en.2017-00303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
Although kisspeptin is the primary stimulator of gonadotropin-releasing hormone secretion and therefore the hypothalamic-pituitary-gonadal axis, recent findings suggest kisspeptin can also regulate additional neuroendocrine processes including release of growth hormone (GH). Here we show that central delivery of kisspeptin causes a robust rise in plasma GH in fasted but not fed sheep. Kisspeptin-induced GH secretion was similar in animals fasted for 24 hours and those fasted for 72 hours, suggesting that the factors involved in kisspeptin-induced GH secretion are responsive to loss of food availability and not the result of severe negative energy balance. Pretreatment with the neuropeptide Y (NPY) Y1 receptor antagonist, BIBO 3304, blocked the effects of kisspeptin-induced GH release, implicating NPY as an intermediary. Kisspeptin treatment induced c-Fos in NPY and GH-releasing hormone (GHRH) cells of the arcuate nucleus. The same kisspeptin treatment resulted in a reduction in c-Fos in somatostatin (SS) cells in the periventricular nucleus. Finally, blockade of systemic ghrelin release or antagonism of the ghrelin receptor eliminated or reduced the ability of kisspeptin to induce GH release, suggesting the presence of ghrelin is required for kisspeptin-induced GH release in fasted animals. Our findings support the hypothesis that during short-term fasting, systemic ghrelin concentrations and NPY expression in the arcuate nucleus rise. This permits kisspeptin activation of NPY cells. In turn, NPY stimulates GHRH cells and inhibits SS cells, resulting in GH release. We propose a mechanism by which kisspeptin conveys reproductive and hormone status onto the somatotropic axis, resulting in alterations in GH release.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Brian K Whitlock
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Jay A Daniel
- Department of Animal Science, Berry College, Mt. Berry, Georgia 30149
| | - Arthur D Zimmerman
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Melaney A Jones
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Casey C Read
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Barbara P Steele
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Jeremy T Smith
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Crawley, Washington 6009, Australia
| | - Iain J Clarke
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Theodore H Elsasser
- Animal Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705
| | - Duane H Keisler
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - James L Sartin
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
18
|
Pouchain Ribeiro Neto R, Clarke IJ, Conductier G. Alteration in the relationship between tanycytes and gonadotrophin-releasing hormone neurosecretory terminals following long-term metabolic manipulation in the sheep. J Neuroendocrinol 2017; 29. [PMID: 28722251 DOI: 10.1111/jne.12509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
The activity of the hypothalamic-pituitary gonadal axis is influenced by energy reserves, such that an increase or a decrease in adiposity may perturb the secretion and action of gonadotrophin-releasing hormone (GnRH). This is considered to be a result of the signalling of hormones such as leptin, which act upon neuronal systems controlling GnRH secretion. Other work shows plasticity in the relationship between tanycytes and GnRH neurosecretory terminals in the median eminence across the oestrous cycle and we hypothesised that a similar plasticity may occur with altered metabolic status. We studied Lean, Normal and Fat ovariectomised ewes, which displayed differences in gonadotrophin status, and investigated the relationship between tanycytes and GnRH neuroterminals. Under both Lean and Fat conditions, an altered anatomical arrangement between these two elements was observed in the vicinity of the blood vessels of the primary plexus of the hypophysial portal blood system. These data suggest that such plasticity is an important determinant of the rate of secretion of GnRH in animals of differing metabolic status and that this also contributes to the relative hypogonadotrophic condition prevailing with metabolic extremes.
Collapse
Affiliation(s)
- R Pouchain Ribeiro Neto
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - I J Clarke
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - G Conductier
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Clarke IJ, Arbabi L. New concepts of the central control of reproduction, integrating influence of stress, metabolic state, and season. Domest Anim Endocrinol 2016; 56 Suppl:S165-79. [PMID: 27345314 DOI: 10.1016/j.domaniend.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 10/21/2022]
Abstract
Gonadotropin releasing hormone is the primary driver of reproductive function and pulsatile GnRH secretion from the brain causes the synthesis and secretion of LH and FSH from the pituitary gland. Recent work has revealed that the secretion of GnRH is controlled at the level of the GnRH secretory terminals in the median eminence. At this level, projections of kisspeptin cells from the arcuate nucleus of the hypothalamus are seen to be closely associated with fibers and terminals of GnRH cells. Direct application of kisspeptin into the median eminence causes release of GnRH. The kisspeptin cells are activated at the time of a natural "pulse" secretion of GnRH, as reflected in the secretion of LH. This appears to be due to input to the kisspeptin cells from glutamatergic cells in the basal hypothalamus, indicating that more than 1 neural element is involved in the secretion of GnRH. Because the GnRH secretory terminals are outside the blood-brain barrier, factors such as kisspeptin may be administered systemically to cause GnRH secretion; this offers opportunities for manipulation of the reproductive axis using factors that do not cross the blood-brain barrier. In particular, kisspeptin or analogs of the same may be used to activate reproduction in the nonbreeding season of domestic animals. Another brain peptide that influences reproductive function is gonadotropin inhibitory hormone (GnIH). Work in sheep shows that this peptide acts on GnRH neuronal perikarya, but projections to the median eminence also allow secretion into the hypophysial portal blood and action of GnIH on pituitary gonadotropes. GnIH cells are upregulated in anestrus, and infusion of GnIH can block the ovulatory surge in GnRH and/or LH secretion. Metabolic status may also affect the secretion of reproduction, and this could involve action of gut peptides and leptin. Neuropeptide Y and Y-receptor ligands have a negative impact on reproduction, and Neuropeptide Y production is markedly increased in negative energy balance; this may be the cause of lowered GnRH and gonadotropin secretion in this state. There is a complex interaction between appetite-regulating peptide neurons and kisspeptin neurons that enables the former to regulate the latter both positively and negatively. In terms of how GnRH secretion is reduced during stress, recent data indicate that GnIH cells are integrally involved, with increased input to the GnRH cells. The secretion of GnIH into the portal blood is not increased during stress, so the negative effect is most likely effected at the level of GnRH neuronal cell bodies.
Collapse
Affiliation(s)
- I J Clarke
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| | - L Arbabi
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
20
|
Daniel JA, Whitlock BK, Marks DL, Gard JA, Sartin JL. Leukemia inhibitory factor as a mediator of lipopolysaccharide effects on appetite and selected hormones and metabolites. J Anim Sci 2016; 94:2789-97. [DOI: 10.2527/jas.2016-0396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Cardoso RC, Alves BRC, Sharpton SM, Williams GL, Amstalden M. Nutritional Programming of Accelerated Puberty in Heifers: Involvement of Pro-Opiomelanocortin Neurones in the Arcuate Nucleus. J Neuroendocrinol 2015; 27:647-57. [PMID: 25944025 DOI: 10.1111/jne.12291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/27/2022]
Abstract
The timing of puberty and subsequent fertility in female mammals are dependent on the integration of metabolic signals by the hypothalamus. Pro-opiomelanocortin (POMC) neurones in the arcuate nucleus (ARC) comprise a critical metabolic-sensing pathway controlling the reproductive neuroendocrine axis. α-Melanocyte-stimulating hormone (αMSH), a product of the POMC gene, has excitatory effects on gonadotrophin-releasing hormone (GnRH) neurones and fibres containing αMSH project to GnRH and kisspeptin neurones. Because kisspeptin is a potent stimulator of GnRH release, αMSH may also stimulate GnRH secretion indirectly via kisspeptin neurones. In the present work, we report studies conducted in young female cattle (heifers) aiming to determine whether increased nutrient intake during the juvenile period (4-8 months of age), a strategy previously shown to advance puberty, alters POMC and KISS1 mRNA expression, as well as αMSH close contacts on GnRH and kisspeptin neurones. In Experiment 1, POMC mRNA expression, detected by in situ hybridisation, was greater (P < 0.05) in the ARC in heifers that gained 1 kg/day of body weight (high-gain, HG; n = 6) compared to heifers that gained 0.5 kg/day (low-gain, LG; n = 5). The number of KISS1-expressing cells in the middle ARC was reduced (P < 0.05) in HG compared to LG heifers. In Experiment 2, double-immunofluorescence showed limited αMSH-positive close contacts on GnRH neurones, and the magnitude of these inputs was not influenced by nutritional status. Conversely, a large number of kisspeptin-immunoreactive cells in the ARC were observed in close proximity to αMSH-containing varicosities. Furthermore, HG heifers (n = 5) exhibited a greater (P < 0.05) percentage of kisspeptin neurones in direct apposition to αMSH fibres and an increased (P < 0.05) number of αMSH close contacts per kisspeptin cell compared to LG heifers (n = 6). These results indicate that the POMC-kisspeptin pathway may be important in mediating the nutritional acceleration of puberty in heifers.
Collapse
Affiliation(s)
- R C Cardoso
- Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, TX, USA
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - B R C Alves
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - S M Sharpton
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - G L Williams
- Animal Reproduction Laboratory, Texas A&M AgriLife Research, Beeville, TX, USA
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - M Amstalden
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
22
|
Qiu X, Dao H, Wang M, Heston A, Garcia KM, Sangal A, Dowling AR, Faulkner LD, Molitor SC, Elias CF, Hill JW. Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period. PLoS One 2015; 10:e0121974. [PMID: 25946091 PMCID: PMC4422586 DOI: 10.1371/journal.pone.0121974] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice). Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of fertility.
Collapse
Affiliation(s)
- Xiaoliang Qiu
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Hoangha Dao
- Department of Bioengineering, University of Toledo, Toledo, Ohio, United States of America
| | - Mengjie Wang
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Amelia Heston
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Kaitlyn M. Garcia
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Alisha Sangal
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Abigail R. Dowling
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Latrice D. Faulkner
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Scott C. Molitor
- Department of Bioengineering, University of Toledo, Toledo, Ohio, United States of America
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Department of Obstetrics-Gynecology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kirsz K, Szczesna M, Dudek K, Bartlewski PM, Zieba DA. Influence of season and nutritional status on the direct effects of leptin, orexin-A and ghrelin on luteinizing hormone and growth hormone secretion in the ovine pituitary explant model. Domest Anim Endocrinol 2014; 48:69-76. [PMID: 24906931 DOI: 10.1016/j.domaniend.2014.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
The aim of this study was to examine whether leptin (anorexigenic peptide), orexin-A, and ghrelin (orexigenic peptides) could directly (ie, independently of hypothalamic influences) affect the secretion of luteinizing hormone (LH) and growth hormone (GH) by adenohypophyseal (AP) explants obtained from normally fed or fasted (48 h) ewes during the breeding and nonbreeding seasons. In addition, a specific ovine super leptin antagonist (SLAN-3) was used to assess the interactions between leptin and ghrelin and/or orexin-A. Pituitary glands from 16 ovariectomized Polish Longwool ewes that had received estradiol-releasing subcutaneous implants were collected in the breeding (November; n = 8) and nonbreeding (May; n = 8) seasons. The AP explants were incubated for 240 min in a gas-liquid interface and treated with leptin (50 ng/mL), ghrelin (100 ng/mL), orexin-A (100 ng/mL), and SLAN-3 (500 ng/mL) with orexin-A or ghrelin. Treatments with leptin and SLAN-3 + orexin-A increased (P < 0.05) LH concentrations in the cultures of AP explants from fasted animals in the breeding season. Orexin-A increased (P < 0.05) LH secretion by AP explants from both fasted and fed animals in the breeding season. Ghrelin stimulated (P < 0.05) GH secretion by AP explants collected from fasted animals in nonbreeding season and from normally fed ewes in both seasons. Leptin decreased (P < 0.05) GH secretion by AP explants collected from fasted ewes in both seasons and from nonfasted ewes in the breeding season. However, the treatment with SLAN-3 + ghrelin resulted in greater (P < 0.05) GH concentrations compared with leptin treatment of AP explants from fasted ewes in the breeding season and from normally fed ewes in nonbreeding season. In summary, leptin, orexin-A, and ghrelin exerted direct effects on AP secretory function in an ex situ model and both the reproductive season and nutritional status of the animals impinged on the direct effects of the peptides on LH and GH release. Specifically, orexin-A was more potent than leptin in directly stimulating LH secretion in cycling ewes, whereas ghrelin and leptin generally had opposing effects on the secretory function of somatotrophs in sheep.
Collapse
Affiliation(s)
- K Kirsz
- Laboratory of Biotechnology and Genomics, Department of Swine and Small Ruminant Breeding, Agricultural University in Kraków, Kraków, Poland
| | - M Szczesna
- Laboratory of Biotechnology and Genomics, Department of Swine and Small Ruminant Breeding, Agricultural University in Kraków, Kraków, Poland
| | - K Dudek
- Laboratory of Biotechnology and Genomics, Department of Swine and Small Ruminant Breeding, Agricultural University in Kraków, Kraków, Poland
| | - P M Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - D A Zieba
- Laboratory of Biotechnology and Genomics, Department of Swine and Small Ruminant Breeding, Agricultural University in Kraków, Kraków, Poland.
| |
Collapse
|
24
|
Ratra DV, Elias CF. Chemical identity of hypothalamic neurons engaged by leptin in reproductive control. J Chem Neuroanat 2014; 61-62:233-8. [PMID: 24915437 DOI: 10.1016/j.jchemneu.2014.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 01/31/2023]
Abstract
The adipocyte-derived hormone leptin plays a critical role as a metabolic cue for the reproductive system. Conditions of low leptin levels observed in negative energy balance and loss-of-function mutations of leptin or leptin receptor genes are characterized by decreased fertility. In recent years, advances have been made for identifying possible hypothalamic neurons relaying leptin's neuroendocrine control of reproductive function. Studies from different laboratories have demonstrated that leptin action in the hypothalamo-pituitary-gonadal (HPG) axis is exerted via hypothalamic interneurons regulating gonadotropin-releasing hormone (GnRH) cells, oppose to direct action on GnRH neurons. Following this observation, studies focused on identifying leptin responsive interneurons. Using a Cre-loxP system to re-express or delete the leptin receptor long form (LepRb) from kisspeptin neurons, our laboratory found that leptin's action on kiss1 cells is neither required nor sufficient for leptin's role in reproductive function. Endogenous re-expression of LepRb however, in glutamatergic neurons of the ventral premammilary nucleus (PMV) or ablation of agouti-related protein (AgRP) neurons from leptin signaling-deficient mice are both sufficient to induce puberty and improve fertility. Recent studies have also shown that leptin action in first order GABAergic neurons is required for fertility. Together, these studies begin to delineate key neuronal populations involved in leptin's action in reproduction. In this review, we discuss recent advances made in the field and highlight the questions yet to be answered.
Collapse
Affiliation(s)
- Dhirender V Ratra
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Clarke IJ. Interface between metabolic balance and reproduction in ruminants: focus on the hypothalamus and pituitary. Horm Behav 2014; 66:15-40. [PMID: 24568750 DOI: 10.1016/j.yhbeh.2014.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 01/24/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The interface between metabolic regulators and the reproductive system is reviewed with special reference to the sheep. Even though sheep are ruminants with particular metabolic characteristics, there is a broad consensus across species in the way that the reproductive system is influenced by metabolic state. An update on the neuroendocrinology of reproduction indicates the need to account for the way that kisspeptin provides major drive to gonadotropin releasing hormone (GnRH) neurons and also mediates the feedback effects of gonadal steroids. The way that kisspeptin function is influenced by appetite regulating peptides (ARP) is considered. Another newly recognised factor is gonadotropin inhibitory hormone (GnIH), which has a dual function in that it suppresses reproductive function whilst also acting as an orexigen. Our understanding of the regulation of food intake and energy expenditure has expanded exponentially in the last 3 decades and historical perspective is provided. The function of the regulatory factors and the hypothalamic cellular systems involved is reviewed with special reference to the sheep. Less is known of these systems in the cow, especially the dairy cow, in which a major fertility issue has emerged in parallel with selection for increased milk production. Other endocrine systems--the hypothalamo-pituitary-adrenal axis, the growth hormone (GH) axis and the thyroid hormones--are influenced by metabolic state and are relevant to the interface between metabolic function and reproduction. Special consideration is given to issues such as season and lactation, where the relationship between metabolic hormones and reproductive function is altered.
Collapse
Affiliation(s)
- Iain J Clarke
- Monash University, Department of Physiology, Wellington Road, Clayton 3168, Australia.
| |
Collapse
|
26
|
Jacobi JS, Coleman HA, Enriori PJ, Parkington HC, Li Q, Pereira A, Cowley MA, Clarke IJ. Paradoxical effect of gonadotrophin-inhibiting hormone to negatively regulate neuropeptide Y neurones in mouse arcuate nucleus. J Neuroendocrinol 2013; 25:1308-1317. [PMID: 24118324 DOI: 10.1111/jne.12114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 12/23/2022]
Abstract
Regulation of reproduction and energy homeostasis are linked, although our understanding of the central neural mechanisms subserving this connection is incomplete. Gonadotrophin-inhibiting hormone (GnIH) is a neuropeptide that negatively regulates reproduction and stimulates food intake. Neuropeptide Y (NPY) and products of the pro-opiomelanocortin (POMC) precursor (β-endorphin melanocortins) are appetite regulating peptides produced in the neurones of the arcuate nucleus; these peptides also regulate reproduction. In the present study, we determined the effects of GnIH on NPY and POMC neurones. Using brain slices from mice with transgenes for fluorescent tags in the two types of neurone and patch clamp electrophysiology, a predominant inhibitory effect of GnIH was observed. GnIH (100 nM) inhibited the firing rate in POMC cells, confirming the results of previous studies and consistent with the stimulatory effect of GnIH on food intake. Paradoxically (i.e. because both GnIH and NPY stimulate food intake), GnIH also had a predominantly inhibitory effect on action potential activity in NPY cells. GnIH also inhibited the secretion of NPY and α-melanocyte-stimulating hormone secretion in incubated hypothalamic blocks. GnIH (100 ng) injected into the cerebral ventricles of mice did not increase the number of NPY cells that were positively immunostained for c-Fos. Finally, dual label immunocytochemistry showed that 20% of NPY neurones had close contacts from GnIH fibres/varicosities. In conclusion, we confirm a negative effect of GnIH on POMC cells and demonstrate a paradoxical reduction of electrophysiological and functional activity in NPY cells.
Collapse
Affiliation(s)
- J S Jacobi
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - H A Coleman
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - P J Enriori
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC, Australia
| | - H C Parkington
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Q Li
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - A Pereira
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M A Cowley
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC, Australia
| | - I J Clarke
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
27
|
Alreja M. Electrophysiology of kisspeptin neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:349-62. [PMID: 23550014 DOI: 10.1007/978-1-4614-6199-9_16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kisspeptin is an important regulator of reproduction. Electrophysiological studies show that kisspeptin neurons of the arcuate nucleus that co-localize neurokinin B and dynorphin (aka KNDy neurons) fire action potentials in a tonic, irregular, or burst firing manner. Gonadectomy dramatically alters the membrane properties of KNDY neurons from male mice and induces somatic hypertrophy. NMDA, leptin, and neurokinin B are potent activators of KNDY neuron electrical activity and GABA inhibits KNDY neurons. The firing pattern of kisspeptin neurons located in the RP3V fluctuates with the estrus cycle and is strongly modulated by glutamate and GABA. Thus, kisspeptin neurons are capable of burst firing, and their activity is modulated by sex steroids and other regulatory factors.
Collapse
|
28
|
Garcia-Garcia RM. Integrative control of energy balance and reproduction in females. ISRN VETERINARY SCIENCE 2012; 2012:121389. [PMID: 23762577 PMCID: PMC3671732 DOI: 10.5402/2012/121389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/04/2012] [Indexed: 11/23/2022]
Abstract
There is a strong association between nutrition and reproduction. Chronic dietary energy deficits as well as energy surpluses can impair reproductive capacity. Metabolic status impacts reproductive function at systemic level, modulating the hypothalamic GnRH neuronal network and/or the pituitary gonadotropin secretion through several hormones and neuropeptides, and at the ovarian level, acting through the regulation of follicle growth and steroidogenesis by means of the growth hormone-IGF-insulin system and local ovarian mediators. In the past years, several hormones and neuropeptides have been emerging as important mediators between energy balance and reproduction. The present review goes over the main sites implicated in the control of energy balance linked to reproductive success and summarizes the most important metabolic and neuroendocrine signals that participate in reproductive events with special emphasis on the role of recently discovered neuroendocrine peptides. Also, a little overview about the effects of maternal nutrition, affecting offspring reproduction, has been presented.
Collapse
Affiliation(s)
- R M Garcia-Garcia
- Physiology Department (Animal Physiology), Complutense University, Avenida Puerta de Hierro S/N, 28040 Madrid, Spain
| |
Collapse
|
29
|
Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci 2012; 70:841-62. [PMID: 22851226 PMCID: PMC3568469 DOI: 10.1007/s00018-012-1095-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
Leptin is an adipocyte-derived hormone involved in a myriad of physiological process, including the control of energy balance and several neuroendocrine axes. Leptin-deficient mice and humans are obese, diabetic, and display a series of neuroendocrine and autonomic abnormalities. These individuals are infertile due to a lack of appropriate pubertal development and inadequate synthesis and secretion of gonadotropins and gonadal steroids. Leptin receptors are expressed in many organs and tissues, including those related to the control of reproductive physiology (e.g., the hypothalamus, pituitary gland, and gonads). In the last decade, it has become clear that leptin receptors located in the brain are major players in most leptin actions, including reproduction. Moreover, the recent development of molecular techniques for brain mapping and the use of genetically modified mouse models have generated crucial new findings for understanding leptin physiology and the metabolic influences on reproductive health. In the present review, we will highlight the new advances in the field, discuss the apparent contradictions, and underline the relevance of this complex physiological system to human health. We will focus our review on the hypothalamic circuitry and potential signaling pathways relevant to leptin’s effects in reproductive control, which have been identified with the use of cutting-edge technologies of molecular mapping and conditional knockouts.
Collapse
Affiliation(s)
- Carol F Elias
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Y6-220B, Dallas, TX, 75390-9077, USA.
| | | |
Collapse
|
30
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Chowdhury VS, Tomonaga S, Nishimura S, Tabata S, Cockrem JF, Tsutsui K, Furuse M. Hypothalamic gonadotropin-inhibitory hormone precursor mRNA is increased during depressed food intake in heat-exposed chicks. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:227-33. [DOI: 10.1016/j.cbpa.2012.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
32
|
Codner E, Merino PM, Tena-Sempere M. Female reproduction and type 1 diabetes: from mechanisms to clinical findings. Hum Reprod Update 2012; 18:568-85. [PMID: 22709979 DOI: 10.1093/humupd/dms024] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The functional reproductive alterations seen in women with type 1 diabetes (T1D) have changed as therapy has improved. Historically, patients with T1D and insufficient metabolic control exhibited a high prevalence of amenorrhea, hypogonadism and infertility. This paper reviews the impact of diabetes on the reproductive axis of female T1D patients treated with modern insulin therapy, with special attention to the mechanisms by which diabetes disrupts hypothalamic-pituitary-ovarian function, as documented mainly by animal model studies. METHODS A comprehensive MEDLINE search of articles published from 1966 to 2012 was performed. Animal model studies on experimental diabetes and human studies on T1D were examined and cross-referenced with terms that referred to different aspects of the gonadotropic axis, gonadotrophins and gonadal steroids. RESULTS Recent studies have shown that women with T1D still display delayed puberty and menarche, menstrual irregularities (especially oligomenorrhoea), mild hyperandrogenism, polycystic ovarian syndrome, fewer live born children and possibly earlier menopause. Animal models have helped us to decipher the underlying basis of these conditions and have highlighted the variable contributions of defective leptin, insulin and kisspeptin signalling to the mechanisms of perturbed reproduction in T1D. CONCLUSIONS Despite improvements in insulin therapy, T1D patients still suffer many reproductive problems that warrant specific diagnoses and therapeutic management. Similar to other states of metabolic stress, T1D represents a challenge to the correct functioning of the reproductive axis.
Collapse
Affiliation(s)
- E Codner
- Institute of Maternal and Child Research (IDIMI), School of Medicine, University of Chile, Casilla 226-3, Santiago, Chile.
| | | | | |
Collapse
|
33
|
Israel DD, Sheffer-Babila S, de Luca C, Jo YH, Liu SM, Xia Q, Spergel DJ, Dun SL, Dun NJ, Chua SC. Effects of leptin and melanocortin signaling interactions on pubertal development and reproduction. Endocrinology 2012; 153:2408-19. [PMID: 22408174 PMCID: PMC3381095 DOI: 10.1210/en.2011-1822] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin and melanocortin signaling control ingestive behavior, energy balance, and substrate utilization, but only leptin signaling defects cause hypothalamic hypogonadism and infertility. Although GnRH neurons do not express leptin receptors, leptin influences GnRH neuron activity via regulation of immediate downstream mediators including the neuropeptides neuropeptide Y and the melanocortin agonist and antagonist, α-MSH, agouti-related peptide, respectively. Here we show that modulation of melanocortin signaling in female db/db mice through ablation of agouti-related peptide, or heterozygosity of melanocortin 4 receptor, restores the timing of pubertal onset, fertility, and lactation. Additionally, melanocortin 4 receptor activation increases action potential firing and induces c-Fos expression in GnRH neurons, providing further evidence that melanocortin signaling influences GnRH neuron activity. These studies thus establish melanocortin signaling as an important component in the leptin-mediated regulation of GnRH neuron activity, initiation of puberty and fertility.
Collapse
Affiliation(s)
- Davelene D Israel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie 2012; 94:2075-81. [PMID: 22980196 DOI: 10.1016/j.biochi.2012.02.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/17/2012] [Indexed: 12/15/2022]
Abstract
Adipose tissue plays a dynamic role in whole-body energy homeostasis by acting as an endocrine organ. Collective evidence indicates a strong link between neural influences and adipocyte expression and secretion of leptin. Developmental changes in these relationships are considered important for pubertal transition in reproductive function. Leptin augments secretion of gonadotropin hormones, which are essential for initiation and maintenance of normal reproductive function, by acting centrally at the hypothalamus to regulate gonadotropin-releasing hormone (GnRH) neuronal activity and secretion. The effects of leptin on GnRH are mediated through interneuronal pathways involving neuropeptide-Y, proopiomelanocortin and kisspeptin. Increased infertility associated with diet induced obesity or central leptin resistance are likely mediated through the kisspeptin-GnRH pathway. Furthermore, Leptin regulates reproductive function by altering the sensitivity of the pituitary gland to GnRH and acting at the ovary to regulate follicular and luteal steroidogenesis. Thus leptin serves as a putative signal that links metabolic status with the reproductive axis. The intent of this review is to examine the biological role of leptin with energy metabolism, and reproduction.
Collapse
Affiliation(s)
- Gary J Hausman
- USDA, ARS, Richard B. Russell Research Center, RRC, 950 College Station Rd, Athens, GA 30605, USA.
| | | | | |
Collapse
|
35
|
Clarke IJ, Smith JT, Henry BA, Oldfield BJ, Stefanidis A, Millar RP, Sari IP, Chng K, Fabre-Nys C, Caraty A, Ang BT, Chan L, Fraley GS. Gonadotropin-inhibitory hormone is a hypothalamic peptide that provides a molecular switch between reproduction and feeding. Neuroendocrinology 2012; 95:305-16. [PMID: 22286004 DOI: 10.1159/000332822] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/02/2011] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Gonadotropin-inhibitory hormone (GnIH)-3 is a neuropeptide that plays a major role in the regulation of reproduction and feeding in mammals. MATERIALS AND METHODS We measured endocrine and behavioural parameters of reproduction in sheep, and sexual behaviour in sheep, mice and cynomolgus monkeys. In addition, GnIH gene expression (in situ hybridization) was examined in ewes, and effects of GnIH-3 on food intake and energy expenditure were measured in various species. GnIH-3 was infused (i.v.) into ewes after an i.m. injection of estradiol benzoate to determine whether the peptide blocks the surge in luteinizing hormone (LH) secretion. RESULTS GnIH gene expression was reduced in the preovulatory period in ewes. Infusion (i.v.) of GnIH-3 blocked the estrogen-induced LH surge (in ewes). Intracerebroventricular infusion had no effect on female or male sexual behaviour in each of the three species, but increased food intake. There were no effects on energy expenditure in sheep or rats. GnIH increased fos protein (immunohistochemistry) was seen in orexigenic neurons (in sheep and rats), but also in anorexigenic neurons (in sheep). CONCLUSIONS GnIH-3 reduces reproductive hormone levels and increases food intake in mammals without reducing energy expenditure. There is minimal effect on reproductive behaviour. The dual effect on reproduction and feeding suggests that GnIH-3 provides a molecular switch between these two functions. Blockade of the positive feedback effect of estrogen with parenteral infusion indicates that this peptide may have utility as a blocker of reproductive function in mammals.
Collapse
Affiliation(s)
- Iain J Clarke
- Department of Physiology, Monash University, Clayton, Vic 3800, Australia. iainclarke @ monash.edu
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
37
|
Xu Y, Nedungadi TP, Zhu L, Sobhani N, Irani BG, Davis KE, Zhang X, Zou F, Gent LM, Hahner LD, Khan SA, Elias CF, Elmquist JK, Clegg DJ. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab 2011; 14:453-65. [PMID: 21982706 PMCID: PMC3235745 DOI: 10.1016/j.cmet.2011.08.009] [Citation(s) in RCA: 450] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 06/24/2011] [Accepted: 08/02/2011] [Indexed: 11/24/2022]
Abstract
Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deletion of ERα in hypothalamic pro-opiomelanocortin (POMC) neurons leads to hyperphagia, without directly influencing energy expenditure or fat distribution. Further, simultaneous deletion of ERα from both SF1 and POMC neurons causes hypometabolism, hyperphagia, and increased visceral adiposity. Additionally, female mice lacking ERα in SF1 neurons develop anovulation and infertility, while POMC-specific deletion of ERα inhibits negative feedback regulation of estrogens and impairs fertility in females. These results indicate that estrogens act on distinct hypothalamic ERα neurons to regulate different aspects of energy homeostasis and reproduction.
Collapse
Affiliation(s)
- Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Control of GnRH secretion: one step back. Front Neuroendocrinol 2011; 32:367-75. [PMID: 21216259 DOI: 10.1016/j.yfrne.2011.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/17/2010] [Accepted: 01/03/2011] [Indexed: 01/09/2023]
Abstract
The reproductive system is controlled by gonadotropin releasing hormone (GnRH) secretion from the brain, which is finely modulated by a number of factors including gonadal sex steroids. GnRH cells do not express estrogen receptor α, but feedback is transmitted by neurons that are at least 'one step back' from the GnRH cells. Modulation by season, stress and nutrition are effected by neuronal pathways that converge on the GnRH cells. Kisspeptin and gonadotropin inhibitory hormone (GnIH) neurons are regulators of GnRH secretion, the former being a major conduit for transmission of sex steroid feedback. GnIH cells project to GnRH cells and may play a role in the seasonal changes in reproductive activity in sheep. GnIH also modulates the action of GnRH at the level of the pituitary gonadotrope. This review focuses on the role that kisspeptin and GnIH neurons play, as modulators that are 'one step back' from GnRH neurons.
Collapse
|
39
|
Louis GW, Greenwald-Yarnell M, Phillips R, Coolen LM, Lehman MN, Myers MG. Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 2011; 152:2302-10. [PMID: 21427219 PMCID: PMC3100610 DOI: 10.1210/en.2011-0096] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Negative energy balance and insufficient adipose energy stores decrease the production of leptin, thereby diminishing the leptin-supported secretion of GnRH from the hypothalamus and promoting decreased reproductive function. Leptin acts via its receptor (LepRb) to support the neuroendocrine reproductive axis, but the nature and location of the relevant LepRb neurons remain poorly understood. Possibilities include the direct or indirect action of leptin on hypothalamic GnRH neurons, or on kisspeptin (Kiss1) neurons that are major regulators of GnRH neurons. To evaluate these potential mechanisms, we employed immunohistochemical analysis of the female brain from various molecular mouse models and sheep. Our analysis revealed no LepRb in GnRH neurons or in anteroventral periventricular Kiss1 neurons, and very limited (0-6%) colocalization with arcuate nucleus Kiss1 cells, suggesting that leptin does not modulate reproduction by direct action on any of these neural populations. LepRb neurons, primarily in the hypothalamic ventral premammillary nucleus and a subregion of the preoptic area, lie in close contact with GnRH neurons, however. Furthermore, an unidentified population or populations of LepRb neurons lie in close contact with arcuate nucleus and anteroventral periventricular Kiss1 neurons. Taken together, these findings suggest that leptin communicates with the neuroendocrine reproductive axis via multiple populations of LepRb neurons that lie afferent to both Kiss1 and GnRH neurons.
Collapse
Affiliation(s)
- Gwendolyn W Louis
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Hainerová IA, Zamrazilová H, Sedláčková D, Hainer V. Hypogonadotropic hypogonadism in a homozygous MC4R mutation carrier and the effect of sibutramine treatment on body weight and obesity-related health risks. Obes Facts 2011; 4:324-8. [PMID: 21921657 PMCID: PMC6444747 DOI: 10.1159/000330763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE The first aim of our study was to define the hypogonadism manifested by low testosterone levels and incomplete male secondary sex characteristics in a 20-year-old male homozygous MC4R mutation carrier (G181D). The second aim of our study was to evaluate the effect of the anti-obesity drug sibutramine in this patient who failed to respond to an intensive lifestyle intervention and exhibited continuous weight gain. CASE REPORT Anthropometric, biochemical, hormonal and psycho-behavioural parameters were investigated both at baseline and after a 1-year sibutramine treatment. To characterise the hypogonadism, sex steroid profile, concentrations of luteinizing hormone and follicle-stimulating hormone were determined. Standard tests with gonadotropin-releasing hormone, thyrotropin-releasing hormone and human chorionic gonadotropin were conducted. Brain magnetic resonance imaging was performed to exclude organic hypothalamic-pituitary lesions. Clinical examination and endocrine investigations revealed hypogonadotropic hypogonadism. Sibutramine induced body weight maintenance as well as improvement in body composition and obesity-related metabolic abnormalities. CONCLUSION We described the first case of hypogonadotropic hypogonadism in a MC4R homozygous mutation carrier. The potential association between the hormonal disturbance and the hypothalamic derangement caused by the MC4R mutation should be considered. In addition, we demonstrated that sibutramine treatment had a favourable effect on body weight maintenance and obesity-related health risks.
Collapse
Affiliation(s)
- Irena Aldhoon Hainerová
- Department of Paediatrics, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
41
|
Backholer K, Smith JT, Rao A, Pereira A, Iqbal J, Ogawa S, Li Q, Clarke IJ. Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology 2010; 151:2233-43. [PMID: 20207832 DOI: 10.1210/en.2009-1190] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin stimulates reproduction, and kisspeptin cells in the arcuate nucleus (ARC) express Ob-Rb in the mouse. Herein we report studies in ewes to determine whether kisspeptin cells express Ob-Rb and respond to leptin and whether reciprocal connections exist between kisspeptin cells and proopiomelanocortin (POMC) or neuropeptide Y (NPY) cells to modulate reproduction and metabolic function. Kiss1 mRNA was measured by in situ hybridization in ovariectomized ewes that were normal body weight, lean, or lean with leptin treatment by intracerebroventricular (icv) infusion (4 microg/h, 3 d). Kiss1 expression in the ARC and the preoptic area was lower in hypogonadotropic lean animals than animals of normal weight, and icv infusion of leptin partially restored Kiss1 expression in lean animals. Single-cell laser capture microdissection coupled with real-time PCR showed that Kiss1 cells in the preoptic area and ARC express Ob-Rb. Double-label fluorescent immunohistochemistry showed that reciprocal connections exist between kisspeptin cells and NPY and POMC cells. Accordingly, we treated ovariectomized ewes with kisspeptin (5 microg/h, icv) or vehicle for 20 h and examined POMC and NPY gene expression by in situ hybridization. Kisspeptin treatment reduced POMC and increased NPY gene expression. Thus, kisspeptin neurons respond to leptin and expression of Kiss1 mRNA is affected by leptin status. Kisspeptin cells communicate with NPY and POMC cells, altering expression of the relevant genes in the target cells; reciprocal connections also exist. This network between the three cell types could coordinate brain control of reproduction and metabolic homeostatic systems.
Collapse
Affiliation(s)
- Kathryn Backholer
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|