1
|
Koutsogiannaki S, Bu W, Maisat W, Manzor M, Zhang Z, Ohto U, Eckenhoff RG, Yuki K. Propofol directly binds to and inhibits TLR7. FASEB J 2022; 36:e22481. [PMID: 35899460 PMCID: PMC9382702 DOI: 10.1096/fj.202200312r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Sedatives/anesthetics are important medical tools to facilitate medical care and increase patients' comfort. Increasingly, there is recognition that sedatives/anesthetics can modulate immune functions. Toll-like receptors (TLRs) are major pattern recognition receptors involved in the recognition of microbial components. TLR7 recognizes single-strand RNA virus such as influenza and SARS-CoV2 viruses and initiates interferon (IFN) responses. IFN production triggered by TLR7 stimulation is a critical anti-viral response. For example, patients with TLR7 variants including loss-of- function variants were associated with severe COVID-19. Taken together, it is important to determine if sedatives/anesthetics mitigate TLR7 function. We have previously showed that TLR7-mediated activation was not affected by volatile anesthetics. However, we found that propofol attenuated TLR7 activation among intravenous sedatives in the reporter assay. TLR7 agonist R837 stimulation increased TNF-α, IL-1β, IL-6, IL-10, and IFN-β mRNA levels in bone marrow-derived dendritic cells, while these levels were attenuated by propofol. Our murine lung slice experiments showed that propofol attenuated IFN production. R837 increased IFN-β expression in the lungs, and propofol attenuated IFN-β expression in an in vivo model of R837 intranasal instillation. We also found that propofol directly bound to and hindered its association of TLR7 with MyD88. Our analysis using fropofol, propofol derivative showed that the hydroxyl group in propofol was important for propofol-TLR7 interaction.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Anaesthesia and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Weiming Bu
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Anaesthesia and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mariel Manzor
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zhikuan Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Roderic G Eckenhoff
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Anaesthesia and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pausder A, Fricke J, Schughart K, Schreiber J, Strowig T, Bruder D, Boehme JD. Exogenous and Endogenous Triggers Differentially Stimulate Pigr Expression and Antibacterial Secretory Immunity in the Murine Respiratory Tract. Lung 2021; 200:119-128. [PMID: 34825965 PMCID: PMC8881272 DOI: 10.1007/s00408-021-00498-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Transport of secretory immunoglobulin A (SIgA) through the airway epithelial cell barrier into the mucosal lumen by the polymeric immunoglobulin receptor (pIgR) is an important mechanism of respiratory mucosal host defense. Identification of immunomodulating substances that regulate secretory immunity might have therapeutic implications with regard to an improved immune exclusion. Thus, we sought to analyze secretory immunity under homeostatic and immunomodulating conditions in different compartments of the murine upper and lower respiratory tract (URT&LRT). METHODS Pigr gene expression in lung, trachea, and nasal-associated lymphoid tissue (NALT) of germ-free mice, specific pathogen-free mice, mice with an undefined microbiome, as well as LPS- and IFN-γ-treated mice was determined by quantitative real-time PCR. IgA levels in bronchoalveolar lavage (BAL), nasal lavage (NAL), and serum were determined by ELISA. LPS- and IFN-γ-treated mice were colonized with Streptococcus pneumoniae and bacterial CFUs were determined in URT and LRT. RESULTS Respiratory Pigr expression and IgA levels were dependent on the degree of exposure to environmental microbial stimuli. While immunostimulation with LPS and IFN-γ differentially impacts respiratory Pigr expression and IgA in URT vs. LRT, only prophylactic IFN-γ treatment reduces nasal colonization with S. pneumoniae. CONCLUSION Airway-associated secretory immunity can be partly modulated by exposure to microbial ligands and proinflammatory stimuli. Prophylactic IFN-γ-treatment modestly improves antibacterial immunity in the URT, but this does not appear to be mediated by SIgA or pIgR.
Collapse
Affiliation(s)
- Alexander Pausder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,ESF Graduate School ABINEP, Magdeburg, Germany
| | - Jennifer Fricke
- Research Group Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Current Address: Research Group Nanoinfection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Research Group Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine, Hannover, Germany.,University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jens Schreiber
- Experimental Pneumology, Health Campus Immunology, Infectiology and Inflammation, University Hospital for Pneumology, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany.,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University, Leipziger Strasse 44, 39120, Magdeburg, Germany. .,Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
3
|
Sender V, Hentrich K, Henriques-Normark B. Virus-Induced Changes of the Respiratory Tract Environment Promote Secondary Infections With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:643326. [PMID: 33828999 PMCID: PMC8019817 DOI: 10.3389/fcimb.2021.643326] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections enhance the disease burden of influenza infections substantially. Streptococcus pneumoniae (the pneumococcus) plays a major role in the synergism between bacterial and viral pathogens, which is based on complex interactions between the pathogen and the host immune response. Here, we discuss mechanisms that drive the pathogenesis of a secondary pneumococcal infection after an influenza infection with a focus on how pneumococci senses and adapts to the influenza-modified environment. We briefly summarize what is known regarding secondary bacterial infection in relation to COVID-19 and highlight the need to improve our current strategies to prevent and treat viral bacterial coinfections.
Collapse
Affiliation(s)
- Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karina Hentrich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
4
|
TLR7 Expression Aggravates Invasive Pulmonary Aspergillosis by Suppressing Anti- Aspergillus Immunity of Macrophages. Infect Immun 2021; 89:IAI.00019-21. [PMID: 33495270 DOI: 10.1128/iai.00019-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptors (TLRs) play a critical role in early immune recognition of Aspergillus, which can regulate host defense during invasive pulmonary Aspergillosis (IPA). However, the role of TLR7 in the pathogenesis of IPA remains unknown. In this study, an in vivo model of IPA was established to investigate the contribution of TLR7 to host anti-Aspergillus immunity upon invasive pulmonary Aspergillus fumigatus infection. The effects of TLR7 on phagocytosis and killing capacities of A. fumigatus by macrophages and neutrophils were investigated in vitro We found that TLR7 knockout mice exhibited lower lung inflammatory response and tissue injury, higher fungal clearance, and greater survival in an in vivo model of IPA compared with wild-type mice. TLR7 activation by R837 ligand led to wild-type mice being more susceptible to invasive pulmonary Aspergillus fumigatus infection. Macrophages, but not neutrophils, were required for the protection against IPA observed in TLR7 knockout mice. Mechanistically, TLR7 impaired phagocytosis and killing of A. fumigatus by macrophages but not neutrophils. Together, these data identify TLR7 as an important negative regulator of anti-Aspergillus innate immunity in IPA, and we propose that targeting TLR7 will be beneficial in the treatment of IPA.
Collapse
|
5
|
Barman TK, Racine R, Bonin JL, Califano D, Salmon SL, Metzger DW. Sequential targeting of interferon pathways for increased host resistance to bacterial superinfection during influenza. PLoS Pathog 2021; 17:e1009405. [PMID: 33690728 PMCID: PMC7978370 DOI: 10.1371/journal.ppat.1009405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/19/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial co-infections represent a major clinical complication of influenza. Host-derived interferon (IFN) increases susceptibility to bacterial infections following influenza, but the relative roles of type-I versus type-II IFN remain poorly understood. We have used novel mouse models of co-infection in which colonizing pneumococci were inoculated into the upper respiratory tract; subsequent sublethal influenza virus infection caused the bacteria to enter the lungs and mediate lethal disease. Compared to wild-type mice or mice deficient in only one pathway, mice lacking both IFN pathways demonstrated the least amount of lung tissue damage and mortality following pneumococcal-influenza virus superinfection. Therapeutic neutralization of both type-I and type-II IFN pathways similarly provided optimal protection to co-infected wild-type mice. The most effective treatment regimen was staggered neutralization of the type-I IFN pathway early during co-infection combined with later neutralization of type-II IFN, which was consistent with the expression and reported activities of these IFNs during superinfection. These results are the first to directly compare the activities of type-I and type-II IFN during superinfection and provide new insights into potential host-directed targets for treatment of secondary bacterial infections during influenza. Bacterial co-infections represent a common and challenging clinical complication of influenza. Type-I and type-II interferon (IFN) pathways enhance susceptibility to influenza-pneumococcal co-infection, leading to increased lung pathology and mortality. However, the comparative importance of type-I versus type-II IFN remains unclear. We have used two novel mouse models of co-infection in which pneumococci were inoculated into the upper respiratory tract followed two days later by influenza virus infection. Virus co-infection caused IFN-dependent inflammation that facilitated spreading of the colonizing bacteria into the lungs, followed by tissue damage and death. In this pneumococcal-influenza virus superinfection model, mice lacking both type-I and type-II IFN pathways demonstrated minimal lung pathology and increased survival compared to wild-type mice and mice deficient in only one pathway. Therapeutic neutralization of both type-I and type-II IFN pathways similarly provided optimal protection to superinfected wild-type mice. The most effective treatment regimen involved neutralization of the type-I IFN pathway early during co-infection combined with later neutralization of the type-II IFN pathway. These results provide new insights into potential host-directed therapy for management of bacterial-viral superinfections.
Collapse
Affiliation(s)
- Tarani Kanta Barman
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Rachael Racine
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jesse L. Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Danielle Califano
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Sharon L. Salmon
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dennis W. Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wu Q, Jorde I, Kershaw O, Jeron A, Bruder D, Schreiber J, Stegemann-Koniszewski S. Resolved Influenza A Virus Infection Has Extended Effects on Lung Homeostasis and Attenuates Allergic Airway Inflammation in a Mouse Model. Microorganisms 2020; 8:microorganisms8121878. [PMID: 33260910 PMCID: PMC7761027 DOI: 10.3390/microorganisms8121878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic airway inflammation (AAI) involves T helper cell type 2 (Th2) and pro-inflammatory responses to aeroallergens and many predisposing factors remain elusive. Influenza A virus (IAV) is a major human pathogen that causes acute respiratory infections and induces specific immune responses essential for viral clearance and resolution of the infection. Beyond acute infection, IAV has been shown to persistently affect lung homeostasis and respiratory immunity. Here we asked how resolved IAV infection affects subsequently induced AAI. Mice infected with a sublethal dose of IAV were sensitized and challenged in an ovalbumin mediated mouse model for AAI after resolution of the acute viral infection. Histological changes, respiratory leukocytes, cytokines and airway hyperreactivity were analyzed in resolved IAV infection alone and in AAI with and without previous IAV infection. More than five weeks after infection, we detected persistent pneumonia with increased activated CD4+ and CD8+ lymphocytes as well as dendritic cells and MHCII expressing macrophages in the lung. Resolved IAV infection significantly affected subsequently induced AAI on different levels including morphological changes, respiratory leukocytes and lymphocytes as well as the pro-inflammatory cytokine responses, which was clearly diminished. We conclude that IAV has exceptional persisting effects on respiratory immunity with substantial consequences for subsequently induced AAI.
Collapse
Affiliation(s)
- Qingyu Wu
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
| | - Ilka Jorde
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.J.); (D.B.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.J.); (D.B.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
- Correspondence:
| |
Collapse
|
7
|
Kramskaya T, Leontieva G, Desheva Y, Grabovskaya K, Gupalova T, Rudenko L, Suvorov A. Combined immunization with attenuated live influenza vaccine and chimeric pneumococcal recombinant protein improves the outcome of virus-bacterial infection in mice. PLoS One 2019; 14:e0222148. [PMID: 31513620 PMCID: PMC6742370 DOI: 10.1371/journal.pone.0222148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022] Open
Abstract
Influenza and its bacterial complications are a leading cause of morbidity and mortality worldwide. The effect of combined immunization with live influenza vaccine and recombinant chimeric pneumococcal protein in dual infection caused by influenza H1N1 and S. pneumoniae (serotype 3) has been studied. The combined vaccine consisted of the strain A/California/2009/38 (H1N1) pdm and chimeric recombinant protein PSPF composed of immunodominant fragments of the surface virulence factors of S. pneumoniae—PsaA, PspA, and Shr1875—associated with modified salmonella flagellin. Vaccinated mice were infected with the influenza virus 24 hours before or 24 hours after the onset of pneumococcal infection. The protective effect of combined vaccination was shown on both models of viral-bacterial infection.
Collapse
Affiliation(s)
- T. Kramskaya
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - G. Leontieva
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
- * E-mail:
| | - Yu. Desheva
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
- Department of Fundamental Medicine and Medical Technologies, Faculty of Dentistry and Medical Technologies, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - K. Grabovskaya
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - T. Gupalova
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - L. Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
| | - A. Suvorov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg, Russian Federation
- Department of Fundamental Medicine and Medical Technologies, Faculty of Dentistry and Medical Technologies, Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
8
|
Sharma-Chawla N, Stegemann-Koniszewski S, Christen H, Boehme JD, Kershaw O, Schreiber J, Guzmán CA, Bruder D, Hernandez-Vargas EA. In vivo Neutralization of Pro-inflammatory Cytokines During Secondary Streptococcus pneumoniae Infection Post Influenza A Virus Infection. Front Immunol 2019; 10:1864. [PMID: 31474978 PMCID: PMC6702285 DOI: 10.3389/fimmu.2019.01864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
An overt pro-inflammatory immune response is a key factor contributing to lethal pneumococcal infection in an influenza pre-infected host and represents a potential target for therapeutic intervention. However, there is a paucity of knowledge about the level of contribution of individual cytokines. Based on the predictions of our previous mathematical modeling approach, the potential benefit of IFN-γ- and/or IL-6-specific antibody-mediated cytokine neutralization was explored in C57BL/6 mice infected with the influenza A/PR/8/34 strain, which were subsequently infected with the Streptococcus pneumoniae strain TIGR4 on day 7 post influenza. While single IL-6 neutralization had no effect on respiratory bacterial clearance, single IFN-γ neutralization enhanced local bacterial clearance in the lungs. Concomitant neutralization of IFN-γ and IL-6 significantly reduced the degree of pneumonia as well as bacteremia compared to the control group, indicating a positive effect for the host during secondary bacterial infection. The results of our model-driven experimental study reveal that the predicted therapeutic value of IFN-γ and IL-6 neutralization in secondary pneumococcal infection following influenza infection is tightly dependent on the experimental protocol while at the same time paving the way toward the development of effective immune therapies.
Collapse
Affiliation(s)
- Niharika Sharma-Chawla
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Infection Immunology Group, Institute of Medical Microbiology, Infection Prevention and Control, Health Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Immune Regulation Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Infection Immunology Group, Institute of Medical Microbiology, Infection Prevention and Control, Health Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Experimental Pneumology, University Hospital of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Henrike Christen
- Immune Regulation Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Julia D Boehme
- Immune Regulation Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Infection Immunology Group, Institute of Medical Microbiology, Infection Prevention and Control, Health Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Jens Schreiber
- Experimental Pneumology, University Hospital of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Centre for Individualized Infection Medicine (CiiM), Hanover, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Infection Immunology Group, Institute of Medical Microbiology, Infection Prevention and Control, Health Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
9
|
RIG-I Signaling via MAVS Is Dispensable for Survival in Lethal Influenza Infection In Vivo. Mediators Inflamm 2018; 2018:6808934. [PMID: 30532653 PMCID: PMC6250004 DOI: 10.1155/2018/6808934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is an important regulator of virus-induced antiviral interferons (IFNs) and proinflammatory cytokines. It requires interaction with an adaptor molecule, mitochondrial antiviral-signaling protein (MAVS), to activate downstream signaling pathways. To elucidate the mechanism(s) by which RIG-I-dependent recognition of IAV infection in vivo triggers innate immune responses, we infected mutant mice lacking RIG-I or MAVS with influenza A virus (IAV) and measured their innate immune responses. As has previously been demonstrated with isolated deletion of the virus recognition receptors TLR3, TLR7, and NOD2, RIG-I or MAVS knockout (KO) did not result in higher mortality and did not reduce IAV-induced cytokine responses in mice. Infected RIG-I KO animals displayed similar lung inflammation profiles as did WT mice, in terms of the protein concentration, total cell count, and inflammatory cell composition in the bronchoalveolar lavage fluid. RNA-Seq results demonstrated that all types of mice exhibited equivalent antiviral and inflammatory gene responses following IAV infection. Together, the results indicated that although RIG-I is important in innate cytokine responses in vitro, individual deletion of the genes encoding RIG-I or MAVS did not change survival or innate responses in vivo after IAV infection in mice.
Collapse
|
10
|
Stegemann-Koniszewski S, Behrens S, Boehme JD, Hochnadel I, Riese P, Guzmán CA, Kröger A, Schreiber J, Gunzer M, Bruder D. Respiratory Influenza A Virus Infection Triggers Local and Systemic Natural Killer Cell Activation via Toll-Like Receptor 7. Front Immunol 2018; 9:245. [PMID: 29497422 PMCID: PMC5819576 DOI: 10.3389/fimmu.2018.00245] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
The innate immune system senses influenza A virus (IAV) through different pathogen-recognition receptors including Toll-like receptor 7 (TLR7). Downstream of viral recognition natural killer (NK) cells are activated as part of the anti-IAV immune response. Despite the known decisive role of TLR7 for NK cell activation by therapeutic immunostimulatory RNAs, the contribution of TLR7 to the NK cell response following IAV infection has not been addressed. We have analyzed lung cytokine responses as well as the activation, interferon (IFN)-γ production, and cytotoxicity of lung and splenic NK cells following sublethal respiratory IAV infection in wild-type and TLR7ko mice. Early airway IFN-γ levels as well as the induction of lung NK cell CD69 expression and IFN-γ production in response to IAV infection were significantly attenuated in TLR7-deficient hosts. Strikingly, respiratory IAV infection also primed splenic NK cells for IFN-γ production, degranulation, and target cell lysis, all of which were fully dependent on TLR7. At the same time, lung type I IFN levels were significantly reduced in TLR7ko mice early following IAV infection, displaying a potential upstream mechanism of the attenuated NK cell activation observed. Taken together, our data clearly demonstrate a specific role for TLR7 signaling in local and systemic NK cell activation following respiratory IAV infection despite the presence of redundant innate IAV-recognition pathways.
Collapse
Affiliation(s)
- Sabine Stegemann-Koniszewski
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto von-Guericke University, Magdeburg, Germany.,Experimental Pneumology, University Hospital of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Sarah Behrens
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julia D Boehme
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto von-Guericke University, Magdeburg, Germany
| | - Inga Hochnadel
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Kröger
- Molecular Microbiology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Schreiber
- Experimental Pneumology, University Hospital of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dunja Bruder
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto von-Guericke University, Magdeburg, Germany
| |
Collapse
|
11
|
Chronic lung inflammation primes humoral immunity and augments antipneumococcal resistance. Sci Rep 2017; 7:4972. [PMID: 28694492 PMCID: PMC5504016 DOI: 10.1038/s41598-017-05212-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Airway epithelial cells (AECs) display remarkable plasticity in response to infectious stimuli and their functional adaptations are critical for antimicrobial immunity. However, the roles of AECs and humoral mediators to host defense in non-communicable lung inflammation remain elusive. We dissected pulmonary defense against Streptococcus pneumoniae in hosts with pre-existing inflammatory conditions (SPC-HAxTCR-HA mice). Lung tissue transcriptomics and bronchoalveolar lavage fluid (BALF) proteomics revealed an induction of humoral defense mechanisms in inflamed lungs. Accordingly, besides antibacterial proteins and complement components being overrepresented in inflamed lungs, elevated polymeric immunoglobulin receptor (pIgR)-expression in AECs correlated with increased secretory immunoglobulin (SIg) transport. Consequently, opsonization assays revealed augmented pneumococcal coverage by SIgs present in the BALF of SPC-HAxTCR-HA mice, which was associated with enhanced antipneumococcal resistance. These findings emphasize the immunologic potential of AECs as well as their central role in providing antibacterial protection and put forward pIgR as potential target for therapeutic manipulation in infection-prone individuals.
Collapse
|
12
|
Qi X, Liu C, Li R, Zhang H, Xu X, Wang J. Modulation of the innate immune-related genes expression in H9N2 avian influenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation. Res Vet Sci 2017; 111:36-42. [DOI: 10.1016/j.rvsc.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023]
|
13
|
Alveolar Type II Epithelial Cells Contribute to the Anti-Influenza A Virus Response in the Lung by Integrating Pathogen- and Microenvironment-Derived Signals. mBio 2016; 7:mBio.00276-16. [PMID: 27143386 PMCID: PMC4959657 DOI: 10.1128/mbio.00276-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Influenza A virus (IAV) periodically causes substantial morbidity and mortality in the human population. In the lower lung, the primary targets for IAV replication are type II alveolar epithelial cells (AECII), which are increasingly recognized for their immunological potential. So far, little is known about their reaction to IAV and their contribution to respiratory antiviral immunity in vivo. Therefore, we characterized the AECII response during early IAV infection by analyzing transcriptional regulation in cells sorted from the lungs of infected mice. We detected rapid and extensive regulation of gene expression in AECII following in vivo IAV infection. The comparison to transcriptional regulation in lung tissue revealed a strong contribution of AECII to the respiratory response. IAV infection triggered the expression of a plethora of antiviral factors and immune mediators in AECII with a high prevalence for interferon-stimulated genes. Functional pathway analyses revealed high activity in pathogen recognition, immune cell recruitment, and antigen presentation. Ultimately, our analyses of transcriptional regulation in AECII and lung tissue as well as interferon I/III levels and cell recruitment indicated AECII to integrate signals provided by direct pathogen recognition and surrounding cells. Ex vivo analysis of AECII proved a powerful tool to increase our understanding of their role in respiratory immune responses, and our results clearly show that AECII need to be considered a part of the surveillance and effector system of the lower respiratory tract. In order to confront the health hazard posed by IAV, we need to complete our understanding of its pathogenesis. AECII are primary targets for IAV replication in the lung, and while we are beginning to understand their importance for respiratory immunity, the in vivo AECII response during IAV infection has not been analyzed. In contrast to studies addressing the response of AECII infected with IAV ex vivo, we have performed detailed gene transcriptional profiling of AECII isolated from the lungs of infected mice. Thereby, we have identified an exceptionally rapid and versatile response to IAV infection that is shaped by pathogen-derived as well as microenvironment-derived signals and aims at the induction of antiviral measures and the recruitment and activation of immune cells. In conclusion, our study presents AECII as active players in antiviral defense in vivo that need to be considered part of the sentinel and effector immune system of the lung.
Collapse
|
14
|
Boianelli A, Nguyen VK, Ebensen T, Schulze K, Wilk E, Sharma N, Stegemann-Koniszewski S, Bruder D, Toapanta FR, Guzmán CA, Meyer-Hermann M, Hernandez-Vargas EA. Modeling Influenza Virus Infection: A Roadmap for Influenza Research. Viruses 2015; 7:5274-304. [PMID: 26473911 PMCID: PMC4632383 DOI: 10.3390/v7102875] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus (IAV) infection represents a global threat causing seasonal outbreaks and pandemics. Additionally, secondary bacterial infections, caused mainly by Streptococcus pneumoniae, are one of the main complications and responsible for the enhanced morbidity and mortality associated with IAV infections. In spite of the significant advances in our knowledge of IAV infections, holistic comprehension of the interplay between IAV and the host immune response (IR) remains largely fragmented. During the last decade, mathematical modeling has been instrumental to explain and quantify IAV dynamics. In this paper, we review not only the state of the art of mathematical models of IAV infection but also the methodologies exploited for parameter estimation. We focus on the adaptive IR control of IAV infection and the possible mechanisms that could promote a secondary bacterial coinfection. To exemplify IAV dynamics and identifiability issues, a mathematical model to explain the interactions between adaptive IR and IAV infection is considered. Furthermore, in this paper we propose a roadmap for future influenza research. The development of a mathematical modeling framework with a secondary bacterial coinfection, immunosenescence, host genetic factors and responsiveness to vaccination will be pivotal to advance IAV infection understanding and treatment optimization.
Collapse
Affiliation(s)
- Alessandro Boianelli
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| | - Van Kinh Nguyen
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| | - Niharika Sharma
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| | | | - Dunja Bruder
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
- Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-University, Magdeburg 39106, Germany.
| | - Franklin R Toapanta
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig 38106, Germany.
| | - Esteban A Hernandez-Vargas
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany.
| |
Collapse
|
15
|
Jia G, Xiaoxiang W, Ruijie L, Xiaoxin Z, Xiaonan Y, Qing X, Ping X. Effect of Chaiqinchengqi decoction on inositol requiring enzyme 1α in alveolar macrophages of dogs with acute necrotising pancreatitis induced by sodium taurocholate. J TRADIT CHIN MED 2015; 35:434-9. [DOI: 10.1016/s0254-6272(15)30121-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Onishi M, Kitano M, Taniguchi K, Homma T, Kobayashi M, Yoshinaga T, Naito A, Sato A. Intravenous peramivir inhibits viral replication, and leads to bacterial clearance and prevention of mortality during murine bacterial co-infection caused by influenza A(H1N1)pdm09 virus and Streptococcus pneumoniae. Antiviral Res 2015; 117:52-9. [PMID: 25752738 DOI: 10.1016/j.antiviral.2015.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Influenza virus infection increases susceptibility to bacterial infection and mortality in humans. Although the efficacy of approved intravenous peramivir, a neuraminidase (NA) inhibitor, against influenza virus infection has been reported, its efficacy against bacterial co-infection, which occurs during the period of viral shedding, was not fully investigated. To further understand the significance of treatment with peramivir, we assessed the efficacy of peramivir against a bacterial co-infection model in mice caused by clinically isolated influenza A(H1N1)pdm09 virus and Streptococcus pneumoniae. METHODS Mice were infected with influenza A(H1N1)pdm09. Peramivir was intravenously administered after the viral infection. At 2days post viral infection, the mice were infected with S. pneumoniae. Peramivir efficacy was measured by the survival rates and viral titers, bacterial titers, or proinflammatory cytokine concentrations in lung homogenates. RESULTS Peramivir treatment reduced the mortality of mice infected with influenza virus and S. pneumoniae. The survival rate in the peramivir-treated group was significantly higher than that in the oseltamivir-treated group. Viral titers and proinflammatory cytokine responses in the peramivir-treated group were significantly lower than those in the oseltamivir-treated group until at 2days post viral infection. Bacterial titer was significantly lower in the peramivir-treated group than in the oseltamivir-treated group at 4days post viral infection. CONCLUSION These results demonstrated that peramivir inhibits viral replication, consequently leading to bacterial clearance and prevention of mortality during severe murine bacterial co-infection, which occurs during the period of viral shedding, with the efficacy of peramivir being superior to that of oseltamivir.
Collapse
Affiliation(s)
- Motoyasu Onishi
- Infectious Diseases, Discovery Research Laboratory for Core Therapeutic Area, Shionogi & Co., Ltd., Osaka, Japan.
| | - Mitsutaka Kitano
- Infectious Diseases, Discovery Research Laboratory for Core Therapeutic Area, Shionogi & Co., Ltd., Osaka, Japan
| | - Keiichi Taniguchi
- Infectious Diseases, Discovery Research Laboratory for Core Therapeutic Area, Shionogi & Co., Ltd., Osaka, Japan
| | - Tomoyuki Homma
- Infectious Diseases, Discovery Research Laboratory for Core Therapeutic Area, Shionogi & Co., Ltd., Osaka, Japan
| | - Masanori Kobayashi
- Infectious Diseases, Discovery Research Laboratory for Core Therapeutic Area, Shionogi & Co., Ltd., Osaka, Japan
| | - Tomokazu Yoshinaga
- Infectious Diseases, Discovery Research Laboratory for Core Therapeutic Area, Shionogi & Co., Ltd., Osaka, Japan
| | - Akira Naito
- Infectious Diseases, Discovery Research Laboratory for Core Therapeutic Area, Shionogi & Co., Ltd., Osaka, Japan
| | - Akihiko Sato
- Infectious Diseases, Discovery Research Laboratory for Core Therapeutic Area, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
17
|
Nita-Lazar M, Banerjee A, Feng C, Amin MN, Frieman MB, Chen WH, Cross AS, Wang LX, Vasta GR. Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding. Mol Immunol 2015; 65:1-16. [PMID: 25597246 DOI: 10.1016/j.molimm.2014.12.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
The continued threat of worldwide influenza pandemics, together with the yearly emergence of antigenically drifted influenza A virus (IAV) strains, underscore the urgent need to elucidate not only the mechanisms of influenza virulence, but also those mechanisms that predispose influenza patients to increased susceptibility to subsequent infection with Streptococcus pneumoniae. Glycans displayed on the surface of epithelia that are exposed to the external environment play important roles in microbial recognition, adhesion, and invasion. It is well established that the IAV hemagglutinin and pneumococcal adhesins enable their attachment to the host epithelia. Reciprocally, the recognition of microbial glycans by host carbohydrate-binding proteins (lectins) can initiate innate immune responses, but their relevance in influenza or pneumococcal infections is poorly understood. Galectins are evolutionarily conserved lectins characterized by affinity for β-galactosides and a unique sequence motif, with critical regulatory roles in development and immune homeostasis. In this study, we examined the possibility that galectins expressed in the airway epithelial cells might play a significant role in viral or pneumococcal adhesion to airway epithelial cells. Our results in a mouse model for influenza and pneumococcal infection revealed that the murine lung expresses a diverse galectin repertoire, from which selected galectins, including galectin 1 (Gal1) and galectin 3 (Gal3), are released to the bronchoalveolar space. Further, the results showed that influenza and subsequent S. pneumoniae infections significantly alter the glycosylation patterns of the airway epithelial surface and modulate galectin expression. In vitro studies on the human airway epithelial cell line A549 were consistent with the observations made in the mouse model, and further revealed that both Gal1 and Gal3 bind strongly to IAV and S. pneumoniae, and that exposure of the cells to viral neuraminidase or influenza infection increased galectin-mediated S. pneumoniae adhesion to the cell surface. Our results suggest that upon influenza infection, pneumococcal adhesion to the airway epithelial surface is enhanced by an interplay among the host galectins and viral and pneumococcal neuraminidases. The observed enhancement of pneumococcal adhesion may be a contributing factor to the observed hypersusceptibility to pneumonia of influenza patients.
Collapse
Affiliation(s)
- Mihai Nita-Lazar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Aditi Banerjee
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Mohammed N Amin
- Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Alan S Cross
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Lai-Xi Wang
- Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|