1
|
Filipovich E, Gorodkova E, Shcherbakova A, Asaad W, Popov S, Melnichenko G, Mokrysheva N, Utkina M. The role of cell cycle-related genes in the tumorigenesis of adrenal and thyroid neuroendocrine tumors. Heliyon 2025; 11:e41457. [PMID: 39834406 PMCID: PMC11742855 DOI: 10.1016/j.heliyon.2024.e41457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The molecular mechanisms underlying adrenal and thyroid neuroendocrine tumors, including their tumorigenesis, progression, and metastasis, involve unique pathways regulating cell cycle progression. To better understand these mechanisms and pathways, extensive in-depth research on cell cycle-related genes is necessary. This review aims to describe and interpret current single-cell RNA sequencing studies on neuroblastoma, medullary thyroid cancer, and pheochromocytoma tumors. Our review summarizes differentially expressed cell cycle-related genes with distinct functions, highlighting their potential as therapeutic targets and components of panels used to determine tumor type or aggressiveness. Although some insights have been gained, there is still limited information on these topics, and further research is required to explore the regulatory mechanisms of these tumors.
Collapse
Affiliation(s)
- Ekaterina Filipovich
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Ekaterina Gorodkova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Anastasia Shcherbakova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Walaa Asaad
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Sergey Popov
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Galina Melnichenko
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Natalya Mokrysheva
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Marina Utkina
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| |
Collapse
|
2
|
Li X, Qian B, Chen X, Shen M, Zhao S, Zhang X, He J. The role of miR-152 in urological tumors: potential biomarkers and therapeutic targets. Front Immunol 2024; 15:1464327. [PMID: 39606232 PMCID: PMC11599204 DOI: 10.3389/fimmu.2024.1464327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Urological malignant tumors pose a significant threat to human health, with a high incidence rate each year. Prostate cancer, bladder cancer, and renal cell carcinoma are among the most prevalent and extensively researched urological malignancies. Despite advancements in research, the prognosis for these tumors remains unfavorable due to late detection, postoperative recurrence, and treatment resistance. A thorough investigation into their pathogenesis is crucial for early diagnosis and treatment. Recent studies have highlighted the close association between microRNAs (miRNAs) and cancer progression. miRNAs are small non-coding RNAs composed of 19-23 nucleotides that regulate gene expression by binding to the 3' untranslated region (3'UTR) of target mRNAs, impacting key cellular processes such as proliferation, differentiation, apoptosis, and migration. Dysregulation of miRNAs can disrupt the expression of oncogenes and tumor suppressor genes, contributing to cancer development. Among the various miRNAs studied, miR-152 has garnered attention for its role in urological malignancies. Several studies have indicated that dysregulation of miR-152 expression is significant in these cancers, warranting a comprehensive review of the evidence. This review focuses on the expression and function of miR-152 in prostate cancer, bladder cancer, and renal cell carcinoma, elucidating its mechanisms in cancer progression and exploring its potential as a therapeutic target and biomarker in urological malignancies.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xu Chen
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xinsheng Zhang
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian He
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
4
|
Levy S, Korse CE, de Groot ACA, Meijer RCA, Tesselaar MET, Valk GD. Four decades of experience with carcinoid heart disease: An analysis of 84 patients. J Neuroendocrinol 2022; 34:e13199. [PMID: 36256859 DOI: 10.1111/jne.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
Carcinoid heart disease (CHD) is a serious cardiac condition which is caused by elevated serotonin in the systemic circulation, secreted by neuroendocrine tumours (NET). It mostly affects the right-sided heart valves, where it causes fibrotic disturbances and is associated with worse survival. In this study, we describe a large cohort of patients with CHD and provide an insight into their survival over the past decades. All consecutive patients with a serotonin producing NET and CHD referred to the Netherlands Cancer Institute that presented with CHD or developed CHD during their follow up time were included from 1984 until 2021. Patients were divided into three time periods: 1984-2000, 2000-2010 and 2010-2018. Median N-terminal pro B-type natriuretic protein (NT-proBNP) and serum serotonin levels were stratified according to tricuspid regurgitation severity. Kaplan-Meier curves and log rank test were used for visualisation of survival. Cox regression was used for identification of the characteristics associated with disease specific mortality (DSM). A total of 84 patients with CHD were included of whom 49 (58.3%) were male. Median age at NET diagnosis was 62.3 (range 23.9-81.7) years, and median time to development of CHD was 1.1 (range 0-24.2) years. NT-proBNP was significantly higher when more severe tricuspid regurgitation (TR) was present (p = .027). Median survival from CHD diagnosis for 1984-2000, 2000-2010 and 2010-2018 were 1.3 (confidence interval [CI]: 0.9-1.6), 1.9 (CI: 1.2-2.6) and 3.9 (CI: 1.7-6.2) years (p = .025). Valve replacement surgery (VSR) occurred more frequent in later time periods. VSR (hazard ratio [HR] 0.33, p = .005) and NT-proBNP (HR 1.003, 1.00-1.005, p = .036) were significantly associated with DSM. The prognosis of patients with CHD has improved over the past decades, possibly caused by more VSR. NT-proBNP is a valuable biomarker in patients with CHD. Clinical practice should be aimed at timely diagnosis and intervention of CHD.
Collapse
Affiliation(s)
- Sonja Levy
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Catherina E Korse
- Department of Clinical Chemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andre C A de Groot
- Department of Cardiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ronald C A Meijer
- Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Margot E T Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Small Bowel Neuroendocrine Tumors: Focus on Pathologic Aspects and Controversial Surgical Issues. CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Kciuk M, Gielecińska A, Budzinska A, Mojzych M, Kontek R. Metastasis and MAPK Pathways. Int J Mol Sci 2022; 23:ijms23073847. [PMID: 35409206 PMCID: PMC8998814 DOI: 10.3390/ijms23073847] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide. In many cases, the treatment of the disease is limited due to the metastasis of cells to distant locations of the body through the blood and lymphatic drainage. Most of the anticancer therapeutic options focus mainly on the inhibition of tumor cell growth or the induction of cell death, and do not consider the molecular basis of metastasis. The aim of this work is to provide a comprehensive review focusing on cancer metastasis and the mitogen-activated protein kinase (MAPK) pathway (ERK/JNK/P38 signaling) as a crucial modulator of this process.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
- Correspondence:
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| | - Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| |
Collapse
|
7
|
A Report on Multi-Target Anti-Inflammatory Properties of Phytoconstituents from Monochoria hastata (Family: Pontederiaceae). Molecules 2021; 26:molecules26237397. [PMID: 34885978 PMCID: PMC8658818 DOI: 10.3390/molecules26237397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
This study aims to investigate the potential analgesic properties of the crude extract of Monochoria hastata (MH) leaves using in vivo experiments and in silico analysis. The extract, in a dose-dependent manner, exhibited a moderate analgesic property (~54% pain inhibition in acetic acid-induced writhing test), which is significant (** p < 0.001) as compared to the control group. The complex inflammatory mechanism involves diverse pathways and they are inter-connected. Therefore, multiple inflammatory modulator proteins were selected as the target for in silico analysis. Computational analysis suggests that all the selected targets had different degrees of interaction with the phytochemicals from the extract. Rutin (RU), protocatechuic acid (PA), vanillic acid (VA), and ferulic acid (FA) could regulate multiple targets with a robust efficiency. None of the compounds showed selectivity to Cyclooxygenase-2 (COX-2). However, regulation of COX and lipoxygenase (LOX) cascade by PA can reduce non-steroidal analgesic drugs (NSAIDs)-related side effects, including asthma. RU showed robust regulation of cytokine-mediated pathways like RAS/MAPK and PI3K/NF-kB by inhibition of EGFR and IKBα (IKK), which may prevent multi-organ failure due to cytokine storm in several microbial infections, for example, SARS-CoV-2. Further investigation, using in vivo and in vitro experiments, can be conducted to develop multi-target anti-inflammatory drugs using the isolated compounds from the extract.
Collapse
|
8
|
Shimada S, Homma T, Koyanagi K, Hamada K, Miura C, Miura I, Abe H. Intracholecystic papillary neoplasm of the gallbladder diagnosed during follow-up of Menetrier's disease: A case report. Mol Clin Oncol 2021; 15:233. [PMID: 34650800 PMCID: PMC8506642 DOI: 10.3892/mco.2021.2396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Intracholecystic papillary neoplasm of the gallbladder (ICPN) is a type of intraductal papillary neoplasm of the bile duct that occurs in the gallbladder, and is a relatively newer concept. Therefore, there are few reports regarding ICPN. Menetrier's disease is a rare disease characterized by giant hypertrophy of the gastric folds that causes protein-losing gastroenteropathy (PLG). Although Menetrier's disease is a known risk factor for gastric adenocarcinoma, the association between Menetrier's disease and malignancy other than a malignancy of the stomach is unclear. A 69-year-old man presented to the Hokkaido Social Work Association Obihiro Hospital with gallbladder tumours diagnosed by ultrasonography at a previous institution. In addition, he had previously been diagnosed with PLG due to Menetrier's disease. Abdominal contrast-enhanced computed tomography (CT) revealed an irregular mass with a contrast effect at the fundus of the gallbladder on the free abdominal cavity side. Positron emission tomography-CT showed a tumour with a standard uptake value (SUV) of 8.28 at the fundus of the gallbladder. Cholecystectomy and resection of the gallbladder bed were performed. Based on the microscopy findings, the patient was diagnosed with ICPN. Although he had postoperative ileus, he was discharged 14 days postoperatively due to improvement through conservative treatment. Such cases of ICPN complicated with Menetrier's disease are extremely rare. However, patients with Menetrier's disease may need to be screened for malignancies.
Collapse
Affiliation(s)
- Shingo Shimada
- Department of Surgery, Hokkaido Social Work Association Obihiro Hospital, Obihiro, Hokkaido 080-0805, Japan
| | - Tomoki Homma
- Department of Surgery, Hokkaido Social Work Association Obihiro Hospital, Obihiro, Hokkaido 080-0805, Japan
| | - Kaname Koyanagi
- Department of Surgery, Hokkaido Social Work Association Obihiro Hospital, Obihiro, Hokkaido 080-0805, Japan
| | - Kazuya Hamada
- Department of Surgery, Hokkaido Social Work Association Obihiro Hospital, Obihiro, Hokkaido 080-0805, Japan
| | - Chisako Miura
- Department of Pathology, Hokkaido Social Work Association Obihiro Hospital, Obihiro, Hokkaido 080-0805, Japan
| | - Ichiro Miura
- Department of Pathology, Hokkaido Social Work Association Obihiro Hospital, Obihiro, Hokkaido 080-0805, Japan
| | - Hironori Abe
- Department of Surgery, Hokkaido Social Work Association Obihiro Hospital, Obihiro, Hokkaido 080-0805, Japan
| |
Collapse
|
9
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Laskaratos FM, Levi A, Schwach G, Pfragner R, Hall A, Xia D, von Stempel C, Bretherton J, Thanapirom K, Alexander S, Ogunbiyi O, Watkins J, Luong TV, Toumpanakis C, Mandair D, Caplin M, Rombouts K. Transcriptomic Profiling of In Vitro Tumor-Stromal Cell Paracrine Crosstalk Identifies Involvement of the Integrin Signaling Pathway in the Pathogenesis of Mesenteric Fibrosis in Human Small Intestinal Neuroendocrine Neoplasms. Front Oncol 2021; 11:629665. [PMID: 33718208 PMCID: PMC7943728 DOI: 10.3389/fonc.2021.629665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Aim Analysis of the pathophysiology of mesenteric fibrosis (MF) in small intestinal neuroendocrine tumors (SI-NETs) in an in vitro paracrine model and in human SI-NET tissue samples. Methods An indirect co-culture model of SI-NET cells KRJ-I and P-STS with stromal cells HEK293 was designed to evaluate the paracrine effects on cell metabolic activity, gene expression by RT2 PCR Profilers to analyse cancer and fibrosis related genes, and RNA sequencing. The integrin signaling pathway, a specific Ingenuity enriched pathway, was further explored in a cohort of human SI-NET tissues by performing protein analysis and immunohistochemistry. Results RT Profiler array analysis demonstrated several genes to be significantly up- or down-regulated in a cell specific manner as a result of the paracrine effect. This was further confirmed by employing RNA sequencing revealing multiple signaling pathways involved in carcinogenesis and fibrogenesis that were significantly affected in these cell lines. A significant upregulation in the expression of various integrin pathway – related genes was identified in the mesenteric mass of fibrotic SI-NET as confirmed by RT-qPCR and immunohistochemistry. Protein analysis demonstrated downstream activation of the MAPK and mTOR pathways in some patients with fibrotic SI-NETs. Conclusion This study has provided the first comprehensive analysis of the crosstalk of SI-NET cells with stromal cells. A novel pathway – the integrin pathway – was identified and further validated and confirmed in a cohort of human SI-NET tissue featured by a dual role in fibrogenesis/carcinogenesis within the neoplastic fibrotic microenvironment.
Collapse
Affiliation(s)
- Faidon-Marios Laskaratos
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom.,Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Ana Levi
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Gert Schwach
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Roswitha Pfragner
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Andrew Hall
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Dong Xia
- Royal Veterinary College, University of London, London, United Kingdom
| | - Conrad von Stempel
- Radiology Department, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Josephine Bretherton
- Radiology Department, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Kessarin Thanapirom
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Sarah Alexander
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Olagunju Ogunbiyi
- Department of Colorectal Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jennifer Watkins
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Tu Vinh Luong
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Dalvinder Mandair
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Martyn Caplin
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
11
|
Xu X, Liu Y, Li Y, Chen H, Zhang Y, Liu J, Deng S, Zheng Y, Sun X, Wang J, Chen T, Huang M, Ke Y. Selective exosome exclusion of miR-375 by glioma cells promotes glioma progression by activating the CTGF-EGFR pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:16. [PMID: 33407703 PMCID: PMC7789663 DOI: 10.1186/s13046-020-01810-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Background Exosomes are membrane-bound extracellular vesicles of 40–150 nm in size, that are produced by many cell types, and play an important role in the maintenance of cellular homeostasis. Exosome secretion allows for the selective removal of harmful substances from cells. However, it remains unclear whether this process also takes place in glioma cells. Methods Herein, the role of the tumour-suppressor miR-375 was explored in human glioma cells. Immunoblotting and qRT-PCR experiments demonstrated a functional link between miR-375 and its target, connectivetissuegrowthfactor (CTGF), which led to the identification of the underlying molecular pathways. The exosomes secreted by glioma cells were extracted by ultracentrifugation and examined by transmission electron microscopy. Exosomal expression of miR-375 was then analysed by qRT-PCR; while the exosome secretion inhibitor, GW4869, was used to examine the biological significance of miR-375 release. Moreover, the dynamics of miR-375 release by glioma cells was investigated using fluorescently labelled exosomes. Finally, exosomal miR-375 release was examined in an orthotopic xenograft model in nude mice. Results MiR-375 expression was downregulated in gliomas. MiR-375 suppressed glioma proliferation, migration, and invasion by inhibiting the CTGF-epidermalgrowthfactorreceptor (EGFR) signalling pathway. MiR-375-containing exosomes were also identified in human peripheral blood samples from glioma patients, and their level correlated with disease progression status. Exosomal miR-375 secretion impacted the CTGF-EGFR pathway activity. Once secreted, exosomal miR-375 was not taken back up by glioma cells. Conclusions Exosomal miR-375 secretion allowed for sustained activation of the CTGF-EGFR oncogenic pathway, promoting the proliferation and invasion of glioma cells. These findings enhance our understanding of exosome biology and may inspire development of new glioma therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01810-9.
Collapse
Affiliation(s)
- Xiangdong Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yang Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yan Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Huajian Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jie Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shaokang Deng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yaofeng Zheng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xinlin Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Taoliang Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Min Huang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
12
|
Gonçalves BÔP, De Andrade WP, Da Conceição Braga L, Fialho SL, Silva LM. Epithelial-to-mesenchymal transition markers are differentially expressed in epithelial cancer cell lines after everolimus treatment. Oncol Lett 2020; 20:158. [PMID: 32934726 PMCID: PMC7471649 DOI: 10.3892/ol.2020.12019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a phenomenon during which cancer epithelial cells undergo changes in plasticity and lose cell-cell adhesion with consequent remodeling of the extracellular matrix and development of mesenchymal characteristics. Long non-coding RNAs (lncRNAs) have been described as EMT modulation markers, becoming a promising target in the development of new therapies for cancer. The present study aimed to investigate the role of everolimus at 100 nM as inductor of the EMT phenomenon in cell lines derived from human breast (BT-549), colorectal (RKO-AS45-1) and ovary (TOV-21G) cancer. The integrity of cellular junctions was monitored using an in vitro model of epithelial resistance. The results demonstrated that the EMT genes ZEB1, TWIST1 and TGFB1 were differentially expressed in cells treated with everolimus compared with in untreated cells. lncRNA HOTAIR was upregulated post-treatment only in BT-549 cells compared with in untreated cells. After treatment with everolimus, the intensity of fluorescence of P-cadherin decreased, and that of fibronectin increased in RKO-AS45-1 and TOV-21G cells compared with control cells. The transepithelial electrical resistance at the RKO-AS45-1 monolayer treated with everolimus started to decrease at 48 h. The changes in the gene expression and epithelial resistance may confirm the role of everolimus in EMT.
Collapse
Affiliation(s)
- Bryan Ôrtero Perez Gonçalves
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil
| | - Warne Pedro De Andrade
- Hematology and Oncology Nucleus, Grupo Oncoclinicas, Belo Horizonte, Minas Gerais 30140001, Brazil.,Department of Obstetrics and Gynecology, School of Medicine, São Paulo State University, Botucatu, São Paulo 18618687, Brazil
| | - Letícia Da Conceição Braga
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil
| | - Sílvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil
| | - Luciana Maria Silva
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil
| |
Collapse
|
13
|
Koumarianou A, Alexandraki KI, Wallin G, Kaltsas G, Daskalakis K. Pathogenesis and Clinical Management of Mesenteric Fibrosis in Small Intestinal Neuroendocine Neoplasms: A Systematic Review. J Clin Med 2020; 9:E1777. [PMID: 32521677 PMCID: PMC7357094 DOI: 10.3390/jcm9061777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenteric fibrosis (MF) constitutes an underrecognized sequela in patients with small intestinal neuroendocrine neoplasms (SI-NENs), often complicating the disease clinical course. The aim of the present systematic review, carried out by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, is to provide an update in evolving aspects of MF pathogenesis and its clinical management in SI-NENs. Complex and dynamic interactions are present in the microenvironment of tumor deposits in the mesentery. Serotonin, as well as the signaling pathways of certain growth factors play a pivotal, yet not fully elucidated role in the pathogenesis of MF. Clinically, MF often results in significant morbidity by causing either acute complications, such as intestinal obstruction and/or acute ischemia or more chronic conditions involving abdominal pain, venous stasis, malabsorption and malnutrition. Surgical resection in patients with locoregional disease only or symptomatic distant stage disease, as well as palliative minimally invasive interventions in advanced inoperable cases seem clinically meaningful, whereas currently available systemic and/or targeted treatments do not unequivocally affect the development of MF in SI-NENs. Increased awareness and improved understanding of the molecular pathogenesis of MF in SI-NENs may provide better diagnostic and predictive tools for its timely recognition and intervention and also facilitates the development of agents targeting MF.
Collapse
Affiliation(s)
- Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Krystallenia I. Alexandraki
- 1st Department of Propaedeutic Internal Medicine, Endocrine Unit, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (K.I.A.); (G.K.); (K.D.)
| | - Göran Wallin
- Department of Surgery, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden;
| | - Gregory Kaltsas
- 1st Department of Propaedeutic Internal Medicine, Endocrine Unit, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (K.I.A.); (G.K.); (K.D.)
| | - Kosmas Daskalakis
- 1st Department of Propaedeutic Internal Medicine, Endocrine Unit, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (K.I.A.); (G.K.); (K.D.)
- Department of Surgery, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden;
| |
Collapse
|
14
|
Kit OI, Trifanov VS, Petrusenko NA, Gvaldin DY, Kutilin DS, Timoshkina NN. Identification of new candidate genes and signalling pathways associated with the development of neuroendocrine pancreatic tumours based on next generation sequencing data. Mol Biol Rep 2020; 47:4233-4243. [PMID: 32451928 DOI: 10.1007/s11033-020-05534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Despite advances in classification, treatment, and imaging, neuroendocrine tumours remain a clinically complex subject. In this work, we studied the genetic profile of well-differentiated pancreatic neuroendocrine tumours (PanNETs) in a cohort of Caucasian patients and analysed the signalling pathways and candidate genes potentially associated with the development of this oncological disease. Twenty-four formalin-fixed paraffin-embedded (FFPE) samples of well-differentiated PanNETs were subjected to massive parallel sequencing using the targeted gene panel (409 genes) of the Illumina NextSeq 550 platform (San Diego, USA). In 24 patients, 119 variants were identified in 54 genes. The median mutation rate per patient was 5 (2.8-7). The detected genetic changes were dominated by missense mutations (67%) and nonsense mutations (29%). 18% of the mutations were activating, 35% of the variants led to a loss of function of the encoded protein, and 52% were not classified. Twenty-six variants were described as new. Functionally significant changes in the tertiary structure and activity of the protein molecules in an in silico assay were predicted for 5 new genetic variants. The 5 highest priority candidate genes were selected: CREB1, TCF12, PRKAR1A, BCL11A, and BUB1B. Genes carrying the identified mutations participate in signalling pathways known to be involved in PanNETs; in addition, 38% of the cases showed genetic changes in the regulation of the SMAD2/3 signalling pathway. Well-differentiated PanNETs in a Russian cohort demonstrate various molecular genetic features, including new genetic variations and potential driver genes. The highlighted molecular genetic changes in the SMAD2/3 signalling pathway suggest new prospects for targeted therapy.
Collapse
Affiliation(s)
- Oleg I Kit
- Department of Abdominal Oncology No. 1, Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - Vladimir S Trifanov
- Department of Abdominal Oncology No. 1, Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - Nataliya A Petrusenko
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| | - Dmitry Y Gvaldin
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037.
| | - Denis S Kutilin
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| | - Nataliya N Timoshkina
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| |
Collapse
|
15
|
Romano D. Relevance of neuroendocrine tumours models assessed by kinomic profiling. ANNALES D'ENDOCRINOLOGIE 2019; 80:144-148. [PMID: 31054767 DOI: 10.1016/j.ando.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although there is evidence of a significant rise of neuroendocrine tumours (NETs) incidence, current treatments are largely insufficient due to somewhat poor knowledge of these tumours. Despite many efforts achieved to expose driver oncogene mutations in NETs, the genetic landscape of NETs is characterized by relatively few mutations and chromosomal aberrations per tumour compared with other tumour types. In addition, NETs display few actionable mutations providing compelling rationale for targeted therapies. Recent works aiming at characterizing currently used NETs in vitro models at the genomic level raised concerns on their reliability as bona fide tools to study NETs biology. However, the lack of actionable mutation in NETs implies that sole use of genomic is not sufficient to describe these models and establish appropriate therapeutic strategies. Several kinases and kinase-involving signalling pathways have been demonstrated as abnormally regulated in NETs. Yet, kinases have only been investigated regardless of their involvement in large intracellular signalling networks. In order to assess the validity of in vitro NETs models to study NETs biology, "next-generation" high throughput functional technologies based on "kinome-wide activity" will demonstrate the similarities between signalling pathways in NETs models and patients' samples. These approaches will significantly assist in identifying actionable alterations in NETs signalling pathways and guide patient stratification into early-phase clinical trials based on kinase inhibition targeted therapies.
Collapse
Affiliation(s)
- David Romano
- Marseille Medical Genetics, MMG, U1251 Inserm, Aix-Marseille université, Marseille, France.
| |
Collapse
|
16
|
Modlin IM, Kidd M, Malczewska A, Drozdov I, Bodei L, Matar S, Chung KM. The NETest: The Clinical Utility of Multigene Blood Analysis in the Diagnosis and Management of Neuroendocrine Tumors. Endocrinol Metab Clin North Am 2018; 47:485-504. [PMID: 30098712 PMCID: PMC6716518 DOI: 10.1016/j.ecl.2018.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The neuroendocrine neoplasms test (NETest) is a multianalyte liquid biopsy that measures neuroendocrine tumor gene expression in blood. This unique signature precisely defines the biological activity of an individual tumor in real time. The assay meets the 3 critical requirements of an optimal biomarker: diagnostic accuracy, prognostic value, and predictive therapeutic assessment. NETest performance metrics are sensitivity and specificity and in head-to-head comparison are 4-fold to 10-fold more accurate than chromogranin A. NETest accurately identifies completeness of surgery and response to somatostatin analogs. Clinical registry data demonstrate significant clinical utility in watch/wait programs.
Collapse
Affiliation(s)
- Irvin M Modlin
- Gastroenterological and Endoscopic Surgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8062, USA.
| | - Mark Kidd
- Wren Laboratories, 35 NE Industrial Road, Branford, CT 06405, USA
| | - Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, ul. Ceglana 35, Katowice 40-514, Poland
| | - Ignat Drozdov
- Wren Laboratories, 35 NE Industrial Road, Branford, CT 06405, USA
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY 10065, USA
| | - Somer Matar
- Wren Laboratories, 35 NE Industrial Road, Branford, CT 06405, USA
| | - Kyung-Min Chung
- Wren Laboratories, 35 NE Industrial Road, Branford, CT 06405, USA
| |
Collapse
|
17
|
Aristizabal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 2018; 7:R1-R25. [PMID: 29146887 PMCID: PMC5754510 DOI: 10.1530/ec-17-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) system currently encompasses approved therapy with the mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low objective response rates and limited progression-free survival due to tumour resistance. Further novel strategies for molecular targeted therapy of NETs of the GEP system are needed. This paper reviews preclinical research models and signalling pathways in NETs of the GEP system. Preclinical and early clinical data on putative novel targets for molecular targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/mTORC2, GSK3, c-Met, Ras-Raf-MEK-ERK, embryogenic pathways (Hedgehog, Notch, Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- E T Aristizabal Prada
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
18
|
Feng XL, Fei HZ, Hu L. Dexamethasone induced apoptosis of A549 cells via the TGF-β1/Smad2 pathway. Oncol Lett 2017; 15:2801-2806. [PMID: 29435007 PMCID: PMC5778831 DOI: 10.3892/ol.2017.7696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Lung cancers are the most commonly diagnosed malignant tumors, and are one of the leading causes of morbidity and mortality worldwide. Dexamethasone (DEX) serves an important function in the regulation of lung cancer cell proliferation; however, the mechanisms involved still remain unknown. In the present study, the effects of DEX on A549 cell proliferation and apoptosis were examined, in addition to the potential downstream regulatory mechanisms underlying these effects. A549 cells were treated with different concentrations of DEX at 12, 24 and 48 h time points, followed by the addition of SB431542, an inhibitor of the TGF-β1 receptor, to block the TGF-β1 signaling pathway. Cell proliferation was analyzed using a 3-(4,5-diethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt. The apoptosis rate was measured by Hoechst 33342 and Annexin V/propidium iodide staining and the expression of transforming growth factor (TGF)-β1, Smad family member 2 (Smad2) and caspase-3 were assessed by western blot. The results from the present study demonstrated that the proliferation of A549 cells decreased and the apoptosis rate significantly increased following DEX treatment (P<0.05). Furthermore, the expression of TGF-β1, Smad2 and caspase-3 were significantly increased following DEX stimulation (P<0.05), the effects of which were abrogated by the addition of the TGF-β1 receptor inhibitor, SB431542 (P<0.05). DEX-induced apoptosis in A549 cells, and this effect was abrogated by SB431542, an inhibitor of TGF-β1 receptor signaling, which indicated that the TGF-β1/Smad2 pathway may be associated with this process and SB431542 may function as an antitumor drug in the future.
Collapse
Affiliation(s)
- Xiao-Ling Feng
- Department of Anatomy, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| | - Hui-Zhi Fei
- Department of Pharmacology, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| | - Ling Hu
- Department of Pathology, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| |
Collapse
|
19
|
Wei YL, Bai JA, He N, Tang QY. Tumor microenvironment of gastroenteropancreatic neuroendocrine neoplasms. Shijie Huaren Xiaohua Zazhi 2017; 25:2896-2905. [DOI: 10.11569/wcjd.v25.i32.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment provides a unique environment for tumor development, where the biology behavior of tumor cells is regulated not only by their genetics but also by the surrounding environment. Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) originating from the neuroendocrine cells of the gastroenteropancreatic system are characterized by a propensity to secrete a variety of peptide hormones and biogenic amines. The symptoms of GEP-NENs at early stages are often atypical, thus delaying the diagnosis. A further understanding of the pathobiology of GEP-NENs on the basis of studies on GEP-NENs tumor microenvironment can provide new evidence for clinical diagnosis and treatment. This review aims to introduce different cell types, several proteins involved in extracellular matrix remodeling, some growth factors, and chromogranin A (CgA) in the tumor microenvironment of GEP-NENs, in order to highlight their indispensable roles in GEP-NENs progression.
Collapse
Affiliation(s)
- Ya-Ling Wei
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jian-An Bai
- Department of Gastroenterology, the Third Affiliated Hospital of Nanjing Medical University, Nanjing 211100, Jiangsu Province, China
| | - Na He
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qi-Yun Tang
- Department of General Practice, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
20
|
Laskaratos F, Rombouts K, Caplin M, Toumpanakis C, Thirlwell C, Mandair D. Neuroendocrine tumors and fibrosis: An unsolved mystery? Cancer 2017; 123:4770-4790. [DOI: 10.1002/cncr.31079] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/02/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free HospitalLondon United Kingdom
| | - Martyn Caplin
- Neuroendocrine Tumour Unit, ENETS Centre of ExcellenceRoyal Free HospitalLondon United Kingdom
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit, ENETS Centre of ExcellenceRoyal Free HospitalLondon United Kingdom
| | - Christina Thirlwell
- Neuroendocrine Tumour Unit, ENETS Centre of ExcellenceRoyal Free HospitalLondon United Kingdom
- University College London Cancer InstituteUniversity College LondonLondon United Kingdom
| | - Dalvinder Mandair
- Neuroendocrine Tumour Unit, ENETS Centre of ExcellenceRoyal Free HospitalLondon United Kingdom
| |
Collapse
|
21
|
Pavel ME, Sers C. WOMEN IN CANCER THEMATIC REVIEW: Systemic therapies in neuroendocrine tumors and novel approaches toward personalized medicine. Endocr Relat Cancer 2016; 23:T135-T154. [PMID: 27649723 DOI: 10.1530/erc-16-0370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Neuroendocrine tumors (NETs) are a group of heterogenous neoplasms. Evidence-based treatment options for antiproliferative therapy include somatostatin analogues, the mTOR inhibitor everolimus, the multiple tyrosine kinase inhibitor sunitinib and peptide receptor radionuclide therapy with 177-Lu-octreotate. In the absence of definite predictive markers, therapeutic decision making follows clinical and pathological criteria. As objective response rates with targeted drugs are rather low, and response duration is limited in most patients, numerous combination therapies targeting multiple pathways have been explored in the field. Upfront combination of drugs, however, is associated with increasing toxicity and has shown little benefit. Major advancements in the molecular understanding of NET based on genomic, epigenomic and transcriptomic analysis have been achieved with prognostic and therapeutic impact. New insight into molecular alterations has paved the way to biomarker-driven clinical trials and may facilitate treatment stratification toward personalized medicine in the near future. However, an improved understanding of the complexity of pathway interactions is required for successful treatment. A systems biology approach is one of the tools that may help to achieve this endeavor.
Collapse
Affiliation(s)
- Marianne E Pavel
- Medical DepartmentDivision of Hepatology and Gastroenterology including Metabolic Diseases, Campus Virchow Klinikum, Charité University Medicine, Berlin, Germany
| | - Christine Sers
- Institute of PathologyCharité University Medicine, Berlin, Germany
| |
Collapse
|
22
|
Xavier S, Rosa B, Cotter J. Small bowel neuroendocrine tumors: From pathophysiology to clinical approach. World J Gastrointest Pathophysiol 2016; 7:117-124. [PMID: 26909234 PMCID: PMC4753177 DOI: 10.4291/wjgp.v7.i1.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/09/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine tumors (NETs), defined as epithelial tumors with predominant neuroendocrine differentiation, are among the most frequent types of small bowel neoplasm. They represent a rare, slow-growing neoplasm with some characteristics common to all forms and others attributable to the organ of origin. The diagnosis of this subgroup of neoplasia is not usually straight-forward for several reasons. Being a rare form of neoplasm they are frequently not readily considered in the differential diagnosis. Also, clinical manifestations are nonspecific lending the clinician no clue that points directly to this entity. However, the annual incidence of NETs has risen in the last years to 40 to 50 cases per million probably not due to a real increase in incidence but rather due to better diagnostic tools that have become progressively available. Being a rare malignancy, investigation regarding its pathophysiology and efforts toward better understanding and classification of these tumors has been limited until recently. Clinical societies dedicated to this matter are emerging (NANETS, ENETS and UKINETS) and several guidelines were published in an effort to standardize the nomenclature, grading and staging systems as well as diagnosis and management of NETs. Also, some investigation on the genetic behavior of small bowel NETs has been recently released, shedding some light on the pathophysiology of these tumors, and pointing some new directions on the possible treating options. In this review we focus on the current status of the overall knowledge about small bowel NETs, focusing on recent breakthroughs and its potential application on clinical practice.
Collapse
|
23
|
Liu IH, Ford JM, Kunz PL. DNA-repair defects in pancreatic neuroendocrine tumors and potential clinical applications. Cancer Treat Rev 2015; 44:1-9. [PMID: 26924193 DOI: 10.1016/j.ctrv.2015.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The role of DNA repair in pathogenesis and response to treatment is not well understood in pancreatic neuroendocrine tumors (pNETs). However, the existing literature reveals important preliminary trends and targets in the genetic landscape of pNETs. Notably, pNETs have been shown to harbor defects in the direct reversal MGMT gene and the DNA mismatch repair genes, suggesting that these genes may be strong candidates for further prospective studies. METHODS PubMed searches were conducted for original studies assessing the DNA repair genes MGMT and MMR in pNETs, as well as for PTEN and MEN1, which are not directly DNA repair genes but are involved in DNA repair pathways. Searches were specific to pNETs, yielding five original studies on MGMT and four on MMR. Six original papers studied PTEN in pNETs. Five studied MEN1 in pNETs, and two others implicated MEN1 in DNA repair processes. RESULTS The five studies on MGMT in pNET tumor samples found MGMT loss of between 24% and 51% of tumor samples by IHC staining and between 0% and 40% by promoter hypermethylation, revealing discrepancies in methods assessing MGMT expression as well as potential weaknesses in the correlation between MGMT IHC expression and promoter hypermethylation rates. Four studies on MMR in pNET tumor samples indicated similar ambiguities, as promoter hypermethylation of the MLH1 MMR gene ranged from 0% to 31% of pNETs, while IHC staining revealed loss of MMR genes in between 0% and 36% of pNETs sampled. Studies also indicated that PTEN and MEN1 are commonly mutated or underexpressed genes in pNETs, although frequency of mutation or loss of expression was again variable among different studies. CONCLUSION Further studies are essential in determining a more thorough repertoire of DNA repair defects in pNETs and the clinical significance of these defects. This literature review synthesises the existing knowledge of relevant DNA repair pathways and studies of the specific genes that carry out these repair mechanisms in pNETs.
Collapse
Affiliation(s)
| | - James M Ford
- Stanford University School of Medicine, United States
| | - Pamela L Kunz
- Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305-5826, United States.
| |
Collapse
|
24
|
Bai JA, Hu YL, Tang QY. Advances in clinical and basic research of gastroentero-pancreatic neuroendocrine neoplasms. Shijie Huaren Xiaohua Zazhi 2015; 23:2913-2919. [DOI: 10.11569/wcjd.v23.i18.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastroentero-pancreatic neuroendocrine neoplasms (GEP-NENs) are a group of relatively rare tumors, which mainly originate from the peptidergic neuron and neuroendocrine cells of the gastroentero-pancreatic system. They are characterized by secretion of peptide hormones and neuroendocrine markers (such as synaptic vesicle proteins and chromaffin granule A). Surgery is the most effective therapy for GEP-NENs at early stages. For GEP-NENs at progressive stages, biological target therapies have aroused great interest. Current studies about the molecular basis of biological target therapies have focused on the GEP-NEN gene mutations and related signaling pathways. These studies have led to the clinical application with significant progress in GEP-NEN treatment. In this paper, we review the recent advances in the clinical and basic research of GEP-NENs.
Collapse
|
25
|
Kidd M, Modlin IM, Bodei L, Drozdov I. Decoding the Molecular and Mutational Ambiguities of Gastroenteropancreatic Neuroendocrine Neoplasm Pathobiology. Cell Mol Gastroenterol Hepatol 2015; 1:131-153. [PMID: 28210673 PMCID: PMC5301133 DOI: 10.1016/j.jcmgh.2014.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), considered a heterogeneous neoplasia, exhibit ill-defined pathobiology and protean symptomatology and are ubiquitous in location. They are difficult to diagnose, challenging to manage, and outcome depends on cell type, secretory product, histopathologic grading, and organ of origin. A morphologic and molecular genomic review of these lesions highlights tumor characteristics that can be used clinically, such as somatostatin-receptor expression, and confirms features that set them outside the standard neoplasia paradigm. Their unique pathobiology is useful for developing diagnostics using somatostatin-receptor targeted imaging or uptake of radiolabeled amino acids specific to secretory products or metabolism. Therapy has evolved via targeting of protein kinase B signaling or somatostatin receptors with drugs or isotopes (peptide-receptor radiotherapy). With DNA sequencing, rarely identified activating mutations confirm that tumor suppressor genes are relevant. Genomic approaches focusing on cancer-associated genes and signaling pathways likely will remain uninformative. Their uniquely dissimilar molecular profiles mean individual tumors are unlikely to be easily or uniformly targeted by therapeutics currently linked to standard cancer genetic paradigms. The prevalence of menin mutations in pancreatic NEN and P27KIP1 mutations in small intestinal NEN represents initial steps to identifying a regulatory commonality in GEP-NEN. Transcriptional profiling and network-based analyses may define the cellular toolkit. Multianalyte diagnostic tools facilitate more accurate molecular pathologic delineations of NEN for assessing prognosis and identifying strategies for individualized patient treatment. GEP-NEN remain unique, poorly understood entities, and insight into their pathobiology and molecular mechanisms of growth and metastasis will help identify the diagnostic and therapeutic weaknesses of this neoplasia.
Collapse
Key Words
- 5-HT, serotonin, 5-hydroxytryptamine
- Akt, protein kinase B
- BRAF, gene encoding serine/threonine-protein kinase B-Raf
- Blood
- CGH, comparative genomic hybridization
- CREB, cAMP response element-binding protein
- Carcinoid
- CgA, chromogranin A
- D cell, somatostatin
- DAG, diacylglycerol
- EC, enterochromaffin
- ECL, enterochromaffin-like
- EGFR, epidermal growth factor receptor
- ERK, extracellular-signal-regulated kinase
- G cell, gastrin
- GABA, γ-aminobutyric acid
- GEP-NEN, gastroenteropancreatic neuroendocrine neoplasms
- GPCR, G-protein coupled receptor
- Gastroenteropancreatic Neuroendocrine Neoplasms
- IGF-I, insulin-like growth factor-I
- ISG, immature secretory vesicles
- Ki-67
- LOH, loss of heterozygosity
- MAPK, mitogen-activated protein kinase
- MEN-1/MEN1, multiple endocrine neoplasia type 1
- MSI, microsatellite instability
- MTA, metastasis associated-1
- NEN, neuroendocrine neoplasms
- NFκB, nuclear factor κB
- PET, positron emission tomography
- PI3, phosphoinositide-3
- PI3K, phosphoinositide-3 kinase
- PKA, protein kinase A
- PKC, protein kinase C
- PTEN, phosphatase and tensin homolog deleted on chromosome 10
- Proliferation
- SD-208, 2-(5-chloro-2-fluorophenyl)-4-[(4-pyridyl)amino]p-teridine
- SNV, single-nucleotide variant
- SSA, somatostatin analog
- SST, somatostatin
- Somatostatin
- TGF, transforming growth factor
- TGN, trans-Golgi network
- TSC2, tuberous sclerosis complex 2 (tuberin)
- Transcriptome
- VMAT, vesicular monoamine transporters
- X/A-like cells, ghrelin
- cAMP, adenosine 3′,5′-cyclic monophosphate
- mTOR, mammalian target of rapamycin
- miR/miRNA, micro-RNA
Collapse
Affiliation(s)
| | - Irvin M. Modlin
- Correspondence Address correspondence to: Irvin M. Modlin, MD, PhD, The Gnostic Consortium, Wren Laboratories, 35 NE Industrial Road, Branford, Connecticut, 06405.
| | | | | |
Collapse
|
26
|
Meeker A, Heaphy C. Gastroenteropancreatic endocrine tumors. Mol Cell Endocrinol 2014; 386:101-20. [PMID: 23906538 DOI: 10.1016/j.mce.2013.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023]
Abstract
Gastroenteropancreatic endocrine tumors (GEP-NETs) are relatively uncommon; comprising approximately 0.5% of all human cancers. Although they often exhibit relatively indolent clinical courses, GEP-NETs have the potential for lethal progression. Due to their scarcity and various technical challenges, GEP-NETs have been understudied. As a consequence, we have few diagnostic, prognostic and predictive biomarkers for these tumors. Early detection and surgical removal is currently the only reliable curative treatment for GEP-NET patients; many of whom, unfortunately, present with advanced disease. Here, we review the genetics and epigenetics of GEP-NETs. The last few years have witnessed unprecedented technological advances in these fields, and their application to GEP-NETS has already led to important new information on the molecular abnormalities underlying them. As outlined here, we expect that "omics" studies will provide us with new diagnostic and prognostic biomarkers, inform the development of improved pre-clinical models, and identify novel therapeutic targets for GEP-NET patients.
Collapse
Affiliation(s)
- Alan Meeker
- The Johns Hopkins University School of Medicine, Department of Pathology, Bond Street Research Annex Bldg., Room B300, 411 North Caroline Street, Baltimore, MD 21231, United States.
| | - Christopher Heaphy
- The Johns Hopkins University School of Medicine, Department of Pathology, Bond Street Research Annex Bldg., Room B300, 411 North Caroline Street, Baltimore, MD 21231, United States
| |
Collapse
|
27
|
Frilling A, Modlin IM, Kidd M, Russell C, Breitenstein S, Salem R, Kwekkeboom D, Lau WY, Klersy C, Vilgrain V, Davidson B, Siegler M, Caplin M, Solcia E, Schilsky R. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol 2014; 15:e8-21. [PMID: 24384494 DOI: 10.1016/s1470-2045(13)70362-0] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many management strategies exist for neuroendocrine liver metastases. These strategies range from surgery to ablation with various interventional radiology procedures, and include both regional and systemic therapy with diverse biological, cytotoxic, or targeted agents. A paucity of biological, molecular, and genomic information and an absence of data from rigorous trials limit the validity of many publications detailing management. This Review represents the views from an international conference, for which 15 expert working groups prepared evidence-based assessments addressing specific questions, and from which an independent jury derived final recommendations. The aim of the conference was to review the existing approaches to neuroendocrine liver metastases, assess the evidence on which management decisions were based, develop internationally acceptable recommendations for clinical practice (when evidence was available), and make recommendations for clinical and research endeavours. This report represents the final clinical statements and proposals for future research.
Collapse
Affiliation(s)
| | | | - Mark Kidd
- Yale University, New Haven, Connecticut, USA
| | | | | | - Riad Salem
- Northwestern University Chicago, Chicago, USA
| | | | - Wan-yee Lau
- Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | - Martyn Caplin
- University College London, London, UK; Royal Free Hospital, London, UK
| | - Enrico Solcia
- IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | | | |
Collapse
|
28
|
Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, Zhang L, Thorland EC, Minn KT, Tentu R, Eckloff BW, Wieben ED, Wu Y, Cunningham JM, Nagorney DM, Gilbert JA, Ames MM, Beutler AS. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest 2013; 123:2502-8. [PMID: 23676460 DOI: 10.1172/jci67963] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/22/2013] [Indexed: 12/12/2022] Open
Abstract
Small intestine neuroendocrine tumors (SI-NETs) are the most common malignancy of the small bowel. Several clinical trials target PI3K/Akt/mTOR signaling; however, it is unknown whether these or other genes are genetically altered in these tumors. To address the underlying genetics, we analyzed 48 SI-NETs by massively parallel exome sequencing. We detected an average of 0.1 somatic single nucleotide variants (SNVs) per 106 nucleotides (range, 0-0.59), mostly transitions (C>T and A>G), which suggests that SI-NETs are stable cancers. 197 protein-altering somatic SNVs affected a preponderance of cancer genes, including FGFR2, MEN1, HOOK3, EZH2, MLF1, CARD11, VHL, NONO, and SMAD1. Integrative analysis of SNVs and somatic copy number variations identified recurrently altered mechanisms of carcinogenesis: chromatin remodeling, DNA damage, apoptosis, RAS signaling, and axon guidance. Candidate therapeutically relevant alterations were found in 35 patients, including SRC, SMAD family genes, AURKA, EGFR, HSP90, and PDGFR. Mutually exclusive amplification of AKT1 or AKT2 was the most common event in the 16 patients with alterations of PI3K/Akt/mTOR signaling. We conclude that sequencing-based analysis may provide provisional grouping of SI-NETs by therapeutic targets or deregulated pathways.
Collapse
Affiliation(s)
- Michaela S Banck
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|