1
|
Wang Y, Liao X, Zhang J, Yang Y, Gao Y, Zhang C, Guo X, Zhu Q, Li J, Yu L, Xu G, Fang X, Liao SG. Anti-hyperuricemic effects of the seeds of Hovenia acerba in hyperuricemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119215. [PMID: 39643021 DOI: 10.1016/j.jep.2024.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Hovenia acerba water extract (HAW) are used as an edible traditional Chinese medicine to treat diseases related to hyperuricemia (HUA). AIM OF THE STUDY To evaluate HAW for its anti-HUA effect and to figure out their underlying mechanisms. MATERIALS AND METHODS The anti-HUA effects were evaluated on a mouse model by testing HAW's effects on the levels of serum uric acid (SUA), the biochemical indicators of liver and kidney function, and the histology of liver and kidney. Body weight and organ coefficients were determined for safety evaluation. RT-qPCR, Western blot and transcriptomic analysis was applied to investigate key mRNAs, proteins and signaling pathways. RESULTS HAW significantly reduced the serum levels of UA, ALT, AST, and xanthine oxidase (XOD) and histologically alleviated the liver damage in HUA mice with no negative effect on body weight and organ coefficients. HAW markedly inhibited hepatic XOD activity and protein expression, significantly down-regulated mRNA and protein expressions of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9), and up-regulated those of ATP transporter G2 (ABCG2) and renal organic anion transporter 1 (OAT1). RNA-seq analysis showed that 248 HUA-induced differential expression genes (DEGs) were reversed by HAW in the kidney. qRT-PCR analysis showed that regulation of the expressions of HUA-related inflammatory genes were involved. CONCLUSION HAW possessed remarkable anti-HUA effect. The mechanism involved XOD inhibition to reduce uric acid production, up-regulation of ABCG2 and OAT1 to increase uric acid excretion, and down-regulation of GLUT9 and URAT1 to inhibit uric acid reabsorption, and regulation of HUA-related inflammatory genes.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guizhou, 561113, China; Sinopharm Guizhou Health Industry Development Co., Ltd, Guiyang Economic and Technological Development Zone, 550009, Guizhou, China
| | - Xingjiang Liao
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou, 561113, China
| | - Jinjuan Zhang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Yaxin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Yanyan Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Chunlei Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Xiaoli Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Qinfeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Lingling Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Guobo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guizhou, 561113, China
| | - Xiang Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; Sinopharm Guizhou Health Industry Development Co., Ltd, Guiyang Economic and Technological Development Zone, 550009, Guizhou, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
2
|
Zhang MQ, Sun KX, Guo X, Chen YY, Feng CY, Chen JS, Barreira JCM, Prieto MA, Sun JY, Zhang JD, Li NY, Liu C. The antihyperuricemia activity of Astragali Radix through regulating the expression of uric acid transporters via PI3K/Akt signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116770. [PMID: 37308029 DOI: 10.1016/j.jep.2023.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (AR) is the dry root of the leguminous plants Astragalus membranaceus (Fisch) Beg. var. mongholicus (Beg) Hsiao, and Astragalus membranaceus (Fisch) Bge., being used as a medicinal and edible resource. AR is used in traditional Chinese medicine prescriptions to treat hyperuricemia, but this particular effect is rarely reported, and the associated mechanism of action is still need to be elucidated. AIM OF THE STUDY To research the uric acid (UA)-lowering activity and mechanism of AR and the representative compounds through the constructed hyperuricemia mouse and cellular models. MATERIALS AND METHODS In our study, the chemical profile of AR was analysed by UHPLC-QE-MS, as well as the mechanism of action of AR and the representative compounds on hyperuricemia was studied through the constructed hyperuricemia mouse and cellular models. RESULTS The main compounds in AR were terpenoids, flavonoids and alkaloids. Mice group treated with the highest AR dosage showed significantly lower (p < 0.0001) serum uric acid (208 ± 9 μmol/L) than the control group (317 ± 11 μmol/L). Furthermore, UA increased in a dose-dependence manner in urine and faeces. Serum creatinine and blood urea nitrogen standards, as well as xanthine oxidase in mice liver, decreased (p < 0.05) in all cases, indicating that AR could relieve acute hyperuricemia. UA reabsorption protein (URAT1 and GLUT9) was down-regulated in AR administration groups, while the secretory protein (ABCG2) was up-regulated, indicating that AR could promote the excretion of UA by regulating UA transporters via PI3K/Akt signalling pathway. CONCLUSION This study validated the activity, and revealed the mechanism of AR in reducing UA, which provided experimental and clinical basis for the treatment of hyperuricemia with it.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China
| | - Ke-Xin Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China
| | - Ying-Ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China
| | - Cai-Yun Feng
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China
| | - Jia-Shu Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China
| | - Joao C M Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Jian-Dong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014, PR China.
| | - Ning-Yang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| |
Collapse
|
3
|
Costanti-Nascimento AC, Brelaz-Abreu L, Bragança-Jardim E, Pereira WDO, Camara NOS, Amano MT. Physical exercise as a friend not a foe in acute kidney diseases through immune system modulation. Front Immunol 2023; 14:1212163. [PMID: 37928533 PMCID: PMC10623152 DOI: 10.3389/fimmu.2023.1212163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Regular and moderate exercise is being used for therapeutic purposes in treating several diseases, including cancer, cardiovascular diseases, arthritis, and even chronic kidney diseases (CKDs). Conversely, extenuating physical exercise has long been pointed out as one of the sources of acute kidney injury (AKI) due to its severe impact on the body's physiology. AKI development is associated with increased tubular necrosis, which initiates a cascade of inflammatory responses. The latter involves cytokine production, immune cell (macrophages, lymphocytes, and neutrophils, among others) activation, and increased oxidative stress. AKI can induce prolonged fibrosis stimulation, leading to CKD development. The need for therapeutic alternative treatments for AKI is still a relevant issue. In this context arises the question as to whether moderate, not extenuating, exercise could, on some level, prevent AKI. Several studies have shown that moderate exercise can help reduce tissue damage and increase the functional recovery of the kidneys after an acute injury. In particular, the immune system can be modulated by exercise, leading to a better recovery from different pathologies. In this review, we aimed to explore the role of exercise not as a trigger of AKI, but as a modulator of the inflammatory/immune system in the prevention or recovery from AKI in different scenarios. In AKI induced by ischemia and reperfusion, sepsis, diabetes, antibiotics, or chemotherapy, regular and/or moderate exercise could modulate the immune system toward a more regulatory immune response, presenting, in general, an anti-inflammatory profile. Exercise was shown to diminish oxidative stress, inflammatory markers (caspase-3, lactate dehydrogenase, and nitric oxide), inflammatory cytokines (interleukin (IL)-1b, IL-6, IL-8, and tumor necrosis factor-α (TNF-α)), modulate lymphocytes to an immune suppressive phenotype, and decrease tumor necrosis factor-β (TGF-β), a cytokine associated with fibrosis development. Thus, it creates an AKI recovery environment with less tissue damage, hypoxia, apoptosis, or fibrosis. In conclusion, the practice of regular moderate physical exercise has an impact on the immune system, favoring a regulatory and anti-inflammatory profile that prevents the occurrence of AKI and/or assists in the recovery from AKI. Moderate exercise should be considered for patients with AKI as a complementary therapy.
Collapse
Affiliation(s)
- Ana Carolina Costanti-Nascimento
- Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Leonilia Brelaz-Abreu
- Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Welbert de Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mariane Tami Amano
- Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo, Brazil
- Departamento de Oncologia Clínica e Experimental, Escola Paulista de Medicina (UNIFESP), São Paulo, Brazil
| |
Collapse
|
4
|
Aizawa C, Okabe M, Takahashi D, Sagasaki M, Watanabe M, Fujimoto T, Yoshioka Y, Katsuma A, Kimura A, Miyamoto D, Sato N, Okamoto K, Ichida K, Miyazaki Y, Yokoo T. Possible Use of Non-purine Selective Xanthine Oxidoreductase Inhibitors for Prevention of Exercise-induced Acute Kidney Injury Associated with Renal Hypouricemia. Intern Med 2023; 62:2725-2730. [PMID: 36754409 PMCID: PMC10569912 DOI: 10.2169/internalmedicine.0678-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023] Open
Abstract
Exercise-induced acute kidney injury (EIAKI) is frequently complicated with renal hypouricemia (RHUC). In patients with RHUC, limiting anaerobic exercise can prevent EIAKI. However, it is challenging to reduce exercise intensity in athletes. We herein report a 16-year-old Japanese football player with familial RHUC with compound heterozygous mutations in urate transporter 1 (URAT1) who presented with recurrent EIAKI. As prophylaxis (hydration during exercise) could not prevent EIAKI, febuxostat was initiated. EIAKI was not observed for 16 months despite exercising intensively. Hence, non-purine-selective xanthine oxidoreductase inhibitors may decrease the incidence of EIAKI in athletes with RHUC.
Collapse
Affiliation(s)
- Chiharu Aizawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
| | - Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | | | - Makoto Sagasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Department of Nephrology and Hypertension, Atsugi City Hospital, Japan
| | - Mao Watanabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Yuuki Yoshioka
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Ai Katsuma
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Ai Kimura
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Daisuke Miyamoto
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Japan
| | - Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Kimiyoshi Ichida
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| |
Collapse
|
5
|
Prevalence and factors related to hypouricemia and hyperuricemia in schoolchildren: results of a large-scale cross-sectional population-based study conducted in Japan. Sci Rep 2022; 12:17848. [PMID: 36284103 PMCID: PMC9596694 DOI: 10.1038/s41598-022-19724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/02/2022] [Indexed: 01/20/2023] Open
Abstract
Hypouricemia in children including renal hypouricemia, which is a major cause of exercise-induced acute renal injury (EIAKI), is an important clinical problem, in addition to hyperuricemia. However, no large-scale studies of serum uric acid (UA) concentrations in the general pre-adolescent population have been carried out. We conducted a population-based cross-sectional study to measure the prevalences of hypouricemia and hyperuricemia and identify the associated factors. We analyzed 31,822 (16,205 boys and 15,617 girls) 9-10-year-old children who underwent pediatric health check-ups in Kagawa prefecture between 2014 and 2018. Hypouricemia and hyperuricemia were defined using serum UA concentrations of ≤ 2.0 mg/dL and ≥ 6.0 mg/dL, respectively. The prevalence of hypouricemia was 0.38% in both 9- and 10-year-old boys and girls, and was not significantly associated with age, sex, or environmental factors, including overweight. The prevalence of hyperuricemia was significantly higher in boys (2.7%) than in girls (1.9%), and was significantly associated with age, overweight, future diabetes risk, hypertriglyceridemia, low high-density lipoprotein-cholesterol, and liver damage, but not with high low-density lipoprotein cholesterol. Therefore, some pre-adolescent children in the general population in Japan showed hypouricemia. A means of identifying children with hypouricemia and lifestyle guidance measures for the prevention of EIAKI should be established.
Collapse
|
6
|
Effects of elevated serum urate on cardiometabolic and kidney function markers in a randomised clinical trial of inosine supplementation. Sci Rep 2022; 12:12887. [PMID: 35902652 PMCID: PMC9334273 DOI: 10.1038/s41598-022-17257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
In observational studies, serum urate positively associates with cardiometabolic and kidney diseases. We analyzed data from a randomised placebo-controlled trial to determine whether moderate hyperuricemia induced by inosine affects cardiometabolic and kidney function markers. One hundred and twenty post-menopausal women were recruited into a 6-month randomised, double-blind, placebo-controlled trial of inosine for bone health. Change from baseline in the following pre-specified endpoints was analyzed: body mass index; blood pressure; lipid profile; C-reactive protein; fasting glucose; insulin; HbA1c; serum creatinine; and estimated glomerular filtration rate (eGFR). Despite increases in serum urate levels (+ 0.17 mmol/L at week 6, P < 0.0001), no significant between-group differences were observed in cardiometabolic markers, with the exception of lower fasting glucose concentrations with inosine at week 19. In the inosine group, change in serum urate correlated with change in serum creatinine (r = 0.41, P = 0.0012). However, there was no between-group difference in serum creatinine values. Over the entire study period, there was no significant difference in eGFR (ANCOVA P = 0.13). Reduction in eGFR was greater in the inosine group at Week 13 (mean difference − 4.6 mL/min/1.73 m2, false detection rate P = 0.025), with no between-group difference in eGFR at other time points. These data indicate that increased serum urate does not negatively influence body mass index, blood pressure, lipid profile, or glycaemic control. Serum urate changes associated with inosine intake correlate with changes in serum creatinine, but this does not lead to clinically important reduction in kidney function over 6 months. Clinical trial registration number: Australia and New Zealand Clinical Trials Registry (ACTRN12617000940370), registered 30/06/2017.
Collapse
|
7
|
Genetic Basis of the Epidemiological Features and Clinical Significance of Renal Hypouricemia. Biomedicines 2022; 10:biomedicines10071696. [PMID: 35885001 PMCID: PMC9313227 DOI: 10.3390/biomedicines10071696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
A genetic defect in urate transporter 1 (URAT1) is the major cause of renal hypouricemia (RHUC). Although RHUC is detected using a serum uric acid (UA) concentration <2.0 mg/dL, the relationship between the genetic state of URAT1 and serum UA concentration is not clear. Homozygosity and compound heterozygosity with respect to mutant URAT1 alleles are associated with a serum UA concentration of <1.0 mg/dL and are present at a prevalence of ~0.1% in Japan. In heterozygous individuals, the prevalence of a serum UA of 1.1−2.0 mg/dL is much higher in women than in men. The frequency of mutant URAT1 alleles is as high as 3% in the general Japanese population. The expansion of a specific mutant URAT1 allele derived from a single mutant gene that occurred in ancient times is reflected in modern Japan at a high frequency. Similar findings were reported in Roma populations in Europe. These phenomena are thought to reflect the ancient migration history of each ethnic group (founder effects). Exercise-induced acute kidney injury (EI-AKI) is mostly observed in individuals with homozygous/compound heterozygous URAT1 mutation, and laboratory experiments suggested that a high UA load on the renal tubules is a plausible mechanism for EI-AKI.
Collapse
|
8
|
Tsuji K, Kitamura M, Muta K, Mochizuki Y, Mori T, Sohara E, Uchida S, Sakai H, Mukae H, Nishino T. Transplantation of a kidney with a heterozygous mutation in the SLC22A12 (URAT1) gene causing renal hypouricemia: a case report. BMC Nephrol 2020; 21:282. [PMID: 32677916 PMCID: PMC7364597 DOI: 10.1186/s12882-020-01940-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background Renal hypouricemia (RHUC) is a genetic disorder caused by mutations in the SLC22A12 gene, which encodes the major uric acid (UA) transporter, URAT1. The clinical course of related, living donor-derived RHUC in patients undergoing kidney transplantation is poorly understood. Here, we report a case of kidney transplantation from a living relative who had an SLC22A12 mutation. After the transplantation, the recipient’s fractional excretion of UA (FEUA) decreased, and chimeric tubular epithelium was observed. Case presentation A 40-year-old man underwent kidney transplantation. His sister was the kidney donor. Three weeks after the transplantation, he had low serum-UA, 148.7 μmol/L, and elevated FEUA, 20.8% (normal: < 10%). The patient’s sister had low serum-UA (101.1 μmol/L) and high FEUA (15.8%) before transplant. Suspecting RHUC, we performed next-generation sequencing on a gene panel containing RHUC-associated genes. A heterozygous missense mutation in the SLC22A12 gene was detected in the donor, but not in the recipient. The recipient’s serum-UA level increased from 148.7 μmol/L to 231.9 μmol/L 3 months after transplantation and was 226.0 μmol/L 1 year after transplantation. His FEUA decreased from 20.8 to 11.7% 3 months after transplantation and was 12.4% 1 year after transplantation. Fluorescence in situ hybridization of allograft biopsies performed 3 months and 1 year after transplantation showed the presence of Y chromosomes in the tubular epithelial cells, suggesting the recipient’s elevated serum-UA levels were owing to a chimeric tubular epithelium. Conclusions We reported on a kidney transplant recipient that developed RHUC owing to his donor possessing a heterozygous mutation in the SLC22A12 (URAT1) gene. Despite this mutation, the clinical course was not problematic. Thus, the presence of donor-recipient chimerism in the tubular epithelium might positively affect the clinical course, at least in the short-term.
Collapse
Affiliation(s)
- Kiyokazu Tsuji
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mineaki Kitamura
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Kumiko Muta
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
9
|
Furuto Y, Kawamura M, Namikawa A, Takahashi H, Shibuya Y, Mori T, Sohara E. Non-urate transporter 1, non-glucose transporter member 9-related renal hypouricemia and acute renal failure accompanied by hyperbilirubinemia after anaerobic exercise: a case report. BMC Nephrol 2019; 20:433. [PMID: 31771519 PMCID: PMC6878684 DOI: 10.1186/s12882-019-1618-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 11/08/2019] [Indexed: 11/11/2022] Open
Abstract
Background Renal hypouricemia (RHUC) is an inherited heterogenous disorder caused by faulty urate reabsorption transporters in the renal proximal tubular cells. Anaerobic exercise may induce acute kidney injury in individuals with RHUC that is not caused by exertional rhabdomyolysis; it is called acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise (ALPE). RHUC is the most important risk factor for ALPE. However, the mechanism of onset of ALPE in patients with RHUC has not been elucidated. The currently known genes responsible for RHUC are SLC22A12 and SLC2A9. Case presentation A 37-year-old man presented with loin pain after exercising. Despite having a healthy constitution from birth, biochemical examination revealed hypouricemia, with a uric acid (UA) level of < 1 mg/dL consistently at every health check. We detected acute kidney injury, with a creatinine (Cr) level of 4.1 mg/dL, and elevated bilirubin; hence, the patient was hospitalized. Computed tomography revealed no renal calculi, but bilateral renal swelling was noted. Magnetic resonance imaging detected cuneiform lesions, indicating bilateral renal ischemia. Fractional excretion values of sodium and UA were 0.61 and 50.5%, respectively. Urinary microscopy showed lack of tubular injury. The patient’s older sister had hypouricemia. The patient was diagnosed with ALPE. Treatment with bed rest, fluid replacement, and nutrition therapy improved renal function and bilirubin levels, and the patient was discharged on day 5. Approximately 1 month after onset of ALPE, his Cr, UA, and TB levels were 0.98, 0.8, and 0.9 mg/dL, respectively. We suspected familial RHUC due to the hypouricemia and family history and performed genetic testing but did not find the typical genes responsible for RHUC. A full genetic analysis was opposed by the family. Conclusions To the best of our knowledge, this is the first report of ALPE with hyperbilirubinemia. Bilirubin levels may become elevated as a result of heme oxygenase-1 activation, occurring in exercise-induced acute kidney injury in patients with RHUC; this phenomenon suggests renal ischemia-reperfusion injury. A new causative gene coding for a urate transporter may exist, and its identification would be useful to clarify the urate transport mechanism.
Collapse
Affiliation(s)
- Yoshitaka Furuto
- Department of Hypertension and Nephrology, NTT Medical Centre, Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan.
| | - Mariko Kawamura
- Department of Hypertension and Nephrology, NTT Medical Centre, Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Akio Namikawa
- Department of Hypertension and Nephrology, NTT Medical Centre, Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Hiroko Takahashi
- Department of Hypertension and Nephrology, NTT Medical Centre, Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Yuko Shibuya
- Department of Hypertension and Nephrology, NTT Medical Centre, Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Takayasu Mori
- Department of Nephrology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Eisei Sohara
- Department of Nephrology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
10
|
Zhou Z, Wang K, Zhou J, Wang C, Li X, Cui L, Han L, Liu Z, Ren W, Wang X, Zhang K, Li Z, Pan D, Li C, Shi Y. Amplicon targeted resequencing for SLC2A9 and SLC22A12 identified novel mutations in hypouricemia subjects. Mol Genet Genomic Med 2019; 7:e00722. [PMID: 31131560 PMCID: PMC6625124 DOI: 10.1002/mgg3.722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/19/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023] Open
Abstract
Background To identify potential causative mutations in SLC2A9 and SLC22A12 that lead to hypouricemia or hyperuricemia (HUA). Methods Targeted resequencing of whole exon regions of SLC2A9 and SLC22A12 was performed in three cohorts of 31 hypouricemia, 288 HUA and 280 normal controls. Results A total of 84 high‐quality variants were identified in these three cohorts. Eighteen variants were nonsynonymous or in splicing region, and then included in the following association analysis. For common variants, no significant effects on hypouricemia or HUA were identified. For rare variants, six single nucleotide variations (SNVs) p.T21I and p.G13D in SLC2A9, p.W50fs, p.Q382L, p.V547L and p.E458K in SLC22A12, occurred in totally six hypouricemia subjects and were absent in HUA and normal controls. Allelic and genotypic frequency distributions of the six SNVs differed significantly between the hypouricemia and normal controls even after multiple testing correction, and p.G13D in SLC2A9 and p.V547L in SLC22A12 were newly reported. All these mutations had no significant effects on HUA susceptibility, while the gene‐based analyses substantiated the significant results on hypouricemia. Conclusion Our study first presents a comprehensive mutation spectrum of hypouricemia in a large Chinese cohort.
Collapse
Affiliation(s)
- Zhaowei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Can Wang
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Xinde Li
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Lingling Cui
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Lin Han
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Zhen Liu
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Wei Ren
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Xuefeng Wang
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China
| | - Keke Zhang
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China.,The Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Zhiqiang Li
- Biomedical Sciences Institute, the Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, P.R. China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Changgui Li
- Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Metabolic Disease Institute, Qingdao University, Qingdao, P.R. China.,The Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiaric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, P.R. China.,Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China.,Biomedical Sciences Institute, the Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, P.R. China
| |
Collapse
|
11
|
Zhou Z, Ma L, Zhou J, Song Z, Zhang J, Wang K, Chen B, Pan D, Li Z, Li C, Shi Y. Renal hypouricemia caused by novel compound heterozygous mutations in the SLC22A12 gene: a case report with literature review. BMC MEDICAL GENETICS 2018; 19:142. [PMID: 30097038 PMCID: PMC6086067 DOI: 10.1186/s12881-018-0595-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
Abstract
Background Renal hypouricemia (RHUC) is a heterogeneous genetic disorder that is characterized by decreased serum uric acid concentration and increased fractional excretion of uric acid. Previous reports have revealed many functional mutations in two urate transporter genes, SLC22A12 and/or SLC2A9, to be the causative genetic factors of this disorder. However, there are still unresolved patients, suggesting the existence of other causal genes or new mutations. Here, we report an RHUC patient with novel compound heterozygous mutations in the SLC22A12 gene. Case presentation A 27-year-old female presenting with recurrent hypouricemia during routine checkups was referred to our hospital. After obtaining the patient’s consent, both the patient and her healthy parents were analyzed using whole-exome sequencing (WES) and Sanger sequencing to discover and validate causal mutations, respectively. The prioritization protocol of WES screened out two mutations of c.269G > A/p.R90H and c.1289_1290insGG/p.M430fsX466, which are both located in the SLC22A12 gene, in the patient. Sanger sequencing further confirmed that the patient’s heterozygous c.269G > A/p.R90H mutation, which has been reported previously, derived from her mother, and the heterozygous c.1289_1290insGG/p.M430fsX466 mutation, which was found for the first time, derived from her father. p.R90H, which is highly conserved among different species, may decrease the stability of this domain and was considered to be almost damaging in silicon analysis. p.M430fsX466 lacks the last three transmembrane domains, including the tripeptide motif (S/T)XΦ (X = any amino acid and Φ = hydrophobic residue), at the C-terminal, which interact with scaffolding protein PDZK1 and thus will possibly lead to weak functioning of urate transport through the disruption of the “transporter complex” that is formed by URAT1 and PDZK1. Conclusions We report a Chinese patient with RHUC, which was caused by compound heterozygous mutations of the SLC22A12 gene, using WES and Sanger sequencing for the first time. Mutation-induced structural instability or malfunction of the urate transporter complex may be the main mechanisms for this hereditary disorder. Electronic supplementary material The online version of this article (10.1186/s12881-018-0595-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaowei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | - Lidan Ma
- Shandong Gout Clinical Medical Center, Qingdao, 266003, People's Republic of China.,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, People's Republic of China.,The Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | - Jinmai Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | - Boyu Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, People's Republic of China.,Biomedical Sciences Institute, the Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, 266003, People's Republic of China
| | - Changgui Li
- Shandong Gout Clinical Medical Center, Qingdao, 266003, People's Republic of China. .,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, People's Republic of China. .,The Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China. .,Metabolic Disease Institute, Qingdao University, Qingdao, 266003, People's Republic of China.
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, No. 1954 Huashan Road, Shanghai, 200030, People's Republic of China. .,Shandong Gout Clinical Medical Center, Qingdao, 266003, People's Republic of China. .,Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, People's Republic of China. .,Biomedical Sciences Institute, the Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
12
|
Zhu W, Deng Y, Zhou X. Multiple Membrane Transporters and Some Immune Regulatory Genes are Major Genetic Factors to Gout. Open Rheumatol J 2018; 12:94-113. [PMID: 30123371 PMCID: PMC6062909 DOI: 10.2174/1874312901812010094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023] Open
Abstract
Gout is a common form of inflammatory arthritis caused by hyperuricemia and the deposition of Monosodium Urate (MSU) crystals. It is also considered as a complex disorder in which multiple genetic factors have been identified in association with its susceptibility and/or clinical outcomes. Major genes that were associated with gout include URAT1, GLUT9, OAT4, NPT1 (SLC17A1), NPT4 (SLC17A3), NPT5 (SLC17A4), MCT9, ABCG2, ABCC4, KCNQ1, PDZK1, NIPAL1, IL1β, IL-8, IL-12B, IL-23R, TNFA, MCP-1/CCL2, NLRP3, PPARGC1B, TLR4, CD14, CARD8, P2X7R, EGF, A1CF, HNF4G and TRIM46, LRP2, GKRP, ADRB3, ADH1B, ALDH2, COMT, MAOA, PRKG2, WDR1, ALPK1, CARMIL (LRRC16A), RFX3, BCAS3, CNIH-2, FAM35A and MYL2-CUX2. The proteins encoded by these genes mainly function in urate transport, inflammation, innate immunity and metabolism. Understanding the functions of gout-associated genes will provide important insights into future studies to explore the pathogenesis of gout, as well as to develop targeted therapies for gout.
Collapse
Affiliation(s)
- Weifeng Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yan Deng
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Ophthalmology of Children, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaodong Zhou
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
13
|
Benn CL, Dua P, Gurrell R, Loudon P, Pike A, Storer RI, Vangjeli C. Physiology of Hyperuricemia and Urate-Lowering Treatments. Front Med (Lausanne) 2018; 5:160. [PMID: 29904633 PMCID: PMC5990632 DOI: 10.3389/fmed.2018.00160] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022] Open
Abstract
Gout is the most common form of inflammatory arthritis and is a multifactorial disease typically characterized by hyperuricemia and monosodium urate crystal deposition predominantly in, but not limited to, the joints and the urinary tract. The prevalence of gout and hyperuricemia has increased in developed countries over the past two decades and research into the area has become progressively more active. We review the current field of knowledge with emphasis on active areas of hyperuricemia research including the underlying physiology, genetics and epidemiology, with a focus on studies which suggest association of hyperuricemia with common comorbidities including cardiovascular disease, renal insufficiency, metabolic syndrome and diabetes. Finally, we discuss current therapies and emerging drug discovery efforts aimed at delivering an optimized clinical treatment strategy.
Collapse
Affiliation(s)
| | - Pinky Dua
- Pfizer Ltd., Cambridge, United Kingdom
| | | | | | - Andrew Pike
- DMPK, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - R Ian Storer
- IMED Biotech Unit, Medicinal Chemistry, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | | |
Collapse
|
14
|
Zhao B, Lu Q, Cheng Y, Belcher JM, Siew ED, Leaf DE, Body SC, Fox AA, Waikar SS, Collard CD, Thiessen-Philbrook H, Ikizler TA, Ware LB, Edelstein CL, Garg AX, Choi M, Schaub JA, Zhao H, Lifton RP, Parikh CR. A Genome-Wide Association Study to Identify Single-Nucleotide Polymorphisms for Acute Kidney Injury. Am J Respir Crit Care Med 2017; 195:482-490. [PMID: 27576016 DOI: 10.1164/rccm.201603-0518oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Acute kidney injury is a common and severe complication of critical illness and cardiac surgery. Despite significant attempts at developing treatments, therapeutic advances to attenuate acute kidney injury and expedite recovery have largely failed. OBJECTIVES Identifying genetic loci associated with increased risk of acute kidney injury may reveal novel pathways for therapeutic development. METHODS We conducted an exploratory genome-wide association study to identify single-nucleotide polymorphisms associated with genetic susceptibility to in-hospital acute kidney injury. MEASUREMENTS AND MAIN RESULTS We genotyped 609,508 single-nucleotide polymorphisms and performed genotype imputation in 760 acute kidney injury cases and 669 controls. We then evaluated polymorphisms that showed the strongest association with acute kidney injury in a replication patient population containing 206 cases with 1,406 controls. We observed an association between acute kidney injury and four single-nucleotide polymorphisms at two independent loci on metaanalysis of discovery and replication populations. These include rs62341639 (metaanalysis P = 2.48 × 10-7; odds ratio [OR], 0.64; 95% confidence interval [CI], 0.55-0.76) and rs62341657 (P = 3.26 × 10-7; OR, 0.65; 95% CI, 0.55-0.76) on chromosome 4 near APOL1-regulator IRF2, and rs9617814 (metaanalysis P = 3.81 × 10-6; OR, 0.70; 95% CI, 0.60-0.81) and rs10854554 (P = 6.53 × 10-7; OR, 0.67; 95% CI, 0.57-0.79) on chromosome 22 near acute kidney injury-related gene TBX1. CONCLUSIONS Our findings reveal two genetic loci that are associated with acute kidney injury. Additional studies should be conducted to functionally evaluate these loci and to identify other common genetic variants contributing to acute kidney injury.
Collapse
Affiliation(s)
- Bixiao Zhao
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Qiongshi Lu
- 2 Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Yuwei Cheng
- 3 Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Justin M Belcher
- 4 Program of Applied Translational Research and.,5 Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,6 Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven, Connecticut
| | - Edward D Siew
- 7 Division of Nephrology and Hypertension and.,8 Vanderbilt Center for Kidney Disease, and.,9 Vanderbilt Integrated Program for Acute Kidney Injury Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Simon C Body
- 11 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Amanda A Fox
- 12 Department of Anesthesiology and Pain Management and.,13 McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Charles D Collard
- 14 Department of Anesthesiology, Baylor St. Luke's Medical Center and the Texas Heart Institute, Houston, Texas
| | - Heather Thiessen-Philbrook
- 4 Program of Applied Translational Research and.,5 Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,15 Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - T Alp Ikizler
- 7 Division of Nephrology and Hypertension and.,8 Vanderbilt Center for Kidney Disease, and.,9 Vanderbilt Integrated Program for Acute Kidney Injury Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lorraine B Ware
- 16 Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | | | - Amit X Garg
- 15 Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada.,18 Division of Nephrology, Department of Medicine and Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada.,19 Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada; and
| | - Murim Choi
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | | | - Hongyu Zhao
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,2 Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Richard P Lifton
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,20 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Chirag R Parikh
- 4 Program of Applied Translational Research and.,5 Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,6 Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven, Connecticut
| | | |
Collapse
|
15
|
Wang R, Ma CH, Zhou F, Kong LD. Siwu decoction attenuates oxonate-induced hyperuricemia and kidney inflammation in mice. Chin J Nat Med 2017; 14:499-507. [PMID: 27507200 DOI: 10.1016/s1875-5364(16)30059-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 12/31/2022]
Abstract
The aim of the study was to investigate the effects of Siwu decoction on hyperuricemia, kidney inflammation, and dysfunction in hyperuricemic mice. Siwu decoction at 363.8, 727.5, and 1 455 mg·kg(-1) was orally administered to potassium oxonate-induced hyperuricemic mice for 7 days. Serum urate, creatinine, and blood urea nitrogen levels and hepatic xanthine oxidase (XOD) activity were measured. The protein levels of hepatic XOD and renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporters 1 (OAT1), ATP-binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), OCT2, organic cation/carnitine transporter 1 (OCTN1), OCNT2, Nod-like receptor family, pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), Caspase-1, and interleukin-1β (IL-1β) were determined by Western blotting. Renal histopathology change was obtained following hematoxylin-eosin staining. Our results indicated that Siwu decoction significantly reduced serum urate, creatinine and blood urea nitrogen levels and increased fractional excretion of uric acid in hyperuricemic mice. It effectively reduced hepatic XOD activity and protein levels in this animal model. Furthermore, Siwu decoction down-regulated URAT1 and GLUT9 protein levels, and up-regulated the protein levels of OAT1, ABCG2, OCT1, OCT2, OCTN1, and OCTN2 in the kidney of the hyperuricemic mice. Additionally, Siwu decoction remarkably reduced renal protein levels of NLRP3, ASC, Caspase-1, and IL-1β in the hyperuricemic mice. These results suggested that Siwu decoction exhibited anti-hyperuricemic and anti-inflammatory effects by inhibiting hepatic XOD activity, regulating renal organic ion transporter expression, and suppressing renal NLRP3 inflammasome activation, providing the evidence for its use in the treatment of hyperuricemia and associated kidney inflammation.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Chun-Hua Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Fan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
A J-shaped association between serum uric acid levels and poor renal survival in female patients with IgA nephropathy. Hypertens Res 2016; 40:291-297. [PMID: 27733763 DOI: 10.1038/hr.2016.134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/05/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
Abstract
Recently, low serum uric acid (SUA) levels and high SUA levels, have emerged as risk factors for cardiovascular disease, as well as for the incidence of acute kidney injury and chronic kidney disease (CKD). However, the effect of low SUA on the progression of CKD remains unclear. To evaluate the association between SUA and renal prognosis in patients with immunoglobulin A nephropathy (IgAN), one of the most common causes of CKD, we retrospectively followed 1218 patients who were diagnosed with primary IgAN by kidney biopsy between October 1979 and December 2010. Patients were divided into three groups on the basis of SUA level tertiles: low (L group), middle (M group) and high (H group) tertiles (<6.1, 6.1-7.0, and >7.0 mg dl-1, respectively, for men and <4.4, 4.4-5.3, and >5.3 mg dl-1, respectively, for women). The risk factors for developing end-stage renal disease (ESRD) were estimated using a Cox proportional hazards model. After a median follow-up of 5.1 years, 142 patients (11.7%) developed ESRD. The hazard ratio (95% confidence interval) showed a J-shaped trend with the tertiles in both men (1.18 (0.55-2.54), 1.00 (reference), and 1.80 (1.01-3.10) in L, M and H groups, respectively) and women (2.73 (1.10-6.76), 1.00 (reference) and 2.49 (1.16-5.34) in L, M and H groups, respectively). Notably, low SUA was significantly associated with incident ESRD in women. This finding suggests that SUA has a J-shaped association with ESRD in patients with IgAN, especially women.
Collapse
|
17
|
Roncal-Jimenez C, García-Trabanino R, Barregard L, Lanaspa MA, Wesseling C, Harra T, Aragón A, Grases F, Jarquin ER, González MA, Weiss I, Glaser J, Sánchez-Lozada LG, Johnson RJ. Heat Stress Nephropathy From Exercise-Induced Uric Acid Crystalluria: A Perspective on Mesoamerican Nephropathy. Am J Kidney Dis 2015; 67:20-30. [PMID: 26455995 DOI: 10.1053/j.ajkd.2015.08.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/07/2015] [Indexed: 11/11/2022]
Abstract
Mesoamerican nephropathy (MeN), an epidemic in Central America, is a chronic kidney disease of unknown cause. In this article, we argue that MeN may be a uric acid disorder. Individuals at risk for developing the disease are primarily male workers exposed to heat stress and physical exertion that predisposes to recurrent water and volume depletion, often accompanied by urinary concentration and acidification. Uric acid is generated during heat stress, in part consequent to nucleotide release from muscles. We hypothesize that working in the sugarcane fields may result in cyclic uricosuria in which uric acid concentrations exceed solubility, leading to the formation of dihydrate urate crystals and local injury. Consistent with this hypothesis, we present pilot data documenting the common presence of urate crystals in the urine of sugarcane workers from El Salvador. High end-of-workday urinary uric acid concentrations were common in a pilot study, particularly if urine pH was corrected to 7. Hyperuricemia may induce glomerular hypertension, whereas the increased urinary uric acid may directly injure renal tubules. Thus, MeN may result from exercise and heat stress associated with dehydration-induced hyperuricemia and uricosuria. Increased hydration with water and salt, urinary alkalinization, reduction in sugary beverage intake, and inhibitors of uric acid synthesis should be tested for disease prevention.
Collapse
Affiliation(s)
| | - Ramón García-Trabanino
- Scientific Board, Department of Investigation, Hospital Nacional Rosales, San Salvador, El Salvador
| | - Lars Barregard
- Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden
| | - Miguel A Lanaspa
- Division of Kidney Diseases and Hypertension, University of Colorado, Denver, CO
| | - Catharina Wesseling
- Unit of Occupational Medicine, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Tamara Harra
- Division of Kidney Diseases and Hypertension, University of Colorado, Denver, CO
| | - Aurora Aragón
- Research Center on Health, Work and Environment (CISTA), National Autonomous University of Nicaragua at León (UNAN-León), León, Nicaragua
| | - Felix Grases
- University of Balearic Islands, Palma de Mallorca, Spain
| | - Emmanuel R Jarquin
- Agencia para el Desarrollo y la Salud Agropecuaria, San Salvador, El Salvador
| | - Marvin A González
- Research Center on Health, Work and Environment (CISTA), National Autonomous University of Nicaragua at León (UNAN-León), León, Nicaragua; Department of Non-communicable Disease Epidemiology of London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ilana Weiss
- La Isla Foundation, San Salvador, El Salvador
| | | | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology and Nephrology Department, INC Ignacio Chavez, Mexico City, Mexico
| | - Richard J Johnson
- Division of Kidney Diseases and Hypertension, University of Colorado, Denver, CO; Division of Nephrology, Eastern Colorado Health Care System, Department of Veteran Affairs, Denver, CO.
| |
Collapse
|