1
|
Deng Y, Zhang T, Cai Y, Ke L, He X, Zhang C, Liu L, Li Q, Zhao Y, Xu G, Han M. Confrontation with kidney inflammation through a HMGB1-targeted peptide augments anti-fibrosis therapy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167586. [PMID: 39586505 DOI: 10.1016/j.bbadis.2024.167586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Damage to the renal tubular epithelial cells (TEC) is a key cellular event in kidney inflammation and subsequent fibrosis. However, drugs targeting renal TEC (RTEC) are limited to the alleviation of kidney fibrosis. Lethal giant larvae 1 (Lgl1) plays a key role in epithelial cell polarity and proliferation. Here, we report that the renal tubule epithelial-specific deletion of Lgl1 significantly ameliorated intrarenal inflammation and kidney fibrosis. Mechanistically, Lgl1 suppressed the activity of the deacetylase sirtuin 1 (SIRT1) and augmented the acetylation of high-mobility group box 1 (HMGB1) at the lysine 90 (K90) site. Consequently, HMGB1 migrated from the nucleus to the cytoplasm, activating an inflammatory cascade. Our renoprotective strategy was to construct a mimic peptide, TAT-K90WT, that targets HMGB1 K90 acetylation. Administration of this peptide significantly ameliorated inflammation and fibrosis in the kidneys. In summary, the Lgl1-HMGB1 axis plays an important role in renal fibrosis, and targeting HMGB1 acetylation by mimicking peptides is a potential strategy to prevent fibrosis.
Collapse
Affiliation(s)
- Yuanjun Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Tianjing Zhang
- Department of Nephrology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang 441000, Hubei, PR China
| | - Yang Cai
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Lin Ke
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Xi He
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Chunjiang Zhang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Lele Liu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Qian Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Yixuan Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
2
|
Ge S, Wu S, Yin Q, Tan M, Wang S, Yang Y, Chen Z, Xu L, Zhang H, Meng C, Xia Y, Asakawa N, Wei W, Gong K, Pan X. Ecliptasaponin A protects heart against acute ischemia-induced myocardial injury by inhibition of the HMGB1/TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118612. [PMID: 39047883 DOI: 10.1016/j.jep.2024.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrata (Linn.) is a traditional medicinal Chinese herb that displays multiple biological activities, such as encompassing immunomodulatory, anti-inflammatory, anti-tumor, liver-protective, antioxidant, and lipid-lowering effects. Ecliptasaponin A (ESA), a pentacyclic triterpenoid saponin isolated from Eclipta prostrata (Linn.), has been demonstrated to exert superior anti-inflammatory activity against many inflammatory disorders. AIM OF THE STUDY Inflammation plays a critical role in acute myocardial infarction (AMI). This study aims to explore the treatment effects of ESA in AMI, as well as the underlying mechanism. METHODS An AMI mouse model was established in mice via left anterior descending coronary artery (LAD) ligation. After surgery, ESA was injected at doses of 0.5, 1.25, and 2.5 mg/kg, respectively. Myocardial infarction size, cardiomyocyte apoptosis and cardiac echocardiography were studied. The potential mechanism of action of ESA was investigated by RNA-seq, Western blot, surface plasmon resonance (SPR), molecular docking, and immunofluorescence staining. RESULTS ESA treatment not only significantly reduced myocardial infarct size, decreased myocardial cell apoptosis, and inhibited inflammatory cell infiltration, but also facilitated to improve cardiac function. RNA-seq and Western blot analysis proved that ESA treatment-induced differential expression genes mainly enriched in HMGB1/TLR4/NF-κB pathway. Consistently, ESA treatment resulted into the down-regulation of IL-1β, IL-6, and TNF-α levels after AMI. Furthermore, SPR and molecular docking results showed that ESA could bind directly to HMGB1, thereby impeding the activation of the downstream TLR4/NF-κB pathway. The immunofluorescence staining and Western blot results at the cellular level also demonstrated that ESA inhibited the activation of the HMGB1/TLR4/NF-κB pathway in H9C2 cells. CONCLUSION Our study was the first to demonstrate a cardiac protective role of ESA in AMI. Mechanism study indicated that the treatment effects of ESA are mainly attributed to its anti-inflammatory activity that was mediated by the HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Sumin Ge
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sihua Wu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qin Yin
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Meng Tan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sichuan Wang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yonghao Yang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zixuan Chen
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Lei Xu
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Hui Zhang
- School of Medicine, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Naoki Asakawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Wenping Wei
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Kaizheng Gong
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Xin Pan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
3
|
Li L, Zhang Y, Wang Z, Chen X, Fang M. Glycyrrhizin attenuates renal inflammation in a mouse Con A-hepatitis model via the IL-25/M2 axis. Ren Fail 2024; 46:2356023. [PMID: 38785317 PMCID: PMC11133957 DOI: 10.1080/0886022x.2024.2356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1β by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyue Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyan Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Chen
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Min Fang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wang G, Hiramoto K, Ma N, Ohnishi S, Morita A, Xu Y, Yoshikawa N, Chinzei Y, Murata M, Kawanishi S. Immunohistochemical analyses reveal FoxP3 expressions in spleen and colorectal cancer in mice treated with AOM/DSS, and their suppression by glycyrrhizin. PLoS One 2024; 19:e0307038. [PMID: 39150932 PMCID: PMC11329161 DOI: 10.1371/journal.pone.0307038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/27/2024] [Indexed: 08/18/2024] Open
Abstract
We previously demonstrated that glycyrrhizin (GL) suppressed inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer (CC). In this study, we found an accumulation of regulatory T cells (Tregs) in the spleen and suppression by GL in model mice. ICR mice were divided into four groups: Control, GL, CC, and GL-treated CC (CC+GL), and were sacrificed 20 weeks after AOM/DSS treatment. We measured spleen weight, areas of white and red pulp, and CD8+ T cells (cytotoxic T lymphocytes, CTL), and CD11c-positive cells (dendritic cells) in splenic tissues and forkhead box protein 3 (FoxP3)-positive cells (Tregs) in colorectal and splenic tissues. In all cases, the CC group showed a significant increase compared with those in Control group, and GL administration significantly attenuated this increase. These results indicate that Tregs accumulated in the spleen may participate in inflammation-related carcinogenesis by suppressing CTL. We also suggest that GL which binds to high-mobility group box 1 (HMGB1), suppresses carcinogenesis with decreasing Tregs in the spleen. Furthermore, there was an expression of FoxP3 in cancer cells, indicating that it may be involved in the malignant transformation of cancer cells.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Acupuncture and Moxibustion Medical Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Akihiro Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yifei Xu
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Yasuo Chinzei
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
5
|
Mo C, Huang Q, Li L, Long Y, Shi Y, Lu Z, Wu N, Li Q, Zeng H, Li G, Qiu L, Gui C, Ji Q. High-mobility group box 1 and its related receptors: potential therapeutic targets for contrast-induced acute kidney injury. Int Urol Nephrol 2024; 56:2291-2299. [PMID: 38438703 DOI: 10.1007/s11255-024-03981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Percutaneous coronary intervention (PCI) is a crucial diagnostic and therapeutic approach for coronary heart disease. Contrast agents' exposure during PCI is associated with a risk of contrast-induced acute kidney injury (CI-AKI). CI-AKI is characterized by a sudden decline in renal function occurring as a result of exposure to intravascular contrast agents, which is associated with an increased risk of poor prognosis. The pathophysiological mechanisms underlying CI-AKI involve renal medullary hypoxia, direct cytotoxic effects, endoplasmic reticulum stress, inflammation, oxidative stress, and apoptosis. To date, there is no effective therapy for CI-AKI. High-mobility group box 1 (HMGB1), as a damage-associated molecular pattern molecule, is released extracellularly by damaged cells or activated immune cells and binds to related receptors, including toll-like receptors and receptor for advanced glycation end product. In renal injury, HMGB1 is expressed in renal tubular epithelial cells, macrophages, endothelial cells, and glomerular cells, involved in the pathogenesis of various kidney diseases by activating its receptors. Therefore, this review provides a theoretical basis for HMGB1 as a therapeutic intervention target for CI-AKI.
Collapse
Affiliation(s)
- Changhua Mo
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qili Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lixia Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yusheng Long
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ning Wu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qingkuan Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Huayuan Zeng
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Guihua Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lingyue Qiu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, China.
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Research Center of Cardiovascular Disease, Guangxi Academy of Medical Sciences, Nanning, China.
| |
Collapse
|
6
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Cheng X, Liu Y, Qi B, Wang Y, Zheng Y, Liang X, Chang Y, Ning M, Gao W, Li T. Glycyrrhizic acid alleviated MI/R-induced injuries by inhibiting Hippo/YAP signaling pathways. Cell Signal 2024; 115:111036. [PMID: 38185229 DOI: 10.1016/j.cellsig.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Previous research has demonstrated that glycyrrhizic acid (GA) exhibits antioxidant, anti-inflammatory, and antiapoptotic characteristics. Using myocardial ischemia/reperfusion injury as a case study, this study aims to clarify the functional significance of GA and to elucidate the mechanisms involved. MATERIALS AND METHODS In this study, an MI/R injury model was established both in vivo and in vitro to investigate the impact of GA on MI/R injury. The viability of H9c2 cells was evaluated using the Cell Counting Kit-8. Myocardial damage was assessed through the measurement of creatine kinase myocardial band (CK-MB) levels and lactate dehydrogenase (LDH), HE staining, and MASSON staining. Inflammatory cytokine levels (IL-6, IL-1β, IL-10, and TNF-α) were measured to determine the presence of inflammation. Cellular oxidative stress was evaluated by measuring ROS and MMP levels, while cardiac function was assessed using cardiac color Doppler ultrasound. Immunofluorescence staining to determine the nuclear translocation of YAP, TUNEL to determine apoptosis, and western blotting to determine gene expression. RESULTS GA treatment effectively alleviated myocardial injury induced by MI/R, as evidenced by reduced levels of inflammatory cytokines (IL-1β, IL-6, IL-10, and TNF-α) and cardiac biomarkers (CK-MB, LDH) in MI/R rats. Moreover, There was a significant increase in cell viability in vitro after GA treatment and inhibited reactive oxygen species (ROS) during oxidative stress, while also increasing mitochondrial membrane potential (MMP) in vitro. The Western blot findings indicate that GA treatment effectively suppressed apoptosis in both in vivo and in vitro settings. Additionally, GA demonstrated inhibitory effects on the activation of the Hippo/YAP signaling pathway triggered by MI/R and facilitated YAP nuclear translocation both in vitro and in vivo. It has been found, however, in vitro, that silencing the YAP gene negates GA's protective effect against hypoxia/reoxygenation-induced myocardial injury. CONCLUSION This study suggests that GA regulates YAP nuclear translocation by inhibiting the Hippo/YAP signaling pathway, which protects ists against MI/R injury. This finding may present a novel therapeutic approach for the treatment of MI/R.
Collapse
Affiliation(s)
- Xian Cheng
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China.
| | - Yanwu Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Bingcai Qi
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yuchao Wang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yue Zheng
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xiaoyu Liang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yun Chang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Meng Ning
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China.
| | - Tong Li
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China.
| |
Collapse
|
8
|
Wang L, Liu H, Wang Y, Hong X, Huang X, Han M, Wang D, Shan W, Li P, Gu H, Liu B, Bao K. Sanqi Qushi Granule Alleviates Proteinuria and Podocyte Damage in NS Rat: A Network Pharmacology Study and in vivo Experimental Validation. Drug Des Devel Ther 2023; 17:1847-1861. [PMID: 37360573 PMCID: PMC10289100 DOI: 10.2147/dddt.s403617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background Nephrotic syndrome (NS) and its numerous complications remain the leading causes of morbidity and mortality globally. Sanqi Qushi granule (SQG) is clinically effective in NS. However, its potential mechanisms have yet to be elucidated. Methods A network pharmacology approach was employed in this study. Based on oral bioavailability and drug-likeness, potential active ingredients were picked out. After acquiring overlapping targets for drug genes and disease-related genes, a component-target-disease network and protein-protein interaction analysis (PPI) were constructed using Cytoscape, followed by GO and KEGG enrichment analyses. Adriamycin was injected into adult male Sprague-Dawley (SD) rats via the tail vein to establish NS model. Kidney histology, 24-hr urinary protein level, creatinine (Cr), blood urea nitrogen (BUN), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL-C) level were assessed. Western blotting, immunohistochemistry, and TUNEL staining were applied. Results In total, 144 latent targets in SQG acting on NS were screened by a network pharmacology study, containing AKT, Bax, and Bcl-2. KEGG enrichment analysis suggested that PI3K/AKT pathway was enriched primarily. In vivo validation results revealed that SQG intervention ameliorated urine protein level and podocyte lesions in the NS model. Moreover, SQG therapy significantly inhibited renal cells apoptosis and decreased the ratio of Bax/Bcl-2 protein expression. Moreover, we found that Caspase-3 regulated the PI3K/AKT pathway in NS rats, which mediated the anti-apoptosis effect. Conclusion By combining network pharmacology with experimental verification in vivo, this work confirmed the treatment efficacy of SQG for NS. SQG protected podocyte from injury and inhibited kidney apoptosis in NS rats via the PI3K/AKT pathway at least partially.
Collapse
Affiliation(s)
- Lijuan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Huoliang Liu
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yi Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - XiaoFan Hong
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiaoyan Huang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou, People’s Republic of China
| | - Miaoru Han
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Dan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Wenjun Shan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ping Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
| | - Haowen Gu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Bo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kun Bao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
| |
Collapse
|
9
|
Zhao ZB, Marschner JA, Iwakura T, Li C, Motrapu M, Kuang M, Popper B, Linkermann A, Klocke J, Enghard P, Muto Y, Humphreys BD, Harris HE, Romagnani P, Anders HJ. Tubular Epithelial Cell HMGB1 Promotes AKI-CKD Transition by Sensitizing Cycling Tubular Cells to Oxidative Stress: A Rationale for Targeting HMGB1 during AKI Recovery. J Am Soc Nephrol 2023; 34:394-411. [PMID: 36857499 PMCID: PMC10103235 DOI: 10.1681/asn.0000000000000024] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 10/22/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT Cells undergoing necrosis release extracellular high mobility group box (HMGB)-1, which triggers sterile inflammation upon AKI in mice. Neither deletion of HMGB1 from tubular epithelial cells, nor HMGB1 antagonism with small molecules, affects initial ischemic tubular necrosis and immediate GFR loss upon unilateral ischemia/reperfusion injury (IRI). On the contrary, tubular cell-specific HMGB1 deficiency, and even late-onset pharmacological HMGB1 inhibition, increased functional and structural recovery from AKI, indicating that intracellular HMGB1 partially counters the effects of extracellular HMGB1. In vitro studies indicate that intracellular HMGB1 decreases resilience of tubular cells from prolonged ischemic stress, as in unilateral IRI. Intracellular HMGB1 is a potential target to enhance kidney regeneration and to improve long-term prognosis in AKI. BACKGROUND Late diagnosis is a hurdle for treatment of AKI, but targeting AKI-CKD transition may improve outcomes. High mobility group box-1 (HMGB1) is a nuclear regulator of transcription and a driver of necroinflammation in AKI. We hypothesized that HMGB1 would also modulate AKI-CKD transition in other ways. METHODS We conducted single-cell transcriptome analysis of human and mouse AKI and mouse in vivo and in vitro studies with tubular cell-specific depletion of Hmgb1 and HMGB1 antagonists. RESULTS HMGB1 was ubiquitously expressed in kidney cells. Preemptive HMGB1 antagonism with glycyrrhizic acid (Gly) and ethyl pyruvate (EP) did not affect postischemic AKI but attenuated AKI-CKD transition in a model of persistent kidney hypoxia. Consistently, tubular Hmgb1 depletion in Pax8 rtTA, TetO Cre, Hmgb1fl/fl mice did not protect from AKI, but from AKI-CKD transition. In vitro studies confirmed that absence of HMGB1 or HMGB1 inhibition with Gly and EP does not affect ischemic necrosis of growth-arrested differentiated tubular cells but increased the resilience of cycling tubular cells that survived the acute injury to oxidative stress. This effect persisted when neutralizing extracellular HMGB1 with 2G7. Consistently, late-onset HMGB1 blockade with EP started after the peak of ischemic AKI in mice prevented AKI-CKD transition, even when 2G7 blocked extracellular HMGB1. CONCLUSION Treatment of AKI could become feasible when ( 1 ) focusing on long-term outcomes of AKI; ( 2 ) targeting AKI-CKD transition with drugs initiated after the AKI peak; and ( 3 ) targeting with drugs that block HMGB1 in intracellular and extracellular compartments.
Collapse
Affiliation(s)
- Zhi Bo Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Julian A. Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Takamasa Iwakura
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Chenyu Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Manga Motrapu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Meisi Kuang
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU München, Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Klocke
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Helena Erlandsson Harris
- Departments of Rheumatology and of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paola Romagnani
- Department of Experimental and Biomedical Sciences "Mario Serio" and Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| |
Collapse
|
10
|
Wang X, Xu G, Liu H, Chen Z, Huang S, Yuan J, Xie C, Du L. Inhibiting apoptosis of Schwann cell under the high-glucose condition: A promising approach to treat diabetic peripheral neuropathy using Chinese herbal medicine. Biomed Pharmacother 2023; 157:114059. [PMID: 36462309 DOI: 10.1016/j.biopha.2022.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Glycemic control and lifestyle alterations cannot prevent the development of DPN; therefore, investigating effective treatments for DPN is crucial. Schwann cells (SCs) maintain the physiological function of peripheral nerves and promote the repair and regeneration of injured nerves. Inhibiting the apoptosis of SCs through various pathological pathways in a high-glucose environment plays an important role in developing DPN. Therefore, inhibiting the apoptosis of SCs can be a novel treatment strategy for DPN. Previous studies have indicated the potential of Chinese herbal medicine (CHM) in treating DPN. In this study, we have reviewed the effects of CHM (both monomers and extracts) on the apoptosis of SCs by interfering with the production of advanced glycation end products, oxidative stress, and endoplasmic reticulum stress pathological pathways. This review will demonstrate the potentialities of CHM in inhibiting apoptosis in SCs, providing new insights and perspectives for treating DPN.
Collapse
Affiliation(s)
- Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, Sichuan, China.
| | - Gang Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, Sichuan, China.
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China.
| | - Zhengtao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China.
| | - Susu Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Jiushu Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, Sichuan, China.
| | - Lian Du
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
11
|
Stavely R, Sahakian L, Filippone RT, Stojanovska V, Bornstein JC, Sakkal S, Nurgali K. Oxidative Stress-Induced HMGB1 Translocation in Myenteric Neurons Contributes to Neuropathy in Colitis. Biomolecules 2022; 12:biom12121831. [PMID: 36551259 PMCID: PMC9776169 DOI: 10.3390/biom12121831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released by dying cells to stimulate the immune response. During cell death, HMGB1 is translocated from the nucleus to the cytoplasm and passively released. High levels of secreted HMGB1 are observed in the faeces of inflammatory bowel disease (IBD) patients, indicating its role in IBD pathophysiology and potential as a non-invasive IBD biomarker. HMGB1 is important in regulating neuronal damage in the central nervous system; its pathological activity is intertwined with oxidative stress and inflammation. In this study, HMGB1 expression in the enteric nervous system and its relevance to intestinal neuroinflammation is explored in organotypic cultures of the myenteric plexus exposed to oxidative stimuli and in Winnie mice with spontaneous chronic colitis. Oxidative stimuli induced cytoplasmic translocation of HMGB1 in myenteric neurons in organotypic preparations. HMGB1 translocation correlated with enteric neuronal loss and oxidative stress in the myenteric ganglia of Winnie mice. Inhibition of HMGB1 by glycyrrhizic acid ameliorated HMGB1 translocation and myenteric neuronal loss in Winnie mice. These data highlight modulation of HMGB1 signalling as a therapeutic strategy to reduce the consequences of enteric neuroinflammation in colitis, warranting the exploration of therapeutics acting on the HMGB1 pathway as an adjunct treatment with current anti-inflammatory agents.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
| | - Lauren Sahakian
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Rhiannon T. Filippone
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Vanesa Stojanovska
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Health Translation Precinct, Melbourne, VIC 3168, Australia
| | - Joel C. Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
12
|
Wang H, Zhang B, Dong W, Li Y, Zhao L, Zhang Y. Effect of Diammonium Glycyrrhizinate in Improving Focal Cerebral Ischemia-Reperfusion Injury in Rats Through Multiple Mechanisms. Dose Response 2022; 20:15593258221142792. [PMID: 36479318 PMCID: PMC9720820 DOI: 10.1177/15593258221142792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE Acute ischemic stroke is a current major disabling and killer disease worldwide. We aimed to investigate the protective effect and mechanism of diammonium glycyrrhizinate in alleviating acute ischemic stroke. METHODS Ninety male Sprague Dawley (SD) rats (weighing 250-300 g) were randomly allocated into three groups: sham operation group (sham group), diammonium glycyrrhizinate group (DG group) and model group (model group) each with 30 individuals. A rat model of focal CIR injury was established by reversible middle cerebral artery occlusion. RESULTS Zea-Longa scores for the rats in the DG group and model group were 7-fold and 8-fold higher than those of the sham group 2 h post-surgery (2.90 ± 0.99 vs. 0.30 ± 0.53, P < .05; 2.80 ± 0.61 vs. 0.30 ± 0.53, P < .05, respectively). Three days after model establishment, the scores of DG group were 26.92% lower compared with those of the model group (1.90 ± 0.76 vs. 2.60 ± 0.62, P < .05). In addition, compared with the sham group, the number of Nissl bodies and Akt-positive cells in were 27.35% and 30.42% lower in the hippocampus of the DG group (Nissl bodies: 83.40 ± 7.01 vs. 115.60 ± 11.97, p < 0.05; Akt-positive cells: 94.70 ± 8.23 vs. 136.10 ± 10.37, P < .05) and 58.65% and 57.31% lower in the model group (Nissl bodies: 47.80 ± 4.91 vs. 115.60 ± 11.97, P < .05; Akt-positive cells: 58.10 ± 4.98 vs. 136.10 ± 10.37, P < 0.05), respectively. However, the number of Nissl bodies and Akt-positive cells in the hippocampus of DG group were 74.48% and 62.9% higher compared with the model group, respectively (Nissl bodies: 83.40 ± 7.01 vs. 47.80 ± 4, P < 0.05; Akt-positive cells: 94.70 ± 8.23 vs. 58.10 ± 4.98, P < .05). In addition, compared with the sham group, the number of caspase-3-positive cells, the expression level of p38 mitogen-activated protein kinase (MAPK) and the expression of matrix metallopeptidase 9 (MMP-9) were 2-fold, 34.38%, 64.78% higher in the DG group (caspase-3-positive cells: 78.70 ± 6.52 vs. 27.10 ±3.00, P < .05; p-38MAPK: 0.43 ± 0.15 vs. 0.32 ± 0.10, P < .05; MMP-9: 14.83 ± 1.18 vs. 9.00 ± 2.05, P < .05, respectively), and more than 3-fold, 1-fold and 1-fold higher in model group (caspase-3-positive cells: 121.10 ± 11.04 vs. 27.10 ± 3.00, P < .05; p-38MAPK: 0.70 ± 0.12 vs. 0.32 ± 0.10, P < .05; MMP-9: 19.00 ± 1.90 vs. 9.00 ± 2.05, P < .05), respectively. However, the number of caspase-3-positive cells and the expression levels of p-38MAPK and MMP-9 were 35.01%, 38.57% and 28.12% lower in DG group compared with the model group (caspase-3-positive cells: 78.70 ± 6.52 vs. 121.10 ± 11.04, P < .05; p-38MAPK: 0.43 ± 0.15 vs. 0.70 ± 0.12, P < .05; MMP-9: 14.83 ± 1.18 vs. 19.00 ± 1.90, P < .05). CONCLUSIONS Our study showed that diammonium glycyrrhizinate at 20 mg/kg/day had a protective effect on cerebral ischemia-reperfusion injury in rats by promoting formation of Nissl bodies and increasing protein expression of Akt while decreasing that of caspase-3, p38 MAPK and MMP-9, either directly or indirectly, by inhibiting apoptosis and reducing neuroinflammation. All these mechanisms resulted in improved overall neurological function.
Collapse
Affiliation(s)
- Hong Wang
- Rehabilitation Medical Department,
Tianjin
Union Medical Center, Rehabilitation
Medical Research Center of Tianjin, Tianjin, China
| | - Binbin Zhang
- Department of Neurology,
Dongli District
Hospital, Tianjin, Chian
| | - Weiwei Dong
- Department of Nuclear Medicine,
The
Fourth Central Clinical School, Tianjin Medical
University, Tianjin, China
| | - Yuying Li
- Department of Neurology,
Tianjin
Medical University General Hospital,
Tianjin, China
| | - Liwen Zhao
- Department of Neurosurgery,
Tianjin
Medical University General Hospital Airport
Site, Tianjin, China
| | - Ying Zhang
- Rehabilitation Medical Department,
Tianjin
Union Medical Center, Rehabilitation
Medical Research Center of Tianjin, Tianjin, China
| |
Collapse
|
13
|
Ethyl pyruvate, a versatile protector in inflammation and autoimmunity. Inflamm Res 2022; 71:169-182. [PMID: 34999919 PMCID: PMC8742706 DOI: 10.1007/s00011-021-01529-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Ethyl pyruvate (EP) has potent influence on redox processes, cellular metabolism, and inflammation. It has been intensively studied in numerous animal models of systemic and organ-specific disorders whose pathogenesis involves a strong immune component. Here, basic chemical and biological properties of EP are discussed, with an emphasis on its redox and metabolic activity. Further, its influence on myeloid and T cells is considered, as well as on intracellular signaling beyond its effect on immune cells. Also, the effects of EP on animal models of chronic inflammatory and autoimmune disorders are presented. Finally, a possibility to apply EP as a treatment for such diseases in humans is discussed. Scientific papers cited in this review were identified using the PubMed search engine that relies on the MEDLINE database. The reference list covers the most important findings in the field in the past twenty years.
Collapse
|
14
|
Yamamoto Y, Uchiyama M, Iguchi K, Kawai K, Imazuru T, Kawamura M, Shimokawa T. Effects of Glycyrrhizic Acid in Licorice on Prolongation of Murine Cardiac Allograft Survival. Transplant Proc 2022; 54:476-481. [DOI: 10.1016/j.transproceed.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
|
15
|
Zhu Y, Shen P, Wang J, Jiang X, Wang W, Raj R, Ge H, Wang W, Yu B, Zhang J. Microbial transformation of pentacyclic triterpenes for anti-inflammatory agents on the HMGB1 stimulated RAW 264.7 cells by Streptomyces olivaceus CICC 23628. Bioorg Med Chem 2021; 52:116494. [PMID: 34800877 DOI: 10.1016/j.bmc.2021.116494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
High mobility group box-1 protein (HMGB1) is a typical Damage-Associated Molecular Patterns (DAMPs) released in response to cellular inflammation. The pentacyclic triterpenes (PTs) are considered to be the natural inhibitors against HMGB1-related inflammation. To explore new lead compounds of PTs as anti-inflammatory agents, biotransformation of four PTs by Streptomyces olivaceus CICC 23628 was investigated in this study. As a result, thirteen unique 3,4-seco-triterpenes metabolites were isolated and twelve of them were first identified and reported. Structures of metabolites were determined based on HR-ESI-MS, 1D/2D NMR, and single-crystal X-ray diffraction. Furthermore, all compounds were subjected to the bioassay on the model of HMGB1-stimulated RAW 264.7 cells to evaluate their anti-inflammatory activity through nitric oxide (NO) inhibition activity. Compounds 3b (3,4-seco-olean-12-en-4,21α,22β,24-tetrahydroxy-ol-3-oic acid) and 2b (3,4-seco-olean-12-en-4,21β,22β,24,29-pentahydroxy-ol-3-oic acid) exhibited NO inhibitory activity with IC50 values of 15.94 μM and 36.00 μM, respectively. Thus, indicating their potential as HMGB1 inhibitors and in developing potent anti-inflammatory agents. This work provides an operationally simple, efficient method for the rapid diversification of the PTs scaffold for a variety of distinctive 3,4-seco-triterpenes to facilitate the discovery of potential anti-inflammatory compounds.
Collapse
Affiliation(s)
- Yuyuan Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pingping Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiayi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Richa Raj
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Weiwei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China; ZhenPing Expert Workstation for Zhang Jian, Zhenping, Ankang, Shaanxi 725699, PR China.
| |
Collapse
|
16
|
High mobility group box 1 and homocysteine as preprocedural predictors for contrast-induced acute kidney injury after percutaneous coronary artery intervention. Int Urol Nephrol 2021; 54:1663-1671. [PMID: 34727314 DOI: 10.1007/s11255-021-03050-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE High mobility group box 1 (HMGB1) and homocysteine (Hcy) play important roles in contrast-induced acute kidney injury (CI-AKI). We compared HMGB1 to Hcy as preprocedural predictors for CI-AKI in coronary artery disease (CAD) patients after percutaneous coronary artery intervention (PCI). METHODS We included 257 eligible patients who were categorized into CI-AKI ( +) and CI-AKI ( -) group. The differences in clinical characteristics and biochemical indexes between two groups were analyzed. RESULTS We observed that thirty-eight (14.8%) of 257 eligible CAD patients developed CI-AKI. HMGB1 (14.65 [11.13-24.89] vs 10.88 [7.94-13.23], p < 0.001) and Hcy (14.07 [12.07-17.31] vs 12.09 [10.71-13.47], p < 0.001) increased significantly in CI-AKI ( +) group. Both age (r = 0.210, p = 0.001), serum creatinine (r = 0.509, p < 0.001), eGFR (r = - 0.459, p < 0.001) and Hcy (r = 0.531, p < 0.001) were significantly correlated with HMGB1. Among all patients, HMGB1 (OR 1.181, 95% CI 1.081-1.290, p < 0.001) and Hcy (OR 1.260, 95% CI 1.066-1.489, p = 0.007) were independent predictors for the development of CI-AKI. We built the propensity score matching (PSM) using 38 pairs of patients. After adjustment, HMGB1 (OR 1.169, 95% CI 1.035-1.322, p = 0.012) and Hcy (OR 1.457, 95% CI 1.064-1.997, p = 0.019) were also independent predictors for the development of CI-AKI. Both HMGB1 (AUC: 0.704, 95% CI: 0.588-0.819, p = 0.002) and Hcy (AUC: 0.708, 95% CI: 0.593-0.823, p = 0.002) had predictive values for CI-AKI. CONCLUSION There is a significant positive association between HMGB1 and Hcy in CAD patients. Both HMGB1 and Hcy are potential preprocedural predictors of CI-AKI after PCI.
Collapse
|
17
|
Xu Z, Jin Y, Gao Z, Zeng Y, Du J, Yan H, Chen X, Ping L, Lin N, Yang B, He Q, Luo P. Autophagic degradation of CCN2 (cellular communication network factor 2) causes cardiotoxicity of sunitinib. Autophagy 2021; 18:1152-1173. [PMID: 34432562 DOI: 10.1080/15548627.2021.1965712] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Excessive macroautophagy/autophagy is one of the causes of cardiomyocyte death induced by cardiovascular diseases or cancer therapy, yet the underlying mechanism remains unknown. We and other groups previously reported that autophagy might contribute to cardiomyocyte death caused by sunitinib, a tumor angiogenesis inhibitor that is widely used in clinic, which may help to understand the mechanism of autophagy-induced cardiomyocyte death. Here, we found that sunitinib-induced autophagy leads to apoptosis of cardiomyocyte and cardiac dysfunction as the cardiomyocyte-specific Atg7-/+ heterozygous mice are resistant to sunitinib. Sunitinib-induced maladaptive autophagy selectively degrades the cardiomyocyte survival mediator CCN2 (cellular communication network factor 2) through the TOLLIP (toll interacting protein)-mediated endosome-related pathway and cardiomyocyte-specific knockdown of Ccn2 through adeno-associated virus serotype 9 (AAV9) mimics sunitinib-induced cardiac dysfunction in vivo, suggesting that the autophagic degradation of CCN2 is one of the causes of sunitinib-induced cardiotoxicity and death of cardiomyocytes. Remarkably, deletion of Hmgb1 (high mobility group box 1) inhibited sunitinib-induced cardiomyocyte autophagy and apoptosis, and the HMGB1-specific inhibitor glycyrrhizic acid (GA) significantly mitigated sunitinib-induced autophagy, cardiomyocyte death and cardiotoxicity. Our study reveals a novel target protein of autophagic degradation in the regulation of cardiomyocyte death and highlights the pharmacological inhibitor of HMGB1 as an attractive approach for improving the safety of sunitinib-based cancer therapy.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Yan Zeng
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Jiangxia Du
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xueqin Chen
- Department of Oncology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Li Ping
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
18
|
Oh H, Choi A, Seo N, Lim JS, You JS, Chung YE. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on post-contrast acute kidney injury. Sci Rep 2021; 11:15625. [PMID: 34341389 PMCID: PMC8329191 DOI: 10.1038/s41598-021-94928-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Post contrast-acute kidney injury (PC-AKI) is defined as the deterioration of renal function after administration of iodinated contrast media. HMGB1 is known to play an important role in the development of acute kidney injury. The purpose of this study was to investigate the association between HMGB1 and PC-AKI and the protective effect of glycyrrhizin, a direct inhibitor of HMGB1, in rats. Rats were divided into three groups: control, PC-AKI and PC-AKI with glycyrrhizin. Oxidative stress was measured with MDA levels and H2DCFDA fluorescence intensity. The mRNA expressions of pro-inflammatory cytokines (IL-1α, IL-1β, IL-6 and TNF-α) and kidney injury markers (KIM-1, NGAL and IL-18) were assessed using RT-PCR and ELISA in kidney tissue. In addition, the serum and intracellular protein levels of HMGB1were analyzed with the enzyme-linked immunosorbent assay (ELISA) and western blotting. Histologic changes were assessed with H&E staining using the transmission electron microscope (TEM). Moreover, serum creatinine (SCr), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) levels were assessed. Oxidative stress, pro-inflammatory cytokines, kidney injury markers and LDH were significantly higher in PC-AKI compared to the controls, but were lower in PC-AKI with glycyrrhizin. Intracellular and serum HMGB1 levels significantly increased after contrast media exposure, whereas they markedly decreased after glycyrrhizin pretreatment. SCr and BUN also decreased in PC-AKI with glycyrrhizin compared to PC-AKI. In PC-AKI, we could frequently observe tubular dilatation with H&E staining and cytoplasmic vacuoles on TEM, whereas these findings were attenuated in PC-AKI with glycyrrhizin. Our findings indicate that HMGB1 plays an important role in the development of PC-AKI and that glycyrrhizin has a protective effect against renal injury and dysfunction by inhibiting HMGB1 and reducing oxidative stress.
Collapse
Affiliation(s)
- Hyewon Oh
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Arom Choi
- Department of Emergency Medicine, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Nieun Seo
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Joon Seok Lim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea.
| | - Yong Eun Chung
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
19
|
Chen Y, Zhang W, Bao H, He W, Chen L. High Mobility Group Box 1 Contributes to the Acute Rejection of Liver Allografts by Activating Dendritic Cells. Front Immunol 2021; 12:679398. [PMID: 34177922 PMCID: PMC8222728 DOI: 10.3389/fimmu.2021.679398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Acute rejection induced by the recognition of donor alloantigens by recipient T cells leads to graft failure in liver transplant recipients. The role of high mobility group box 1 (HMGB1), an inflammatory mediator, in the acute allograft rejection of liver transplants is unknown. Here, rat orthotopic liver transplantation was successfully established to analyze the expression pattern of HMGB1 in liver allografts and its potential role in promoting the maturation of dendritic cells (DCs) to promote T cell proliferation and differentiation. Five and 10 days after transplantation, allografts showed a marked upregulation of HMGB1 expression accompanied by elevated levels of serum transaminase and CD3+ and CD86+ inflammatory cell infiltration. Furthermore, in vitro experiments showed HMGB1 increased the expressions of co-stimulatory molecules (CD80, CD83, and MHC class II) on bone marrow-derived DCs. HMGB1-pulsed DCs induced naive CD4+ T cells to differentiate to Th1 and Th17 subsets secreting IFN-γ and IL-17, respectively. Further in vivo experiments confirmed the administration of glycyrrhizic acid, a natural HMGB1 inhibitor, during donor liver preservation had therapeutic effects by reducing inflammation and hepatocyte damage reflected by a decline in serum transaminase and prolonged allograft survival time. These results suggest the involvement of HMBG1 in acute liver allograft rejection and that it might be a candidate therapeutic target to avoid acute rejection after liver transplantation.
Collapse
Affiliation(s)
- Yi Chen
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Wenmin Zhang
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Institute of Oncology, Fujian Medical University, Fuzhou, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Hui Bao
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Institute of Oncology, Fujian Medical University, Fuzhou, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Wubing He
- Department of Emergency, Fujian Provincial Hospital; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,Institute of Oncology, Fujian Medical University, Fuzhou, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Wang T, Hou J, Xiao W, Zhang Y, Zhou L, Yuan L, Yin X, Chen X, Hu Y. Chinese medicinal plants for the potential management of high-altitude pulmonary oedema and pulmonary hypertension. PHARMACEUTICAL BIOLOGY 2020; 58:815-827. [PMID: 32883127 PMCID: PMC8641673 DOI: 10.1080/13880209.2020.1804407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 05/29/2023]
Abstract
CONTEXT Despite the abundance of knowledge regarding high-altitude pulmonary edoema (HAPE) and high-altitude pulmonary hypertension (HAPH), their prevalence continues to be on the rise. Thus, there is an urgent need for newer safe, effective, and relatively economic drug candidates. China is particularly known for the use of medicinal plants. OBJECTIVE This review summarizes the medicinal plants used for HAPE and HAPH in the past 30 years, as well as some potential plants. METHODS Publications on HAPE and HAPH from 1990 to 2020 were identified using Web of Science, PubMed, SCOPUS, Springer Link, Google Scholar databases, Chinese Clinical Trial Registry and CNKI with the following keywords: 'medicinal plants,' 'hypoxia,' 'high altitude pulmonary edema,' 'high altitude pulmonary hypertension,' 'pathophysiology,' 'mechanisms,' 'prevention,' 'treatment,' 'human,' 'clinical,' 'safety,' and 'pharmacokinetics.' RESULTS We found 26 species (from 20 families) out of 5000 plants which are used for HAPE and HAPH prevention or treatment. Rhodiola rosea Linn. (Crassulaceae) is the most widely utilized. The most involved family is Lamiaceae, which contains 5 species. DISCUSSION AND CONCLUSIONS We mainly reviewed the medicinal plants and mechanisms for the treatment of HAPE and HAPH, and we also assessed related toxicology experiments, pharmacokinetics and bioavailability. Potential medicinal plants were also identified. Further research is needed to determine the pharmacological effects and active ingredients of these potential medicinal plants.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Jun Hou
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Wenjing Xiao
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Yaolei Zhang
- Faculty of Medical, Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Longfu Zhou
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Li Yuan
- Faculty of Medical, Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Xiaoqiang Yin
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Yonghe Hu
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| |
Collapse
|
21
|
Sabapathy V, Venkatadri R, Dogan M, Sharma R. The Yin and Yang of Alarmins in Regulation of Acute Kidney Injury. Front Med (Lausanne) 2020; 7:441. [PMID: 32974364 PMCID: PMC7472534 DOI: 10.3389/fmed.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major clinical burden affecting 20 to 50% of hospitalized and intensive care patients. Irrespective of the initiating factors, the immune system plays a major role in amplifying the disease pathogenesis with certain immune cells contributing to renal damage, whereas others offer protection and facilitate recovery. Alarmins are small molecules and proteins that include granulysins, high-mobility group box 1 protein, interleukin (IL)-1α, IL-16, IL-33, heat shock proteins, the Ca++ binding S100 proteins, adenosine triphosphate, and uric acid. Alarmins are mostly intracellular molecules, and their release to the extracellular milieu signals cellular stress or damage, generally leading to the recruitment of the cells of the immune system. Early studies indicated a pro-inflammatory role for the alarmins by contributing to immune-system dysregulation and worsening of AKI. However, recent developments demonstrate anti-inflammatory mechanisms of certain alarmins or alarmin-sensing receptors, which may participate in the prevention, resolution, and repair of AKI. This dual function of alarmins is intriguing and has confounded the role of alarmins in AKI. In this study, we review the contribution of various alarmins to the pathogenesis of AKI in experimental and clinical studies. We also analyze the approaches for the therapeutic utilization of alarmins for AKI.
Collapse
Affiliation(s)
| | | | | | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Wang XW, Tian RM, Yang YQ, Wang K, Li EN, Han XD, Bao K, Mao W, Xu HT, Liu B, Xu P. Tripterygium glycoside fraction n2 ameliorates adriamycin-induced nephrotic syndrome in rats by suppressing apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112789. [PMID: 32234597 DOI: 10.1016/j.jep.2020.112789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii Hook F. (TwHF), a traditional Chinese herb medicine, has been widely used for clinical treatment of various rheumatic immune diseases. Tripterygium glycosides (TG) extracted from TwHF has been verified to process multiple bioactivities, including immunosuppressive, anti-inflammatory and anti-cancer effects. However, the clinical application of TG is limited due to its severe toxicity and narrow therapeutic window. For the clinical safety of TG usage, attenuation of toxicity is the key issue to be solved. PURPOSE Tripterygium glycoside fraction n2 (TG-n2) is a detoxified mixture obtained from TG using a new preparation method. In our previous study, we have demonstrated that TG-n2 has a lower toxicity than TG. The aim of the present study was to screen the renal protective effect of TG-n2 in nephrotic syndrome (NS) induced by adriamycin (ADR) in rats and its effect on apoptosis, as well as the effective difference between TG-n2 and TG. MATERIALS AND METHODS The ADR-induced NS rat model was established. Rats were intravenously injected with ADR (6 mg/kg), then treated with either TG-n2 (10 mg/kg/day) or TG (10 mg/kg/day) by oral gavage for 4 weeks. Clinical indexes in each group were determined. HE staining and electron microscopic analysis were used to evaluate renal histopathological damage. Caspase-3 activity reagent and TUNEL staining were used to estimate renal apoptosis. Protein levels of caspase-3, caspase-9, caspase-8, caspase-12, Bax, Bcl-2, p53, TNF-R1, FLIP and podocin were measured by Western Blot. RESULTS TG-n2 and TG intervention ameliorated renal function as assessed by the levels of 24-h proteinuria, Cr, BUN, TC, TG, ALB and LDL-c. TG-n2 and TG alleviated the decrease of podocin protein expression and morphological injury of podocyte as screened by Western Blot and electron microscopic analysis. Besides, renal tubular injury was reduced as inspected by light microscopic analysis. TG-n2 and TG could significantly inhibit the apoptosis and activity of caspase-3 in kidney tissues as examined by fluorescence microscopic analysis and reagent. After intervention of TG-n2 and TG, protein levels of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, p53 and TNF-R1 in renal issues were significantly decreased compared with ADR group. In contrast, protein level of Bcl-2 was elevated remarkedly. CONCLUSIONS Our data suggested that attenuated TG-n2 may have a similar protective effect with TG in ADR-induced NS in rats by inhibiting activation of apoptosis.
Collapse
Affiliation(s)
- Xiao-Wan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rui-Min Tian
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yi-Qi Yang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kai Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - En-Nian Li
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiao-Dong Han
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kun Bao
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wei Mao
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Tao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, 510006, China.
| | - Peng Xu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Wu J, Liu X, Wang M, Wang X, Luo D, Su S. Reduction of Cold Ischemic Injury with the Addition of Compound Glycyrrhizin in HTK Solution in a Mouse Heart Transplantation Model. Int Heart J 2020; 61:595-600. [PMID: 32418958 DOI: 10.1536/ihj.19-321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cold ischemic injury in heart storage is an important issue pertaining to heart transplantation. This study aims to evaluate the addition of compound glycyrrhizin (CG) in histidine-tryptophan-ketoglutarate (HTK) solution on chronic isograft injury in comparison to traditional HTK solution.Hearts of mouse were stored for 8 h in 4°C cold preservation solution and then transplanted heterotopically into mouse. Five groups were evaluated: HTK, low dose of CG solution (LCG), medium dose of CG solution (MCG), high dose of CG solution (HCG), and hearts without cold ischemia (sham). Survival was assessed. Time to restoration of heartbeat and strength of the heartbeat was measured. Lactate dehydrogenase (LDH) and creatine kinase (CK) levels in the preservation solution were determined. The myocardial damage and interstitial fibrosis of transplanted hearts were evaluated. TGF-β1 expression in the transplanted hearts was assessed.Addition of CG to HTK solution significantly attenuated cold ischemic injury during cold storage, as evidenced by the lower time to restoration of heartbeat, higher strength of the heartbeat, lower LDH, and CK leakage. After transplantation, hearts stored in HTK solution containing CG had decreased the myocardial damage and interstitial fibrosis, compared with those stored without CG. The percentage of TGF-β1-positive cells and TGF-β1 level in the transplanted hearts were also decreased when stored in CG-containing HTK solution.The addition of CG to HTK solution attenuates cold ischemic injury during cold storage.
Collapse
Affiliation(s)
- Jiali Wu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University
| | - Xiangdong Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University
| | - De Luo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University
| |
Collapse
|
24
|
Fei YX, Zhao B, Yin QY, Qiu YY, Ren GH, Wang BW, Wang YF, Fang WR, Li YM. Ma Xing Shi Gan Decoction Attenuates PM2.5 Induced Lung Injury via Inhibiting HMGB1/TLR4/NFκB Signal Pathway in Rat. Front Pharmacol 2019; 10:1361. [PMID: 31798456 PMCID: PMC6868102 DOI: 10.3389/fphar.2019.01361] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Ma Xing Shi Gan Decoction (MXD), a classical traditional Chinese medicine prescription, is widely used for the treatment of upper respiratory tract infection. However, the effect of MXD against particulate matters with diameter of less than 2.5 μm (PM2.5) induced lung injury remains to be elucidated. In this study, rats were stimulated with PM2.5 to induce lung injury. MXD was given orally once daily for five days. Lung tissues were harvested to assess pathological changes and edema. Myeloperoxidase (MPO) activity and malonaldehyde (MDA) content in lung were determined to evaluate the degree of injury. To assess the barrier disruption, the bronchoalveolar lavage fluid (BALF) was collected to determine the total protein content and count the number of neutrophils and macrophages. For evaluating the activation of macrophage in lung tissue, CD68 was detected using immunohistochemistry (IHC). The levels of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) in BALF and serum were measured. In vitro, a PM2.5-activated RAW 264.7 macrophages inflammatory model was introduced. To evaluate the protective effect of MXD-medicated serum, the cell viability and the release of inflammatory factors were measured. The effects of MXD on the High mobility group box-1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NFκB) pathway in lung tissue and RAW 264.7 cells were assessed by Western blot. For further confirming the protective effect of MXD was mediated by inhibiting the HMGB1/TLR4/NFκB pathway, RAW 264.7 cells were incubated with MXD-medicated serum alone or MXD-medicated serum plus recombinant HMGB1 (rHMGB1). MXD significantly ameliorated the lung injury in rats, as evidenced by decreases in the pathological score, lung edema, MPO activity, MDA content, CD68 positive macrophages number, disruption of alveolar capillary barrier and the levels of inflammatory factors. In vitro, MXD-medicated serum increased cell viability and inhibited the release of inflammatory cytokines. Furthermore, MXD treatment was found to inhibit HMGB1/TLR4/NFκB signal pathway both in vivo and in vitro. Moreover, the protection of MXD could be reversed by rHMGB1 in RAW 264.7. Taken together, these results suggest MXD protects rats from PM2.5 induced acute lung injury, possibly through the modulation of HMGB1/TLR4/NFκB pathway and inflammatory responses.
Collapse
Affiliation(s)
- Yu-xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi-yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan-ying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guang-hui Ren
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo-wen Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ye-fang Wang
- Department of Pediatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, China
| | - Wei-rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Biguetti CC, Cavalla F, Silveira EV, Tabanez AP, Francisconi CF, Taga R, Campanelli AP, Trombone APF, Rodrigues DC, Garlet GP. HGMB1 and RAGE as Essential Components of Ti Osseointegration Process in Mice. Front Immunol 2019; 10:709. [PMID: 31024546 PMCID: PMC6461067 DOI: 10.3389/fimmu.2019.00709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
The release of the prototypic DAMP High Mobility Group Box 1 (HMGB1) into extracellular environment and its binding to the Receptor for Advanced Glycation End Products (RAGE) has been described to trigger sterile inflammation and regulate healing outcome. However, their role on host response to Ti-based biomaterials and in the subsequent osseointegration remains unexplored. In this study, HMGB1 and RAGE inhibition in the Ti-mediated osseointegration were investigated in C57Bl/6 mice. C57Bl/6 mice received a Ti-device implantation (Ti-screw in the edentulous alveolar crest and a Ti-disc in the subcutaneous tissue) and were evaluated by microscopic (microCT [bone] and histology [bone and subcutaneous]) and molecular methods (ELISA, PCR array) during 3, 7, 14, and 21 days. Mice were divided into 4 groups: Control (no treatment); GZA (IP injection of Glycyrrhizic Acid for HMGB1 inhibition, 4 mg/Kg/day); RAP (IP injection of RAGE Antagonistic Peptide, 4 mg/Kg/day), and vehicle controls (1.5% DMSO solution for GZA and 0.9% saline solution for RAP); treatments were given at all experimental time points, starting 1 day before surgeries. HMGB1 was detected in the Ti-implantation sites, adsorbed to the screws/discs. In Control and vehicle groups, osseointegration was characterized by a slight inflammatory response at early time points, followed by a gradual bone apposition and matrix maturation at late time points. The inhibition of HMGB1 or RAGE impaired the osseointegration, affecting the dynamics of mineralized and organic bone matrix, and resulting in a foreign body reaction, with persistence of macrophages, necrotic bone, and foreign body giant cells until later time points. While Control samples were characterized by a balance between M1 and M2-type response in bone and subcutaneous sites of implantation, and also MSC markers, the inhibition of HMGB1 or RAGE caused a higher expression M1 markers and pro-inflammatory cytokines, as well chemokines and receptors for macrophage migration until later time points. In conclusion, HMGB1 and RAGE have a marked role in the osseointegration, evidenced by their influence on host inflammatory immune response, which includes macrophages migration and M1/M2 response, MSC markers expression, which collectively modulate bone matrix deposition and osseointegration outcome.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Franco Cavalla
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - Elcia Varize Silveira
- Department of Biological and Allied Health Sciences, Universidade Sagrado Coração, Bauru, Brazil
| | - André Petenuci Tabanez
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Rumio Taga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Danieli C Rodrigues
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX, United States
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated kupffer cells pyroptosis. Int Immunopharmacol 2019; 68:145-155. [PMID: 30634142 DOI: 10.1016/j.intimp.2019.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
Gasdermin D (GSDMD), a genetic substrate for inflammatory caspases, plays a central role in pyroptosis of macrophages and release of interleukin‑1β (IL-1β), but was mainly referred to microbial infection. High mobility group box-1 (HMGB1), served as an alarm molecule during various pathological process, has been widely recognized to be involved in liver ischemia-reperfusion (I/R). Glycyrrhizin, a natural anti-inflammatory and antiviral triterpene in clinical use, was recently referred to have ability to prevent I/R induced liver injury by inhibiting HMGB1 expression and activity. However, the mechanisms responsible for damage amelioration subsequently to HMGB1 inhibition during liver I/R remain enigmatic. This study was designed to explore the functional role and molecular mechanism of glycyrrhizin in the regulation of I/R induced liver injury. We found that liver I/R promotes GSDMD-mediated pyroptotic cell death of Kupffer cells, which was inhibited by glycyrrhizin. Interestingly, endogenous HMGB1, not exogenous one, was involved in hypoxia-reoxygenation (H/R) induced pyroptosis. Moreover, GSDMD knockdown protects kupffer cells against H/R induced pyroptosis in vitro. Here, we report, for the first time, that glycyrrhizin attenuated tissue damage and kupffer cells pyroptosis during liver ischemia-reperfusion injury (LIRI) and identify a previously unrecognized HMGB1- dependent GSDMD- mediated signaling pathway in the mechanism of kupffer cells pyroptosis induced by H/R. Our findings provide the first demonstration of GSDMD-determined pyroptotic cell death responsible for I/R induced release of IL-1β and this would provide a mandate to better understand the unconventional mechanisms of cytokine release in the sterile innate immune system.
Collapse
|
27
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
28
|
Diclofenac Sodium Treatment Ameliorates Extrapancreatic Organ Injuries in a Murine Model of Acute Pancreatitis Induced by Caerulein. Gastroenterol Res Pract 2018; 2018:9829208. [PMID: 30515205 PMCID: PMC6234455 DOI: 10.1155/2018/9829208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Aim We determined the effects of diclofenac sodium, octreotide, and their combination on extrapancreatic organ injuries in caerulein-induced acute pancreatitis in mice. Methods A total of 58 BALB-C male mice (25 g) were divided into seven groups and used to create a caerulein-induced acute pancreatitis model. Diclofenac sodium, octreotide, and their combination were given for treatment of caerulin-induced acute pancreatitis in mice. At the end of the experiment, the lung, liver, kidney, and stomach were removed for histopathologic assessment. Results Histopathologic investigation revealed a statistically significant difference between the groups in mean congestion, edema, tubular injury, perirenal fat tissue inflammation, and tubular stasis scores in kidney tissue (P < 0.001, P < 0.001, P < 0.001, P < 0.001, and P = 0.048, respectively); mean congestion, edema, neutrophil inflammation, mononuclear inflammation, and emphysematous change scores in the lung (P < 0.001, P < 0.001, P < 0.001, P = 0.030, and P < 0.001, respectively); mean congestion, edema, and neutrophil inflammation scores in the stomach (P = 0.008, P = 0.014, and P < 0.001, respectively); and mean congestion and hydropic degeneration scores in the liver (P = 0.029 and P = 0.002, respectively). Conclusion Diclofenac sodium alone ameliorates lung edema due to caerulin-induced acute pancreatitis.
Collapse
|
29
|
Yang R, Tonnesseen TI. DAMPs and sterile inflammation in drug hepatotoxicity. Hepatol Int 2018; 13:42-50. [PMID: 30474802 DOI: 10.1007/s12072-018-9911-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022]
Abstract
Drug hepatotoxicity is the leading cause of acute liver failure (ALF) in the developed countries. The early diagnosis and treatment are still problematic, and one important reason is the lack of reliable mechanistic biomarkers and therapeutic targets; therefore, searching for new biomarkers and therapeutic targets is urgent. Drug hepatotoxicity induces severe liver cells damage and death. Dead and damaged cells release endogenous damage-associated molecular patterns (DAMPs). Increased circulating levels of DAMPs (HMGB1, histones and DNA) can reflect the severity of drug hepatotoxicity. Elevated plasma HMGB1 concentrations can serve as early and sensitive mechanistic biomarker for clinical acetaminophen hepatotoxicity. DAMPS significantly contribute to liver injury and inhibiting the release of DAMPs ameliorates experimental hepatotoxicity. In addition, HMGB1 mediates 80% of gut bacterial translocation (BT) during acetaminophen toxicity. Gut BT triggers systemic inflammation, leading to multiple organ injury and mortality. Moreover, DAMPs can trigger and extend sterile inflammation, which contributes to early phase liver injury but improves liver regeneration at the late phase of acetaminophen overdose, because anti-inflammatory treatment reduces liver injury at early phase but impairs liver regeneration at late phase of acetaminophen toxicity, whereas pro-inflammatory therapy improves late phase liver regeneration. DAMPs are promising mechanistic biomarkers and could also be the potential therapeutic targets for drug hepatotoxicity. DAMPs-triggered sterile inflammation contributes to liver injury at early phase but improves liver regeneration at later phase of acetaminophen hepatotoxicity; therefore, anti-inflammatory therapy would be beneficial at early phase but should be avoided at the late phase of acetaminophen overdose.
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Emergencies and Critical Care, Oslo University Hospital, Nydalen, PO Box 4950, 0424, Oslo, Norway. .,Department of Critical Care Medicine, University of Pittsburgh Medical School, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| | - Tor Inge Tonnesseen
- Department of Emergencies and Critical Care, Oslo University Hospital, Nydalen, PO Box 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Blindern, 0316, Oslo, Norway
| |
Collapse
|
30
|
Lee JY, Ismail OZ, Zhang X, Haig A, Lian D, Gunaratnam L. Donor kidney injury molecule-1 promotes graft recovery by regulating systemic necroinflammation. Am J Transplant 2018; 18:2021-2028. [PMID: 29603641 DOI: 10.1111/ajt.14745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury during kidney transplantation predisposes to delayed graft function, rejection, and premature graft failure. Exacerbation of tissue damage and alloimmune responses may be explained by necroinflammation: an autoamplification loop of cell death and inflammation, which is mediated by the release of damage-associated molecular patterns (eg, high-mobility group box-1; HMGB1) from necrotic cells that activate both innate and adaptive immune pathways. Kidney injury molecule-1 (KIM-1) is a phosphatidylserine receptor that is upregulated on injured proximal tubular epithelial cells and enables them to clear apoptotic and necrotic cells. Here we show a pivotal role for clearance of dying cells in regulating necroinflammation in a syngeneic murine kidney transplant model. We found persistent KIM-1 expression in KIM-1+/+ kidney grafts posttransplantation. Compared to recipients of KIM-1+/+ kidneys, recipients of KIM-1-/- kidneys exhibited significantly more renal dysfunction, apoptosis and necrosis, tubular obstruction, and graft failure. KIM-1-/- grafts also had more inflammatory cytokines, infiltrating neutrophils, and macrophages compared to KIM-1+/+ grafts. Most significantly, passive release of HMGB1 from apoptotic and necrotic cells led to dramatically higher serum HMGB1 levels and increased proinflammatory macrophages in recipients of KIM-1-/- grafts. Our data identify an endogenous protective mechanism against necroinflammation in kidney grafts that may be of therapeutic relevance in transplantation.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Microbiology and Immunology, Western University, London, ON, Canada.,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada
| | - Ola Z Ismail
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada
| | - Xizhong Zhang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada
| | - Aaron Haig
- Department of Pathology, Western University, London, ON, Canada
| | - Dameng Lian
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada
| | - Lakshman Gunaratnam
- Department of Microbiology and Immunology, Western University, London, ON, Canada.,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada.,Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
31
|
Zheng H, Lan J, Li J, Lv L. Therapeutic effect of berberine on renal ischemia-reperfusion injury in rats and its effect on Bax and Bcl-2. Exp Ther Med 2018; 16:2008-2012. [PMID: 30186432 PMCID: PMC6122414 DOI: 10.3892/etm.2018.6408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the therapeutic effect of berberine on renal ischemia-reperfusion injury in rats and its effect on Bax and Bcl-2. Sixty adult SD rats were randomly divided into four groups: control group A, renal ischemia-reperfusion group B, berberine group C and berberine + exendin-(9-39) treatment group D. In group A, right kidney was resected and left renal pedicle was separated, but left renal artery was not blocked. Renal ischemia-reperfusion model was established in other groups. Rats in group C were not subjected to any treatment after model construction. Rats in group C and D were subjected to intraperitoneal injection of berberine 7 days before the experiment. Besides that, intraperitoneal injection of exendin-(9-39) was performed at day 1 and 4 after model construction. Automatic biochemical analyzer was used to measure serum creatinine (SCr) and blood urea nitrogen (BUN). Malondialdehyde (MDA) in renal cortex was measured by enzyme-linked immunosorbent assay and contents of Bax and Bcl-2 in renal tissue were measured by western blot analysis. Apoptosis of rat renal cells was detected by TUNEL assay. The results showed that levels of SCr, BUN, MDA and Bax were significantly higher in group B than in other groups (P<0.05). Levels of Bcl-2 in group B were significantly higher than those in group A but significantly lower than those in group C and D. Compared with group A, apoptosis of renal cells was more severe in group B. Compared with group B, apoptosis of renal cells was significantly improved in group C and D, but was still more severe than that in group A. In conclusion, berberine can effectively improve renal function in rats with renal ischemia-reperfusion injury by inhibiting Bax expression and promoting Bcl-2 expression.
Collapse
Affiliation(s)
- Haiya Zheng
- Clinical Laboratory, People's Hospital of Lishui, Lishui, Zhejiang 323000, P.R. China
| | - Jun Lan
- Clinical Laboratory, People's Hospital of Lishui, Lishui, Zhejiang 323000, P.R. China
| | - Jinmei Li
- Clinical Laboratory, People's Hospital of Lishui, Lishui, Zhejiang 323000, P.R. China
| | - Leili Lv
- Clinical Laboratory, People's Hospital of Lishui, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
32
|
Gu L, Tao Y, Chen C, Ye Y, Xiong X, Sun Y. Initiation of the inflammatory response after renal ischemia/reperfusion injury during renal transplantation. Int Urol Nephrol 2018; 50:2027-2035. [PMID: 29974405 DOI: 10.1007/s11255-018-1918-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 01/22/2023]
Abstract
Ischemia/reperfusion injury (IRI) occurs commonly during renal transplantation. It has been well demonstrated that the inflammatory response has an important role in the pathogenesis and pathological processes of IRI. However, the signaling events that trigger the activation of the inflammatory response are less clear. Accumulated evidence has identified the role of various injury factors released from or exposed in ischemic, damaged, or dying cells, which serve as initiators of the inflammatory response and exacerbate kidney injury after renal IRI. Signaling pathways triggered by these endogenous molecules that activate different pathogen recognition receptors have also been widely investigated. Here, we review the molecular signaling molecules that initiate the inflammatory response during renal IRI and that provide potential therapeutic options for the disease.
Collapse
Affiliation(s)
- Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Tao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Cheng Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Hubei International Scientific and Technology Cooperation Base of Pesticide and Green Synthesis, Chemical Biology Center, College of Chemistry, Central China Normal Universtiy, Wuhan, 430079, China.
| |
Collapse
|
33
|
Yang R, Zhu S, Pischke SE, Haugaa H, Zou X, Tonnessen TI. Bile and circulating HMGB1 contributes to systemic inflammation in obstructive jaundice. J Surg Res 2018; 228:14-19. [PMID: 29907203 DOI: 10.1016/j.jss.2018.02.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obstructive jaundice (OJ) patients with cholangitis are prone to sepsis; however, the underlying mechanisms are still not clear and need to be clarified. METHODS Analyzing all available published data related to the title of this article. RESULTS OJ leads to absence of gut luminal bile and accumulation of hepatic and circulating bile acids. Absence of gut luminal bile deprives the gut from its antiinflammatory, endotoxin-binding, bacteriostatic, mucosal-trophic, epithelial tight-junction maintaining, and gut motility-regulating effects, leading to gut bacterial overgrowth, mucosal atrophy, mucosal tight-junction loss, and gut motility dysfunction. These alterations promote intestinal endotoxin and bacterial translocation (BT) into portal and systemic circulation. Gut BT triggers systemic inflammation, which can lead to multiple organ dysfunctions in OJ. The accumulation of hepatic and circulating bile acids kills/damages hepatocyte and Kupffer cells, and it also significantly decreases the number of liver natural killer T-cells in OJ. This results in impaired hepatic and systemic immune function, which facilitates BT. In addition, neutralizing bile HMGB1 can reverse endotoxemic bile-induced gut BT and mucosal injury in mice, suggesting that bile HMGB1 in OJ patients can be responsible for internal drainage-related clinical complications. Moreover, the elevated circulating HMGB1 level may contribute to multiple organ injuries, and it might also mediate gut BT in OJ. CONCLUSIONS HMGB1 may significantly contribute to systemic inflammation and multiple organ dysfunctions in OJ.
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway; Department of Critical Care Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania.
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Soeren Erik Pischke
- Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Hakon Haugaa
- Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway; Lovisenberg Diaconal University College, Oslo, Norway
| | - Xiaoping Zou
- Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Tor Inge Tonnessen
- Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
HMGB1 and Extracellular Histones Significantly Contribute to Systemic Inflammation and Multiple Organ Failure in Acute Liver Failure. Mediators Inflamm 2017; 2017:5928078. [PMID: 28694564 PMCID: PMC5485317 DOI: 10.1155/2017/5928078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/27/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022] Open
Abstract
Acute liver failure (ALF) is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ failure (MOF) and sepsis; however, the underlying mechanisms are still not clear. Emerging evidence shows that ALF patients/animals have high concentrations of circulating HMGB1, which can contribute to multiple organ injuries and mediate gut bacterial translocation (BT). BT triggers/induces systemic inflammatory responses syndrome (SIRS), which can lead to MOF in ALF. Blockade of HMGB1 significantly decreases BT and improves hepatocyte regeneration in experimental acute fatal liver injury. Therefore, HMGB1 seems to be an important factor that links BT and systemic inflammation in ALF. ALF patients/animals also have high levels of circulating histones, which might be the major mediators of systemic inflammation in patients with ALF. Extracellular histones kill endothelial cells and elicit immunostimulatory effect to induce multiple organ injuries. Neutralization of histones can attenuate acute liver, lung, and brain injuries. In conclusion, HMGB1 and histones play a significant role in inducing systemic inflammation and MOF in ALF.
Collapse
|
35
|
Kho MC, Park JH, Han BH, Tan R, Yoon JJ, Kim HY, Ahn YM, Lee YJ, Kang DG, Lee HS. Plantago asiatica L. Ameliorates Puromycin Aminonucleoside-Induced Nephrotic Syndrome by Suppressing Inflammation and Apoptosis. Nutrients 2017; 9:nu9040386. [PMID: 28420111 PMCID: PMC5409725 DOI: 10.3390/nu9040386] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
Objective: Nephrotic syndrome, a kidney disease with a variety of causes, is mainly characterized by heavy proteinuria, hypoproteinemia, and ascites. This study was designed to evaluate the underlying mechanism of action of Plantago asiatica L. (PAL) in treating nephrotic syndrome induced by puromycin aminonucleoside. Methods: PAL has been used in Asia as a traditional medicine and dietary health supplement. Sprague-Dawley (SD) rats were intravenously injected with puromycin aminonucleoside (75 mg/kg/day), then treated with either Losartan (30 mg/kg/day) or PAL (200 mg/kg/day) by oral gavage for seven days. Results: PAL significantly decreased ascites, proteinuria level, and plasma lipid parameters. In addition, treatment with PAL attenuated histological damage and hypoalbuminemia. Treatment with PAL also restored podocin expression and reduced inflammation markers such as intracellular adhesion molecules (ICAM-1), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α) and high-mobility group box-1 (HMGB1). Lower expression levels of the apoptosis markers Bax, caspase-3 and capase-9 were documented in SD rats receiving PAL. PAL also significantly decreased the phosphorylation levels of MAPKs such as ERK, JNK and p38. Conclusion: As a multifunctional agent, PAL has a renoprotective effect in nephrotic syndrome rat models. The anti-inflammatory and anti-apoptotic properties, along with reductions in hyperlipidemia and ascites, represent important therapeutic effects. These results indicate that Plantago asiatica is likely to be a promising agent in the treatment of nephrotic syndrome.
Collapse
Affiliation(s)
- Min Chul Kho
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Ji Hun Park
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Byung Hyuk Han
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Rui Tan
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Jung Joo Yoon
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Hye Yoom Kim
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - You Mee Ahn
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Yun Jung Lee
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Dae Gill Kang
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Ho Sub Lee
- Hanbang Body-fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| |
Collapse
|
36
|
HMGB1 and Histones Play a Significant Role in Inducing Systemic Inflammation and Multiple Organ Dysfunctions in Severe Acute Pancreatitis. Int J Inflam 2017; 2017:1817564. [PMID: 28316860 PMCID: PMC5339498 DOI: 10.1155/2017/1817564] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/13/2016] [Indexed: 01/01/2023] Open
Abstract
Severe acute pancreatitis (SAP) starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile cytokines significantly contribute to gut mucosal injury and intestinal bacterial translocation (BT) during SAP. Circulating HMGB1 level is significantly increased in SAP patients and HMGB1 is an important factor that mediates (at least partly) gut BT during SAP. Gut BT plays a critical role in triggering/inducing systemic inflammation/sepsis in critical illness, and profound systemic inflammatory response syndrome (SIRS) can lead to multiple organ dysfunction syndrome (MODS) during SAP, and systemic inflammation with multiorgan dysfunction is the cause of death in experimental SAP. Therefore, HMGB1 is an important factor that links gut BT and systemic inflammation. Furthermore, HMGB1 significantly contributes to multiple organ injuries. The SAP patients also have significantly increased circulating histones and cell-free DNAs levels, which can reflect the disease severity and contribute to multiple organ injuries in SAP. Hepatic Kupffer cells (KCs) are the predominant source of circulating inflammatory cytokines in SAP, and new evidence indicates that hepatocyte is another important source of circulating HMGB1 in SAP; therefore, treating the liver injury is important in SAP.
Collapse
|
37
|
Guan XF, Chen QJ, Zuo XC, Guo R, Peng XD, Wang JL, Yin WJ, Li DY. Contrast Media-Induced Renal Inflammation Is Mediated Through HMGB1 and Its Receptors in Human Tubular Cells. DNA Cell Biol 2017; 36:67-76. [PMID: 27828735 DOI: 10.1089/dna.2016.3463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Xiao-feng Guan
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Qing-jie Chen
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Xiao-cong Zuo
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ren Guo
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Xiang-dong Peng
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Jiang-lin Wang
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Wen-jun Yin
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Dai-Yang Li
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
38
|
Zhou JQ, Qiu T, Zhang L, Chen ZB, Wang ZS, Ma XX, Li D. Allopurinol preconditioning attenuates renal ischemia/reperfusion injury by inhibiting HMGB1 expression in a rat model. Acta Cir Bras 2016; 31:176-82. [PMID: 27050788 DOI: 10.1590/s0102-865020160030000005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/15/2016] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To investigate the potential effects of pretreatment with allopurinol on renal ischemia/reperfusion injury (IRI) in a rat model. METHODS Twenty four rats were subjected to right kidney uninephrectomy were randomly distributed into the following three groups (n=8): Group A (sham-operated group); Group B (ischemic group) with 30 min of renal ischemia after surgery; and Group C (allopurinol + ischemia group) pretreated with allopurinol at 50 mg/kg for 14 days. At 72 h after renal reperfusion, the kidney was harvested to assess inflammation and apoptosis. RESULTS Pretreatment with allopurinol significantly improved renal functional and histological grade scores following I/R injury (p<0.05). Compared with Group B, the expression levels of caspase-3 and Bax were markedly reduced in Group C, meanwhile, whereas expression of bcl-2 was clearly increased (p<0.05). A newly described marker of inflammation, High Mobility Group Box 1(HMGB1), showed reduced expression in Group C (p<0.05). CONCLUSION Pretreatment with allopurinol had a protective effect on kidney ischemia/reperfusion injury, which might be related to the inhibition of HMGB1 expression.
Collapse
Affiliation(s)
- Jiang-qiao Zhou
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lu Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhong-bao Chen
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhi-shun Wang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiao-xiong Ma
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Dongyu Li
- Intensive Care Unit, PuAi Hospital, Anlu, Hubei, China
| |
Collapse
|
39
|
Yang R, Zhu S, Tonnessen TI. Ethyl pyruvate is a novel anti-inflammatory agent to treat multiple inflammatory organ injuries. JOURNAL OF INFLAMMATION-LONDON 2016; 13:37. [PMID: 27980458 PMCID: PMC5135784 DOI: 10.1186/s12950-016-0144-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022]
Abstract
Ethyl pyruvate (EP) is a simple derivative of pyruvic acid, which is an important endogenous metabolite that can scavenge reactive oxygen species (ROS). Treatment with EP is able to ameliorate systemic inflammation and multiple organ dysfunctions in multiple animal models, such as acute pancreatitis, alcoholic liver injury, acute respiratory distress syndrome (ARDS), acute viral myocarditis, acute kidney injury and sepsis. Recent studies have demonstrated that prolonged treatment with EP can ameliorate experimental ulcerative colitis and slow multiple tumor growth. It has become evident that EP has pharmacological anti-inflammatory effect to inhibit multiple early inflammatory cytokines and the late inflammatory cytokine HMGB1 release, and the anti-tumor activity is likely associated with its anti-inflammatory effect. EP has been tested in human volunteers and in a clinical trial of patients undergoing cardiac surgery in USA and shown to be safe at clinical relevant doses, even though EP fails to improve outcome of the heart surgery, EP is still a promising agent to treat patients with multiple inflammatory organ injuries and the other clinical trials are on the way. This review focuses on how EP is able to ameliorate multiple organ injuries and summarize recently published EP investigations. The targets of the anti-inflammatory agent EP ![]()
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Intensive Care Medicine, Tampere University Hospital, University of Tampere, 10 Bio katu, Tampere, 33014 Finland ; Department of Critical Care Medicine, University of Pittsburgh Medical School, 3550 Terrace Street, Pittsburgh, PA 15261 USA ; Department of Emergencies and Critical Care, Rikshospital of Oslo University, PO Box 4950, Nydalen, Oslo 0424 Norway
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Beijing, 100050 China
| | - Tor Inge Tonnessen
- Department of Emergencies and Critical Care, Rikshospital of Oslo University, PO Box 4950, Nydalen, Oslo 0424 Norway ; Institute for Clinical Medicine, University of Oslo, Blindern, Oslo 0316 Norway
| |
Collapse
|
40
|
Yoo SR, Kim Y, Lee MY, Kim OS, Seo CS, Shin HK, Jeong SJ. Gyeji-tang water extract exerts anti-inflammatory activity through inhibition of ERK and NF-κB pathways in lipopolysaccharide-stimulated RAW 264.7 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:390. [PMID: 27733198 PMCID: PMC5062814 DOI: 10.1186/s12906-016-1366-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
Background Gyeji-tang (GJT, Guizhi Tang in Chinese, Keishi-to in Japanese) is a traditional herbal decoction composed of 5 medicinal herbs. GJT has been used to treat the common cold, headaches, and fever in Asian countries including Korea, China, and Japan. In the present study, we investigated the inhibitory effect of a water extract of GJT on inflammatory response using the murine macrophage cell line, RAW 264.7. Methods RAW 264.7 macrophages were treated with lipopolysaccharide (LPS) to upregulate inflammatory genes. Cells were pretreated with various concentrations of GJT for 4 h and stimulated with LPS for an additional 20 h. Productions of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assays (ELISAs). Protein expressions of heme oxygenase (HO)-1, extracellular signal-regulated kinase (ERK), and nuclear factor kappa-B (NF-κB) were analyzed by immunoblotting. Results Treatment with the GJT extract enhanced expression of HO-1 in macrophages without cytotoxicity. GJT extract significantly inhibited proinflammatory cytokines TNF-α and IL-6 in LPS-stimulated cells. GJT suppressed LPS-induced COX-2 expression, leading to a decrease in COX-2-derived PGE2 level. In addition, GJT extract prevented phosphorylation of ERK and NF-κB translocalization to the nucleus in LPS-treated RAW 264.7 cells. Conclusion These data suggest that GJT has anti-inflammatory possibly through blocking ERK and NF-κB signaling pathways.
Collapse
|
41
|
Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1015390. [PMID: 27688824 PMCID: PMC5027322 DOI: 10.1155/2016/1015390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 01/11/2023]
Abstract
Obstructive sleep apnea (OSA) associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH) triggered tissue damage. Receptor for advanced glycation end product (RAGE) and its ligand high mobility group box 1 (HMGB1) are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE), the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1) normal air (NA), (2) CIH, (3) CIH+sRAGE, and (4) NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6), apoptotic (Bcl-2/Bax), and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK) signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.
Collapse
|
42
|
Luo LN, Xie DQ, Zhang XG, Jiang R. Osthole decreases renal ischemia-reperfusion injury by suppressing JAK2/STAT3 signaling activation. Exp Ther Med 2016; 12:2009-2014. [PMID: 27698686 PMCID: PMC5038472 DOI: 10.3892/etm.2016.3603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 11/13/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury. The pathogenetic mechanisms underlying renal I/R injury involve inflammation, oxidative stress and apoptosis. Osthole is a coumarin derivative that exhibits potential anti-inflammatory activity. The aim of the present study was to investigate the effect of osthole in renal I/R injury and its underlying mechanism. Renal I/R injury was induced by clamping the left renal artery for 45 min followed by 24 h reperfusion with the contralateral nephrectomy. A total of 70 rats were randomly assigned to seven groups (n=10 per group): Sham; IRI; and osthole (0, 5, 10, 20 and 40 mg/kg) groups. Rats were administered intraperitoneally with osthole 45 min prior to renal ischemia. Serum and renal tissue were harvested 24 h after reperfusion. Renal function and histological changes were assessed. In addition, the mRNA and protein expression of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8) and interleukin-6 (IL-6) in renal tissue and serum were evaluated using quantitative polymerase chain reaction and ELISA assays, respectively. The protein expression levels of p65, p-p65, janus kinase 2 (JAK2), p-JAK2, signal transducer and activator of transcription 3 (STAT3) and p-STAT3 were measured using western blot analysis. The results indicate that osthole pretreatment was able to significantly attenuate the renal dysfunction in a dose-dependent manner, histological changes and the expression of TNF-α, IL-8, IL-6, p-JAK2, p-STAT3 and p-p65 induced by renal I/R injury. However, neither osthole or I/R injury affected the expression p65, JAK2 and STAT3. Osthole pretreatment is able to reduce renal I/R injury by abrogating inflammation and the mechanism is partially involved in suppressing JAK2/STAT3 activation. Thus, osthole may be a novel practical strategy for the mitigation of renal I/R injury.
Collapse
Affiliation(s)
- Lin-Na Luo
- Department of Intensive Care, West China Fourth Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China; Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - De Qiong Xie
- Department of Intensive Care, West China Fourth Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China; Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Xiao Gang Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Rong Jiang
- Department of Internal Medicine, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
43
|
Chen Q, Guan X, Zuo X, Wang J, Yin W. The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta Pharm Sin B 2016; 6:183-8. [PMID: 27175328 PMCID: PMC4856949 DOI: 10.1016/j.apsb.2016.02.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/05/2016] [Accepted: 02/14/2016] [Indexed: 12/17/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein that can bind to DNA and act as a co-factor for gene transcription. When released into extracellular fluid, it plays a proinflammatory role by acting as a damage-associated molecular pattern molecule (DAMP) (also known as an alarmin) to initiate innate immune responses by activating multiple cell surface receptors such as the receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs), TLR2, TLR4 or TLR9. This proinflammatory role is now considered to be important in the pathogenesis of a wide range of kidney diseases whether they result from hemodynamic changes, renal tubular epithelial cell apoptosis, kidney tissue fibrosis or inflammation. This review summarizes our current understanding of the role of HMGB1 in kidney diseases and how the HMGB1-mediated signaling pathway may constitute a new strategy for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Qingjie Chen
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Xiaofeng Guan
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xiaocong Zuo
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
- Corresponding author. Tel./fax: +86 73188618455.
| | - Jianglin Wang
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Wenjun Yin
- Clinical Pharmacy and Pharmacology Research Institute, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
44
|
Inhibition of High Mobility Group Box 1–Toll-Like Receptor-4 Signaling by Glycyrrhizin Contributes to the Attenuation of Cold Ischemic Injury of Liver in a Rat Model. Transplant Proc 2016; 48:191-8. [DOI: 10.1016/j.transproceed.2015.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/07/2015] [Indexed: 12/30/2022]
|
45
|
Zheng S, Pan Y, Wang C, Liu Y, Shi M, Ding G. HMGB1 Turns Renal Tubular Epithelial Cells into Inflammatory Promoters by Interacting with TLR4 During Sepsis. J Interferon Cytokine Res 2015; 36:9-19. [PMID: 26312770 DOI: 10.1089/jir.2015.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our study was undertaken to investigate whether the inflammatory mediator high-mobility group box 1 (HMGB1) can enter the renal tissue and urine and what is the functional change of renal tubular epithelial cells (TECs) interacting with HMGB1 during sepsis. We found that the transcription levels of interleukin 1 (IL-1) and interleukin 6 (IL-6) mRNA in TECs increased significantly during sepsis and these processes can be blocked by splenectomy. We also found out HMGB1 accumulated in the renal tissue and entered urine during sepsis and toll-like receptor 4 (TLR4) was expressed by TECs. In vitro, we demonstrated that HMGB1 induced MAPK and NF-κB activation and G1 cell cycle arrest in TECs. We also found that the mRNA transcription levels of IL-1, IL-6, and tissue inhibitor of metalloproteinases 2 (TIMP2) increased significantly and the IL-1, IL-6, and TIMP2 can be secreted by TECs stimulated by HMGB1. In contrast, LPS RS can block all of the processes above in vitro. In vivo, the increase of the mRNA transcription level of TIMP2 was also observed. These data indicate that HMGB1 accumulates in renal tissue and enters the urine and the interaction between HMGB1 and TLR4 turns TECs into inflammatory promoters during sepsis.
Collapse
Affiliation(s)
- Shixiang Zheng
- 1 Division of Nephrology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China
| | - Yangbin Pan
- 1 Division of Nephrology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China .,2 Department of OB/GYN and Women's Health, School of Medicine, University of Louisville , Louisville, Kentucky
| | - Cairong Wang
- 3 Division of Critical Care Medicine, Union Hospital of Fujian Medical University , Fuzhou, Fujian, China
| | - Yipeng Liu
- 4 Department of Nephrology, Qianfoshan Hospital, Shandong University , Jinan, Shangdong, China
| | - Ming Shi
- 1 Division of Nephrology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China
| | - Guohua Ding
- 1 Division of Nephrology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China
| |
Collapse
|
46
|
Hébert MJ, Jevnikar AM. The Impact of Regulated Cell Death Pathways on Alloimmune Responses and Graft Injury. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0067-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Wei Y, Guan J, Ma X, Zhong Y, Ma J, Li F. Effect of glycyrrhizic acid on rhein renal penetration: a microdialysis study in rats. Xenobiotica 2015; 45:1116-21. [DOI: 10.3109/00498254.2015.1043660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|