1
|
Bennett JJ, Saint-Martin C, Neumann B, Männistö JME, Houghton JAL, Empting S, Johnson MB, Laver TW, Locke JM, Spurrier B, Wakeling MN, Banerjee I, Dastamani A, Demirbilek H, Mitchell J, Stange M, Mohnike K, Arnoux JB, Owens NDL, Zenker M, Bellanné-Chantelot C, Flanagan SE. Non-coding cis-regulatory variants in HK1 cause congenital hyperinsulinism with variable disease severity. Genome Med 2025; 17:17. [PMID: 40033430 PMCID: PMC11874398 DOI: 10.1186/s13073-025-01440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND We recently reported non-coding variants in a cis-regulatory element of the beta-cell disallowed gene hexokinase 1 (HK1) as a novel cause of congenital hyperinsulinism. These variants lead to a loss of repression of HK1 in pancreatic beta-cells, causing insulin secretion during hypoglycaemia. In this study, we aimed to determine the prevalence, genetics, and phenotype of HK1-hyperinsulinism by screening a large international cohort of patients living with the condition. METHODS We screened the HK1 cis-regulatory region in 1761 probands with hyperinsulinism of unknown aetiology who had been referred to one of three large European genomics laboratories. RESULTS We identified a HK1 variant in 89/1761 probands (5%) and 63 family members. Within the Exeter HI cohort, these variants accounted for 2.8% of all positive genetic diagnoses (n = 54/1913) establishing this as an important cause of HI. Individuals with a disease-causing variant were diagnosed with hyperinsulinism between birth and 26 years (median: 7 days) with variable response to treatment; 80% were medically managed and 20% underwent pancreatic surgery due to poor response to medical therapy. Glycaemic outcomes varied from spontaneous remission to hypoglycaemia persisting into adulthood. Eight probands had inherited the variant from a parent not reported to have hyperinsulinism (median current age: 39 years), confirming variable penetrance. Two of the 23 novel HK1 variants allowed us to extend the minimal cis-regulatory region from 42 to 46 bp. CONCLUSIONS Non-coding variants within the HK1 cis-regulatory region cause hyperinsulinism of variable severity ranging from neonatal-onset, treatment-resistant disease to being asymptomatic into adulthood. Discovering variants in 89 families confirms HK1 as a major cause of hyperinsulinism and highlights the important role of the non-coding genome in human monogenic disease.
Collapse
Affiliation(s)
- Jasmin J Bennett
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Cécile Saint-Martin
- Department of Medical Genetics, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Bianca Neumann
- Institute of Human Genetics, University Hospital, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Jonna M E Männistö
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland, Kuopio, 70029, Finland
| | - Jayne A L Houghton
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Susann Empting
- Children's University Hospital, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Matthew B Johnson
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Thomas W Laver
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Jonathan M Locke
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Benjamin Spurrier
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Matthew N Wakeling
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, M13 9WL, UK
| | - Antonia Dastamani
- Endocrinology Department, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| | - Hüseyin Demirbilek
- Faculty of Medicine, Department of Pediatric Endocrinology, Hacettepe University, Ankara, Turkey
| | - John Mitchell
- Pediatric Endocrinology and Biochemical Genetics, Human Genetics and Pediatrics, Montreal Children's Hospital-McGill University, McGill University, Montreal, Canada
| | - Markus Stange
- Department of Pediatrics, University Hospital Halle, Ernst Grube Str. 40, Halle, 06120, Germany
| | - Klaus Mohnike
- Children's University Hospital, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris Cité University, Paris, 75015, France
| | - Nick D L Owens
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | | | - Sarah E Flanagan
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX2 5DW, UK.
| |
Collapse
|
2
|
Yousri NA, Albagha OME, Hunt SC. Integrated epigenome, whole genome sequence and metabolome analyses identify novel multi-omics pathways in type 2 diabetes: a Middle Eastern study. BMC Med 2023; 21:347. [PMID: 37679740 PMCID: PMC10485955 DOI: 10.1186/s12916-023-03027-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND T2D is of high prevalence in the middle east and thus studying its mechanisms is of a significant importance. Using 1026 Qatar BioBank samples, epigenetics, whole genome sequencing and metabolomics were combined to further elucidate the biological mechanisms of T2D in a population with a high prevalence of T2D. METHODS An epigenome-wide association study (EWAS) with T2D was performed using the Infinium 850K EPIC array, followed by whole genome-wide sequencing SNP-CpG association analysis (> 5.5 million SNPs) and a methylome-metabolome (CpG-metabolite) analysis of the identified T2D sites. RESULTS A total of 66 T2D-CpG associations were identified, including 63 novel sites in pathways of fructose and mannose metabolism, insulin signaling, galactose, starch and sucrose metabolism, and carbohydrate absorption and digestion. Whole genome SNP associations with the 66 CpGs resulted in 688 significant CpG-SNP associations comprising 22 unique CpGs (33% of the 66 CPGs) and included 181 novel pairs or pairs in novel loci. Fourteen of the loci overlapped published GWAS loci for diabetes related traits and were used to identify causal associations of HK1 and PFKFB2 with HbA1c. Methylome-metabolome analysis identified 66 significant CpG-metabolite pairs among which 61 pairs were novel. Using the identified methylome-metabolome associations, methylation QTLs, and metabolic networks, a multi-omics network was constructed which suggested a number of metabolic mechanisms underlying T2D methylated genes. 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) - a triglyceride-associated metabolite, shared a common network with 13 methylated CpGs, including TXNIP, PFKFB2, OCIAD1, and BLCAP. Mannonate - a food component/plant shared a common network with 6 methylated genes, including TXNIP, BLCAP, THBS4 and PEF1, pointing to a common possible cause of methylation in those genes. A subnetwork with alanine, glutamine, urea cycle (citrulline, arginine), and 1-carboxyethylvaline linked to PFKFB2 and TXNIP revealed associations with kidney function, hypertension and triglyceride metabolism. The pathway containing STYXL1-POR was associated with a sphingosine-ceramides subnetwork associated with HDL-C and LDL-C and point to steroid perturbations in T2D. CONCLUSIONS This study revealed several novel methylated genes in T2D, with their genomic variants and associated metabolic pathways with several implications for future clinical use of multi-omics associations in disease and for studying therapeutic targets.
Collapse
Affiliation(s)
- Noha A Yousri
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Computer and Systems Engineering, Alexandria University, Alexandria, Egypt.
| | - Omar M E Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Steven C Hunt
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
3
|
Matsuura R, Shimizu Y, Matsuura N, Ntege EH, Wada N. Management of Axillary Contracture in Poland Syndrome: Differentiating Fibrous Band and Skin for Optimal Release. J Clin Med 2023; 12:4957. [PMID: 37568359 PMCID: PMC10420116 DOI: 10.3390/jcm12154957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Poland syndrome (PS), an uncommon congenital unilateral aplasia of chest wall muscles, may exhibit rare accompanying signs, such as axillary webbing or contractures. The existing literature on the specific management of axillary contractures is limited. In this report, we present the case of a 10-year-old girl with PS manifesting an axillary web containing a fibrous band, which was successfully surgically corrected by a double-opposing Z-plasty. Our surgical approach entailed a meticulous distinction between the deep fibrous band and the superficial cutaneous layer, guided by histopathological findings that indicated the presence of tendon-like tissue, ultimately yielding excellent outcomes. This report will help expand knowledge by highlighting the unique manifestation of PS and emphasizing the importance of employing appropriate treatment approaches. Moreover, addressing both tendon and skin components is essential for optimal contracture release in PS.
Collapse
Affiliation(s)
- Rikako Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan; (R.M.); (N.M.); (E.H.N.)
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan; (R.M.); (N.M.); (E.H.N.)
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan; (R.M.); (N.M.); (E.H.N.)
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan; (R.M.); (N.M.); (E.H.N.)
| | - Naoki Wada
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan;
| |
Collapse
|
4
|
Huerta M, Franco-Serrano L, Amela I, Perez-Pons JA, Piñol J, Mozo-Villarías A, Querol E, Cedano J. Role of Moonlighting Proteins in Disease: Analyzing the Contribution of Canonical and Moonlighting Functions in Disease Progression. Cells 2023; 12:cells12020235. [PMID: 36672169 PMCID: PMC9857295 DOI: 10.3390/cells12020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
The term moonlighting proteins refers to those proteins that present alternative functions performed by a single polypeptide chain acquired throughout evolution (called canonical and moonlighting, respectively). Over 78% of moonlighting proteins are involved in human diseases, 48% are targeted by current drugs, and over 25% of them are involved in the virulence of pathogenic microorganisms. These facts encouraged us to study the link between the functions of moonlighting proteins and disease. We found a large number of moonlighting functions activated by pathological conditions that are highly involved in disease development and progression. The factors that activate some moonlighting functions take place only in pathological conditions, such as specific cellular translocations or changes in protein structure. Some moonlighting functions are involved in disease promotion while others are involved in curbing it. The disease-impairing moonlighting functions attempt to restore the homeostasis, or to reduce the damage linked to the imbalance caused by the disease. The disease-promoting moonlighting functions primarily involve the immune system, mesenchyme cross-talk, or excessive tissue proliferation. We often find moonlighting functions linked to the canonical function in a pathological context. Moonlighting functions are especially coordinated in inflammation and cancer. Wound healing and epithelial to mesenchymal transition are very representative. They involve multiple moonlighting proteins with a different role in each phase of the process, contributing to the current-phase phenotype or promoting a phase switch, mitigating the damage or intensifying the remodeling. All of this implies a new level of complexity in the study of pathology genesis, progression, and treatment. The specific protein function involved in a patient's progress or that is affected by a drug must be elucidated for the correct treatment of diseases.
Collapse
|
5
|
Wakeling MN, Owens NDL, Hopkinson JR, Johnson MB, Houghton JAL, Dastamani A, Flaxman CS, Wyatt RC, Hewat TI, Hopkins JJ, Laver TW, van Heugten R, Weedon MN, De Franco E, Patel KA, Ellard S, Morgan NG, Cheesman E, Banerjee I, Hattersley AT, Dunne MJ, Richardson SJ, Flanagan SE. Non-coding variants disrupting a tissue-specific regulatory element in HK1 cause congenital hyperinsulinism. Nat Genet 2022; 54:1615-1620. [PMID: 36333503 PMCID: PMC7614032 DOI: 10.1038/s41588-022-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.
Collapse
Affiliation(s)
- Matthew N Wakeling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Nick D L Owens
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jessica R Hopkinson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Matthew B Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Antonia Dastamani
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Christine S Flaxman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Rebecca C Wyatt
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Thomas I Hewat
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jasmin J Hopkins
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Rachel van Heugten
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Edmund Cheesman
- Department of Paediatric Pathology, Royal Manchester Children's Hospital, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Mark J Dunne
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
6
|
Functional analysis of HADH c.99C>G shows that the variant causes the proliferation of pancreatic islets and leu-sensitive hyperinsulinaemia. J Genet 2022. [DOI: 10.1007/s12041-022-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Boodhansingh KE, Rosenfeld E, Lord K, Adzick NS, Bhatti T, Ganguly A, De Leon DD, Stanley CA. Mosaic GLUD1 Mutations Associated with Hyperinsulinism Hyperammonemia Syndrome. Horm Res Paediatr 2022; 95:492-498. [PMID: 35952631 PMCID: PMC9671865 DOI: 10.1159/000526203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The hyperinsulinemia-hyperammonemia syndrome (HIHA) is the second most common cause of congenital hyperinsulinism and is caused by activating heterozygous missense mutations in GLUD1. In the majority of HIHA cases, the GLUD1 mutation is found to be de novo. We have identified 3 patients in whom clinical evaluation was suggestive of HIHA but with negative mutation analysis in peripheral blood DNA for GLUD1 as well as other known HI genes. METHODS We performed next-generation sequencing (NGS) on peripheral blood DNA from two children with clinical features of HIHA in order to look for mosaic mutations in GLUD1. Pancreas tissue was also available in one of these cases for NGS. In addition, NGS was performed on peripheral blood DNA from a woman with a history of HI in infancy whose child had HIHA due to a presumed de novo GLUD1 mutation. RESULTS Mosaic GLUD1 mutations were identified in these 3 cases at percent mosaicism ranging from 2.7% to 10.4% in peripheral blood. In one case with pancreas tissue available, the mosaic GLUD1 mutation was present at 17.9% and 28.9% in different sections of the pancreas. Two unique GLUD1 mutations were identified in these cases, both of which have been previously reported (c.1493c>t/p.Ser445Leu and c.820c>t/p.Arg221Cys). CONCLUSION The results suggest that low-level mosaic mutations in known HI genes may be the underlying molecular mechanism in some children with HI who have negative genetic testing in peripheral blood DNA.
Collapse
Affiliation(s)
- Kara E. Boodhansingh
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth Rosenfeld
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine Lord
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - N. Scott Adzick
- Department of Surgery, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tricia Bhatti
- Department of Pathology, The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arupa Ganguly
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diva D. De Leon
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Giri D, Hawton K, Senniappan S. Congenital hyperinsulinism: recent updates on molecular mechanisms, diagnosis and management. J Pediatr Endocrinol Metab 2022; 35:279-296. [PMID: 34547194 DOI: 10.1515/jpem-2021-0369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Congenital hyperinsulinism (CHI) is a rare disease characterized by an unregulated insulin release, leading to hypoglycaemia. It is the most frequent cause of persistent and severe hypoglycaemia in the neonatal period and early childhood. Mutations in 16 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, KCNQ1, CACNA1D, FOXA2, EIF2S3, PGM1 and PMM2) that are involved in regulating the insulin secretion from pancreatic β-cells have been described to be responsible for the underlying molecular mechanisms of CHI. CHI can also be associated with specific syndromes and can be secondary to intrauterine growth restriction (IUGR), maternal diabetes, birth asphyxia, etc. It is important to diagnose and promptly initiate appropriate management as untreated hypoglycaemia can be associated with significant neurodisability. CHI can be histopathologically classified into diffuse, focal and atypical forms. Advances in molecular genetics, imaging techniques (18F-fluoro-l-dihydroxyphenylalanine positron emission tomography/computed tomography scanning), novel medical therapies and surgical advances (laparoscopic pancreatectomy) have changed the management and improved the outcome of patients with CHI. This review article provides an overview of the background, clinical presentation, diagnosis, molecular genetics and therapy for children with different forms of CHI.
Collapse
Affiliation(s)
- Dinesh Giri
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.,University of Bristol, Bristol, UK
| | - Katherine Hawton
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | |
Collapse
|
9
|
Hyperinsulinism. ENDOCRINES 2022. [DOI: 10.3390/endocrines3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Congenital or monogenic hyperinsulinism (HI) is a group of rare genetic disorders characterized by dysregulated insulin secretion and is the most common cause of persistent hypoglycemia in children. Knowledge of normal glucose homeostasis allows for a better understanding of the underlying pathophysiology of hyperinsulinemic hypoglycemia, facilitating timely diagnosis and management. The goal of management is to prevent cerebral insults secondary to hypoglycemia, which can result in poor neurologic outcomes and intellectual disability. Responsiveness to diazoxide, the first-line pharmacologic therapy for persistent hypoglycemia, is also the first step to distinguishing the different genotypic causes of monogenic hyperinsulinism. Early genetic testing becomes necessary when monogenic HI is strongly considered. Knowledge of specific gene mutations allows the determination of a clinical prognosis and definite therapeutic options, such as identifying those with focal forms of hyperinsulinism, who may attain a complete cure through surgical removal of specific affected parts of the pancreas. However, the lack of identifiable cause in a considerable number of patients identified with HI suggests there may be other genetic loci that are yet to be discovered. Furthermore, continued research is needed to explore new forms of therapy, particularly in severe, diazoxide-nonresponsive cases.
Collapse
|
10
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
11
|
Clinical and genetic characteristics of patients with congenital hyperinsulinism in 21 non-consanguineous families from Serbia. Eur J Pediatr 2021; 180:2815-2821. [PMID: 33770274 DOI: 10.1007/s00431-021-04051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/07/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Persistent hypoglycaemia in newborns and infants is most commonly caused by congenital hyperinsulinism (CHI). Most CHI studies report outcomes in children from both consanguineous and non-consanguineous families which can affect the phenotype-genotype analysis. The aim of this study was to analyze characteristics of patients with CHI in 21 non-consanguineous families from Serbia. This retrospective cohort study included a total of 21 patients with CHI treated in the Mother and Child Healthcare Institute of Serbia during the past 20 years. The prevalence of macrosomia at birth was very low in our cohort (4.8%). Median age at presentation was 6 days, with seizures as the presenting symptom in 76% of patients. Only four patients (19%) were diazoxide unresponsive, and eventually underwent pancreatectomy. Genetic testing was performed in 15 patients and genetic diagnosis was confirmed in 60%, with all patients being heterozygous for detected mutations. The ABCC8 gene mutations were detected in 55.6%, GLUD1 in three patients (33.3%) with HIHA syndrome and one patient had HNF4A gene mutation and unusual prolonged hyperglycaemia lasting 6 days after diazoxide cessation. Neurodevelopmental deficits persisted in 33% of patients.Conclusion: This is the first study regarding CHI patients in Serbia. It suggests that in countries with low consanguinity rate, majority of CHI patients are diazoxide responsive. The most common mutations were heterozygous ABCC8, followed by GLUD1 and HNF4A mutations, suggesting the potential benefit of population-tailored genetic analysis approach, targeting the mutations causing CHI via dominant inheritance model in regions with low consanguinity rates. What is Known: • Persistent hypoglycaemia during infancy and early childhood is most commonly caused by congenital hyperinsulinism (CHI). • Consanguinity is a very important factor regarding the genetics and phenotype of CHI, increasing the risk of autosomal recessive genetic disorders, including the severe, diazoxide-unresponsive forms caused by recessive inactivating mutations in ABCC8 and KCNJ11. What is New: • Results of the present study which included CHI patients from 21 non-consanguineous families suggest that in countries with low consanguinity rates, majority of CHI patients can be diazoxide responsive, with most common mutations being heterozygous ABCC8, followed by GLUD1 and HNF4A mutations. • Unusually prolonged hyperglycaemic reaction to diazoxide treatment in a patient with HNF4A mutation was also described in the present study.
Collapse
|
12
|
Amaratunga SA, Hussein Tayeb T, Rozenkova K, Kucerova P, Pruhova S, Lebl J. Congenital Hyperinsulinism Caused by Novel Homozygous KATP Channel Gene Variants May Be Linked to Unexplained Neonatal Deaths among Kurdish Consanguineous Families. Horm Res Paediatr 2021; 93:58-65. [PMID: 32203961 DOI: 10.1159/000506476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/01/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Neonatal hypoglycemia due to congenital hyperinsulinism (CHI) is a potentially life-threatening condition. Biallelic pathogenic variants in KATP channel subunit genes (ABCC8, KCNJ11), causing severe forms of CHI, are more prevalent in regions with a significant rate of consanguinity and may lead to unexplained neonatal deaths. We hypothesized that KATP channel gene variants are the cause of CHI in three unrelated children from consanguineous Kurdish families with histories of four unexplained neonatal deaths with convulsions. CASES (1) A girl presented on the 6th day of life with recurrent hypoglycemic convulsions (blood glucose 2.05 mmol/L, insulin 58 mIU/L, C-peptide 2,242 pmol/L). (2) A girl with severe developmental delay was diagnosed with CHI at 3 years of age (blood glucose 2.78 mmol/L, insulin 8.1 mIU/L, C-peptide 761 pmol/L) despite a history of recurrent hypoglycemia since neonatal age. (3) A girl presented at 3 weeks of age with convulsions and unconsciousness (blood glucose 2.5 mmol/L, insulin 14.6 mIU/L, C-peptide 523 pmol/L). Coding regions of the ABCC8 and KCNJ11 genes were tested by Sanger sequencing. Potential variants were evaluated using the American College of Medical Genetics standards. Three novel causative homozygous variants were found - p.Trp514Ter in the ABCC8 gene (Pt2), and p.Met1Val (Pt1) and p.Tyr26Ter (Pt3) in the KCNJ11 gene. CONCLUSION CHI caused by KATP channel variants was elucidated in three children, providing a highly probable retrospective diagnosis for their deceased siblings. Future lives can be saved by timely diagnosis of CHI when encountering a neonate with unexplained seizures or other signs of recurrent and/or persistent hypoglycemia.
Collapse
Affiliation(s)
- Shenali Anne Amaratunga
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia,
| | - Tara Hussein Tayeb
- Department of Pediatrics, Sulaymani University, College of Medicine, Sulaymani, Iraq
| | - Klara Rozenkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Petra Kucerova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
13
|
Hashim EAA, Quek BH, Chandran S. A narrative review of Poland's syndrome: theories of its genesis, evolution and its diagnosis and treatment. Transl Pediatr 2021; 10:1008-1019. [PMID: 34012849 PMCID: PMC8107865 DOI: 10.21037/tp-20-320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Poland's syndrome (PS) is a rare musculoskeletal congenital anomaly with a wide spectrum of presentations. It is typically characterized by hypoplasia or aplasia of pectoral muscles, mammary hypoplasia and variably associated ipsilateral limb anomalies. Limb defects can vary in severity, ranging from syndactyly to phocomelia. Most cases are sporadic but familial cases with intrafamilial variability have been reported. Several theories have been proposed regarding the genesis of PS. Vascular disruption theory, "the subclavian artery supply disruption sequence" (SASDS) remains the most accepted pathogenic mechanism. Clinical presentations can vary in severity from syndactyly to phocomelia in the limbs and in the thorax, rib defects to severe chest wall anomalies with impaired lung function. Most patients have subtle presentation at birth and milder forms in childhood. Functional limitations due to PS are usually minimal. Surgical treatment aims to improve pulmonary functions arising from severe thoracic deformities but is more often done to enhance the cosmesis. The use of adipose-derived mesenchymal stem cells and fat transfer have shown promising results in recent times for correction of chest defects and breast augmentation. Gaining deeper insights into the etiopathogenesis and clinical presentation of PS will improve the clinical recognition and management of this rare condition. In this review article, we aim to outline the details of this syndrome including its etiopathogenesis, evolution, spectrum of clinical manifestations, other systemic associations, diagnostic modalities, and recent advances in treatment.
Collapse
Affiliation(s)
- Eman Awadh Abduladheem Hashim
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Neonatology, Salmanya Medical Complex, Manama, Kingdom of Bahrain
| | - Bin Huey Quek
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Neonatology, Duke-NUS Medical School, Singapore, Singapore.,Department of Neonatology, NUS Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Suresh Chandran
- Department of Neonatology, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Neonatology, Duke-NUS Medical School, Singapore, Singapore.,Department of Neonatology, NUS Yong Loo Lin School of Medicine, Singapore, Singapore.,Department of Neonatology, NTU Lee Kong Chian School of Medicine, Singapore, Singapore
| |
Collapse
|
14
|
Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: An overview. Hum Immunol 2021; 82:801-811. [PMID: 33745759 DOI: 10.1016/j.humimm.2021.02.012] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
Since the days of Sanger sequencing, next-generation sequencing technologies have significantly evolved to provide increased data output, efficiencies, and applications. These next generations of technologies can be categorized based on read length. This review provides an overview of these technologies as two paradigms: short-read, or "second-generation," technologies, and long-read, or "third-generation," technologies. Herein, short-read sequencing approaches are represented by the most prevalent technologies, Illumina and Ion Torrent, and long-read sequencing approaches are represented by Pacific Biosciences and Oxford Nanopore technologies. All technologies are reviewed along with reported advantages and disadvantages. Until recently, short-read sequencing was thought to provide high accuracy limited by read-length, while long-read technologies afforded much longer read-lengths at the expense of accuracy. Emerging developments for third-generation technologies hold promise for the next wave of sequencing evolution, with the co-existence of longer read lengths and high accuracy.
Collapse
Affiliation(s)
- Taishan Hu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nilesh Chitnis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Dimitri Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Anh Dinh
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Efficacy and safety of diazoxide for treating hyperinsulinemic hypoglycemia: A systematic review and meta-analysis. PLoS One 2021; 16:e0246463. [PMID: 33571197 PMCID: PMC7877589 DOI: 10.1371/journal.pone.0246463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Diazoxide is the first-line drug for treating hyperinsulinism and the only pharmacological agent approved for hyperinsulinism by the Federal Drug Administration. This systemic review and meta-analysis aimed to investigate the efficacy and safety of diazoxide for treating hyperinsulinemic hypoglycemia (HH). The meta-analysis of the efficacy and safety of diazoxide in treating HH was performed by searching relevant studies in the PubMed, Embase, and Cochrane databases. The findings were summarized, and the pooled effect size and its 95% confidence interval (CI) were calculated. A total of 6 cohort studies, involving 1142 participants, met the inclusion criteria. Among the cohort studies, the pooled estimate of the response rate of diazoxide therapy was 71% (95% CI 50%-93%, Pheterogeneity< 0.001, I2 = 98.3%, Peffect< 0.001). The common side effects were hypertrichosis (45%), fluid retention (20%), gastrointestinal reaction (13%), edema (11%), and neutropenia (9%). Other adverse events included pulmonary hypertension (2%) and thrombocytopenia (2%). This meta-analysis suggested that diazoxide was potentially useful in HH management; however, it had some side effects, which needed careful monitoring. Furthermore, well-designed large-scale studies, such as randomized controlled trials, might be necessary in the future to obtain more evidence.
Collapse
|
16
|
Wolfsdorf JI, Stanley CA. Hypoglycemia in the Toddler and Child. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:904-938. [DOI: 10.1016/b978-0-323-62520-3.00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Alhaidan Y, Christesen HT, Lundberg E, Balwi MAA, Brusgaard K. CRISPR/Cas9 ADCY7 Knockout Stimulates the Insulin Secretion Pathway Leading to Excessive Insulin Secretion. Front Endocrinol (Lausanne) 2021; 12:657873. [PMID: 34177802 PMCID: PMC8231291 DOI: 10.3389/fendo.2021.657873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/15/2022] Open
Abstract
AIM Despite the enormous efforts to understand Congenital hyperinsulinism (CHI), up to 50% of the patients are genetically unexplained. We aimed to functionally characterize a novel candidate gene in CHI. PATIENT A 4-month-old boy presented severe hyperinsulinemic hypoglycemia. A routine CHI genetic panel was negative. METHODS A trio-based whole-exome sequencing (WES) was performed. Gene knockout in the RIN-m cell line was established by CRISPR/Cas9. Gene expression was performed using real-time PCR. RESULTS Hyperinsulinemic hypoglycemia with diffuse beta-cell involvement was demonstrated in the patient, who was diazoxide-responsive. By WES, compound heterozygous variants were identified in the adenylyl cyclase 7, ADCY7 gene p.(Asp439Glu) and p.(Gly1045Arg). ADCY7 is calcium-sensitive, expressed in beta-cells and converts ATP to cAMP. The variants located in the cytoplasmic domains C1 and C2 in a highly conserved and functional amino acid region. RIN-m(-/-Adcy7) cells showed a significant increase in insulin secretion reaching 54% at low, and 49% at high glucose concentrations, compared to wild-type. In genetic expression analysis Adcy7 loss of function led to a 34.1-fold to 362.8-fold increase in mRNA levels of the insulin regulator genes Ins1 and Ins2 (p ≤ 0.0002), as well as increased glucose uptake and sensing indicated by higher mRNA levels of Scl2a2 and Gck via upregulation of Pdx1, and Foxa2 leading to the activation of the glucose stimulated-insulin secretion (GSIS) pathway. CONCLUSION This study identified a novel candidate gene, ADCY7, to cause CHI via activation of the GSIS pathway.
Collapse
Affiliation(s)
- Yazeid Alhaidan
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- *Correspondence: Yazeid Alhaidan,
| | - Henrik Thybo Christesen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Pancreas Center, Odense, Denmark
| | - Elena Lundberg
- Institute of Clinical Science, Pediatrics, Umea University, Umeå, Sweden
| | - Mohammed A. Al Balwi
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, NGHA, Riyadh, Saudi Arabia
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Near East University, Nicosia, Cyprus
| |
Collapse
|
18
|
Gϋemes M, Rahman SA, Kapoor RR, Flanagan S, Houghton JAL, Misra S, Oliver N, Dattani MT, Shah P. Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management. Rev Endocr Metab Disord 2020; 21:577-597. [PMID: 32185602 PMCID: PMC7560934 DOI: 10.1007/s11154-020-09548-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.
Collapse
Affiliation(s)
- Maria Gϋemes
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Endocrinology Service, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sofia Asim Rahman
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
| | - Ritika R Kapoor
- Pediatric Diabetes and Endocrinology, King's College Hospital NHS Trust, Denmark Hill, London, UK
| | - Sarah Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Royal Devon and Exeter Foundation Trust, Exeter, UK
| | - Shivani Misra
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Nick Oliver
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Pratik Shah
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK.
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
19
|
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, Arnoux JB, Larsen AR, Sanyoura M, Greeley SAW, Calzada-León R, Harman B, Houghton JAL, Nishimura-Meguro E, Laver TW, Ellard S, Del Gaudio D, Christesen HT, Bellanné-Chantelot C, Flanagan SE. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat 2020; 41:884-905. [PMID: 32027066 PMCID: PMC7187370 DOI: 10.1002/humu.23995] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Cécile Saint-Martin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Amy E Knight Johnson
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | | | - Pamela Bowman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Raúl Calzada-León
- Pediatric Endocrinology, Endocrine Service, National Institute for Pediatrics, Mexico City, Mexico
| | - Bradley Harman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Daniela Del Gaudio
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
20
|
Islam MS. Stimulus-Secretion Coupling in Beta-Cells: From Basic to Bedside. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:943-963. [PMID: 31646540 DOI: 10.1007/978-3-030-12457-1_37] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin secretion in humans is usually induced by mixed meals, which upon ingestion, increase the plasma concentration of glucose, fatty acids, amino acids, and incretins like glucagon-like peptide 1. Beta-cells can stay in the off-mode, ready-mode or on-mode; the mode-switching being determined by the open state probability of the ATP-sensitive potassium channels, and the activity of enzymes like glucokinase, and glutamate dehydrogenase. Mitochondrial metabolism is critical for insulin secretion. A sound understanding of the intermediary metabolism, electrophysiology, and cell signaling is essential for comprehension of the entire spectrum of the stimulus-secretion coupling. Depolarization brought about by inhibition of the ATP sensitive potassium channel, together with the inward depolarizing currents through the transient receptor potential (TRP) channels, leads to electrical activities, opening of the voltage-gated calcium channels, and exocytosis of insulin. Calcium- and cAMP-signaling elicited by depolarization, and activation of G-protein-coupled receptors, including the free fatty acid receptors, are intricately connected in the form of networks at different levels. Activation of the glucagon-like peptide 1 receptor augments insulin secretion by amplifying calcium signals by calcium induced calcium release (CICR). In the treatment of type 2 diabetes, use of the sulfonylureas that act on the ATP sensitive potassium channel, damages the beta cells, which eventually fail; these drugs do not improve the cardiovascular outcomes. In contrast, drugs acting through the glucagon-like peptide-1 receptor protect the beta-cells, and improve cardiovascular outcomes. The use of the glucagon-like peptide 1 receptor agonists is increasing and that of sulfonylurea is decreasing. A better understanding of the stimulus-secretion coupling may lead to the discovery of other molecular targets for development of drugs for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Clinical Science and Education, Södersjukhuset, Research Center, Karolinska Institutet, Stockholm, Sweden. .,Department of Emergency Care and Internal Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Xu A, Cheng J, Sheng H, Wen Z, Lin Y, Zhou Z, Zeng C, Shao Y, Li C, Liu L, Li X. Clinical Management and Gene Mutation Analysis of Children with Congenital Hyperinsulinism in South China. J Clin Res Pediatr Endocrinol 2019; 11:400-409. [PMID: 31208162 PMCID: PMC6878346 DOI: 10.4274/jcrpe.galenos.2019.2019.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To explore the clinical presentation and molecular genetic characteristics of a cohort of congenital hyperinsulinism (CHI) patients from southern China and also to explore the most appropriate therapeutic approaches. METHODS We retrospectively reviewed a cohort of 65 children with CHI. Mutational analysis was performed for KCNJ11 and ABCC8 genes. The GLUD1 gene was sequenced in patients with hyperammonaemia. GCK gene sequencing was performed in those patients with no mutation identified in the ABCC8, KCNJ11 or GLUD1 genes. RESULTS ABCC8 mutations were identified in 16 (25%) of the cohort, GLUD1 mutations were identified in five children, and no KCNJ11 or GCK mutations were identified. Moreover, some unique features of ABCC8 gene mutations in southern Chinese CHI patients were found in this study. The most common mutation was a deletion/insertion mutation p.Thr1042GlnfsX75 was found in five unrelated patients, which possibly represents a relatively common mutation in southern China. Five novel ABCC8 mutations were detected. The mutations were p.Phe5SerfsX72, p.Gln273ArgfsX85, p.Leu724del, p.Asp1447Gly and IVS 25-1G>T. Five compound heterozygous mutations of ABCC8 gene were identified in this study, and three of these patients were diazoxide-responsive. Forty patients were diazoxide-responsive, 13 patients were diazoxide-unresponsive and 12 patients received dietary treatment only. A pancreatectomy was performed in 10 patients who were unresponsive to medical treatment. CONCLUSION To the best of our knowledge, this is the first study of CHI in south China. Mutations in ABCC8 are the most common causes of CHI in this cohort. Diazoxide and dietary treatment were effective in most patients. Multicentre studies are necessary to obtain the long-term follow-up characteristics of such patients at a national level.
Collapse
Affiliation(s)
- Aijing Xu
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China,Contributed equally to this work
| | - Jing Cheng
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China,Contributed equally to this work
| | - Huiying Sheng
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Zhe Wen
- Guangzhou Women and Children’s Medical Center, Clinic of Pediatric Surgery, Guangzhou, China
| | - Yunting Lin
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Zhihong Zhou
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Chunhua Zeng
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Yongxian Shao
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Cuiling Li
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Li Liu
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China
| | - Xiuzhen Li
- Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China,* Address for Correspondence: Guangzhou Women and Children’s Medical Center, Clinic of Genetics and Endocrinology, Guangzhou, China Phone: +86020-38076127 E-mail:
| |
Collapse
|
22
|
Rosenfeld E, Ganguly A, De León DD. Congenital hyperinsulinism disorders: Genetic and clinical characteristics. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2019; 181:682-692. [PMID: 31414570 PMCID: PMC7229866 DOI: 10.1002/ajmg.c.31737] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Congenital hyperinsulinism (HI) is the most frequent cause of persistent hypoglycemia in infants and children. Delays in diagnosis and initiation of appropriate treatment contribute to a high risk of neurocognitive impairment. HI represents a heterogeneous group of disorders characterized by dysregulated insulin secretion by the pancreatic beta cells, which in utero, may result in somatic overgrowth. There are at least nine known monogenic forms of HI as well as several syndromic forms. Molecular diagnosis allows for prediction of responsiveness to medical treatment and likelihood of surgically-curable focal hyperinsulinism. Timely genetic mutation analysis has thus become standard of care. However, despite significant advances in our understanding of the molecular basis of this disorder, the number of patients without an identified genetic diagnosis remains high, suggesting that there are likely additional genetic loci that have yet to be discovered.
Collapse
Affiliation(s)
- Elizabeth Rosenfeld
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arupa Ganguly
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Boodhansingh KE, Kandasamy B, Mitteer L, Givler S, De Leon DD, Shyng S, Ganguly A, Stanley CA. Novel dominant K ATP channel mutations in infants with congenital hyperinsulinism: Validation by in vitro expression studies and in vivo carrier phenotyping. Am J Med Genet A 2019; 179:2214-2227. [PMID: 31464105 PMCID: PMC6852436 DOI: 10.1002/ajmg.a.61335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Inactivating mutations in the genes encoding the two subunits of the pancreatic beta-cell KATP channel, ABCC8 and KCNJ11, are the most common finding in children with congenital hyperinsulinism (HI). Interpreting novel missense variants in these genes is problematic, because they can be either dominant or recessive mutations, benign polymorphisms, or diabetes mutations. This report describes six novel missense variants in ABCC8 and KCNJ11 that were identified in 11 probands with congenital HI. One of the three ABCC8 mutations (p.Ala1458Thr) and all three KCNJ11 mutations were associated with responsiveness to diazoxide. Sixteen family members carried the ABCC8 or KCNJ11 mutations; only two had hypoglycemia detected at birth and four others reported symptoms of hypoglycemia. Phenotype testing of seven adult mutation carriers revealed abnormal protein-induced hypoglycemia in all; fasting hypoketotic hypoglycemia was demonstrated in four of the seven. All of six mutations were confirmed to cause dominant pathogenic defects based on in vitro expression studies in COSm6 cells demonstrating normal trafficking, but reduced responses to MgADP and diazoxide. These results indicate a combination of in vitro and in vivo phenotype tests can be used to differentiate dominant from recessive KATP channel HI mutations and personalize management of children with congenital HI.
Collapse
Affiliation(s)
- Kara E. Boodhansingh
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Lauren Mitteer
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Stephanie Givler
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Diva D. De Leon
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Show‐Ling Shyng
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Arupa Ganguly
- Department of GeneticsThe Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Charles A. Stanley
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
24
|
Al-Badi MK, Al-Azkawi HS, Al-Yahyaei MS, Mula-Abed WA, Al-Senani AM. Clinical characteristics and phenotype-genotype review of 25 Omani children with congenital hyperinsulinism in infancy. A one-decade single-center experience. Saudi Med J 2019; 40:669-674. [PMID: 31287126 PMCID: PMC6757195 DOI: 10.15537/smj.2019.7.24291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objectives: To report the genotype-phenotype characteristics, demographic features and clinical outcome of Omani patients with congenital hyperinsulinism (CHI). Methods: We retrospectively analyzed the clinical, biochemical, genotypical, phenotypical characteristics and outcomes of children with CHI who were presented to the pediatric endocrine team in the Royal Hospital, Muscat, Oman between January 2007 and December 2016. Results: Analysis of 25 patients with CHI genetically revealed homozygous mutation in ABCC8 in 23 (92%) patients and 2 patients (8%) with compound heterozygous mutation in ABCC8. Fifteen (60%) patients underwent subtotal pancreatectomy as medical therapy failed and 2 (8%) patients showed response to medical therapy. Three patients expired during the neonatal period, 2 had cardiomyopathy and sepsis, and one had sepsis and severe metabolic acidosis. Out of the 15 patients who underwent pancreatectomy, 6 developed diabetes mellitus, 6 continued to have hypoglycemia and required medical therapy and one had pancreatic exocrine dysfunction post-pancreatectomy, following up with gastroenterology clinic and was placed on pancreatic enzyme supplements, while 2 patients continued to have hypoglycemia and both had abdominal MRI and 18-F-fluoro-L-DOPA positron emission tomography scan (PET-scan), that showed persistent of the disease and started on medical therapy. Conclusion: Mutation in ABCC8 is the most common cause of CHI and reflects the early age of presentation. There is a need for early diagnosis and appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Maryam K Al-Badi
- Department of Pediatric Endocrinology, National Diabetes and Endocrine Centre, Muscat, Sultanate of Oman. E-mail.
| | | | | | | | | |
Collapse
|
25
|
Current and Emerging Agents for the Treatment of Hypoglycemia in Patients with Congenital Hyperinsulinism. Paediatr Drugs 2019; 21:123-136. [PMID: 31218604 DOI: 10.1007/s40272-019-00334-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycmia in neonatles and children. The inappropriate secretion of insulin by the pancreatic β-cells produces recurrent hypoglycemia, which can lead to severe and permanent brain damage. CHI results from mutations in different genes that play a role in the insulin secretion pathway, and each differs in their responsiveness to medical treatment. Currently, the only available approved treatment for hyperinsulinism is diazoxide. Patients unresponsive to diazoxide may benefit from specialized evaluation including genetic testing and 18F-DOPA PET to identify those with focal forms of CHI. The focal forms can be cured by selective pancreatectomy, but the management of diazoxide-unresponsive diffuse CHI is a real therapeutic challenge. Current off-label therapies include intravenous glucagon, octreotide and long-acting somatostatin analogs; however, they are often insufficient, and a 98% pancreatectomy or continuous feeds may be required. For the first time in over 40 years, new drugs are being developed, but none have made it to market yet. In this review, we will discuss current on-label and off-label drugs and review the currently available data on the novel drugs under development.
Collapse
|
26
|
Galcheva S, Demirbilek H, Al-Khawaga S, Hussain K. The Genetic and Molecular Mechanisms of Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2019; 10:111. [PMID: 30873120 PMCID: PMC6401612 DOI: 10.3389/fendo.2019.00111] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is a heterogenous and complex disorder in which the unregulated insulin secretion from pancreatic beta-cells leads to hyperinsulinaemic hypoglycaemia. The severity of hypoglycaemia varies depending on the underlying molecular mechanism and genetic defects. The genetic and molecular causes of CHI include defects in pivotal pathways regulating the secretion of insulin from the beta-cell. Broadly these genetic defects leading to unregulated insulin secretion can be grouped into four main categories. The first group consists of defects in the pancreatic KATP channel genes (ABCC8 and KCNJ11). The second and third categories of conditions are enzymatic defects (such as GDH, GCK, HADH) and defects in transcription factors (for example HNF1α, HNF4α) leading to changes in nutrient flux into metabolic pathways which converge on insulin secretion. Lastly, a large number of genetic syndromes are now linked to hyperinsulinaemic hypoglycaemia. As the molecular and genetic basis of CHI has expanded over the last few years, this review aims to provide an up-to-date knowledge on the genetic causes of CHI.
Collapse
Affiliation(s)
- Sonya Galcheva
- Department of Paediatrics, University Hospital St. Marina, Varna Medical University, Varna, Bulgaria
| | - Hüseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sara Al-Khawaga
- Division of Endocrinology, Department of Paediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Paediatric Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
27
|
De novo variants in HK1 associated with neurodevelopmental abnormalities and visual impairment. Eur J Hum Genet 2019; 27:1081-1089. [PMID: 30778173 DOI: 10.1038/s41431-019-0366-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/15/2018] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Hexokinase 1 (HK1) phosphorylates glucose to glucose-6-phosphate, the first rate-limiting step in glycolysis. Homozygous and heterozygous variants in HK1 have been shown to cause autosomal recessive non-spherocytic hemolytic anemia, autosomal recessive Russe type hereditary motor and sensory neuropathy, and autosomal dominant retinitis pigmentosa (adRP). We report seven patients from six unrelated families with a neurodevelopmental disorder associated with developmental delay, intellectual disability, structural brain abnormality, and visual impairments in whom we identified four novel, de novo missense variants in the N-terminal half of HK1. Hexokinase activity in red blood cells of two patients was normal, suggesting that the disease mechanism is not due to loss of hexokinase enzymatic activity.
Collapse
|
28
|
Maria G, Antonia D, Michael A, Kate M, Sian E, Sarah FE, Mehul D, Pratik S. Sirolimus: Efficacy and Complications in Children With Hyperinsulinemic Hypoglycemia: A 5-Year Follow-Up Study. J Endocr Soc 2019; 3:699-713. [PMID: 30882046 PMCID: PMC6411415 DOI: 10.1210/js.2018-00417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/04/2019] [Indexed: 11/24/2022] Open
Abstract
Introduction Sirolimus, a mammalian target of rapamycin inhibitor, has been used in congenital hyperinsulinism (CHI) unresponsive to diazoxide and octreotide. Reported response to sirolimus is variable, with high incidence of adverse effects. To the best of our knowledge, we report the largest group of CHI patients treated with sirolimus followed for the longest period to date. Methods Retrospective study of CHI patients treated with sirolimus in a tertiary service and review of the 15 publications reporting CHI patients treated with mammalian target of rapamycin inhibitors. Comparison was made between the findings of this study with those previously published. Results Twenty-two CHI patients treated with sirolimus were included in this study. Twenty showed partial response, one showed complete response, and one was unresponsive. Five of the partially/fully responsive patients had compound heterozygous ABCC8 mutations and five had heterozygous ABCC8 mutations. A total of 86.4% (19/22) developed complications, with infection being the most frequent (17/22), of which 11 were of bacterial etiology, followed by persistent diarrhea (3/22) and hyperglycemia (2/22). Seventeen patients stopped sirolimus: 13 from infections; 2 from hyperglycemia; and 2 from alternative treatment (lanreotide) response. Compared with data previously published, our study identified a higher number of partially sirolimus-responsive CHI cases, although the high rate of complications while on this medication limited its potential usefulness. Conclusion Sirolimus candidates must be carefully selected given its frequent and potentially life-threatening side effects. Its use as a short-term, last-resort therapy until normoglycemia is achieved with other agents such as lanreotide could avoid pancreatectomy. Further studies evaluating the use of sirolimus in patients with CHI are required.
Collapse
Affiliation(s)
- Güemes Maria
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
| | - Dastamani Antonia
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ashworth Michael
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Morgan Kate
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ellard Sian
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Flanagan E Sarah
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Dattani Mehul
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
| | - Shah Pratik
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
| |
Collapse
|
29
|
Sousa-Santos F, Simões H, Castro-Feijóo L, Rodríguez PC, Fernández-Marmiesse A, Fiaño RS, Rego T, Carracedo Á, Conde JB. Congenital hyperinsulinism in two siblings with ABCC8 mutation: same genotype, different phenotypes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:560-565. [PMID: 30462810 PMCID: PMC10118649 DOI: 10.20945/2359-3997000000077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 04/30/2018] [Indexed: 11/23/2022]
Abstract
Congenital hyperinsulinism (CHI) is a heterogenous disease caused by insulin secretion regulatory defects, being ABCC8/KCNJ11 the most commonly affected genes. Therapeutic options include diazoxide, somatostatin analogues and surgery, which is curative in focal CHI. We report the case of two siblings (born two years apart) that presented themselves with hypoketotic hyperinsulinemic persistent hypoglycemias during neonatal period. The diagnosis of diffuse CHI due to an ABCC8 compound mutation (c.3576delG and c.742C>T) was concluded. They did not benefit from diazoxide therapy (or pancreatectomy performed in patient number 1) yet responded to somatostatin analogues. Patient number 1 developed various neurological deficits (including epilepsy), however patient number 2 experienced an entirely normal neurodevelopment. We believe this case shows how previous knowledge of the firstborn sibling's disease contributed to a better and timelier medical care in patient number 2, which could potentially explain her better neurological outcome despite their same genotype.
Collapse
Affiliation(s)
- Francisco Sousa-Santos
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital Egas Moniz, Lisbon, Portugal. Unidad de Endocrinología Pediátrica y Crecimiento. IDIS. Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Helder Simões
- Serviço de Endocrinologia, Instituto Portugues de Oncologia de Lisboa, Portugal
| | - Lidia Castro-Feijóo
- Unidad de Endocrinología Pediátrica y Crecimiento. Pediatría, Hospital Clínico Universitario y Universidad de Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Paloma Cabanas Rodríguez
- Unidad de Endocrinología Pediátrica y Crecimiento. Pediatría Hospital Clínico Universitario y Universidad de Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Ana Fernández-Marmiesse
- Pediatría, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca Saborido Fiaño
- Pediatría, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Teresa Rego
- Unidad de Endocrinología Pediátrica y Crecimiento, IDIS. Hospital Clínico Universitario de Santiago de Compostela Spain. Endocrinología. Hospital Curry Cabral. Centro Hospitalar de Lisboa Central, Lisboa, Portugal
| | - Ángel Carracedo
- Fundación Publica Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús Barreiro Conde
- Unidad de Endocrinología Pediátrica y Crecimiento, Pediatría, Hospital Clínico Universitario y Universidad de Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| |
Collapse
|
30
|
Xu ZD, Zhang W, Liu M, Wang HM, Hui PP, Liang XJ, Yan J, Wu YJ, Sang YM, Zhu C, Ni GC. Analysis on the pathogenic genes of 60 Chinese children with congenital hyperinsulinemia. Endocr Connect 2018; 7:1251-1261. [PMID: 30352420 PMCID: PMC6240136 DOI: 10.1530/ec-18-0240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 02/01/2023]
Abstract
This study aims to summarize and analyze the clinical manifestations, genetic characteristics, treatment modalities and long-term prognosis of congenital hyperinsulinemia (CHI) in Chinese children. Sixty children with CHI, who were treated at Beijing Children's Hospital from January 2014 to August 2017, and their families, were selected as subjects. The CHI-related causative genes in children were sequenced and analyzed using second-generation sequencing technology. Furthermore, the genetic pathogenesis and clinical characteristics of Chinese children with CHI were explored. Among the 60 CHI children, 27 children (27/60, 45%) carried known CHI-related gene mutations: 16 children (26.7%) carried ABCC8 gene mutations, seven children (11.7%) carried GLUD1 gene mutations, one child carried GCK gene mutations, two children carried HNF4α gene mutations and one child carried HADH gene mutations. In these 60 patients, 8 patients underwent 18F-L-DOPA PET scan for the pancreas, and five children were found to be focal type. The treatment of diazoxide was ineffective in these five patients, and hypoglycemia could be controlled after receiving partial pancreatectomy. Conclusions: ABCC8 gene mutation is the most common cause of CHI in Chinese children. The early genetic analysis of children's families has an important guiding significance for treatment planning and prognosis assessment.
Collapse
Affiliation(s)
- Zi-Di Xu
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wei Zhang
- Department of Children Health Care, Xiamen Maternal and Child Health Hospital, Xiamen, China
| | - Min Liu
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Huan-Min Wang
- Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Pei-Pei Hui
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xue-Jun Liang
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Yan
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yu-Jun Wu
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yan-Mei Sang
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Correspondence should be addressed to Y-M Sang:
| | - Cheng Zhu
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Gui-Chen Ni
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
31
|
Laver TW, Wakeling MN, Hua JHY, Houghton JAL, Hussain K, Ellard S, Flanagan SE. Comprehensive screening shows that mutations in the known syndromic genes are rare in infants presenting with hyperinsulinaemic hypoglycaemia. Clin Endocrinol (Oxf) 2018; 89:621-627. [PMID: 30238501 PMCID: PMC6283248 DOI: 10.1111/cen.13841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or more rarely feature as part of a syndrome. Screening for mutations in the "syndromic" HH genes is guided by phenotype with genetic testing used to confirm the clinical diagnosis. As HH can be the presenting feature of a syndrome, it is possible that mutations will be missed as these genes are not routinely screened in all newly diagnosed individuals. We investigated the frequency of pathogenic variants in syndromic genes in infants with HH who had not been clinically diagnosed with a syndromic disorder at referral for genetic testing. DESIGN We used genome sequencing data to assess the prevalence of mutations in syndromic HH genes in an international cohort of patients with HH of unknown genetic cause. PATIENTS We undertook genome sequencing in 82 infants with HH without a clinical diagnosis of a known syndrome at referral for genetic testing. MEASUREMENTS Within this cohort, we searched for the genetic aetiologies causing 20 different syndromes where HH had been reported as a feature. RESULTS We identified a pathogenic KMT2D variant in a patient with HH diagnosed at birth, confirming a genetic diagnosis of Kabuki syndrome. Clinical data received following the identification of the mutation highlighted additional features consistent with the genetic diagnosis. Pathogenic variants were not identified in the remainder of the cohort. CONCLUSIONS Pathogenic variants in the syndromic HH genes are rare; thus, routine testing of these genes by molecular genetics laboratories is unlikely to be justified in patients without syndromic phenotypes.
Collapse
Affiliation(s)
- Thomas W. Laver
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | - Matthew N. Wakeling
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | | | - Jayne A. L. Houghton
- Department of Molecular GeneticsRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Khalid Hussain
- Department of Pediatric MedicineDivision of EndocrinologySidra MedicineDohaQatar
| | - Sian Ellard
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
32
|
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is a heterogeneous condition with dysregulated insulin secretion which persists in the presence of low blood glucose levels. It is the most common cause of severe and persistent hypoglycaemia in neonates and children. Recent advances in genetics have linked congenital HH to mutations in 14 different genes that play a key role in regulating insulin secretion (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1, PPM2, CACNA1D, FOXA2). Histologically, congenital HH can be divided into 3 types: diffuse, focal and atypical. Due to the biochemical basis of this condition, it is essential to diagnose and treat HH promptly in order to avoid the irreversible hypoglycaemic brain damage. Recent advances in the field of HH include new rapid molecular genetic testing, novel imaging methods (18F-DOPA PET/CT), novel medical therapy (long-acting octreotide formulations, mTOR inhibitors, GLP-1 receptor antagonists) and surgical approach (laparoscopic surgery). The review article summarizes the current diagnostic methods and management strategies for HH in children.
Collapse
Affiliation(s)
- Sonya Galcheva
- Dept. of Paediatrics, Varna Medical University/University Hospital "St. Marina", Varna, Bulgaria
| | - Sara Al-Khawaga
- Dept. of Paediatric Medicine, Division of Endocrinology, Sidra Medical & Research Center, Doha, Qatar
| | - Khalid Hussain
- Dept. of Paediatric Medicine, Division of Endocrinology, Sidra Medical & Research Center, Doha, Qatar.
| |
Collapse
|
33
|
Giri D, Vignola ML, Gualtieri A, Scagliotti V, McNamara P, Peak M, Didi M, Gaston-Massuet C, Senniappan S. Novel FOXA2 mutation causes Hyperinsulinism, Hypopituitarism with Craniofacial and Endoderm-derived organ abnormalities. Hum Mol Genet 2018; 26:4315-4326. [PMID: 28973288 DOI: 10.1093/hmg/ddx318] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
Congenital hypopituitarism (CH) is characterized by the deficiency of one or more pituitary hormones and can present alone or in association with complex disorders. Congenital hyperinsulinism (CHI) is a disorder of unregulated insulin secretion despite hypoglycaemia that can occur in isolation or as part of a wider syndrome. Molecular diagnosis is unknown in many cases of CH and CHI. The underlying genetic etiology causing the complex phenotype of CH and CHI is unknown. In this study, we identified a de novo heterozygous mutation in the developmental transcription factor, forkhead box A2, FOXA2 (c.505T>C, p.S169P) in a child with CHI and CH with craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract by whole exome sequencing. The mutation is at a highly conserved residue within the DNA binding domain. We demonstrated strong expression of Foxa2 mRNA in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2. Our results show, for the first time, the causative role of FOXA2 in a complex congenital syndrome with hypopituitarism, hyperinsulinism and endoderm-derived organ abnormalities.
Collapse
Affiliation(s)
- Dinesh Giri
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK.,Department of Women and Children's Health, Institute in the Park, University of Liverpool, Liverpool L12 2AP, UK
| | - Maria Lillina Vignola
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Paul McNamara
- Department of Women and Children's Health, Institute in the Park, University of Liverpool, Liverpool L12?2AP, UK
| | - Matthew Peak
- NIHR Alder Hey Clinical Research Facility for Experimental Medicine, Alder Hey Children's NHS Foundation Trust, Liverpool, L12 2AP, UK
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK.,Department of Women and Children's Health, Institute in the Park, University of Liverpool, Liverpool L12 2AP, UK
| |
Collapse
|
34
|
Abstract
Pancreatic β-cells are finely tuned to secrete insulin so that plasma glucose levels are maintained within a narrow physiological range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is the inappropriate secretion of insulin in the presence of low plasma glucose levels and leads to severe and persistent hypoglycaemia in neonates and children. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) that are involved in the regulation of insulin secretion from pancreatic β-cells have been described to be responsible for the underlying molecular mechanisms leading to congenital HH. In HH due to the inhibitory effect of insulin on lipolysis and ketogenesis there is suppressed ketone body formation in the presence of hypoglycaemia thus leading to increased risk of hypoglycaemic brain injury. Therefore, a prompt diagnosis and immediate management of HH is essential to avoid hypoglycaemic brain injury and long-term neurological complications in children. Advances in molecular genetics, imaging techniques (18F-DOPA positron emission tomography/computed tomography scanning), medical therapy and surgical advances (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This review article provides an overview to the background, clinical presentation, diagnosis, molecular genetics and therapy in children with different forms of HH.
Collapse
Affiliation(s)
- Hüseyin Demirbilek
- Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey
| | - Khalid Hussain
- Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar
,* Address for Correspondence: Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar Phone: +974-30322007 E-mail:
| |
Collapse
|
35
|
Lu M, Li C. Nutrient sensing in pancreatic islets: lessons from congenital hyperinsulinism and monogenic diabetes. Ann N Y Acad Sci 2017; 1411:65-82. [PMID: 29044608 DOI: 10.1111/nyas.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic beta cells sense changes in nutrients during the cycles of fasting and feeding and release insulin accordingly to maintain glucose homeostasis. Abnormal beta cell nutrient sensing resulting from gene mutations leads to hypoglycemia or diabetes. Glucokinase (GCK) plays a key role in beta cell glucose sensing. As one form of congenital hyperinsulinism (CHI), activating mutations of GCK result in a decreased threshold for glucose-stimulated insulin secretion and hypoglycemia. In contrast, inactivating mutations of GCK result in diabetes, including a mild form (MODY2) and a severe form (permanent neonatal diabetes mellitus (PNDM)). Mutations of beta cell ion channels involved in insulin secretion regulation also alter glucose sensing. Activating or inactivating mutations of ATP-dependent potassium (KATP ) channel genes result in severe but completely opposite clinical phenotypes, including PNDM and CHI. Mutations of the other ion channels, including voltage-gated potassium channels (Kv 7.1) and voltage-gated calcium channels, also lead to abnormal glucose sensing and CHI. Furthermore, amino acids can stimulate insulin secretion in a glucose-independent manner in some forms of CHI, including activating mutations of the glutamate dehydrogenase gene, HDAH deficiency, and inactivating mutations of KATP channel genes. These genetic defects have provided insight into a better understanding of the complicated nature of beta cell fuel-sensing mechanisms.
Collapse
Affiliation(s)
- Ming Lu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Wang WY, Sun Y, Zhao WT, Wu T, Wang L, Yuan TM, Yu HM. Congenital Hyperinsulinism in China: A Review of Chinese Literature Over the Past 15 Years. J Clin Res Pediatr Endocrinol 2017; 9:194-201. [PMID: 28270372 PMCID: PMC5596799 DOI: 10.4274/jcrpe.3934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Congenital hyperinsulinism (CHI) is a rare but severe cause of hypoglycemia. The present study investigates the clinical presentation, therapeutic outcomes and genetic mutations of CHI in Chinese individuals over the past 15 years. METHODS The authors retrospectively reviewed one case in their department and 206 cases reported from January 2002 to October 2016 in China. PubMed, Ovid Medline, Springer and Wanfang Database, CBMD database, and CKNI database were the sources used to collect the data. RESULTS In total, 207 cases were recruited. Of these, the ages of 100 (48.3%) were within the 4th week after birth. Seventy-seven cases (37.2%) were born large for gestational age (LGA). Seizures occurred in 140 cases (67.6%). Among 140 cases (67.6%) who were administered diazoxide treatment, 90 (64.3%) were responsive. Seven cases (3.4%) received octreotide treatment and 19 cases (9.2%) underwent surgery. 63/129 cases (48.8%) were detected to have gene mutations, including ABCC8 (69.8%), KCNJ11 (12.7%), GLUD1, GCK, HADH, and HNF4A. Among the diazoxide-unresponsive cases, gene mutations were detected in 20/36 (55.6%) cases with ABCC8 and in 2 (5.6%) cases with KCNJ11. Among the diazoxide-responsive cases, gene mutations were detected in 8 patients with ABCC8, 4 with KCNJ11, 5 with GLUD1, and 1 with GCK. CONCLUSION The present study indicates that most CHI cases occurred in neonates and that 1/3 of the cases were born LGA. ABCC8 and KCNJ11 are the most common gene mutations. More than half of the diazoxide-unresponsive CHI detected mutations are in ABCC8 and KCNJ11 genes. The GLUD1 gene mutations cause diazoxide-responsive CHI. Identifying the gene mutations can assist in the diagnosis and treatment of CHI.
Collapse
Affiliation(s)
- Wei-Yan Wang
- Zhejiang University School of Medicine, Children’s Hospital, Clinic of Neonates, Hangzhou, China
| | - Yi Sun
- Zhejiang University School of Medicine, Children’s Hospital, Clinic of Neonates, Hangzhou, China
| | - Wen-Ting Zhao
- Zhejiang University School of Medicine, Children’s Hospital, Clinic of Neonates, Hangzhou, China
| | - Tai Wu
- Zhejiang University School of Medicine, Children’s Hospital, Clinic of Neonates, Hangzhou, China
| | - Liang Wang
- Zhejiang Cancer Hospital, Clinic of Chest Surgery, Hangzhou, China
| | - Tian-Ming Yuan
- Zhejiang University School of Medicine, Children’s Hospital, Clinic of Neonates, Hangzhou, China
| | - Hui-Min Yu
- Zhejiang University School of Medicine, Children’s Hospital, Clinic of Neonates, Hangzhou, China
| |
Collapse
|
37
|
Shah P, Rahman SA, Demirbilek H, Güemes M, Hussain K. Hyperinsulinaemic hypoglycaemia in children and adults. Lancet Diabetes Endocrinol 2017; 5:729-742. [PMID: 27915035 DOI: 10.1016/s2213-8587(16)30323-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/16/2016] [Accepted: 09/28/2016] [Indexed: 02/08/2023]
Abstract
Pancreatic β cells are functionally programmed to release insulin in response to changes in plasma glucose concentration. Insulin secretion is precisely regulated so that, under normal physiological conditions, fasting plasma glucose concentrations are kept within a narrow range of 3·5-5·5 mmol/L. In hyperinsulinaemic hypoglycaemia, insulin secretion becomes dysregulated (ie, uncoupled from glucose metabolism) so that insulin secretion persists in the presence of low plasma glucose concentrations. Hyperinsulinaemic hypoglycaemia is the most common cause of severe and persistent hypoglycaemia in neonates and children. At a molecular level, mutations in nine different genes can lead to the dysregulation of insulin secretion and cause this disorder. In adults, hyperinsulinaemic hypoglycaemia accounts for 0·5-5·0% of cases of hypoglycaemia and can be due either to β-cell tumours (insulinomas) or β-cell hyperplasia. Rapid diagnosis and prompt management of hyperinsulinaemic hypoglycaemia is essential to avoid hypoglycaemic brain injury, especially in the vulnerable neonatal and childhood periods. Advances in the field of hyperinsulinaemic hypoglycaemia include use of rapid molecular genetic testing for the disease, application of novel imaging techniques (6-[fluoride-18]fluoro-levodopa [18F-DOPA] PET-CT and glucagon-like peptide 1 (GLP-1) receptor imaging), and development of novel medical treatments (eg, long-acting octreotide formulations, mTOR inhibitors, and GLP-1 receptor antagonists) and surgical therapies (eg, laparoscopic surgery).
Collapse
Affiliation(s)
- Pratik Shah
- Genetics and Genomic Medicine Programme, University College London (UCL) Institute of Child Health, London, UK; Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sofia A Rahman
- Genetics and Genomic Medicine Programme, University College London (UCL) Institute of Child Health, London, UK
| | - Huseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University, Ankara, Turkey
| | - Maria Güemes
- Genetics and Genomic Medicine Programme, University College London (UCL) Institute of Child Health, London, UK; Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Khalid Hussain
- Department of Pediatric Medicine, Sidra Medical & Research Center, Outpatient Clinic, Doha, Qatar.
| |
Collapse
|
38
|
Demirbilek H, Rahman SA, Buyukyilmaz GG, Hussain K. Diagnosis and treatment of hyperinsulinaemic hypoglycaemia and its implications for paediatric endocrinology. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2017; 2017:9. [PMID: 28855921 PMCID: PMC5575922 DOI: 10.1186/s13633-017-0048-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022]
Abstract
Glucose homeostasis requires appropriate and synchronous coordination of metabolic events and hormonal activities to keep plasma glucose concentrations in a narrow range of 3.5–5.5 mmol/L. Insulin, the only glucose lowering hormone secreted from pancreatic β-cells, plays the key role in glucose homeostasis. Insulin release from pancreatic β-cells is mainly regulated by intracellular ATP-generating metabolic pathways. Hyperinsulinaemic hypoglycaemia (HH), the most common cause of severe and persistent hypoglycaemia in neonates and children, is the inappropriate secretion of insulin which occurs despite low plasma glucose levels leading to severe and persistent hypoketotic hypoglycaemia. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) constitute the underlying molecular mechanisms of congenital HH. Since insulin supressess ketogenesis, the alternative energy source to the brain, a prompt diagnosis and immediate management of HH is essential to avoid irreversible hypoglycaemic brain damage in children. Advances in molecular genetics, imaging methods (18F–DOPA PET-CT), medical therapy and surgical approach (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This up to date review article provides a background to the diagnosis, molecular genetics, recent advances and therapeutic options in the field of HH in children.
Collapse
Affiliation(s)
- Huseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Sofia A Rahman
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Gonul Gulal Buyukyilmaz
- Department of Paediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Khalid Hussain
- Department of Paediatric Medicine Sidra Medical & Research Center, OPC, C6-337, PO Box 26999, Doha, Qatar
| |
Collapse
|
39
|
Maiorana A, Dionisi-Vici C. Hyperinsulinemic hypoglycemia: clinical, molecular and therapeutical novelties. J Inherit Metab Dis 2017; 40:531-542. [PMID: 28656511 DOI: 10.1007/s10545-017-0059-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 01/01/2023]
Abstract
Hyperinsulinemic hypoglycemia (HI) is the most common cause of hypoglycemia in children. Impairment of cellular pathways involved in insulin secretion from pancreatic β-cells, broadly classified as channelopathies and metabolopathies, have been discovered in the past two decades. The increasing use of NGS target panels, combined with clinical, biochemical and imaging findings allows differentiating the diagnostic management of children with focal forms, surgically curable, from those with diffuse forms, more conservatively treated with pharmacological and nutritional interventions. Specific approaches according to the subtype of HI have been established and novel therapies are currently under investigation. Despite diagnostic and therapeutic advances, HI remains an important cause of morbidity in children, still accounting for 26-44% of permanent intellectual disabilities, especially in neonatal-onset patients. Initial insult from recurrent hypoglycemia in early life greatly contributes to the poor outcomes. Therefore, patients need to be rapidly identified and treated aggressively, and require at follow-up a complex and regular monitoring, managed by a multidisciplinary HI team. This review gives an overview on the more recent diagnostic and therapeutic tools, on the novel drug and nutritional therapies, and on the long-term neurological outcomes.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolic Diseases, Department of Pediatric Specialties, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Department of Pediatric Specialties, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
40
|
Li C, Ackermann AM, Boodhansingh KE, Bhatti TR, Liu C, Schug J, Doliba N, Han B, Cosgrove KE, Banerjee I, Matschinsky FM, Nissim I, Kaestner KH, Naji A, Adzick NS, Dunne MJ, Stanley CA, De León DD. Functional and Metabolomic Consequences of K ATP Channel Inactivation in Human Islets. Diabetes 2017; 66:1901-1913. [PMID: 28442472 PMCID: PMC5482088 DOI: 10.2337/db17-0029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/15/2017] [Indexed: 12/17/2022]
Abstract
Loss-of-function mutations of β-cell KATP channels cause the most severe form of congenital hyperinsulinism (KATPHI). KATPHI is characterized by fasting and protein-induced hypoglycemia that is unresponsive to medical therapy. For a better understanding of the pathophysiology of KATPHI, we examined cytosolic calcium ([Ca2+] i ), insulin secretion, oxygen consumption, and [U-13C]glucose metabolism in islets isolated from the pancreases of children with KATPHI who required pancreatectomy. Basal [Ca2+] i and insulin secretion were higher in KATPHI islets compared with controls. Unlike controls, insulin secretion in KATPHI islets increased in response to amino acids but not to glucose. KATPHI islets have an increased basal rate of oxygen consumption and mitochondrial mass. [U-13C]glucose metabolism showed a twofold increase in alanine levels and sixfold increase in 13C enrichment of alanine in KATPHI islets, suggesting increased rates of glycolysis. KATPHI islets also exhibited increased serine/glycine and glutamine biosynthesis. In contrast, KATPHI islets had low γ-aminobutyric acid (GABA) levels and lacked 13C incorporation into GABA in response to glucose stimulation. The expression of key genes involved in these metabolic pathways was significantly different in KATPHI β-cells compared with control, providing a mechanism for the observed changes. These findings demonstrate that the pathophysiology of KATPHI is complex, and they provide a framework for the identification of new potential therapeutic targets for this devastating condition.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amanda M Ackermann
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kara E Boodhansingh
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tricia R Bhatti
- Department of Pathology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Schug
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nicolai Doliba
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bing Han
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Karen E Cosgrove
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Indraneel Banerjee
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Franz M Matschinsky
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Itzhak Nissim
- Division of Metabolism, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - N Scott Adzick
- Department of Surgery, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark J Dunne
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
| | - Charles A Stanley
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Diva D De León
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
41
|
Giri D, Patil P, Hart R, Didi M, Senniappan S. Congenital hyperinsulinism and Poland syndrome in association with 10p13-14 duplication. Endocrinol Diabetes Metab Case Rep 2017; 2017:EDM160125. [PMID: 28458900 PMCID: PMC5404473 DOI: 10.1530/edm-16-0125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/22/2017] [Indexed: 01/12/2023] Open
Abstract
Summary Poland syndrome (PS) is a rare congenital condition, affecting 1 in 30 000 live births worldwide, characterised by a unilateral absence of the sternal head of the pectoralis major and ipsilateral symbrachydactyly occasionally associated with abnormalities of musculoskeletal structures. A baby girl, born at 40 weeks’ gestation with birth weight of 3.33 kg (−0.55 SDS) had typical phenotypical features of PS. She had recurrent hypoglycaemic episodes early in life requiring high concentration of glucose and glucagon infusion. The diagnosis of congenital hyperinsulinism (CHI) was biochemically confirmed by inappropriately high plasma concentrations of insulin and C-peptide and low plasma free fatty acids and β-hydroxyl butyrate concentrations during hypoglycaemia. Sequencing of ABCC8, KCNJ11 and HNF4A did not show any pathogenic mutation. Microarray analysis revealed a novel duplication in the short arm of chromosome 10 at 10p13–14 region. This is the first reported case of CHI in association with PS and 10p duplication. We hypothesise that the HK1 located on the chromosome 10 encoding hexokinase-1 is possibly linked to the pathophysiology of CHI. Learning points:
Collapse
Affiliation(s)
- Dinesh Giri
- Alder Hey Children's NHS Foundation Trust, LiverpoolUK
| | | | - Rachel Hart
- Liverpool Women's NHS Foundation TrustLiverpool, UK
| | - Mohammed Didi
- Alder Hey Children's NHS Foundation Trust, LiverpoolUK
| | | |
Collapse
|
42
|
Güven A, Cebeci AN, Ellard S, Flanagan SE. Clinical and Genetic Characteristics, Management and Long-Term Follow-Up of Turkish Patients with Congenital Hyperinsulinism. J Clin Res Pediatr Endocrinol 2016; 8:197-204. [PMID: 26758964 PMCID: PMC5096476 DOI: 10.4274/jcrpe.2408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Mutations in the KATP channel genes is the most common cause of congenital hyperinsulinism (CHI) of infancy. Our aim was to report the clinical and genetic characteristics, treatment modalities, and long-term prognosis of patients with CHI. METHODS Clinical and biochemical findings, operation procedures, and results of genetic analysis were retrospectively evaluated in 22 CHI patients from two pediatric endocrine centers in Turkey. RESULTS Seven of the patients were born large for gestational age. Hypoglycemia was diagnosed within the first 24 hours of life in 9 patients and treatment with diazoxide (n=21) and/or somatostatin (n=8) had been attempted. Seven patients (31.8%) were unresponsive to medical treatment and underwent pancreatectomy. Histological examination of the pancreas confirmed diffuse disease in 6 patients. Diabetes developed in 3 patients following pancreatectomy (10 years, 2.5 years, and immediately after operation). The remaining four patients had neither recurrence of CHI nor of diabetes during the 3.67±0.7 years of follow-up. Sequence analysis identified mutations in 12 out of 19 patients (63%). Mutations in the ABCC8 gene were the most common finding and were found in 6 out of 7 patients who underwent pancreatectomy. Other mutations included a paternally inherited KCNJ11 mutation, a homozygous HADH mutation, and a heterozygous GLUD1 mutation. CONCLUSION Mutations in the ABCC8 gene were the most common cause of CHI in our cohort. These mutations were identified in 85% of patients who underwent pancreatectomy. The development of diabetes mellitus after pancreatectomy may occur at any age and these patients should be screened regularly.
Collapse
Affiliation(s)
- Ayla Güven
- Göztepe Training and Research Hospital, Clinic of Pediatric Endocrinology, İstanbul, Turkey, E-mail:
| | | | | | | |
Collapse
|
43
|
Abstract
CONTEXT Congenital hyperinsulinism (HI) is the most common cause of hypoglycemia in children. The risk of permanent brain injury in infants with HI continues to be as high as 25-50% due to delays in diagnosis and inadequate treatment. Congenital HI has been described since the birth of the JCEM under various terms, including "idiopathic hypoglycemia of infancy," "leucine-sensitive hypoglycemia," or "nesidioblastosis." EVIDENCE ACQUISITION In the past 20 years, it has become apparent that HI is caused by genetic defects in the pathways that regulate pancreatic β-cell insulin secretion. EVIDENCE SYNTHESIS There are now 11 genes associated with monogenic forms of HI (ABCC8, KCNJ11, GLUD1, GCK, HADH1, UCP2, MCT1, HNF4A, HNF1A, HK1, PGM1), as well as several syndromic genetic forms of HI (eg, Beckwith-Wiedemann, Kabuki, and Turner syndromes). HI is also the cause of hypoglycemia in transitional neonatal hypoglycemia and in persistent hypoglycemia in various groups of high-risk neonates (such as birth asphyxia, small for gestational age birthweight, infant of diabetic mother). Management of HI is one of the most difficult problems faced by pediatric endocrinologists and frequently requires difficult choices, such as near-total pancreatectomy and/or highly intensive care with continuous tube feedings. For 50 years, diazoxide, a KATP channel agonist, has been the primary drug for infants with HI; however, it is ineffective in most cases with mutations of ABCC8 or KCNJ11, which constitute the majority of infants with monogenic HI. CONCLUSIONS Genetic mutation testing has become standard of care for infants with HI and has proven to be useful not only in projecting prognosis and family counseling, but also in diagnosing infants with surgically curable focal HI lesions. (18)F-fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET scans have been found to be highly accurate for localizing such focal lesions preoperatively. New drugs under investigation provide hope for improving the outcomes of children with HI.
Collapse
Affiliation(s)
- Charles A Stanley
- Division of Endocrinology, The Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
44
|
Biomarkers of Insulin for the Diagnosis of Hyperinsulinemic Hypoglycemia in Infants and Children. J Pediatr 2016; 168:212-219. [PMID: 26490124 DOI: 10.1016/j.jpeds.2015.09.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/07/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate thresholds of various biomarkers for defining excess insulin activity to recognize congenital hyperinsulinism. STUDY DESIGN This was a retrospective chart review of diagnostic fasting tests in children with ketotic hypoglycemia (n = 30) and genetically/pathology confirmed congenital hyperinsulinism (n = 28). Sensitivity and specificity for congenital hyperinsulinism were determined for plasma insulin, β-hydroxybutyrate, free fatty acids (FFA), C-peptide, insulin-like growth factor binding protein-1 (IGFBP-1), and the glycemic response to glucagon (through the glucagon stimulation test [GST]) at the time of hypoglycemia. RESULTS Only 23 of the 28 subjects with congenital hyperinsulinism had detectable insulin (median, 6.7 μIU/mL), and insulin was undetectable in all subjects with ketotic hypoglycemia. Compared with ketotic hypoglycemia, subjects with congenital hyperinsulinism had higher GST values (57 vs 13 mg/dL; ΔGST ≥30 mg/dL in 24 of 27 subjects with congenital hyperinsulinism vs 0 of 30 subjects with ketotic hypoglycemia) and C-peptide levels (1.55 vs 0.11 ng/mL), with lower levels of FFA (0.82 vs 2.51 mM) and IGFBP-1 (59.5 vs 634 ng/mL). At the time of hypoglycemia, the upper limits of β-hydroxybutyrate and FFA in subjects with congenital hyperinsulinism were higher than reported previously (β-hydroxybutyrate <1.8 mM and FFA <1.7 mM), providing the best sensitivity for congenital hyperinsulinism vs ketotic hypoglycemia. A C-peptide level ≥0.5 ng/mL was 89% sensitive and 100% specific, and an IGFBP-1 level ≤110 ng/mL was 85% sensitive and 96.6% specific. CONCLUSION Because low or undetectable insulin level during hypoglycemia does not exclude the diagnosis of hyperinsulinism, C-peptide and IGFBP-1 may inform the diagnosis of congenital hyperinsulinism. In this group of children with well-defined congenital hyperinsulinism, thresholds for "suppressed" β-hydroxybutyrate and FFA are higher than previously reported levels.
Collapse
|
45
|
Henquin JC, Nenquin M, Guiot Y, Rahier J, Sempoux C. Human Insulinomas Show Distinct Patterns of Insulin Secretion In Vitro. Diabetes 2015; 64:3543-53. [PMID: 26116696 DOI: 10.2337/db15-0527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/20/2015] [Indexed: 11/13/2022]
Abstract
Insulinomas are β-cell tumors that cause hypoglycemia through inappropriate secretion of insulin. Characterization of the in vitro dynamics of insulin secretion by perifused fragments of 10 human insulinomas permitted their subdivision into three functional groups with similar insulin content. Group A (four patients with fasting and/or postprandial hypoglycemic episodes) showed qualitatively normal responses to glucose, leucine, diazoxide, tolbutamide, and extracellular CaCl2 omission or excess. The effect of glucose was concentration dependent, but, compared with normal islets, insulin secretion was excessive in both low- and high-glucose conditions. Group B (three patients with fasting hypoglycemic episodes) was mainly characterized by large insulin responses to 1 mmol/L glucose, resulting in very high basal secretion rates that were inhibited by diazoxide and restored by tolbutamide but were not further augmented by other agents except for high levels of CaCl2. Group C (three patients with fasting hypoglycemic episodes) displayed very low rates of insulin secretion and virtually no response to stimuli (including high CaCl2 concentration) and inhibitors (CaCl2 omission being paradoxically stimulatory). In group B, the presence of low-Km hexokinase-I in insulinoma β-cells (not in adjacent islets) was revealed by immunohistochemistry. Human insulinomas thus show distinct, though not completely heterogeneous, defects in insulin secretion that are attributed to the undue expression of hexokinase-I in 3 of 10 patients.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | - Myriam Nenquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | - Yves Guiot
- Department of Pathology, University Clinics Saint Luc, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | - Jacques Rahier
- Department of Pathology, University Clinics Saint Luc, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | - Christine Sempoux
- Department of Pathology, University Clinics Saint Luc, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
46
|
Gao Y, Xu D, Yu G, Liang J. Overexpression of metabolic markers HK1 and PKM2 contributes to lymphatic metastasis and adverse prognosis in Chinese gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9264-9271. [PMID: 26464675 PMCID: PMC4583907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
Hexokinase 1 (HK1) and pyruvate kinase M2 (PKM2) are two key regulators in glycosis and oncogenic markers in cancers. In the present study, we investigated the expression profile by Western blotting and immunohistochemistry and determined their prognostic values in the gastric cancer. Expression of HK1 and PKM2 was remarkably increased in gastric cancer tissues and was significantly associated lymphatic metastasis and advanced TNM staging. In the COX regression model, HK1 and TNM stage were analyzed as adverse prognostic indicators in gastric cancer. Furthermore, patients with HK1 expression showed remarkable shorter survival duration in both lymphatic metastasis cohort and advanced staging cohort. Our results suggest that overexpression of PKM2 and HK1, especially the latter, significantly associates with lymphatic metastasis, advanced clinical staging and unfavorable prognosis in gastric cancer.
Collapse
Affiliation(s)
- Yunshu Gao
- Department of Oncology, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong, China
- Department of Oncology, 401 Hospital of PLAQingdao 266000, Shandong, China
| | - Dongyun Xu
- Department of Oncology, No. 97 Hospital of PLAXuzhou 221003, Jiangsu, China
| | - Guanzhen Yu
- Department of Oncology, East Hospital, Tongji University School of MedicineShanghai 200120, China
| | - Jun Liang
- Department of Oncology, The Affiliated Hospital of Qingdao UniversityQingdao 266000, Shandong, China
| |
Collapse
|
47
|
Re-evaluating "transitional neonatal hypoglycemia": mechanism and implications for management. J Pediatr 2015; 166:1520-5.e1. [PMID: 25819173 PMCID: PMC4659381 DOI: 10.1016/j.jpeds.2015.02.045] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/26/2015] [Accepted: 02/13/2015] [Indexed: 11/20/2022]
|
48
|
Li W, Xu Z, Hong J, Xu Y. Expression patterns of three regulation enzymes in glycolysis in esophageal squamous cell carcinoma: association with survival. Med Oncol 2014; 31:118. [PMID: 25064730 DOI: 10.1007/s12032-014-0118-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023]
Abstract
Enhanced glycolysis is a common trait of many types of human cancers. This study was to detect the expression pattern of three regulatory enzymes during glycolysis in esophageal squamous cell carcinoma (ESCC) and to investigate their correlation with patients' outcome based on banked pathology material. A total of 141 surgically resected specimens of primary ESCC patients without prior treatments were retrospectively recruited from the First Affiliated Hospital of Wenzhou Medical College Hospital from 2007 to 2009. Expression of HK1, PFKB, and PKM2 in ESCC specimens was analyzed by immunohistochemical staining and Western blotting analysis. HK1-shRNA was used to knock down HK1 expression in ESCC cells, and the functional significance was assessed by CCK8 assay. It was found that the expression of two glycolytic enzymes, HK1 and PKM2, was associated with disease progression, invasion, and poor survival of patients with ESCC. Silence of HK1-inhibited cell proliferation in vitro and suppressed phospho-S6 kinase expression. Our findings suggest that activation of key enzymes in glycolysis might serve as potential therapeutic targets and/or prognostic factors for patients with ESCC.
Collapse
Affiliation(s)
- Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, Zhejiang, China,
| | | | | | | |
Collapse
|
49
|
Arnoux JB, Saint-Martin C, Montravers F, Verkarre V, Galmiche L, Télion C, Capito C, Robert JJ, Hussain K, Aigrain Y, Bellanné-Chantelot C, de Lonlay P. An update on congenital hyperinsulinism: advances in diagnosis and management. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.925392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Abstract
PURPOSE OF REVIEW Neonatal hypoglycemia is one of the most common biochemical abnormalities encountered in the newborn. However, controversy remains surrounding its definition and management especially in asymptomatic patients. RECENT FINDINGS New information has been published that describes the incidence and timing of low glucose concentrations in the groups most at risk for asymptomatic neonatal hypoglycemia. Furthermore, one large prospective study failed to find an association between repetitive low glucose concentrations and poor neurodevelopmental outcomes in preterm infants. But hypoglycemia due to hyperinsulinism, especially genetic causes, continued to be associated with brain injury. New advances were made in the diagnosis and management of hyperinsulinism, including acquired hyperinsulinism in small for gestational age infants and others. Continuous glucose monitoring remains an attractive strategy for future research in this area. SUMMARY The fundamental question of how best to manage asymptomatic newborns with low glucose concentrations remains unanswered. Balancing the risks of overtreating newborns with low glucose concentrations who are undergoing a normal transition following birth against the risks of undertreating those in whom low glucose concentrations are pathological, dangerous, and/or a harbinger of serious metabolic disease remains a challenge.
Collapse
Affiliation(s)
- Paul J Rozance
- Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|