1
|
Hinze C, Lovric S, Halloran PF, Barasch J, Schmidt-Ott KM. Epithelial cell states associated with kidney and allograft injury. Nat Rev Nephrol 2024; 20:447-459. [PMID: 38632381 DOI: 10.1038/s41581-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
The kidney epithelium, with its intricate arrangement of highly specialized cell types, constitutes the functional core of the organ. Loss of kidney epithelium is linked to the loss of functional nephrons and a subsequent decline in kidney function. In kidney transplantation, epithelial injury signatures observed during post-transplantation surveillance are strong predictors of adverse kidney allograft outcomes. However, epithelial injury is currently neither monitored clinically nor addressed therapeutically after kidney transplantation. Several factors can contribute to allograft epithelial injury, including allograft rejection, drug toxicity, recurrent infections and postrenal obstruction. The injury mechanisms that underlie allograft injury overlap partially with those associated with acute kidney injury (AKI) and chronic kidney disease (CKD) in the native kidney. Studies using advanced transcriptomic analyses of single cells from kidney or urine have identified a role for kidney injury-induced epithelial cell states in exacerbating and sustaining damage in AKI and CKD. These epithelial cell states and their associated expression signatures are also observed in transplanted kidney allografts, suggesting that the identification and characterization of transcriptomic epithelial cell states in kidney allografts may have potential clinical implications for diagnosis and therapy.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan Barasch
- Division of Nephrology, Columbia University, New York City, NY, USA
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Endo A, Hirose T, Sato S, Ito H, Takahashi C, Ishikawa R, Kamada A, Oba-Yabana I, Kimura T, Takahashi K, Mori T. Sodium glucose cotransporter 2 inhibitor suppresses renal injury in rats with renal congestion. Hypertens Res 2024; 47:33-45. [PMID: 37749334 PMCID: PMC10766540 DOI: 10.1038/s41440-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
Renal congestion is an issue of cardiorenal syndrome in patients with heart failure. Recent clinical and basic studies suggest a renoprotective potential of sodium-glucose cotransporter (SGLT) 2 inhibitors. However, the effect on renal congestion and its mechanism is not fully understood. Thus, we aimed to clarify the effect of SGLT inhibition in a renal congestion model. Renal congestion was induced in the left kidney of male Sprague-Dawley rats by ligation of the inferior vena cava between the renal veins. The SGLT2 inhibitor tofogliflozin or vehicle was orally administered daily from the day before IVC ligation until two days after surgery. On the third postoperative day, both the right control kidney and the left congested kidney were harvested and analyzed. Kidney weight and water content was increased, and renal injury and fibrosis were observed in the left congested kidney. Kidney weight gain and hydration were improved with tofogliflozin treatment. Additionally, this treatment effectively reduced renal injury and fibrosis, particularly in the renal cortex. SGLT2 expression was observed in the congested kidney, but suppressed in the damaged tubular cells. Molecules associated with inflammation were increased in the congested kidney and reversed by tofogliflozin treatment. Mitochondrial dysfunction provoked by renal congestion was also improved by tofogliflozin treatment. Tofogliflozin protects against renal damage induced by renal congestion. SGLT2 inhibitors could be a candidate strategy for renal impairment associated with heart failure.
Collapse
Affiliation(s)
- Akari Endo
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Shigemitsu Sato
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroki Ito
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chika Takahashi
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Risa Ishikawa
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ayaka Kamada
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ikuko Oba-Yabana
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoyoshi Kimura
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takefumi Mori
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| |
Collapse
|
3
|
Silver SV, Popovics P. The Multifaceted Role of Osteopontin in Prostate Pathologies. Biomedicines 2023; 11:2895. [PMID: 38001899 PMCID: PMC10669591 DOI: 10.3390/biomedicines11112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The prostate gland, located beneath the bladder and surrounding the proximal urethra in men, plays a vital role in reproductive physiology and sexual health. Despite its importance, the prostate is vulnerable to various pathologies, including prostatitis, benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Osteopontin (OPN), a versatile protein involved in wound healing, inflammatory responses, and fibrotic diseases, has been implicated in all three prostate conditions. The role of OPN in prostatic pathophysiology, affecting both benign and malignant prostate conditions, is significant. Current evidence strongly suggests that OPN is expressed at a higher level in prostate cancer and promotes tumor progression and aggressiveness. Conversely, OPN is primarily secreted by macrophages and foam cells in benign prostate conditions and provokes inflammation and fibrosis. This review discusses the accumulating evidence on the role of OPN in prostatic diseases, cellular sources, and potential roles while also highlighting areas for future investigations.
Collapse
Affiliation(s)
- Samara V. Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
4
|
Osteopontin—A Potential Biomarker for IgA Nephropathy: Machine Learning Application. Biomedicines 2022; 10:biomedicines10040734. [PMID: 35453484 PMCID: PMC9025015 DOI: 10.3390/biomedicines10040734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Many potential biomarkers in nephrology have been studied, but few are currently used in clinical practice. One is osteopontin (OPN). We compared urinary OPN concentrations in 80 participants: 67 patients with various biopsy-proven glomerulopathies (GNs)—immunoglobulin A nephropathy (IgAN, 29), membranous nephropathy (MN, 20) and lupus nephritis (LN, 18) and 13 with no GN. Follow-up included 48 participants. Machine learning was used to correlate OPN with other factors to classify patients by GN type. The resulting algorithm had an accuracy of 87% in differentiating IgAN from other GNs using urinary OPN levels only. A lesser effect for discriminating MN and LN was observed. However, the lower number of patients and the phenotypic heterogeneity of MN and LN might have affected those results. OPN was significantly higher in IgAN at baseline than in other GNs and therefore might be useful for identifying patients with IgAN. That observation did not apply to either patients with IgAN at follow-up or to patients with other GNs. OPN seems to be a valuable biomarker and should be validated in future studies. Machine learning is a powerful tool that, compared with traditional statistical methods, can be also applied to smaller datasets.
Collapse
|
5
|
Mohan T, Narasimhan KKS, Ravi DB, Velusamy P, Chandrasekar N, Chakrapani LN, Srinivasan A, Karthikeyan P, Kannan P, Tamilarasan B, Johnson T, Kalaiselvan P, Periandavan K. Role of Nrf2 dysfunction in the pathogenesis of diabetic nephropathy: Therapeutic prospect of epigallocatechin-3-gallate. Free Radic Biol Med 2020; 160:227-238. [PMID: 32768570 DOI: 10.1016/j.freeradbiomed.2020.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Diabetic nephropathy (DN), a progressive kidney disease afflicts more than 20 and up to 40% of the diabetic population and it is characterized by persistent microalbuminuria declined glomerular filtration rate. The interesting feature associated with DN is that, even though the progression of the disease correlates with oxidative stress, Nrf2, the master regulator of antioxidant defense system involved in counteracting oxidative stress is also upregulated in the diabetic kidneys of both human as well as experimental animals in early stages of DN. Despite the increased expression, the ability of this protein to get translocated into the nucleus is diminished signifying the functional impairment of Nrf2, implying redox imbalance. Hence, it is understood that agents that boost the translocation of Nrf2 might be beneficial rather than those that quantitatively overexpress Nrf2 in treating DN. The deleterious effects of synthetic Nrf2 activators have instigated the researchers to search for phytochemicals that have ambient Nrf2 boosting ability with no side effects, one such phytochemical is Epigallocatechin-3-gallate (EGCG) and it has shown beneficial effects by preventing the progression of DN via influencing Nrf2/ARE pathway, however, the modus operandi is unclear, despite speculations. This study was designed to find out whether supplementation of Nrf2 booster like EGCG at the crucial time of Nrf2 dysfunction can mitigate the progression of DN. Based on the findings of the present study, it might be concluded that the beneficial effect of EGCG in mitigating DN is mediated mainly through its ability to activate the Nrf2/ARE signaling pathway at multiple stages i.e., by downregulating Keap1 and boosting the nuclear Nrf2 level by disrupting Nrf2-Keap1 interaction. These results emphasize that supplementation of EGCG might be more beneficial at an early stage of DN, where dysfunctional Nrf2 accumulation occurs, which should be further validated.
Collapse
Affiliation(s)
- Thangarajeswari Mohan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Kishore Kumar S Narasimhan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Divya Bhavani Ravi
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Prema Velusamy
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Navvi Chandrasekar
- Department of Biochemistry, University of Madras, Guindy, Chennai, 600025, India
| | | | - Ashokkumar Srinivasan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Porkodi Karthikeyan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Pugazhendhi Kannan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Bhavani Tamilarasan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India
| | - Thanka Johnson
- Department of Pathology, Sri Ramachandra University, Chennai, 600116, India
| | | | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, University of Madras, Taramani, Chennai, 600113, India.
| |
Collapse
|
6
|
Zhang Y, Li W, Zhou Y. Identification of hub genes in diabetic kidney disease via multiple-microarray analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:997. [PMID: 32953797 PMCID: PMC7475500 DOI: 10.21037/atm-20-5171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease; however, the underlying molecular mechanisms remain unclear. Recently, bioinformatics analysis has provided a comprehensive insight toward the molecular mechanisms of DKD. Here, we re-analyzed three mRNA microarray datasets including a single-cell RNA sequencing (scRNA-seq) dataset, with the aim of identifying crucial genes correlated with DKD and contribute to a better understanding of DKD pathogenesis. Methods Three datasets including GSE131882, GSE30122, and GSE30529 were utilized to find differentially expressed genes (DEGs). The potential functions of DEGs were analyzed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A protein-protein interaction (PPI) network was constructed, and hub genes were selected with the top three molecular complex detection (MCODE) score. A correlation analysis between hub genes and clinical indicators was also performed. Results In total, 84 upregulated DEGs and 49 downregulated DEGs were identified. Enriched pathways of the upregulated DEGs included extracellular matrix (ECM) receptor interaction, focal adhesion, human papillomavirus infection, malaria, and cell adhesion molecules. The downregulated DEGs were mainly enriched in ascorbate and aldarate metabolism, arginine and proline metabolism, endocrine- and other factor-regulated calcium reabsorption, mineral absorption and longevity regulating pathway, and multiple species signaling pathway. Seventeen hub genes were identified, and correlation analysis between unexplored hub genes and clinical features of DKD suggested that EGF, KNG1, GADD45B, and CDH2 might have reno-protective roles in DKD. Meanwhile, ATF3, B2M, VCAM1, CLDN4, SPP1, SOX9, JAG1, C3, and CD24 might promote the progression of DKD. Finally, most hub genes were found present in the immune cells of diabetic kidneys, which suggest the important role of inflammation infiltration in DKD pathogenesis. Conclusions In this study, we found seventeen hub genes using a scRNA-seq contained multiple-microarray analysis, which enriched the present understanding of molecular mechanisms underlying the pathogenesis of DKD in cells' level and provided candidate targets for diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Wei Li
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China.,Suzhou Hospital Affiliated To Anhui Medical University, Suzhou, China
| | - Yunting Zhou
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China.,Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Popovics P, Awadallah WN, Kohrt SE, Case TC, Miller NL, Ricke EA, Huang W, Ramirez-Solano M, Liu Q, Vezina CM, Matusik RJ, Ricke WA, Grabowska MM. Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia. Prostate 2020; 80:731-741. [PMID: 32356572 PMCID: PMC7485377 DOI: 10.1002/pros.23986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a proinflammatory and profibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to proinflammatory stimuli and identified downstream targets of OPN in prostate stromal cells. METHODS Immunohistochemistry was performed on prostate sections obtained from the transition zone of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS (surgical BPH, S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging System and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot analysis. The ability of prostate cells to secrete osteopontin in response to IL-1β and TGF-β1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by enzyme-linked immunosorbent assay. Quantitative polymerase chain reaction was used to measure gene expression changes in these cells in response to OPN. RESULTS OPN immunostaining and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with the highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-β1 stimulated OPN secretion by NHPrE-1 cells and both IL-1β and TGF-β1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1, CXCL2, CXCL8, PTGS2, and IL6 in BHPrS-1, but not in epithelial cell lines. CONCLUSIONS OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by proinflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of proinflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Address correspondence and reprint requests to: Petra Popovics, University of Wisconsin, Department of Urology, WIMR 7128, 1111 Highland Avenue, Madison, WI 53705, Tel: +1 786 474 1086,
| | - Wisam N. Awadallah
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Sarah E. Kohrt
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Thomas C. Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Nicole L. Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Emily A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | | | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Chad M. Vezina
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Comparative Biosciences, University of Wisconsin–Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin–Madison, WI
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Magdalena M. Grabowska
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
8
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Song MK, Kim DI, Lee K. Time-course transcriptomic alterations reflect the pathophysiology of polyhexamethylene guanidine phosphate-induced lung injury in rats. Inhal Toxicol 2020; 31:457-467. [PMID: 31971030 DOI: 10.1080/08958378.2019.1707912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: Humidifier-disinfectant-induced lung injury is a new syndrome associated with a high mortality rate and characterized by severe hypersensitivity pneumonitis, acute interstitial pneumonia, or acute respiratory distress syndrome. Polyhexamethylene guanidine phosphate (PHMG-P), a guanidine-based antimicrobial agent, is a major component associated with severe lung injury. In-depth studies are needed to determine how PHMG-P affects pathogenesis at the molecular level. Therefore, in this study, we analyzed short-term (4 weeks) and long-term (10 weeks) PHMG-P-exposure-specific gene-expression patterns in rats to improve our understanding of time-dependent changes in fibrosis.Materials and methods: Gene-expression profiles were analyzed in rat lung tissues using DNA microarrays and bioinformatics tools.Results: Clustering analysis of gene-expression data showed different gene-alteration patterns in the short- and long-term exposure groups and higher sensitivity to gene-expression changes in the long-term exposure group than in the short-term exposure group. Supervised analysis revealed 34 short-term and 335 long-term exposure-specific genes, and functional analysis revealed that short-term exposure-specific genes were involved in PHMG-P-induced initial inflammatory responses, whereas long-term exposure-specific genes were involved in PHMG-P-related induction of chronic lung fibrosis.Conclusion: The results of transcriptomic analysis were consistent with lung histopathology results. These findings indicated that exposure-time-specific changes in gene expression closely reflected time-dependent pathological changes in PHMG-P-induced lung injury.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Cobbs A, Ballou K, Chen X, George J, Zhao X. Saturated fatty acids bound to albumin enhance osteopontin expression and cleavage in renal proximal tubular cells. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2018; 10:29-38. [PMID: 29593848 PMCID: PMC5871627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Osteopontin (OPN) is one of the proinflammatory cytokines upregulated in the kidneys of diabetic animals and patients with nephropathy. An increase in urinary albumin and albumin-bound fatty acids (FA) presents a proinflammatory environment to the proximal tubules in proteinuric kidney diseases including diabetic nephropathy. This study was designed to examine if FA overload could stimulate OPN expression and cleavage in renal tubule epithelial cells. OPN gene and protein expression was examined in the kidney of Zucker diabetic (ZD) rats and cultured proximal tubular cells exposed to either bovine serum albumin (BSA) or BSA conjugated with palmitic acid (PA), the most abundant saturated plasma FA. Real-time PCR analysis confirmed an upregulation of renal cortical OPN gene correlated with albuminuria and nephropathy progression in ZD rats at the age of 7-20 weeks. Immunofluorescence staining of kidney sections revealed a massive induction of OPN protein in albumin-overloaded proximal tubules of ZD rats. A significant increase in both intact and cleaved OPN proteins was further demonstrated in the diabetic kidney and urine samples, which was attenuated by antiproteinuric treatment with losartan, an angiotensin II receptor blocker. When exposed to fatty acid-free BSA, NRK-52E cells exhibited an increase in protein levels of full-length and cleaved OPN. Moreover, the increase in OPN fragments was greatly enhanced in the presence of PA (250-500 µM). Together, our results support a stimulatory effect of albumin and conjugated FA on OPN expression and cleavage in renal tubule epithelial cells. Thus, besides lowering albuminuria/proteinuria, mitigating circulating FAs may be an effective intervention for preventing and slowing down the progression of nephropathy associated with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Alyssa Cobbs
- Department of Physiology, Morehouse School of MedicineAtlanta 30310, GA, USA
| | - Kristopher Ballou
- Department of Physiology, Morehouse School of MedicineAtlanta 30310, GA, USA
| | - Xiaoming Chen
- Department of Physiology, Morehouse School of MedicineAtlanta 30310, GA, USA
| | - Jasmine George
- Department of Physiology, Morehouse School of MedicineAtlanta 30310, GA, USA
| | - Xueying Zhao
- Department of Physiology, Morehouse School of MedicineAtlanta 30310, GA, USA
| |
Collapse
|
11
|
White ES, Xia M, Murray S, Dyal R, Flaherty CM, Flaherty KR, Moore BB, Cheng L, Doyle TJ, Villalba J, Dellaripa PF, Rosas IO, Kurtis JD, Martinez FJ. Plasma Surfactant Protein-D, Matrix Metalloproteinase-7, and Osteopontin Index Distinguishes Idiopathic Pulmonary Fibrosis from Other Idiopathic Interstitial Pneumonias. Am J Respir Crit Care Med 2017; 194:1242-1251. [PMID: 27149370 DOI: 10.1164/rccm.201505-0862oc] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal interstitial lung disease (ILD) characterized by abnormal extracellular matrix (ECM) remodeling. We hypothesized that ECM remodeling might result in a plasma profile of proteins specific for IPF that could distinguish patients with IPF from other idiopathic ILDs. OBJECTIVES To identify biomarkers that might assist in distinguishing IPF from non-IPF ILD. METHODS We developed a panel of 35 ECM, ECM-related, and lung-specific analytes measured in plasma from 86 patients with IPF (derivation cohort) and in 63 patients with IPF (validation cohort). Comparison groups included patients with rheumatoid arthritis-associated ILD (RA-ILD; n = 33), patients with alternative idiopathic ILDs (a-ILD; n = 41), and healthy control subjects (n = 127). Univariable and multivariable logistic regression models identified biomarkers that differentiated patients with IPF from those with a-ILD. Both continuous and diagnostic threshold versions of biomarkers were considered; thresholds were chosen to maximize summed diagnostic sensitivity and specificity in univariate receiver-operating characteristic curve analysis. A diagnostic score was created from the most promising analytes. MEASUREMENTS AND MAIN RESULTS Plasma surfactant protein (SP)-D > 31 ng/ml, matrix metalloproteinase (MMP)-7 > 1.75 ng/ml, and osteopontin > 6 ng/ml each significantly distinguished patients with IPF from patients with a-ILD, both individually and in a combined index. The odds ratio for IPF when at least one analyte in the index exceeded the threshold was 4.4 (95% confidence interval, 2.0-9.7; P = 0.0003). When at least two analytes were elevated, the odds ratio for IPF increased to 5.0 (95% confidence interval, 2.2-11.5; P = 0.0002). CONCLUSIONS A biomarker index of SP-D, MMP-7, and osteopontin enhanced diagnostic accuracy in patients with IPF compared with those with non-IPF ILD. Our data suggest that this biomarker index may improve diagnostic confidence in IPF.
Collapse
Affiliation(s)
- Eric S White
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Meng Xia
- 2 Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Susan Murray
- 2 Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Rachel Dyal
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Candace M Flaherty
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin R Flaherty
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B Moore
- 1 Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ling Cheng
- 3 Center for International Health Research, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island
| | | | | | - Paul F Dellaripa
- 5 Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts; and
| | | | - Jonathan D Kurtis
- 3 Center for International Health Research, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - Fernando J Martinez
- 6 Joan and Sanford Weill Department of Internal Medicine, Weill Cornell Medical College New York, New York
| |
Collapse
|
12
|
Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur J Pharmacol 2016; 791:8-24. [PMID: 27568833 DOI: 10.1016/j.ejphar.2016.08.022] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN), a chronic complication of diabetes, is charecterized by glomerular hypertrophy, proteinuria, decreased glomerular filtration, and renal fibrosis resulting in the loss of renal function. Although the exact cause of DN remains unclear, several mechanisms have been postulated, such as hyperglycemia-induced renal hyper filtration and renal injury, AGEs-induced increased oxidative stress, activated PKC-induced increased production of cytokines, chemokines, and different inflammatory and apoptotic signals. Among various factors, oxidative stress has been suggested to play a major role underlying the onset and propagation of DN. It triggers several signaling pathways involved in DN, like AGEs, PKC cascade, JAK/STAT signaling, MAPK, mTOR, and SMAD. Oxidative stress-induced activation of both inflammatory and apoptotic signals are two major problems in the pathogenesis of DN. The FDA approved pharmacotherapeutic agents affecting against polyol pathway principally include anti-oxidants, like α-lipoic acid, vitamin E, and vitamin C. Kremezin and benfotiamine are the FDA approved AGEs inhibitors, another therapeutic target against DN. Ruboxistaurin, telmizartan, rapamycin, fenofibrate, aliskiren, and manidipine are some FDA approved pharmacotherapeutics effective against DN via diverse mechanisms. Beside this, some therapeutic agents are still waiting for FDA approval and few drugs without FDA approval are also prescribed in some countries for the management of DN. Despite the medications available in the market to treat DN, the involvement of multiple mechanisms makes it difficult to choose an optimum therapeutic agent. Therefore, much research is required to find out new therapeutic agent/strategies for an adequate pharmacotherapy of DN.
Collapse
Affiliation(s)
- Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Sujata Barma
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Nandita Konwar
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India.
| |
Collapse
|
13
|
Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD, Fattman CL. Secreted Phosphoprotein 1 and Sex-Specific Differences in Silica-Induced Pulmonary Fibrosis in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1199-207. [PMID: 26955063 PMCID: PMC4977050 DOI: 10.1289/ehp.1510335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/15/2015] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Fibrotic lung diseases occur predominantly in males, and reports describe better survival in affected females. Male mice are more sensitive to silica-induced lung fibrosis than silica-treated female mice. Secreted phosphoprotein 1 (SPP1, also known as osteopontin) increases in pulmonary fibrosis, and Spp1 transcription may be regulated by estrogen or estrogen receptor-related receptors. OBJECTIVE We determined whether differences in silica-induced SPP1 levels contribute to sex differences in lung fibrosis. METHODS Male and female mice were treated with 0.2 g/kg intratracheal silica, and lung injury was assessed 1, 3, or 14 days post-exposure. Gene-targeted (Spp1-/-) mice, control Spp1+/+ (C57BL/6J) mice, ovariectomized (OVX) female mice, and estrogen-treated male mice were treated with silica, and lung injury was assessed. RESULTS Silica-induced SPP1 in lung tissue, bronchoalveolar lavage, and serum increased more in male than in female mice. Following silica treatment, bronchoalveolar lavage cell infiltrates decreased in female Spp1-/- mice compared with female Spp1+/+ mice, and lung hydroxyproline decreased in male Spp1-/- mice compared with male Spp1+/+ mice. OVX female mice had increased lung SPP1 expression in response to silica compared with silica-treated sham female mice. Silica-induced lung collagen and hydroxyproline (markers of fibrosis), and SPP1 levels decreased in estrogen-treated males compared with untreated males. CONCLUSION These findings suggest that sex-specific differences in SPP1 levels contribute to the differential sensitivity of male and female mice to the development of silica-induced fibrosis. CITATION Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD, Fattman CL. 2016. Secreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in mice. Environ Health Perspect 124:1199-1207; http://dx.doi.org/10.1289/ehp.1510335.
Collapse
Affiliation(s)
- Joseph D. Latoche
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Chukwuma Ufelle
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fabrizio Fazzi
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Koustav Ganguly
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- SRM (Sri Ramaswamy Memorial) Research Institute, SRM University, Chennai, India
| | - George D. Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cheryl L. Fattman
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Coombes J, Swiderska-Syn M, Dollé L, Reid D, Eksteen B, Claridge L, Briones-Orta MA, Shetty S, Oo YH, Riva A, Chokshi S, Papa S, Mi Z, Kuo PC, Williams R, Canbay A, Adams DH, Diehl AM, van Grunsven LA, Choi SS, Syn WK. Osteopontin neutralisation abrogates the liver progenitor cell response and fibrogenesis in mice. Gut 2015; 64:1120-31. [PMID: 24902765 PMCID: PMC4487727 DOI: 10.1136/gutjnl-2013-306484] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 05/22/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Chronic liver injury triggers a progenitor cell repair response, and liver fibrosis occurs when repair becomes deregulated. Previously, we reported that reactivation of the hedgehog pathway promotes fibrogenic liver repair. Osteopontin (OPN) is a hedgehog-target, and a cytokine that is highly upregulated in fibrotic tissues, and regulates stem-cell fate. Thus, we hypothesised that OPN may modulate liver progenitor cell response, and thereby, modulate fibrotic outcomes. We further evaluated the impact of OPN-neutralisation on murine liver fibrosis. METHODS Liver progenitors (603B and bipotential mouse oval liver) were treated with OPN-neutralising aptamers in the presence or absence of transforming growth factor (TGF)-β, to determine if (and how) OPN modulates liver progenitor function. Effects of OPN-neutralisation (using OPN-aptamers or OPN-neutralising antibodies) on liver progenitor cell response and fibrogenesis were assessed in three models of liver fibrosis (carbon tetrachloride, methionine-choline deficient diet, 3,5,-diethoxycarbonyl-1,4-dihydrocollidine diet) by quantitative real time (qRT) PCR, Sirius-Red staining, hydroxyproline assay, and semiquantitative double-immunohistochemistry. Finally, OPN expression and liver progenitor response were corroborated in liver tissues obtained from patients with chronic liver disease. RESULTS OPN is overexpressed by liver progenitors in humans and mice. In cultured progenitors, OPN enhances viability and wound healing by modulating TGF-β signalling. In vivo, OPN-neutralisation attenuates the liver progenitor cell response, reverses epithelial-mesenchymal-transition in Sox9+ cells, and abrogates liver fibrogenesis. CONCLUSIONS OPN upregulation during liver injury is a conserved repair response, and influences liver progenitor cell function. OPN-neutralisation abrogates the liver progenitor cell response and fibrogenesis in mouse models of liver fibrosis.
Collapse
Affiliation(s)
- J Coombes
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - M Swiderska-Syn
- Division of Gastroenterology, Department of Medicine, Duke University, NC, USA
| | - L Dollé
- Liver Cell Biology Lab (LIVR), Department of Cell Biology (CYTO), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - D Reid
- Snyder Institute for Chronic Diseases, Health Research and Innovation Centre (HRIC), University of Calgary, Canada
| | - B Eksteen
- Snyder Institute for Chronic Diseases, Health Research and Innovation Centre (HRIC), University of Calgary, Canada
| | - L Claridge
- Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK
| | - MA Briones-Orta
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - S Shetty
- Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK
| | - YH Oo
- Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK
| | - A Riva
- Viral Hepatitis Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - S Chokshi
- Viral Hepatitis Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - S Papa
- Cell Signaling Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Z Mi
- Department of Surgery, Loyola University, Chicago, USA
| | - PC Kuo
- Department of Surgery, Loyola University, Chicago, USA
| | - R Williams
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - A Canbay
- Department of Gastroenterology and Hepatology, Essen University Hospital, Essen, Germany
| | - DH Adams
- Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK
| | - AM Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, NC, USA
| | - LA van Grunsven
- Liver Cell Biology Lab (LIVR), Department of Cell Biology (CYTO), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - SS Choi
- Division of Gastroenterology, Department of Medicine, Duke University, NC, USA,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | - WK Syn
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, UK,Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK,Department of Hepatology, Barts Health NHS Trust, London, UK,Senior and Corresponding Author: Dr Wing-Kin Syn, Head of Liver Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, Tel: 44-20272559837,
| |
Collapse
|
15
|
Santos JM, Jurban M, Kim H. Could sewage epidemiology be a strategy to assess lifestyle and wellness of a large scale population? Med Hypotheses 2015; 85:408-11. [PMID: 26146131 DOI: 10.1016/j.mehy.2015.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
The use of sewage epidemiology to estimate the behavior of a large scale population has mainly been used to assess illicit drug use within a community. The systemic oxidative stress marker, 8-isoprostane, is a wildly accepted biomarker for various diseases such as diabetes, and cardiovascular and renal diseases. 8-Isoprostane is detected in urine and, as with illicit drugs, is excreted into urban sewer networks. Initially, we tested the hypothesis that differential 8-isoprostane levels are detected in wastewater of different communities and that 8-isoprostane values adjusted for the flow rate and population size will remain constant over a 2 months period. Sewage samples were collected from three sewage collection points supplied by different communities located in the Detroit metropolitan area and concentration of 8-isoprostane and synthetic plastic component, bisphenol A (BPA), were measured. Levels of 8-isoprostane were constant during the two measured months at each collection point in oppose to BPA levels. When the levels were compared among communities, 8-isoprostane levels in 24h flow and their concentrations per capita in each community varied by more than 5-fold among them. Considering the fact that 8-isoprostane is a biomarker of several diseases, we hypothesize that measurement of 8-isoprostane levels in sewage may serve as a risk assessment tool of oxidative stress-related diseases in a large scale population. Thus, sewage epidemiology can be utilized to obtain an early warning in a community to facilitate intervention for improvement of the community health.
Collapse
Affiliation(s)
- Julia M Santos
- Federal University of Goias, Physiology Department, Campus Jatai, Goias, Brazil
| | | | | |
Collapse
|
16
|
Atorvastatin inhibits hyperglycemia-induced expression of osteopontin in the diabetic rat kidney via the p38 MAPK pathway. Mol Biol Rep 2014; 41:2551-8. [PMID: 24452713 DOI: 10.1007/s11033-014-3113-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/10/2014] [Indexed: 01/13/2023]
Abstract
Osteopontin (OPN), a large phosphoglycoprotein adhesion molecule, which is up-regulated in the kidneys of humans and mice with diabetes, has emerged as a potentially key pathophysiological contributor in diabetic nephropathy. Here, we investigated the role of OPN in kidney injury caused by diabetic nephropathy and the effect of atorvastatin on the expression of OPN and on diabetic nephropathy. Diabetes was induced with streptozotocin in rats, and atorvastatin (5 mg/kg) was orally administered once a day for 8 weeks. We analyzed the expression and regulation of OPN in the kidneys of streptozotocin-induced diabetic Sprague-Dawley albino rats by immunohistochemistry and western blot analysis. The expression of OPN was increased in diabetic rat kidney, and atorvastatin inhibited this process. Atorvastatin also decreased the expression and phosphorylation of p38. In vitro, atorvastatin inhibited the high glucose-induced OPN expression in Madin-Darby canine kidney epithelial cells through the p38 MAPK signaling pathway. These results suggested that atorvastatin reduced the expression of OPN through inhibition of the p38 MAPK pathway. The expression of OPN was associated with kidney injury. These molecules may represent therapeutic targets for the prevention of acute kidney injury induced by diabetes.
Collapse
|
17
|
Schordan S, Grisk O, Schordan E, Miehe B, Rumpel E, Endlich K, Giebel J, Endlich N. OPN deficiency results in severe glomerulosclerosis in uninephrectomized mice. Am J Physiol Renal Physiol 2013; 304:F1458-70. [PMID: 23552865 DOI: 10.1152/ajprenal.00615.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteopontin (OPN) expression has been reported to be elevated in experimental models of renal injury such as arterial hypertension or diabetic nephropathy finally leading to focal segmental glomerulosclerosis (FSGS). FSGS is characterized by glomerular matrix deposition and loss or damage of podocytes that represent the main constituents of the glomerular filtration barrier. To evaluate the role of OPN in the kidney we investigated WT and OPN knockout mice (OPN-/-) without treatment, after uninephrectomy (UNX), as well as after UNX and desoxycorticosterone acetate (DOCA)-salt treatment with respect to urine parameters, glomerular morphology, and expression of podocyte markers. OPN-/- mice showed normal urine parameters while a thickening of the glomerular basement membrane was evident. Intriguingly, following UNX, OPN-/- mice exhibited prominent FSGS, proteinuria, and glomerular matrix deposition. Electron microscopy revealed bulgings of the glomerular basement membrane and occasionally an effacement of podocytes. After UNX and DOCA-salt treatment, severe glomerular lesions as well as proteinuria and albuminuria were seen in WT and OPN-/- mice. Moreover, we found a reduction of specific markers such as Wilm's tumor-1, podocin, and synaptopodin in both experimental groups indicating a loss of podocytes. Podocyte damage was accompanied by increased number of Ki-67-positive cells in the parietal epithelium of Bowman's capsule. We conclude that OPN plays a crucial role in adaptation of podocytes following renal ablation and is renoprotective when glomerular mechanical load is increased.
Collapse
Affiliation(s)
- Sandra Schordan
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul Pharmacol 2013; 58:259-71. [PMID: 23313806 DOI: 10.1016/j.vph.2013.01.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is known to trigger retinopathy, neuropathy and nephropathy. Diabetic nephropathy, a long-term major microvascular complication of uncontrolled hyperglycemia, affects a large population worldwide. Recent findings suggest that numerous pathways are activated during the course of diabetes mellitus and that these pathways individually or collectively play a role in the induction and progression of diabetic nephropathy. However, clinical strategies targeting these pathways to manage diabetic nephropathy remain unsatisfactory, as the number of diabetic patients with nephropathy is increasing yearly. To develop ground-breaking therapeutic options to prevent the development and progression of diabetic nephropathy, a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of the disease is mandatory. Therefore, the purpose of this paper is to discuss the underlying mechanisms and downstream pathways involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Mandeep Kumar Arora
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut 250005, Uttar Pradesh, India.
| | | |
Collapse
|