1
|
Badawoud AM, Ali LS, Abdallah MS, El Sabaa RM, Bahaa MM, Elmasry TA, Wahsh E, Yasser M, Eltantawy N, Eldesoqui M, Hamouda MA. The relation between Parkinson's disease and non-steroidal anti-inflammatories; a systematic review and meta-analysis. Front Pharmacol 2024; 15:1434512. [PMID: 39156113 PMCID: PMC11327556 DOI: 10.3389/fphar.2024.1434512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Background: Parkinson's disease (PD) is a neurological condition that typically shows up with aging. It is characterized by generalized slowness of movement, resting tremor or stiffness, and bradykinesia. PD patients' brains mostly exhibit an increase in inflammatory mediators and microglial response. Nevertheless, a variety of non-steroidal anti-inflammatory medications (NSAIDS) offered neuroprotection in animal models and preclinical trials. Aim: The current systematic review and meta-analysis were designed to try to resolve the debate over the association of NSAID use with the development of PD because the results of several studies were somehow contradictory. Methods: An intense search was performed on Scopus, PubMed, and Web of Science databases for articles relating the incidence of PD to the use of NSAIDs. Statistical analysis of the included studies was carried out using Review Manager version 5.4.1 by random effect model. The outcome was identified as the development of PD in patients who were on NSAIDs, ibuprofen only, aspirin only, and non-aspirin NSAIDs. This was analyzed using pooled analysis of odds ratio (OR) at a significance level of ≤0.05 and a confidence level of 95%. A statistically significant decreased risk of PD was observed in patients taking NSAIDs, Ibuprofen, and non-aspirin NSAIDs. Results: The ORs of PD occurrence in patients who took NSAIDs, Ibuprofen, and non-aspirin NSAIDs were 0.88 [95% CI (0.8-0.97), p = 0.01], 0.73 [95% CI (0.53-1), p = 0.05] and 0.85 [95% CI (0.75-0.97), p = 0.01]. Meanwhile, the risk of PD in patients who took aspirin was not statistically significant. Conclusion: In conclusion, Ibuprofen, non-aspirin NSAIDs, and other types of NSAIDs could be associated with a reduction in PD risk. However, there was no association between aspirin intake and the development of PD.
Collapse
Affiliation(s)
- Amal Mohammad Badawoud
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lashin Saad Ali
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
- Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud S. Abdallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sadat City (USC), Sadat City, Egypt
- Department of PharmD, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Ramy M. El Sabaa
- Clinical Pharmacy Department, Faculty of Pharmacy, Menuofia University, Shibin Al Kawm, Egypt
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Thanaa A. Elmasry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman Wahsh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Mohamed Yasser
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Nashwa Eltantawy
- Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal A. Hamouda
- Clinical Pharmacy Department, Faculty of Pharmacy, Menuofia University, Shibin Al Kawm, Egypt
| |
Collapse
|
2
|
Zheng X, Zhao Z, Zhao L. Investigating the Effect of an Anti-Inflammatory Drug in Determining NURR1 Expression and Thus Exploring the Progression of Parkinson's Disease. Physiol Res 2024; 73:139-155. [PMID: 38466012 PMCID: PMC11019624 DOI: 10.33549/physiolres.935168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 04/26/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs are the most widely used drugs for Parkinson's disease (PD), of which ibuprofen shows positive effects in suppressing symptoms; however, the associated risk needs to be addressed in different pathological stages. Initially, we developed an initial and advanced stage of the Parkinson disease mouse model by intraperitoneal injection of MPTP (20 mg/kg; 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine) for 10 and 20 days, respectively. Subsequently, ibuprofen treatment was administered for 2 months, and a pole test, rotarod test, histology, immunohistochemistry, and western blotting were performed to determine neuronal motor function. Histological analysis for 10 days after mice were injected with MPTP showed the onset of neurodegeneration and cell aggregation, indicating the initial stages of Parkinson's disease. Advanced Parkinson's disease was marked by Lewy body formation after another 10 days of MPTP injection. Neurodegeneration reverted after ibuprofen therapy in initial Parkinson's disease but not in advanced Parkinson's disease. The pole and rotarod tests confirmed that motor activity in the initial Parkinson disease with ibuprofen treatment recovered (p<0.01). However, no improvement was observed in the ibuprofen-treated mice with advanced disease mice. Interestingly, ibuprofen treatment resulted in a significant improvement (p<0.01) in NURR1 (Nuclear receptor-related 1) expression in mice with early PD, but no substantial improvement was observed in its expression in mice with advanced PD. Our findings indicate that NURR1 exerts anti-inflammatory and neuroprotective effects. Overall, NURR1 contributed to the effects of ibuprofen on PD at different pathological stages.
Collapse
MESH Headings
- Animals
- Mice
- Parkinson Disease/metabolism
- Ibuprofen/pharmacology
- Ibuprofen/therapeutic use
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Mice, Inbred C57BL
- Disease Models, Animal
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
Collapse
Affiliation(s)
- X Zheng
- Department of Divine Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | | | | |
Collapse
|
3
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:673-688. [PMID: 36961665 DOI: 10.1007/s10787-023-01192-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Parkinson's disease (PD) is an advanced neurodegenerative disease (NDD) caused by the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). As PD is an age-related disorder, the majority of PD patients are associated with musculoskeletal disorders with prolonged use of analgesic and anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs). Therefore, NSAIDs can affect PD neuropathology in different ways. Thus, the objective of the present narrative review was to clarify the potential role of NSAIDs in PD according to the assorted view of preponderance. Inhibition of neuroinflammation and modulation of immune response by NSAIDs could be an effective way in preventing the development of NDD. NSAIDs affect PD neuropathology in different manners could be beneficial or detrimental effects. Inhibition of cyclooxygenase 2 (COX2) by NSAIDs may prevent the development of PD. NSAIDs afforded a neuroprotective role against the development and progression of PD neuropathology through the modulation of neuroinflammation. Though, NSAIDs may lead to neutral or harmful effects by inhibiting neuroprotective prostacyclin (PGI2) and accentuation of pro-inflammatory leukotrienes (LTs). In conclusion, there is still a potential conflict regarding the effect of NSAIDs on PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
4
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
5
|
The potential use of tetracyclines in neurodegenerative diseases and the role of nano-based drug delivery systems. Eur J Pharm Sci 2022; 175:106237. [PMID: 35710076 DOI: 10.1016/j.ejps.2022.106237] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/07/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases are still a challenge for effective treatments. The high cost of approved drugs, severity of side effects, injection site pain, and restrictions on drug delivery to the Central Nervous System (CNS) can overshadow the management of these diseases. Due to the chronic and progressive evolution of neurodegenerative disorders and since there is still no cure for them, new therapeutic strategies such as the combination of several drugs or the use of existing drugs with new therapeutic applications are valuable strategies. Tetracyclines are traditionally classified as antibiotics. However, in this class of drugs, doxycycline and minocycline exhibit also anti-inflammatory effects by inhibiting microglia/macrophages. Hence, they have been studied as potential agents for the treatment of neurodegenerative diseases. The results of in vitro and in vivo studies confirm the effective role of these two drugs as anti-inflammatory agents in experimentally induced models of neurodegenerative diseases. In clinical studies, satisfactory results have been obtained in Multiple sclerosis (MS) but not yet in other disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), or Amyotrophic lateral sclerosis (ALS). In recent years, researchers have developed and evaluated nanoparticulate drug delivery systems to improve the clinical efficacy of these two tetracyclines for their potential application in neurodegenerative diseases. This study reviews the neuroprotective roles of minocycline and doxycycline in four of the main neurodegenerative disorders: AD, PD, ALS and MS. Moreover, the potential applications of nanoparticulate delivery systems developed for both tetracyclines are also reviewed.
Collapse
|
6
|
Mamais A, Kaganovich A, Harvey K. Convergence of signalling pathways in innate immune responses and genetic forms of Parkinson's disease. Neurobiol Dis 2022; 169:105721. [PMID: 35405260 DOI: 10.1016/j.nbd.2022.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022] Open
Abstract
In recent years progress in molecular biology and genetics have advanced our understanding of neurological disorders and highlighted synergistic relationships with inflammatory and age-related processes. Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Increasing extensive evidence supports the contribution of genetic risk variants and inflammation in the pathobiology of this disease. Functional and genetic studies demonstrate an overlap between genes linked to increased risk for PD and autoimmune diseases. Variants identified in loci adjacent to LRRK2, GBA, and HLA establish a crosstalk between the pathobiologies of the two disease spectra. Furthermore, common signalling pathways associated with the pathogenesis of genetic PD are also relevant to inflammatory signaling include MAPK, NF-κB, Wnt and inflammasome signaling. Importantly, post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines. In this review we will focus on the principal mechanisms of genetic, inflammatory and age-related risk that intersect in the pathogenesis of PD.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK..
| |
Collapse
|
7
|
Liu TW, Chen CM, Chang KH. Biomarker of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23084148. [PMID: 35456966 PMCID: PMC9028544 DOI: 10.3390/ijms23084148] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease (PD) is caused by abnormal accumulation of α-synuclein in dopaminergic neurons of the substantia nigra, which subsequently causes motor symptoms. Neuroinflammation plays a vital role in the pathogenesis of neurodegeneration in PD. This neuroinflammatory neurodegeneration involves the activation of microglia, upregulation of proinflammatory factors, and gut microbiota. In this review, we summarized the recent findings on detection of PD by using inflammatory biomarkers, such as interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor (TNF)-α; regulated upon activation, normal T cell expressed and presumably secreted (RANTES) and high-sensitivity c-reactive protein (hsCRP); and radiotracers such as [11C]PK11195 and [18F]-FEPPA, as well as by monitoring disease progression and the treatment response. Many PD-causing mutations in SNCA, LRRK2, PRKN, PINK1, and DJ-1 are also associated with neuroinflammation. Several anti-inflammatory medications, including nonsteroidal anti-inflammatory drugs (NSAID), inhibitors of TNF-α and NLR family pyrin domain containing 3 (NLRP3), agonists of nuclear factor erythroid 2-related factor 2 (NRF2), peroxisome proliferator-activated receptor gamma (PPAR-γ), and steroids, have demonstrated neuroprotective effects in in vivo or in vitro PD models. Clinical trials applying objective biomarkers are required to investigate the therapeutic potential of anti-inflammatory medications for PD.
Collapse
Affiliation(s)
- Tsai-Wei Liu
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan; (T.-W.L.); (C.-M.C.)
| | - Chiung-Mei Chen
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan; (T.-W.L.); (C.-M.C.)
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuo-Hsuan Chang
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan; (T.-W.L.); (C.-M.C.)
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8729); Fax: +886-3-3288849
| |
Collapse
|
8
|
A nationwide study of the incidence, prevalence and mortality of Parkinson's disease in the Norwegian population. NPJ Parkinsons Dis 2022; 8:19. [PMID: 35236852 PMCID: PMC8891365 DOI: 10.1038/s41531-022-00280-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/12/2022] [Indexed: 01/19/2023] Open
Abstract
Epidemiological studies of Parkinson's disease (PD) show variable and partially conflicting findings with regard to incidence, prevalence, and mortality. These differences are commonly attributed to technical and methodological factors, including small sample sizes, differences in diagnostic practices, and population heterogeneity. We leveraged the Norwegian Prescription Database, a population-based registry of drug prescriptions dispensed from Norwegian pharmacies to assess the incidence, prevalence, and mortality of PD in Norway. The diagnosis of PD was defined based on the prescription of dopaminergic drugs for the indication of PD over a continuous time. During 2004-2017, 12,229 males and 9831 females met our definition for PD diagnosis. PD prevalence increased over the observation period, with larger changes observed in the older age groups. Incidence and prevalence of PD increased with age, peaking at 85 years. The male/female prevalence ratio was 1.5 across all ages, whereas the incidence ratio increased with age, from 1.4 in those 60 years, to 2.03 among those >90 years. While PD mortality was generally higher than that of the general population, mortality odds ratios decreased with age, approaching 1.0 among individuals >90 years old. When adjusted for the sex-specific mortality of the general population, the mortality among females with PD was equal to or higher than the mortality among males with PD. Our findings demonstrate that the epidemiological features of PD, including sex-differences, are age and time-period dependent and indicate that sex differences in PD mortality are unlikely to stem from disease-specific negative impact of survival in males.
Collapse
|
9
|
Shen W, Jiang L, Zhao J, Wang H, Hu M, Chen L, Chen Y. Bioactive lipids and their metabolism: new therapeutic opportunities for Parkinson's disease. Eur J Neurosci 2021; 55:846-872. [PMID: 34904314 DOI: 10.1111/ejn.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, which can also be associated with non-motor symptoms. Its pathogenesis is thought to stem from a loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of Lewy bodies containing aggregated α-synuclein. Recent works suggested that lipids might play a pivotal role in the pathophysiology of PD. In particular, the so-called "bioactive" lipids whose changes in the concentration may lead to functional consequences and affect many pathophysiological processes, including neuroinflammation, are closely related to PD in terms of symptoms, disease progression, and incidence. This study aimed to explore the molecular metabolism and physiological functions of bioactive lipids, such as fatty acids (mainly unsaturated fatty acids), eicosanoids, endocannabinoids, oxysterols, representative sphingolipids, diacylglycerols, and lysophosphatidic acid, in the development of PD. The knowledge of bioactive lipids in PD gained through preclinical and clinical studies is expected to improve the understanding of disease pathogenesis and provide novel therapeutic avenues.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyi Zhao
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Haili Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Hu
- The Second Xiangya Hospital, Central Sounth University, Changsha, Hunan Province, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Brakedal B, Tzoulis C, Tysnes OB, Haugarvoll K. NSAID use is not associated with Parkinson's disease incidence: A Norwegian Prescription Database study. PLoS One 2021; 16:e0256602. [PMID: 34492069 PMCID: PMC8423296 DOI: 10.1371/journal.pone.0256602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Whether use of nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the risk of incident Parkinson's disease (PD) remains unresolved. Here, we employed the Norwegian Prescription Database to examine whether NSAID use is associated with a lower incidence of PD. METHODS We compared the incidence of PD among users of NSAIDs in a population-based retrospective study using the Norwegian Prescription Database from 2004 to 2017. In total 7580 PD patients were identified using dopaminergic therapy over time as proxy for PD diagnosis. Analyses were performed with minimum 90 and 365 defined daily dose (DDD) NSAID exposure, respectively. Time-dependent Cox regression model and a binary logistic regression analysis with a 5-year lag until PD diagnosis were performed for all NSAIDs. RESULTS There was overall no decrease in incidence of PD among NSAID users compared to controls. Using a minimum of 90 or 365 DDD threshold of exposure produced similar results. Analysis of individual NSAIDs did not show difference in PD incidence compared to controls Age-specific incidence rates of PD were comparable to reported age-specific incidence rates in previous studies. INTERPRETATION Our findings provide no evidence that cumulative high exposure to NSAIDs affects the risk of developing PD.
Collapse
Affiliation(s)
- Brage Brakedal
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kristoffer Haugarvoll
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Kaduševičius E. Novel Applications of NSAIDs: Insight and Future Perspectives in Cardiovascular, Neurodegenerative, Diabetes and Cancer Disease Therapy. Int J Mol Sci 2021; 22:6637. [PMID: 34205719 PMCID: PMC8235426 DOI: 10.3390/ijms22126637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Once it became clear that inflammation takes place in the modulation of different degenerative disease including neurodegenerative, cardiovascular, diabetes and cancer the researchers has started intensive programs evaluating potential role of non-steroidal anti-inflammatory drugs (NSAIDs) in the prevention or therapy of these diseases. This review discusses the novel mechanism of action of NSAIDs and its potential use in the pharmacotherapy of neurodegenerative, cardiovascular, diabetes and cancer diseases. Many different molecular and cellular factors which are not yet fully understood play an important role in the pathogenesis of inflammation, axonal damage, demyelination, atherosclerosis, carcinogenesis thus further NSAID studies for a new potential indications based on precise pharmacotherapy model are warranted since NSAIDs are a heterogeneous group of medicines with relative different pharmacokinetics and pharmacodynamics profiles. Hopefully the new data from studies will fill in the gap between experimental and clinical results and translate our knowledge into successful disease therapy.
Collapse
Affiliation(s)
- Edmundas Kaduševičius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
12
|
Alpha-Synuclein as a Prominent Actor in the Inflammatory Synaptopathy of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126517. [PMID: 34204581 PMCID: PMC8234932 DOI: 10.3390/ijms22126517] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is considered the most common disorder of synucleinopathy, which is characterised by intracellular inclusions of aggregated and misfolded α-synuclein (α-syn) protein in various brain regions, and the loss of dopaminergic neurons. During the early prodromal phase of PD, synaptic alterations happen before cell death, which is linked to the synaptic accumulation of toxic α-syn specifically in the presynaptic terminals, affecting neurotransmitter release. The oligomers and protofibrils of α-syn are the most toxic species, and their overexpression impairs the distribution and activation of synaptic proteins, such as the SNARE complex, preventing neurotransmitter exocytosis and neuronal synaptic communication. In the last few years, the role of the immune system in PD has been increasingly considered. Microglial and astrocyte activation, the gene expression of proinflammatory factors, and the infiltration of immune cells from the periphery to the central nervous system (CNS) represent the main features of the inflammatory response. One of the actors of these processes is α-syn accumulation. In light of this, here, we provide a systematic review of PD-related α-syn and inflammation inter-players.
Collapse
|
13
|
Izco M, Blesa J, Verona G, Cooper JM, Alvarez-Erviti L. Glial activation precedes alpha-synuclein pathology in a mouse model of Parkinson's disease. Neurosci Res 2020; 170:330-340. [PMID: 33316306 DOI: 10.1016/j.neures.2020.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is increasingly recognized as an important feature in the pathogenesis of Parkinson's disease (PD). However, it remains unclear whether neuroinflammation contributes to nigral degeneration in PD or is merely a secondary marker of neurodegeneration. We aimed to investigate the temporal relationship between synucleopathy, neuroinflammation and nigrostriatal degeneration in a mouse model of PD. Mice received unilateral intrastriatal injection of alpha-synuclein pre-formed fibrils, alpha-synuclein monomer or vehicle and were sacrificed at 15, 30 and 90 days post-injection. Intrastriatal inoculation of alpha-synuclein fibrils led to significant alpha-synuclein aggregation in the substantia nigra peaking at 30 days after injection while the significant increase in Iba-1 cells, GFAP cells and IL-1β expression peaked earlier at 15 days. At 90 days, the striatal dopaminergic denervation was associated with astroglial activation. Alpha-synuclein monomer did not result in long-term glia activation or increase in inflammatory markers. The spread of alpha-synuclein aggregates into the cortex was not associated with any changes to neuroinflammatory markers. Our results demonstrate that in the substantia nigra glial activation is an early event that precedes alpha-synuclein inclusion formation, suggesting neuroinflammation could play an important early role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Maria Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3(th)floor, 26006, Logroño, Spain.
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Av. Carlos V, 70, 28938, Móstoles, Madrid, Spain
| | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, UCL, Gower Street, London, United Kingdom
| | - J Mark Cooper
- Department of Clinical Neuroscience, Institute of Neurology, UCL, Gower Street, London, United Kingdom.
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3(th)floor, 26006, Logroño, Spain.
| |
Collapse
|
14
|
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 2020; 9:42. [PMID: 33239064 PMCID: PMC7689983 DOI: 10.1186/s40035-020-00221-2] [Citation(s) in RCA: 1072] [Impact Index Per Article: 268.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is associated with neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Microglia and astrocytes are key regulators of inflammatory responses in the central nervous system. The activation of microglia and astrocytes is heterogeneous and traditionally categorized as neurotoxic (M1-phenotype microglia and A1-phenotype astrocytes) or neuroprotective (M2-phenotype microglia and A2-phenotype astrocytes). However, this dichotomized classification may not reflect the various phenotypes of microglia and astrocytes. The relationship between these activated glial cells is also very complicated, and the phenotypic distribution can change, based on the progression of neurodegenerative diseases. A better understanding of the roles of microglia and astrocytes in neurodegenerative diseases is essential for developing effective therapies. In this review, we discuss the roles of inflammatory response in neurodegenerative diseases, focusing on the contributions of microglia and astrocytes and their relationship. In addition, we discuss biomarkers to measure neuroinflammation and studies on therapeutic drugs that can modulate neuroinflammation.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea.
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G. Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson's Disease. Int J Mol Sci 2020; 21:E8421. [PMID: 33182554 PMCID: PMC7697354 DOI: 10.3390/ijms21228421] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut-brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.
Collapse
Affiliation(s)
- Chrysoula Marogianni
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Maria Sokratous
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | | | - Dimitrios Bogdanos
- Department of Internal Medicine, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| |
Collapse
|
16
|
Bjørklund G, Dadar M, Anderson G, Chirumbolo S, Maes M. Preventive treatments to slow substantia nigra damage and Parkinson's disease progression: A critical perspective review. Pharmacol Res 2020; 161:105065. [PMID: 32652199 DOI: 10.1016/j.phrs.2020.105065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022]
Abstract
Restoring the lost physiological functions of the substantia nigra in Parkinson's disease (PD) is an important goal of PD therapy. The present article reviews a) novel drug targets that should be targeted to slow PD progression, and b) clinical and experimental research data reporting new treatments targeting immune-inflammatory and oxidative pathways. A systematic search was performed based on the major databases, i.e., ScienceDirect, Web of Science, PubMed, CABI Direct databases, and Scopus, on relevant studies performed from 1900 to 2020. This review considers the crucial roles of mitochondria and immune-inflammatory and oxidative pathways in the pathophysiology of PD. High levels of oxidative stress in the substantia nigra, as well as modifications in glutathione regulation, contribute to mitochondrial dysfunction, with a decline in complex I of the mitochondrial electron transport chain reported in PD patients. Many papers suggest that targeting antioxidative systems is a crucial aspect of preventive and protective therapies, even justifying the utilization of N-acetylcysteine (NAC) supplementation to fortify the protection afforded by intracellular glutathione. Dietary recommended panels including ketogenetic diet, muscular exercise, nutraceutical supplementation including NAC, glutathione, nicotine, caffeine, melatonin, niacin, and butyrate, besides to nonsteroidal anti-inflammatory drugs (NSAIDs), and memantine treatment are important aspects of PD therapy. The integration of neuro-immune, antioxidant, and nutritional approaches to treatment should afford better neuroprotection, including by attenuating neuroinflammation, nitro-oxidative stress, mitochondrial dysfunction, and neurodegenerative processes. Future research should clarify the efficacy, and interactions, of nicotine receptor agonists, gut microbiome-derived butyrate, melatonin, and NSAIDs in the treatment of PD.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
17
|
Bohler S, Liu X, Krauskopf J, Caiment F, Aubrecht J, Nicolaes GAF, Kleinjans JCS, Briedé JJ. Acetaminophen Overdose as a Potential Risk Factor for Parkinson's Disease. Clin Transl Sci 2019; 12:609-616. [PMID: 31305025 PMCID: PMC6853143 DOI: 10.1111/cts.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Four complementary approaches were used to investigate acetaminophen overdose as a risk factor for Parkinson's disease (PD). Circulating microRNAs (miRNAs) serum profiles from acetaminophen-overdosed patients were compared with patients with terminal PD, revealing four shared miRNAs. Similarities were found among molecular structures of dopamine (DA), acetaminophen, and two known PD inducers indicating affinity for dopaminergic transport. Potential interactions between acetaminophen and the human DA transporter were confirmed by molecular docking modeling and binding free energy calculations. Thus, it is plausible that acetaminophen is taken up by the dopaminergic transport system into the substantia nigra (SN). A ChEMBL query identified proteins that are similarly targeted by DA and acetaminophen. Here, we highlight CYP3A4, present in the SN, a predominant metabolizer of acetaminophen into its toxic metabolite N-acetyl-p-benzoquinone imine and shown to be regulated in PD. Overall, based on our results, we hypothesize that overdosing of acetaminophen is a potential risk factor for parkinsonism.
Collapse
Affiliation(s)
- Sacha Bohler
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| | - Xiaosong Liu
- Department of BiochemistryMaastricht UniversityMaastrichtThe Netherlands
| | - Julian Krauskopf
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| | - Florian Caiment
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| | | | | | | | - Jacco J. Briedé
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
18
|
Qiu X, Xiao Y, Wu J, Gan L, Huang Y, Wang J. C-Reactive Protein and Risk of Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Neurol 2019; 10:384. [PMID: 31057478 PMCID: PMC6478798 DOI: 10.3389/fneur.2019.00384] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/29/2019] [Indexed: 01/11/2023] Open
Abstract
Background: C-reactive protein (CRP) has been identified as a common inflammation-related cytokine. Although publications indicate that CRP is associated with the pathogenesis of neurological disorders and deemed to be a "risk factor" for Parkinson's disease (PD), the evidence exists still indefinitely. Here, we performed a systematic review with meta-analysis synthesizing all the eligible studies on serum, plasma, and cerebrospinal fluid (CSF) CRP levels and PD risk to investigate the potential relevance. Methods: A systematical search up to October 2018 was performed via PubMed, Embase, Science Direct, ISI Web of Science as well as three Chinese medical databases: China National Knowledge Infrastructure database (CNKI), VIP database and WanFang database. Risk was assessed by standardized mean difference (SMD) with 95% confidence interval (CI) to investigate the involvement of CRP levels in PD patients. Results: Twenty-three eligible case-control studies involving 4,598 individuals (2,646 PD patients and 1,932 healthy controls) were incorporated into this meta-analysis. Results have indicated significant increase of CRP levels in PD subjects when compared with control groups in serum (SMD = 1.115, 95% CI 0.619-1.61, P < 0.001), CSF (SMD = 1.127, 95% CI 0.133-2.120, P = 0.026) as well as whole blood (SMD = 1.071, 95% CI 0.715-1.426, P < 0.001). Conclusions: This meta-analysis revealed that PD is associated with an increase of CRP levels. CRP might be a risk factor for PD or PD leads to an inflammatory response.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingjing Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Gan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanning Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
Litvinenko IV, Krasakov IV, Bisaga GN, Skulyabin DI, Poltavsky ID. [Modern conception of the pathogenesis of neurodegenerative diseases and therapeutic strategy]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 117:3-10. [PMID: 28980606 DOI: 10.17116/jnevro2017117623-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here we discuss the pathogenesis of the inflammatory and degenerative nervous system disorders on the example of Parkinson's disease, Alzheimer's disease, multiple sclerosis. Common mechanisms of neurodegeneration in these diseases are reviewed. The role of neurodegeneration as the main process leading to the resistant disability of patients with multiple sclerosis is discussed. The authors consider a contribution of inflammatory process and chronic infection to the manifestation and progressing of a neurodegenerative disease and discuss the use of treatment not usually indicated including interferon, anti-inflammatory drugs, statin, vitamin D, monoclonal antibodies, correction of the intestinal microbiota in Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
| | - I V Krasakov
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - G N Bisaga
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - D I Skulyabin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - I D Poltavsky
- Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
20
|
Poly TN, Islam MMR, Yang HC, Li YCJ. Non-steroidal anti-inflammatory drugs and risk of Parkinson's disease in the elderly population: a meta-analysis. Eur J Clin Pharmacol 2018; 75:99-108. [PMID: 30280208 DOI: 10.1007/s00228-018-2561-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Several studies have explored the impact of non-steroidal anti-inflammatory drugs (NSAIDs) and the risk of Parkinson disease (PD). However, the extent to which NSAIDs may increase or decrease the risk of PD remains unresolved. We, therefore, performed a meta-analysis of relevant studies to quantify the magnitude of the association between NSAID use and PD risk in the elderly population. METHODS The electronic databases such as PubMed, EMBASE, Scopus, Google Scholar, and Web of Science were used to search the relevant articles published between January 1990 and December 2017. Large (n ≥ 1000) observational design studies with a follow-up at least 1 year were considered. Two authors independently extracted information from the included studies. Random effect model was used to calculate risk ratios (RRs) with 95% confidence interval (Cl). RESULTS A total of 17 studies with 2,498,258 participants and nearly 14,713 PD patients were included in the final analysis. The overall pooled RR of PD was 0.95 (95%CI 0.860-1.048) with significant heterogeneity (I2 = 63.093, Q = 43.352, p < 0.0001). In the subgroup analysis, the overall pooled RR of PD was 0.90 (95%CI 0.738-1.109), 0.96 (95%CI 0.882-1.055), and 0.99 (95%CI 0.841-0.982) from the studies of North America, Europe, and Asia. Additionally, long-term use, study design, individual NSAID use, and risk of PD were also evaluated. CONCLUSION Despite the neuroprotective potential of NSAIDs demonstrated in some experimental studies, our findings suggest that there is no association between NSAIDs and the risk of Parkinson disease at the population level. Until further evidence is established, clinicians need to be vigilant ensuring that the use of NSAIDs remains restricted to their approved anti-inflammatory and analgesic effect.
Collapse
Affiliation(s)
- Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Md Mohaimenul Rubel Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Hsuan-Chia Yang
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan. .,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan. .,Department of Dermatology, Wan Fang Hospital, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
21
|
Ren L, Yi J, Yang J, Li P, Cheng X, Mao P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: A dose-response meta-analysis. Medicine (Baltimore) 2018; 97:e12172. [PMID: 30212946 PMCID: PMC6155958 DOI: 10.1097/md.0000000000012172] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Previous studies have indicated that nonsteroidal anti-inflammatory drugs (NSAIDs) use is associated with Parkinson disease risk, but presented controversial results.Medline, Embase, Web of Science, and the Cochrane Database were searched update to November 2017. Key data were extracted from eligible studies. A dose-response meta-analysis was conducted for synthesizing data from eligible studies.Fifteen eligible studies were included in this meta-analysis. NSAIDs use was not associated with Parkinson disease risk [relevant risk (RR): 0.06; 95% confidence interval (95% CI), 0.91-1.02]. Subgroup analysis showed that aspirin use (RR: 1.14; 95% CI, 0.98-1.30) or ibuprofen use (RR: 1.01; 95% CI, 0.88-1.17) was not associated with Parkinson disease risk; however, the use of non-aspirin NSAIDs was significantly associated with Parkinson disease risk (RR:0.91; 95% CI, 0.84-0.99). Furthermore, NSAIDs use was not associated with the risk of Parkinson disease in female (RR: 0.99; 95% CI, 0.83-1.17) and male (RR: 1.01; 95% CI, 0.88-1.16). In addition, a dose-response showed per 1 number of prescription incremental increase in NSAIDs use was not associated with the risk of Parkinson disease (RR: 0.96; 95% CI, 0.91-1.02), per 1 year of duration of NSAIDs use incremental increase was not associated with the risk of Parkinson disease (RR: 0.98; 95% CI, 0.92-1.03), and per 1 dosage of NSAIDs use incremental increase was not associated with the risk of Parkinson disease (RR: 0.98; 95% CI, 0.95-1.02).NSAIDs use was not associated with the risk of Parkinson disease. The potency and the cumulative NSAIDs use did not play critical roles.
Collapse
|
22
|
Hassanzadeh K, Rahimmi A. Oxidative stress and neuroinflammation in the story of Parkinson's disease: Could targeting these pathways write a good ending? J Cell Physiol 2018; 234:23-32. [PMID: 30078201 DOI: 10.1002/jcp.26865] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Although, current medications for Parkinson's disease can control and relief symptoms of the disease efficiently, they are unable to either prevent progression of the disease or maintain their controlling ability as a long-term medication. To find suitable adjuvant and/or alternative treatments, researchers have investigated antioxidative and anti-inflammatory approaches, since emerging evidence consider oxidative stress and neuroinflammation as leading causes of the development of Parkinson's disease. Here, how oxidative stress and neuroinflammation take part in Parkinson's disease pathogenesis was discussed based on featured studies in this context. Then, preclinical and clinical trial studies, which evaluated antioxidative and anti-inflammatory compounds' ability to treat Parkinson's disease, were reviewed.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Cellular & Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Physiology & Pharmacology Department, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Arman Rahimmi
- Physiology & Pharmacology Department, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
23
|
Kaur K, Gill JS, Bansal PK, Deshmukh R. Neuroinflammation - A major cause for striatal dopaminergic degeneration in Parkinson's disease. J Neurol Sci 2017; 381:308-314. [DOI: 10.1016/j.jns.2017.08.3251] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 07/25/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
|
24
|
Lessons learned from protein aggregation: toward technological and biomedical applications. Biophys Rev 2017; 9:501-515. [PMID: 28905328 DOI: 10.1007/s12551-017-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson's disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.
Collapse
|
25
|
Grinde B, Engdahl B. Prescription database analyses indicates that the asthma medicine montelukast might protect against dementia: a hypothesis to be verified. Immun Ageing 2017; 14:20. [PMID: 28874912 PMCID: PMC5579921 DOI: 10.1186/s12979-017-0102-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/23/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND It has recently been shown that the leukotriene receptor antagonist montelukast rejuvenates aged brains in rats. The question is whether this commonly used, systemic, anti-asthmatic medicine has a similar effect in humans? RESULTS We approached this issue by doing statistical analyses based on the Norwegian Prescription Database. The Database lists all prescription-based medications in Norway, but not drugs given to people who are in hospitals or nursing homes. The question asked was whether users of montelukast, compared to users of inhalation asthma medicine, live longer, and are less likely to develop dementia. A small, non-significant protective effect on the use of dementia medicine became significant when adjusting for other prescriptions (based on the notion that montelukast users on average are less healthy). A possible protective effect was substantiated by looking at the lack of prescriptions as a proxy for dementia-related residency in nursing homes, and the risk of death. CONCLUSIONS The present results suggest that montelukast may alleviate the cognitive decline associated with human aging. However, further data, preferably based on controlled clinical trials, are required.
Collapse
Affiliation(s)
- Bjørn Grinde
- Department of Aging, Norwegian Institute of Public Health, Box 4404 Nydalen, 0403 Oslo, PO Norway
| | - Bo Engdahl
- Department of Aging, Norwegian Institute of Public Health, Box 4404 Nydalen, 0403 Oslo, PO Norway
| |
Collapse
|
26
|
González-Lizárraga F, Socías SB, Ávila CL, Torres-Bugeau CM, Barbosa LRS, Binolfi A, Sepúlveda-Díaz JE, Del-Bel E, Fernandez CO, Papy-Garcia D, Itri R, Raisman-Vozari R, Chehín RN. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep 2017; 7:41755. [PMID: 28155912 PMCID: PMC5290535 DOI: 10.1038/srep41755] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/14/2016] [Indexed: 12/03/2022] Open
Abstract
Synucleinophaties are progressive neurodegenerative disorders with no cure to date. An attractive strategy to tackle this problem is repurposing already tested safe drugs against novel targets. In this way, doxycycline prevents neurodegeneration in Parkinson models by modulating neuroinflammation. However, anti-inflammatory therapy per se is insufficient to account for neuroprotection. Herein we characterise novel targets of doxycycline describing the structural background supporting its effectiveness as a neuroprotector at subantibiotic doses. Our results show that doxycycline reshapes α-synuclein oligomers into off-pathway, high-molecular-weight species that do not evolve into fibrils. Off-pathway species present less hydrophobic surface than on-pathway oligomers and display different β-sheet structural arrangement. These structural changes affect the α-synuclein ability to destabilize biological membranes, cell viability, and formation of additional toxic species. Altogether, these mechanisms could act synergically giving novel targets for repurposing this drug.
Collapse
Affiliation(s)
- Florencia González-Lizárraga
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina.,Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM, Paris, France
| | - Sergio B Socías
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina
| | - César L Ávila
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina
| | - Clarisa M Torres-Bugeau
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina
| | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo - IFUSP, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Andres Binolfi
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Julia E Sepúlveda-Díaz
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM, Paris, France
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Stomatology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Brazil, Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Claudio O Fernandez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Dulce Papy-Garcia
- Laboratoire Croissance, Réparation et Régénération Tissulaires (CRRET), CNRS ERL 9215, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo - IFUSP, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Rita Raisman-Vozari
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM, Paris, France
| | - Rosana N Chehín
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CCT-Tucumán and Instituto de Química Biológica Dr Bernabé Bloj (CONICET-UNT), Chacabuco 461 (T4000ILI) Tucumán, Argentina
| |
Collapse
|
27
|
Hung KC, Huang HJ, Wang YT, Lin AMY. Baicalein attenuates α-synuclein aggregation, inflammasome activation and autophagy in the MPP +-treated nigrostriatal dopaminergic system in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:522-529. [PMID: 27742410 DOI: 10.1016/j.jep.2016.10.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neuroinflammation, oxidative stress, and protein aggregation form a vicious cycle in the pathophysiology of Parkinson's disease (PD); activated microglia is the main location of neuroinflammation. A Chinese medicine book, "Shanghan Lun", known as the "Treatises on Cold damage Diseases" has suggested that Scutellaria baicalensis Georgi is effective in treating CNS diseases. The anti-inflammatory mechanisms of baicalein, a phenolic flavonoid in the dried root of Scutellaria baicalensis Georgi, remain to be explored. AIM OF THE STUDY The neuroprotective mechanisms of baicalein involving α-synuclein aggregation, inflammasome activation, and programmed cell death were investigated in the nigrostriatal dopaminergic system of rat brain in vivo. MATERIALS AND METHODS Intranigral infusion of 1-methyl-4-phenylpyridinium (MPP+, a Parkinsonian neurotoxin) was performed on anesthetized Sprague-Dawley rats. Baicalein was daily administered via intraperitoneal injection. Striatal dopamine levels were measured using high performance liquid chromatography coupled with electrochemical detection. Cellular signalings were measured by Western blot assay, immunofluorescent staining assay and enzyme-linked immunosorbent assay. RESULTS Systemic administration of baicalein attenuated MPP+-induced reductions in striatal dopamine content and tyrosine hydroxylase (a biomarker of dopaminergic neurons) in the infused substantia nigra (SN). Furthermore, MPP+-induced elevations in α-synuclein aggregates (a pathological hallmark of PD), ED-1 (a biomarker of activated microglia), activated caspase-1 (a proinflammatory caspase), IL-1β and cathepsin B (a cysteine lysosomal protease) in the infused SN were attenuated in the baicalein-treated rats. Moreover, intense immunoreactivities of caspase 1 and cathepsin B were co-localized with that of ED-1 in the MPP+-infused SN. At the same time, baicalein inhibited MPP+-induced increases in active caspases 9 and 12 (biomarkers of apoptosis) as well as LC3-II levels (a biomarker of autophagy) in the rat nigrostriatal dopaminergic system. CONCLUSION Our in vivo study showed that baicalein possesses anti-inflammatory activities by inhibiting α-synuclein aggregation, inflammasome activation and cathepsin B production in the MPP+-infused SN. Moreover, baicalein is of therapeutic significance because it inhibits MPP+-induced apoptosis and autophagy in the nigrostriatal dopaminergic system of rat brain.
Collapse
Affiliation(s)
- Kai-Chih Hung
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan.
| | - Hui-Ju Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yi-Ting Wang
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan.
| | - Anya Maan-Yuh Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Pharmacy, Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
28
|
Zhang QS, Heng Y, Yuan YH, Chen NH. Pathological α-synuclein exacerbates the progression of Parkinson's disease through microglial activation. Toxicol Lett 2016; 265:30-37. [PMID: 27865851 DOI: 10.1016/j.toxlet.2016.11.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 01/15/2023]
Abstract
Parkinson's disease (PD) is characterized by α-synuclein accumulation, dopaminergic neuron loss and inflammation. α-Synuclein can be secreted by neurons and activate microglia to different degrees. Excessive microglial activation can increase the production of tumor necrosis factor alpha (TNF-α), interleukin-1-β (IL-1β), interleukin-6 (IL-6), interferon-γ (INF-γ), inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS) and nitric oxide (NO), and can also enhance microglial phagocytosis and migration as well as lymphocyte infiltration. Pathological α-synuclein and microglial activation can potentiate each other, leading to the loss of dopaminergic neurons and accelerated PD degeneration. This review will mainly describe the profiles of α-synuclein-activated microglia, with particular emphasis on the signaling cascades involved in this process.
Collapse
Affiliation(s)
- Qiu-Shuang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Heng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
29
|
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016; 539:180-186. [PMID: 27830812 PMCID: PMC5172605 DOI: 10.1038/nature20411] [Citation(s) in RCA: 680] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023]
Abstract
Although systemic diseases take the biggest toll on human health and well-being, increasingly, a failing brain is the arbiter of a death preceded by a gradual loss of the essence of being. Ageing, which is fundamental to neurodegeneration and dementia, affects every organ in the body and seems to be encoded partly in a blood-based signature. Indeed, factors in the circulation have been shown to modulate ageing and to rejuvenate numerous organs, including the brain. The discovery of such factors, the identification of their origins and a deeper understanding of their functions is ushering in a new era in ageing and dementia research.
Collapse
Affiliation(s)
- Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94304, USA
- Center for Tissue Regeneration, Repair and Restoration, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| |
Collapse
|
30
|
Higaki H, Choudhury ME, Kawamoto C, Miyamoto K, Islam A, Ishii Y, Miyanishi K, Takeda H, Seo N, Sugimoto K, Takahashi H, Yano H, Tanaka J. The hypnotic bromovalerylurea ameliorates 6-hydroxydopamine-induced dopaminergic neuron loss while suppressing expression of interferon regulatory factors by microglia. Neurochem Int 2016; 99:158-168. [PMID: 27392596 DOI: 10.1016/j.neuint.2016.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/02/2016] [Accepted: 06/28/2016] [Indexed: 01/17/2023]
Abstract
The low molecular weight organic compound bromovalerylurea (BU) has long been used as a hypnotic/sedative. In the present study, we found that BU suppressed mRNA expression of proinflammatory factors and nitric oxide release in lipopolysaccharide (LPS)-treated rat primary microglial cell cultures. BU prevented neuronal degeneration in LPS-treated neuron-microglia cocultures. The anti-inflammatory effects of BU were as strong as those of a synthetic glucocorticoid, dexamethasone. A rat hemi-Parkinsonian model was prepared by injecting 6-hydroxydopamine into the right striatum. BU was orally administered to these rats for 7 days, which ameliorated the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and alleviated motor deficits. BU suppressed the expression of mRNAs for interferon regulatory factors (IRFs) 1, 7 and 8 in the right (lesioned) ventral midbrain as well as those for proinflammatory mediators. BU increased mRNA expression of various neuroprotective factors, including platelet-derived growth factor and hepatocyte growth factor, but it did not increase expression of alternative activation (M2) markers. In microglial culture, BU suppressed the LPS-induced increase in expression of IRFs 1 and 8, and it reduced LPS-induced phosphorylation of JAK1 and STATs 1 and 3. Knockdown of IRFs 1 and 8 suppressed LPS-induced NO release by microglial cells. These results suggest that suppression of microglial IRF expression by BU prevents neuronal cell death in the injured brain region, where microglial activation occurs. Because many Parkinsonian patients suffer from sleep disorders, BU administration before sleep may effectively ameliorate neurological symptoms and alleviate sleep dysfunction.
Collapse
Affiliation(s)
- Hiromi Higaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | | | - Chisato Kawamoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Keisuke Miyamoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Yurika Ishii
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Kazuya Miyanishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Haruna Takeda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Naoto Seo
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Kana Sugimoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan; Department of Legal Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Japan
| | - Hisaaki Takahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan; Division of Pathophysiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan.
| |
Collapse
|
31
|
Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson's disease and its potential as therapeutic target. Transl Neurodegener 2015; 4:19. [PMID: 26464797 PMCID: PMC4603346 DOI: 10.1186/s40035-015-0042-0] [Citation(s) in RCA: 566] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 01/19/2023] Open
Abstract
Parkinson’s disease (PD), the second most common age-associated neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons and the presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc). Chronic neuroinflammation is one of the hallmarks of PD pathophysiology. Post-mortem analyses of human PD patients and experimental animal studies indicate that activation of glial cells and increases in pro-inflammatory factor levels are common features of the PD brain. Chronic release of pro-inflammatory cytokines by activated astrocytes and microglia leads to the exacerbation of DA neuron degeneration in the SNpc. Besides, peripheral immune system is also implicated in the pathogenesis of PD. Infiltration and accumulation of immune cells from the periphery are detected in and around the affected brain regions of PD patients. Moreover, inflammatory processes have been suggested as promising interventional targets for PD and even other neurodegenerative diseases. A better understanding of the role of inflammation in PD will provide new insights into the pathological processes and help to establish effective therapeutic strategies. In this review, we will summarize recent progresses in the neuroimmune aspects of PD and highlight the potential therapeutic interventions targeting neuroinflammation.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yingjun Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Jiawei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
32
|
DeMaagd G, Philip A. Parkinson's Disease and Its Management: Part 3: Nondopaminergic and Nonpharmacological Treatment Options. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2015; 40:668-79. [PMID: 26535023 PMCID: PMC4606857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This installment of a five-part series reviews the role of nondopaminergic pharmacotherapies and adjunctive options-such as monoamine oxidase type B inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic agents-in managing Parkinson's disease. Nonpharmacological treatments are also explored.
Collapse
|
33
|
Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:628192. [PMID: 26295044 PMCID: PMC4532803 DOI: 10.1155/2015/628192] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, being characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Among several putative factors that may contribute to PD pathogenesis, inflammatory mechanisms may play a pivotal role. The involvement of microglial activation as well as of brain and peripheral immune mediators in PD pathophysiology has been reported by clinical and experimental studies. These inflammatory biomarkers evaluated by imaging techniques and/or by biological sample analysis have become valuable tools for PD diagnosis and prognosis. Regardless of the significant increase in the number of people suffering from PD, there are still no established disease-modifying or neuroprotective therapies for it. There is growing evidence of protective effect of anti-inflammatory drugs on PD development. Herein, we reviewed the current literature regarding the central nervous system and peripheral immune biomarkers in PD and advances in diagnostic and prognostic tools as well as the neuroprotective effects of anti-inflammatory therapies.
Collapse
|
34
|
Bassani TB, Vital MA, Rauh LK. Neuroinflammation in the pathophysiology of Parkinson’s disease and therapeutic evidence of anti-inflammatory drugs. ARQUIVOS DE NEURO-PSIQUIATRIA 2015. [DOI: 10.1590/0004-282x20150057] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting approximately 1.6% of the population over 60 years old. The cardinal motor symptoms are the result of progressive degeneration of substantia nigra pars compacta dopaminergic neurons which are involved in the fine motor control. Currently, there is no cure for this pathology and the cause of the neurodegeneration remains unknown. Several studies suggest the involvement of neuroinflammation in the pathophysiology of PD as well as a protective effect of anti-inflammatory drugs both in animal models and epidemiological studies, although there are controversial reports. In this review, we address evidences of involvement of inflammatory process and possible therapeutic usefulness of anti-inflammatory drugs in PD.
Collapse
Affiliation(s)
- Taysa Bervian Bassani
- Pontifícia Universidade Católica do Paraná, Brazil; Universidade Federal do Paraná, Brazil
| | | | | |
Collapse
|
35
|
Abdel-Salam OME. Drug therapy for Parkinson’s disease: An update. World J Pharmacol 2015; 4:117-143. [DOI: 10.5497/wjp.v4.i1.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, affecting about 1% of the population above the age of 65. PD is characterized by a selective degeneration of the dopaminergic neurons of the substantia nigra pars compacta. This results in a marked loss of striatal dopamine and the development of the characteristic features of the disease, i.e., bradykinesia, rest tremor, rigidity, gait abnormalities and postural instability. Other types of neurons/neurotransmitters are also involved in PD, including cholinergic, serotonergic, glutamatergic, adenosine, and GABAergic neurotransmission which might have relevance to the motor, non-motor, neuropsychiatric and cognitive disturbances that occur in the course of the disease. The treatment of PD relies on replacement therapy with levodopa (L-dopa), the precursor of dopamine, in combination with a peripheral decarboxylase inhibitor (carbidopa or benserazide). The effect of L-dopa, however, declines over time together with the development of motor complications especially dyskinesia in a significant proportion of patients within 5 years of therapy. Other drugs include dopamine-receptor-agonists, catechol-O-methyltransferase inhibitors, monoamine oxidase type B (MAO-B) inhibitors, anticholinergics and adjuvant therapy with the antiviral drug and the N-methyl-D-aspartate glutamate receptor antagonist amantadine. Although, these medications can result in substantial improvements in parkinsonian symptoms, especially during the early stages of the disease, they are often not successful in advanced disease. Moreover, dopaminergic cell death continues over time, emphasizing the need for neuroprotective or neuroregenerative therapies. In recent years, research has focused on non-dopaminergic approach such as the use of A2A receptor antagonists: istradefylline and preladenant or the calcium channel antagonist isradipine. Safinamide is a selective and reversible inhibitor of MAO-B, a glutamate receptor inhibitor as well as sodium and calcium channel blocker. Minocycline and pioglitazone are other agents which have been shown to prevent dopaminergic nigral cell loss in animal models of PD. There is also an evidence to suggest a benefit from iron chelation therapy with deferiprone and from the use of antioxidants or mitochondrial function enhancers such as creatine, alpha-lipoic acid, l-carnitine, and coenzyme Q10.
Collapse
|
36
|
Sharifi H, Mohajjel Nayebi A, Farajnia S. 8-OH-DPAT (5-HT1A agonist) Attenuates 6-Hydroxy- dopamine-induced catalepsy and Modulates Inflammatory Cytokines in Rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:1270-5. [PMID: 24570834 PMCID: PMC3933805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/29/2013] [Indexed: 11/03/2022]
Abstract
OBJECTIVE(S) Neuroinflammation in Parkinson disease (PD) is associated with glial cells activation and production of different inflammatory cytokines. In this study, we investigated the effect of chronic administration of 8-OH-DPAT on 6-OHDA-induced catalepsy and levels of inflammatory cytokines in cerebrospinal fluid (CSF). MATERIALS AND METHODS Catalepsy was induced by unilateral infusion of 6-OHDA (8 μg/2 μl/rat) into the central region of the sabstantia nigra pars compacta (SNc) being assessed by the bar-test, 5, 60, 120 and 180 min after intraperitoneal (IP) administration of 8-OH-DPAT (5-HT1A receptor agonist; 0.25, 0.5 and 1mg/kg, IP for 10 days). CSF samples were collected on the tenth day of 8-OH-DPAT administration and analyzed by ELISA method to measure levels of TNF-α, IL-1β and IL-6. RESULTS Chronic injection of 8-OH-DPAT decreased catalepsy in a dose dependent manner when compared with the control group. The most anti-cataleptic effect was observed at the dose of 1 mg/kg of 8-OH-DPAT. Levels of TNF-α in CSF increased three weeks after 6-OHDA injection while there was a significant decrease in TNF-α level of parkinsonian animals treated with 8-OH-DPAT (1 mg/kg, IP for 10 days). IL-1β and IL-6 decreased and increased in parkinsonian rats and in 8-OH-DPAT-treated parkinsonian rats, respectively. CONCLUSION Our study indicated that chronic administration of 8-OH-DPAT improves catalepsy in 6-OHDA-induced animal model of PD and restores central concentration of inflammatory cytokines to the basal levels. 5-HT1A receptor agonists can be suggested as potential adjuvant therapy in PD by modulation of cerebral inflammatory cytokines.
Collapse
Affiliation(s)
- Hamdolah Sharifi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Mohajjel Nayebi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Gao F, Chen D, Hu Q, Wang G. Rotenone directly induces BV2 cell activation via the p38 MAPK pathway. PLoS One 2013; 8:e72046. [PMID: 23977201 PMCID: PMC3748029 DOI: 10.1371/journal.pone.0072046] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/06/2013] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Although its pathogenesis is still unclear, increasing evidence suggests that mitochondrial dysfunction induced by environmental toxins, such as mitochondrial complex I inhibitors, plays a significant role in the disease process. The microglia in PD brains are highly activated, and inflammation is also an essential element in PD pathogenesis. However, the means by which these toxins activate microglia is still unclear. In the present study, we found that rotenone, a mitochondrial complex I inhibitor, could directly activate microglia via the nuclear factor kappa B (NF-κB) signaling pathway, thereby inducing significantly increased expression of inflammatory cytokines. We further observed that rotenone induced caspase-1 activation and mature IL-1β release, both of which are strictly dependent on p38 mitogen-activated protein kinase (MAPK). The activation of p38 is associated with the presence of reactive oxygen species (ROS) produced by rotenone. Removal of these ROS abrogated the activation of the microglia. Therefore, our data suggest that the environmental toxin rotenone can directly activate microglia through the p38 MAPK pathway.
Collapse
Affiliation(s)
- Feng Gao
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science & Technology of China, Chinese Academy of Sciences, Hefei, China
- * E-mail: (FG); (GH)
| | - Dong Chen
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China
| | - Qingsong Hu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science & Technology of China, Chinese Academy of Sciences, Hefei, China
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, China
- * E-mail: (FG); (GH)
| |
Collapse
|
38
|
Peripheral inflammation in neurodegeneration. J Mol Med (Berl) 2013; 91:673-81. [PMID: 23546523 DOI: 10.1007/s00109-013-1026-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is now a well-characterised feature of neurodegenerative diseases. Immune dysfunction outside the central nervous system is also increasingly recognised as part of the diseases. Peripheral inflammation has emerged as a modulator of disease progression and neuropathology in several neurodegenerative diseases, making it targetable in new therapeutic approaches. In addition, the easy accessibility of blood immune cells and markers makes them ideal candidates for use as possible biomarkers and a potential model of central immune cells.
Collapse
|
39
|
Madathil SK, Karuppagounder SS, Mohanakumar KP. Sodium salicylate protects against rotenone-induced Parkinsonism in rats. Synapse 2013; 67:502-14. [DOI: 10.1002/syn.21658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 02/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Sindhu K. Madathil
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Saravanan S. Karuppagounder
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Kochupurackal P. Mohanakumar
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| |
Collapse
|
40
|
PACAP deficiency sensitizes nigrostriatal dopaminergic neurons to paraquat-induced damage and modulates central and peripheral inflammatory activation in mice. Neuroscience 2013; 240:277-86. [PMID: 23500093 DOI: 10.1016/j.neuroscience.2013.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/01/2013] [Accepted: 03/02/2013] [Indexed: 12/27/2022]
Abstract
Exposure to the pesticide paraquat (PQ) increases the risk of Parkinson's disease (PD), and its effect may be modulated by genetic or other environmental factors. The neuropeptide PACAP (pituitary adenylyl cyclase-activating polypeptide, Adcyap1) has been shown to enhance tyrosine hydroxylase (TH) and VMAT2 expression, protect dopaminergic (DA) neurons against the neurotoxin 6-hydroxydopamine, regulate neuronal mitochondria, and inhibit inflammation. Decreased expression of PACAP may thus interact with environmental factors such as PQ to increase the risk of PD. To mimic a low level environmental exposure to PQ, wild type (WT) and PACAP knockout (KO) mice were given a single [10 mg/kg] dose of PQ, a regimen that did not induce the loss of TH expression or DA neurons in WT mice. This treatment selectively reduced the number of TH-positive cell bodies in the substantia nigra pars compacta (SNpc) selectively in PACAP KO mice. Because inflammation is also a risk factor for PD, we performed a quantitative analysis of SNpc Iba⁺ microglia. As expected, PQ increased the number of larger microglial profiles, indicative of activation, in WT mice. Strikingly, microglial activation was already evident in PACAP KO mice in the basal state. PQ caused no further activation in these mice, although tumor necrosis factor-α gene expression was enhanced. In the periphery, PQ had no effects on the abundance of proinflammatory Th1 or Th17 cells in WT mice, but increased the numbers of anti-inflammatory regulatory T cells (Tregs). PACAP KO mice, in contrast, had elevated numbers of Th17 cells after PQ, and the induction of Tregs was impaired. The results indicate that endogenous PACAP acts to maintain the integrity of DA neurons during exposure to PQ, an action that may be linked to its ability to regulate microglia and/or other immune cells.
Collapse
|
41
|
Hutter-Saunders JAL, Mosley RL, Gendelman HE. Pathways towards an effective immunotherapy for Parkinson's disease. Expert Rev Neurother 2012; 11:1703-15. [PMID: 22091596 DOI: 10.1586/ern.11.163] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Immunizations that target specific types of immune responses are used commonly to prevent microbial infections. However, a range of immune responses may prove necessary to combat the ravages of neurodegenerative diseases. The goal is to eliminate the 'root' cause of neurodegenerative disorders, misfolded aggregated proteins, while harnessing adaptive immune responses to promote neural repair. However, immunization strategies used to elicit humoral immune responses against aberrant brain proteins have yielded mixed success. While specific proteins can be cleared, the failures in halting disease progression revolve, in measure, around adaptive immune responses that promote autoreactive T cells and, as such, induce a meningoencephalitis, accelerating neurodegeneration. Thus, alternative approaches for protein clearance and neural repair are desired. To this end, our laboratories have sought to transform autoreactive adaptive immune responses into regulatory neuroprotective cells in Parkinson's disease. In this context, induction of immune responses against modified brain proteins serves to break immunological tolerance, while eliciting adaptive immunity to facilitate neuronal repair. How to harness the immune response in the setting of Parkinson's disease requires a thorough understanding of the role of immunity in human disease and the ways to modify such immune responses to elicit therapeutic gain. These are discussed in this review.
Collapse
Affiliation(s)
- Jessica A L Hutter-Saunders
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|