1
|
Poulsen LK. Subcutaneous Immunotherapy of Food Allergy. Curr Allergy Asthma Rep 2024; 24:619-622. [PMID: 39222196 DOI: 10.1007/s11882-024-01178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW While there are compelling arguments for developing subcutaneous allergen-specific immunotherapy for alleviation of food allergies, there is a limited number of studies in the public domain. The review seeks to present the approaches taken, to explain the paucity of studies, and to identify new roads for development. RECENT FINDINGS A literature search revealed clinical trials of immunotherapy of food allergies to fish and peanut, but studies had limited patient numbers, short treatment courses and follow-up periods. Indications, but no clearcut effects, were seen with both classical allergen extracts and hypo-allergenic preparations. A special case is the influence on cross-reactive food allergies, when subcutaneously administered birch-pollen extracts are used for treatment of birch pollen hayfever and/or asthma. Again indications, but no convincing efficacy has been registered. Newer developments include recombinant hypoallergens and DNA-technologies. Subcutaneous immunotherapy for food allergies has not matured to provide clinically relevant treatment opportunities.
Collapse
Affiliation(s)
- Lars K Poulsen
- Allergy Clinic, Copenhagen University Hospital at Herlev-Gentofte, Gentofte Hositalsvej 22, 2900, Hellerup, Denmark.
| |
Collapse
|
2
|
Ball A, Khatri K, Glesner J, Vailes LD, Wünschmann S, Gabel SA, Mueller GA, Zhang J, Peebles RS, Chapman MD, Smith SA, Chruszcz M, Pomés A. Structural analysis of human IgE monoclonal antibody epitopes on dust mite allergen Der p 2. J Allergy Clin Immunol 2024; 154:447-457. [PMID: 38697404 PMCID: PMC11409219 DOI: 10.1016/j.jaci.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Human IgE (hIgE) mAbs against major mite allergen Der p 2 developed using human hybridoma technology were used for IgE epitope mapping and analysis of epitopes associated with the hIgE repertoire. OBJECTIVE We sought to elucidate the new hIgE mAb 4C8 epitope on Der p 2 and compare it to the hIgE mAb 2F10 epitope in the context of the allergenic structure of Der p 2. METHODS X-ray crystallography was used to determine the epitope of anti-Der p 2 hIgE mAb 4C8. Epitope mutants created by targeted mutagenesis were analyzed by immunoassays and in vivo using a human high-affinity IgE receptor (FcεRIα)-transgenic mouse model of passive systemic anaphylaxis. RESULTS The structure of recombinant Der p 2 with hIgE mAb 4C8 Fab was determined at 3.05 Å. The newly identified epitope region does not overlap with the hIgE mAb 2F10 epitope or the region recognized by 3 overlapping hIgE mAbs (1B8, 5D10, and 2G1). Compared with wild-type Der p 2, single or double 4C8 and 2F10 epitope mutants bound less IgE antibodies from allergic patients by as much as 93%. Human FcεRIα-transgenic mice sensitized by hIgE mAbs, which were susceptible to anaphylaxis when challenged with wild-type Der p 2, could no longer cross-link FcεRI to induce anaphylaxis when challenged with the epitope mutants. CONCLUSIONS These data establish the structural basis of allergenicity of 2 hIgE mAb nonoverlapping epitopes on Der p 2, which appear to make important contributions to the hIgE repertoire against Der p 2 and provide molecular targets for future design of allergy therapeutics.
Collapse
Affiliation(s)
| | - Kriti Khatri
- Michigan State University, East Lansing, Mich; University of South Carolina, Columbia, SC
| | | | | | | | - Scott A Gabel
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Jian Zhang
- Vanderbilt University Medical Center, Nashville, Tenn
| | | | | | - Scott A Smith
- Vanderbilt University Medical Center, Nashville, Tenn
| | - Maksymilian Chruszcz
- Michigan State University, East Lansing, Mich; University of South Carolina, Columbia, SC.
| | | |
Collapse
|
3
|
Juárez-Cortés MZ, Vázquez LEC, Díaz SFM, Cardona Félix CS. Streptococcus iniae in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance. Int J Vet Sci Med 2024; 12:25-38. [PMID: 38751408 PMCID: PMC11095286 DOI: 10.1080/23144599.2024.2348408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
One of the main challenges in aquaculture is pathogenic bacterial control. Streptococcus iniae stands out for its ability to cause high mortality rates in populations of commercially important fish populations and its recent recognition as an emerging zoonotic pathogen. The rise in identifying over 80 strains some displaying antibiotic resistance coupled with the emerging occurrence of infections in marine mammal species and wild fish underscores the urgent need of understanding pathogenesis, virulence and drug resistance mechanisms of this bacterium. This understanding is crucial to ensure effective control strategies. In this context, the present review conducts a bibliometric analysis to examine research trends related to S. iniae, extending into the mechanisms of infection, virulence, drug resistance and control strategies, whose relevance is highlighted on vaccines and probiotics to strengthen the host immune system. Despite the advances in this field, the need for developing more efficient identification methods is evident, since they constitute the basis for accurate diagnosis and treatment.
Collapse
Affiliation(s)
| | - Luz Edith Casados Vázquez
- CONAHCYT- Universidad de Guanajuato. Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| | | | | |
Collapse
|
4
|
Ezhuthachan ID, Beaudoin M, Nowak-Wegrzyn A, Vickery BP. The Future of Food Allergy Management: Advancements in Therapies. Curr Allergy Asthma Rep 2024; 24:161-171. [PMID: 38393624 DOI: 10.1007/s11882-024-01133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE OF REVIEW To review current and future treatment options for IgE-mediated food allergy. RECENT FINDINGS Recent years have seen major developments in both allergen-specific and allergen-non-specific treatment options, with the first FDA-approved peanut oral immunotherapy (OIT) product becoming available in 2020. In addition to OIT, other immunotherapy modalities, biologics, adjunct therapies, and novel therapeutics are under investigation. Food allergy is a potentially life-threatening condition associated with a significant psychosocial impact. Numerous products and protocols are under investigation, with most studies focusing on OIT. A high rate of adverse events, need for frequent office visits, and cost remain challenges with OIT. Further work is needed to unify outcome measures, develop treatment protocols that minimize adverse events, establish demographic and clinical factors that influence candidate selection, and identify patient priorities.
Collapse
Affiliation(s)
- Idil D Ezhuthachan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, 1400 Tullie Road NE, Atlanta, GA, 30329, USA.
| | - Michele Beaudoin
- Department of Pediatrics, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, NY, USA
| | - Anna Nowak-Wegrzyn
- Department of Pediatrics, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, NY, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Brian P Vickery
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, 1400 Tullie Road NE, Atlanta, GA, 30329, USA
| |
Collapse
|
5
|
Reginald K, Chew FT. Current practices and future trends in cockroach allergen immunotherapy. Mol Immunol 2023; 161:11-24. [PMID: 37480600 DOI: 10.1016/j.molimm.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE OF REVIEW This review evaluates the current modes of allergen-specific immunotherapy for cockroach allergens, in terms of clinical outcomes and explores future trends in the research and development needed for a more targeted cockroach immunotherapy approach with the best efficacy and minimum adverse effects. SUMMARY Cockroach allergy is an important risk factor for allergic rhinitis in the tropics, that disproportionately affects children and young adults and those living in poor socio-economic environments. Immunotherapy would provide long-lasting improvement in quality of life, with reduced medication intake. However, the present treatment regime is long and has a risk of adverse effects. In addition, cockroach does not seem to have an immuno-dominant allergen, that has been traditionally used to treat allergies from other sources. Future trends of cockroach immunotherapy involve precision diagnosis, to correctly identify the offending allergen. Next, precision immunotherapy with standardized allergens, which have been processed in a way that maintains an immunological response without allergic reactions. This approach can be coupled with modern adjuvants and delivery systems that promote a Th1/Treg environment, thereby modulating the immune response away from the allergenic response.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia.
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| |
Collapse
|
6
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
7
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
8
|
Sližienė A, Plečkaitytė M, Rudokas V, Juškaitė K, Žvirblis G, Žvirblienė A. Cross-reactive monoclonal antibodies against fish parvalbumins as a tool for studying antigenic similarity of different parvalbumins and analysis of fish extracts. Mol Immunol 2023; 154:80-95. [PMID: 36621061 DOI: 10.1016/j.molimm.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023]
Abstract
Fish parvalbumins are heat-stable calcium-binding proteins that are highly cross-reactive in causing allergy symptoms in fish-sensitized patients. The reactivities of parvalbumin-specific monoclonal or polyclonal antibodies with parvalbumins of different fish species allowed their application for development of various immunoassays for allergen identification in fish samples. In this study, monoclonal antibodies (MAbs) were generated against two parvalbumins - natural Atlantic cod parvalbumin and recombinant common carp β-parvalbumin expressed in E. coli. Large collections of recombinant parvalbumins and natural allergen extracts of different fish species and other animals were used to identify the specificities of these MAbs using ELISA, Western blot, and dot blot. MAbs demonstrated different patterns of cross-reactivities with recombinant parvalbumins. Their binding affinities were affected by the addition and removal of Ca2+ ions. Moreover, all MAbs showed a broad reactivity with the target antigens in natural fish, chicken, and pork extracts. The ability of two MAbs (clones 7B2 and 3F6) to identify and isolate native parvalbumins from allergen extracts was confirmed by Western blot. Epitope mapping using recombinant fragments of Atlantic cod parvalbumin (Gad m 1) and common carp parvalbumin (Cyp c 1) revealed that 4 out of 5 MAbs recognize parvalbumin regions that contain calcium binding sites. In conclusion, the generated broadly reactive well-characterized MAbs against fish β-parvalbumins could be applied for investigation of parvalbumins of fish and other animals and their detection in allergen extracts.
Collapse
Affiliation(s)
- Aistė Sližienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Milda Plečkaitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Vytautas Rudokas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Karolina Juškaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Gintautas Žvirblis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To highlight the current evidence on food desensitization in children with food allergy. RECENT FINDINGS Food Allergen Specific Immunotherapy (FA-AIT) is currently recognised as a treatment option for treating children with allergy at least to the main common foods (i.e. milk, egg and peanut). The oral route of administration has been proven to be the most effective in achieving desensitisation. Efforts are devoted to overcome the current unmet needs mainly related to safety issues and long-term efficacy, as well as adherence to the treatment and improvement of health-related quality of life. In this perspective, alternative routes of administration and adjunctive treatments are under investigation. SUMMARY The future of food allergy management is a personalised approach based on a shared decision-making that takes into account the needs of patients and families. Health professionals will be able to offer multiple treatment options, including FA-AIT with adjunctive or alternative therapies. Thus, patients should be correctly identified, using validated predictive factors, in order to select appropriate candidates for these therapies.
Collapse
|
10
|
Mack DP, Woch M, Rodríguez Del Río P. A practical focus on fish and shellfish oral immunotherapy. JOURNAL OF FOOD ALLERGY 2022; 4:148-150. [PMID: 39021859 PMCID: PMC11250208 DOI: 10.2500/jfa.2022.4.220016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Although fish and shellfish allergies represent common worldwide allergies, with anaphylaxis being reportedly frequent, treatment approaches, e.g., oral immunotherapy (OIT), are uncommonly performed. A review of the limited literature is discussed here. Both practical and immunologic challenges are common with seafood OIT, including taste, odor, unclear and potentially inconsistent cross-reactivity, and alteration of protein concentration during the cooking process as well as other concerns. Ongoing attempts at standardization of this OIT process should be considered. The experienced OIT physician may consider this treatment in patients who are motivated to begin OIT.
Collapse
Affiliation(s)
| | - Margaret Woch
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, California; and
| | | |
Collapse
|
11
|
Yadav S, Singh S, Mandal P, Tripathi A. Immunotherapies in the treatment of immunoglobulin E‑mediated allergy: Challenges and scope for innovation (Review). Int J Mol Med 2022; 50:95. [PMID: 35616144 DOI: 10.3892/ijmm.2022.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Immunoglobulin E (IgE)‑mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergen‑specific immunotherapy (AIT) is the only therapeutic strategy that can provide a longer‑lasting symptomatic and clinical break from medications in IgE‑mediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatment‑associated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergen‑specific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'component‑resolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
12
|
Schrama D, Czolk R, Raposo de Magalhães C, Kuehn A, Rodrigues PM. Fish Allergenicity Modulation Using Tailored Enriched Diets—Where Are We? Front Physiol 2022; 13:897168. [PMID: 35694394 PMCID: PMC9174421 DOI: 10.3389/fphys.2022.897168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Food allergy is an abnormal immune response to specific proteins in a certain food. The chronicity, prevalence, and the potential fatality of food allergy, make it a serious socio-economic problem. Fish is considered the third most allergenic food in the world, affecting part of the world population with a higher incidence in children and adolescents. The main allergen in fish, responsible for the large majority of fish-allergic reactions in sensitized patients, is a small and stable calcium-binding muscle protein named beta-parvalbumin. Targeting the expression or/and the 3D conformation of this protein by adding specific molecules to fish diets has been the innovative strategy of some researchers in the fields of fish allergies and nutrition. This has shown promising results, namely when the apo-form of β-parvalbumin is induced, leading in the case of gilthead seabream to a 50% reduction of IgE-reactivity in fish allergic patients.
Collapse
Affiliation(s)
- Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
- *Correspondence: Pedro M. Rodrigues,
| |
Collapse
|
13
|
Stoffersen P, Skov PS, Poulsen LK, Jensen BM. The Allergen-Specific IgE Concentration Is Important for Optimal Histamine Release From Passively Sensitized Basophils. FRONTIERS IN ALLERGY 2022; 3:875119. [PMID: 35769579 PMCID: PMC9234936 DOI: 10.3389/falgy.2022.875119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background The basophil histamine release (HR) assay can be used for allergy diagnosis in addition to the conventional measurement of allergen-specific IgE (sIgE). Passive sensitization of basophils increases the versatility and allows testing the biological relevance of allergen-induced IgE cross-linking in any serum unbiased by the cellular component. However, not all the patient sera perform equally well and we hypothesized that the absolute level and fraction of sIgE affect the performance. Choosing birch pollen allergy as a model, we investigated the concentration of sIgE needed for successful passive sensitization using soluble- or matrix-fixed Bet v 1. Methods Twenty-eight sera with Bet v 1 sIgE [7 sera within each allergy class (1: 0.1–0.70 kUA/L, 2: 0.71–3.50 kUA/L, 3: 3.51–17.50 kUA/L, and 4+: >17.50 kUA/L)] and a negative control serum pool were used to passively sensitize donor basophils, obtained from buffy coat blood (n = 3). The cells were incubated (30 min) with a soluble allergen (rBet v 1 from 0.2 to 50 ng/ml), matrix-fixed allergen (ImmunoCAP™ containing recombinant Bet v 1), or phorbol 12-myristate 13-acetate (PMA)/ionomycin mixture (maximal HR) and released histamine was quantified fluorometrically. Results The lowest level of Bet v 1 sIgE generating a detectable HR (HR > 10% of maximal release) in all the 3 runs was found to be 1.25 kUA/L (corresponding to allergy class 2, 0.71–3.50 kUA/L). Furthermore, sera from allergy classes 3 and 4+ ascertained a significant reproducible HR: 42/42 vs. 5/21 in allergy class 1 and 15/21 in allergy class 2. Using ImmunoCAP™s containing Bet v 1 as a matrix-fixed allergen system, similar results were obtained where the lowest sIgE concentration mediating an HR was 1.68 kUA/L and 7/7 for both allergy classes 3 and 4+. Conclusion The results demonstrate that the IgE titer is strikingly robust in predicting the ability to sensitize basophils and produce a measurable HR.
Collapse
|
14
|
Allergen Immunotherapy: Current and Future Trends. Cells 2022; 11:cells11020212. [PMID: 35053328 PMCID: PMC8774202 DOI: 10.3390/cells11020212] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Allergen immunotherapy (AIT) is the sole disease-modifying treatment for allergic rhinitis; it prevents rhinitis from progressing to asthma and lowers medication use. AIT against mites, insect venom, and certain kinds of pollen is effective. The mechanism of action of AIT is based on inducing immunological tolerance characterized by increased IL-10, TGF-β, and IgG4 levels and Treg cell counts. However, AIT requires prolonged schemes of administration and is sometimes associated with adverse reactions. Over the last decade, novel forms of AIT have been developed, focused on better allergen identification, structural modifications to preserve epitopes for B or T cells, post-traductional alteration through chemical processes, and the addition of adjuvants. These modified allergens induce clinical-immunological effects similar to those mentioned above, increasing the tolerance to other related allergens but with fewer side effects. Clinical studies have shown that molecular AIT is efficient in treating grass and birch allergies. This article reviews the possibility of a new AIT to improve the treatment of allergic illness.
Collapse
|
15
|
Zhang Z, Li Z, Lin H. Reducing the Allergenicity of Shrimp Tropomyosin and Allergy Desensitization Based on Glycation Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14742-14750. [PMID: 34427086 DOI: 10.1021/acs.jafc.1c03953] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shrimp is a major allergic food that could trigger severe food allergy, with the most significant and potent allergen of shrimp referred to as tropomyosin (TM). Glycation modification (Maillard reaction) could reportedly weaken the allergenicity of TM and generate hypoallergenic TM, while up to now, there is still a lack of investigations on the hypoallergenic glycated tropomyosin (GTM) as a candidate immunotherapy for desensitizing the shrimp TM-induced allergy. This study analyzed the effects of glycation modification on decreasing the allergenicity of TM and generated hypoallergenic GTM and how GTM absorbed to the Al(OH)3 function as a candidate immunotherapy for desensitizing allergy. As the results, in comparison to TM, the saccharides of smaller molecular sizes could lead to more advanced glycation end products in GTMs than saccharides of greater molecular sizes, and TM glycated by saccharides of different molecular sizes (glucose, maltose, maltotriose, maltopentaose, and maltoheptaose) exhibited lower allergenicity as a hypoallergen upon activating the allergic reactions of the mast cell and mouse model, while TM glycated by maltose had insignificant allergenicity changes upon activating the allergic reactions of the mast cell and mouse model. In addition, the hypoallergenic GTM + Al(OH)3 was efficient as a candidate immunotherapy; this work intended to offer preclinical data to promote GTM + Al(OH)3 as a candidate allergen-specific immunotherapy for desensitizing the allergy reactions for patients allergic to shrimp food.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
16
|
Kalic T, Radauer C, Lopata AL, Breiteneder H, Hafner C. Fish Allergy Around the World—Precise Diagnosis to Facilitate Patient Management. FRONTIERS IN ALLERGY 2021; 2:732178. [PMID: 35387047 PMCID: PMC8974716 DOI: 10.3389/falgy.2021.732178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/17/2021] [Indexed: 02/03/2023] Open
Abstract
The accurate and precise diagnosis of IgE-mediated fish allergy is one of the biggest challenges in allergy diagnostics. A wide range of fish species that belong to evolutionary distant classes are consumed globally. Moreover, each fish species may contain multiple isoforms of a given allergen that often differ in their allergenicity. Recent studies indicated that the cross-reactivity between different fish species is limited in some cases and depends on the evolutionary conservation of the involved allergens. Fish allergens belong to several protein families with different levels of stability to food processing. Additionally, different preparation methods may contribute to specific sensitization patterns to specific fish species and allergens in different geographic regions. Here, we review the challenges and opportunities for improved diagnostic approaches to fish allergy. Current diagnostic shortcomings include the absence of important region-specific fish species in commercial in vitro and in vivo tests as well as the lack of their standardization as has been recently demonstrated for skin prick test solutions. These diagnostic shortcomings may compromise patients' safety by missing some of the relevant species and yielding false negative test results. In contrast, the avoidance of all fish as a common management approach is usually not necessary as many patients may be only sensitized to specific species and allergens. Although food challenges remain the gold standard, other diagnostic approaches are investigated such as the basophil activation test. In the context of molecular allergy diagnosis, we discuss the usefulness of single allergens and raw and heated fish extracts. Recent developments such as allergen microarrays offer the possibility to simultaneously quantify serum IgE specific to multiple allergens and allergen sources. Such multiplex platforms may be used in the future to design diagnostic allergen panels covering evolutionary distant fish species and allergens relevant for particular geographic regions.
Collapse
Affiliation(s)
- Tanja Kalic
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christian Radauer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Heimo Breiteneder
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
- Karl Landsteiner Institute for Dermatological Research, Karl Landsteiner Society, St. Poelten, Austria
- *Correspondence: Christine Hafner
| |
Collapse
|
17
|
Fuhrmann V, Huang HJ, Akarsu A, Shilovskiy I, Elisyutina O, Khaitov M, van Hage M, Linhart B, Focke-Tejkl M, Valenta R, Sekerel BE. From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Front Immunol 2021; 12:742732. [PMID: 34630424 PMCID: PMC8496898 DOI: 10.3389/fimmu.2021.742732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Peanuts and tree nuts are two of the most common elicitors of immunoglobulin E (IgE)-mediated food allergy. Nut allergy is frequently associated with systemic reactions and can lead to potentially life-threatening respiratory and circulatory symptoms. Furthermore, nut allergy usually persists throughout life. Whether sensitized patients exhibit severe and life-threatening reactions (e.g., anaphylaxis), mild and/or local reactions (e.g., pollen-food allergy syndrome) or no relevant symptoms depends much on IgE recognition of digestion-resistant class I food allergens, IgE cross-reactivity of class II food allergens with respiratory allergens and clinically not relevant plant-derived carbohydrate epitopes, respectively. Accordingly, molecular allergy diagnosis based on the measurement of allergen-specific IgE levels to allergen molecules provides important information in addition to provocation testing in the diagnosis of food allergy. Molecular allergy diagnosis helps identifying the genuinely sensitizing nuts, it determines IgE sensitization to class I and II food allergen molecules and hence provides a basis for personalized forms of treatment such as precise prescription of diet and allergen-specific immunotherapy (AIT). Currently available forms of nut-specific AIT are based only on allergen extracts, have been mainly developed for peanut but not for other nuts and, unlike AIT for respiratory allergies which utilize often subcutaneous administration, are given preferentially by the oral route. Here we review prevalence of allergy to peanut and tree nuts in different populations of the world, summarize knowledge regarding the involved nut allergen molecules and current AIT approaches for nut allergy. We argue that nut-specific AIT may benefit from molecular subcutaneous AIT (SCIT) approaches but identify also possible hurdles for such an approach and explain why molecular SCIT may be a hard nut to crack.
Collapse
Affiliation(s)
- Verena Fuhrmann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aysegul Akarsu
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Igor Shilovskiy
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Olga Elisyutina
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Musa Khaitov
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University, Hospital, Stockholm, Sweden
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bulent Enis Sekerel
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Worm M, Reese I, Ballmer-Weber B, Beyer K, Bischoff SC, Bohle B, Brockow K, Claßen M, Fischer PJ, Hamelmann E, Jappe U, Kleine-Tebbe J, Klimek L, Koletzko B, Lange L, Lau S, Lepp U, Mahler V, Nemat K, Raithel M, Saloga J, Schäfer C, Schnadt S, Schreiber J, Szépfalusi Z, Treudler R, Wagenmann M, Werfel T, Zuberbier T. Update of the S2k guideline on the management of IgE-mediated food allergies. Allergol Select 2021; 5:195-243. [PMID: 34263109 PMCID: PMC8276640 DOI: 10.5414/alx02257e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Margitta Worm
- Allergology and Immunology, Department of Dermatology, Venereology, and Allergology, Charité – Universitätsmedizin Berlin, Germany
| | - Imke Reese
- Nutritional Counseling and Therapy, Focus on Allergology, Munich, Germany
| | - Barbara Ballmer-Weber
- University Hospital Zurich, Department of Dermatology, Zurich, Switzerland, and Cantonal Hospital St. Gallen, Department of Dermatology and Allergology, St. Gallen, Switzerland
| | - Kirsten Beyer
- Clinic of Pediatrics m. S. Pneumology, Immunology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Germany
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine and Prevention, University of Hohenheim, Stuttgart, Germany
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Knut Brockow
- Department of Dermatology and Allergology, Biederstein, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Martin Claßen
- Klinik für Kinder und Jugendmedizin/Päd. Intensivmedizin, Eltern-Kind-Zentrum Prof. Hess Klinikum Bremen-Mitte
| | - Peter J. Fischer
- Practice for Pediatric and Adolescent Medicine m. S. Allergology and Pediatric Pneumology, Schwäbisch Gmünd
| | - Eckard Hamelmann
- University Clinic for Pediatric and Adolescent Medicine, Evangelisches Klinikum Bethel gGmbH, Bielefeld
| | - Uta Jappe
- Research Group Clinical and Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), member of the German Center for Lung Research (DZL), Borstel
- Interdisciplinary Allergy Outpatient Clinic, Medical Clinic III, University Hospital Schleswig-Holstein, Lübeck
| | | | | | - Berthold Koletzko
- Pediatric Clinic and Pediatric Polyclinic, Dr. von Haunersches Kinderspital, Department of Metabolic and Nutritional Medicine, Ludwig-Maximilians-University, Munich
| | - Lars Lange
- Pediatric and Adolescent Medicine, St.- Marien-Hospital, Bonn
| | - Susanne Lau
- Clinic of Pediatrics m. S. Pneumology, Immunology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Germany
| | - Ute Lepp
- Practice for Pulmonary Medicine and Allergology, Buxtehude
| | | | - Katja Nemat
- Practice for Pediatric Pneumology/Allergology at the Children’s Center Dresden (Kid), Dresen
| | | | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz
| | - Christiane Schäfer
- Nutritional Therapy, Focus on Allergology and Gastroenterology, Schwarzenbek, Germany
| | - Sabine Schnadt
- German Allergy and Asthma Association, Mönchengladbach, Germany
| | - Jens Schreiber
- Pneumology, University Hospital of Otto von Guericke University, Magdeburg, Germany
| | - Zsolt Szépfalusi
- University Hospital for Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Regina Treudler
- Clinic of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Germany
| | | | - Thomas Werfel
- Clinic of Dermatology, Allergology and Venerology, Hannover Medical School, Germany, and
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin
| |
Collapse
|
19
|
Regulatory Requirements for the Quality of Allergen Products for Allergen Immunotherapy of Food Allergy. Curr Allergy Asthma Rep 2021; 21:32. [PMID: 33970347 PMCID: PMC8110504 DOI: 10.1007/s11882-021-01008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 11/13/2022]
Abstract
Purpose of Review Medicinal products for allergen immunotherapy (AIT) of food allergies have gained enormous momentum in recent years. With this new class of products entering marketing authorization procedures, compliance to regulatory requirements becomes a critical element. Here, an overview is provided on specific requirements and aspects concerning the quality control and manufacturing of these products. Recent Findings Recent developments in the field of AIT for food allergies are divers, including products for oral, epicutaneous, and subcutaneous application, most notably targeting egg, milk, and peanut allergy. As the source materials for food AIT product are typically produced for food consumption and not for medicinal purposes, unique challenges arise in the manufacturing processes and controls of these medicinal products. Individual approaches are needed to assure acceptable quality, including control of relevant quantitative and qualitative characteristics. Major characteristics for quality verification include determination of protein content, total allergenic activity, and major allergen content. The applied manufacturing processes need to be established such that relevant process parameters are kept within justified limits and consistency of produced batches is assured. Summary Allergen products for food AIT present specific challenges with respect to quality aspects that differentiate them from other commonly available AIT products. While established regulation is available and provides clear guidance for most aspects, other issues require consideration of new and individual settings relevant here. Consequently, as experience grows, respective amendments to currently available guidance may be needed.
Collapse
|
20
|
Herman RA, Hou Z, Mirsky H, Nelson ME, Mathesius CA, Roper JM. History of safe exposure and bioinformatic assessment of phosphomannose-isomerase (PMI) for allergenic risk. Transgenic Res 2021; 30:201-206. [PMID: 33761048 PMCID: PMC8026442 DOI: 10.1007/s11248-021-00243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
Newly expressed proteins in genetically engineered crops are evaluated for potential cross reactivity to known allergens as part of their safety assessment. This assessment uses a weight-of-evidence approach. Two key components of this allergenicity assessment include any history of safe human exposure to the protein and/or the source organism from which it was originally derived, and bioinformatic analysis identifying amino acid sequence relatedness to known allergens. Phosphomannose-isomerase (PMI) has been expressed in commercialized genetically engineered (GE) crops as a selectable marker since 2010 with no known reports of allergy, which supports a history of safe exposure, and GE events expressing the PMI protein have been approved globally based on expert safety analysis. Bioinformatic analyses identified an eight-amino-acid contiguous match between PMI and a frog parvalbumin allergen (CAC83047.1). While short amino acid matches have been shown to be a poor predictor of allergen cross reactivity, most regulatory bodies require such matches be assessed in support of the allergenicity risk assessment. Here, this match is shown to be of negligible risk of conferring cross reactivity with known allergens.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 47968, USA.
| | - Zhenglin Hou
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Henry Mirsky
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mark E Nelson
- Corteva Agriscience, 8325 NW 62nd Avenue, Johnston, IA, 50131, USA
| | | | - Jason M Roper
- Corteva Agriscience, P.O. Box 30, Newark, DE, 19714, USA
| |
Collapse
|
21
|
Zhang Z, Li XM, Li Z, Lin H. Investigation of glycated shrimp tropomyosin as a hypoallergen for potential immunotherapy. Food Funct 2021; 12:2750-2759. [PMID: 33683237 DOI: 10.1039/d0fo03039b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropomyosin (TM) is the most important allergen in shrimps that could cause food allergy. Glycation is reported to be effective in reducing TM allergenicity and produce hypoallergen; however, up to now, there are very few reports on the potential of hypoallergenic glycated TM (GTM) as allergen immunotherapy for shrimp TM-induced food allergy. This study investigated the glycation of TM-produced hypoallergen and the immunotherapeutic efficacy of GTM + Al(OH)3 as potential allergen immunotherapy. Compared to TM, the TM glycated by glucose (TM-G), maltotriose (TM-MTS), maltopentaose (TM-MPS) and maltoheptaose (TM-MHS) had weaker allergy activation on mast cells and mouse model as a hypoallergen. However, the TM glycated by maltose (TM-M) insignificantly affected the allergenicity. In addition, the GTM absorbed into Al(OH)3 could be efficacious as potential allergen immunotherapy, particularly for the TM glycated by the saccharides having larger molecular size (e.g., TM-MHS), which could provide preclinical data to develop GTM + Al(OH)3 as a candidate immunotherapy for shrimp allergic patients.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | | | | | | |
Collapse
|
22
|
Landers JJ, O'Konek JJ. Vaccines as therapies for food allergies. ADVANCES IN PHARMACOLOGY 2021; 91:229-258. [PMID: 34099110 DOI: 10.1016/bs.apha.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Food allergy is a growing public health epidemic with few available treatments beyond allergen avoidance and rescue medications for accidental exposures. A major focus of therapeutic development for food allergies is allergen-specific immunotherapy (AIT) in which patients are exposed to increasing amounts of allergen in controlled dosing to induce desensitization or tolerance. The work of the past few decades has culminated in the recent FDA approval of a peanut product for oral AIT for peanut allergies. Despite these advances, current AIT protocols are cumbersome, take a long time to reach clinical benefit and often have significant side effects. Therefore, there is a great need to develop new therapeutics for food allergy. One area of research aims to improve AIT through the use of adjuvants which are substances traditionally added to vaccines to stimulate or direct a specific immune response. Adjuvants that induce Th1-polarized and regulatory immune responses while suppressing Th2 immunity have shown the most promise in animal models. The addition of adjuvants to AIT may reduce the amount and frequency of allergen required to achieve clinical benefit and may induce more long-lasting immune responses. In this chapter, we highlight examples of adjuvanted AIT and vaccines in development to treat food allergies.
Collapse
Affiliation(s)
- Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
23
|
Passanisi S, Lombardo F, Crisafulli G, Salzano G, Aversa T, Pajno GB. Novel diagnostic techniques and therapeutic strategies for IgE-mediated food allergy. Allergy Asthma Proc 2021; 42:124-130. [PMID: 33685556 PMCID: PMC8133008 DOI: 10.2500/aap.2021.42.200129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: Immunoglobulin E (IgE) mediated food allergy is a potentially life-threatening condition and represents a heavy burden for patients and their families. Identification of the most suitable way for management of each patient has currently become the primary goal for physicians. Methods: This study reviewed the current literature related to IgE-mediated food allergy. Results: The use of innovative diagnostic tools, such as allergen-specific IgG4 determination, basophil activation test, and component-resolved diagnostics, is currently available to facilitate a proper diagnosis of food allergy. After several decades of "passive clinical management" of the disease, which was based only on avoidance of the allergenic food and the use of epinephrine in the event of anaphylaxis, there has been a switch to active treatment. The most recent evidence-practice guidelines strongly recommend the use of immunotherapy as an effective therapeutic option, particularly in cases of allergy to cow's milk, egg, or peanut. The use of omalizumab, in association with immunotherapy or alone, has been tested in several studies, and results on its effectiveness seemed to be encouraging. Other biologics, such as dupilumab, reslizumab, mepolizumab, and other anticytokines therapies, are being investigated. Another interesting future treatment strategy could be the use of DNA vaccines. Conclusion: In recent years, the management of IgE-mediated food allergy has greatly improved. Knowledge of pathogenetic mechanisms, understanding of the disease course, and the introduction of novel biomarkers led to more accurate diagnoses along with the active treatment of patients.
Collapse
|
24
|
Buyuktiryaki B, Masini M, Mori F, Barni S, Liccioli G, Sarti L, Lodi L, Giovannini M, du Toit G, Lopata AL, Marques-Mejias MA. IgE-Mediated Fish Allergy in Children. ACTA ACUST UNITED AC 2021; 57:medicina57010076. [PMID: 33477460 PMCID: PMC7830012 DOI: 10.3390/medicina57010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Fish allergy constitutes a severe problem worldwide. Its prevalence has been calculated as high as 7% in paediatric populations, and in many cases, it persists into adulthood with life-threatening signs and symptoms. The following review focuses on the epidemiology of Immunoglobulin E (IgE)-mediated fish allergy, its pathogenesis, clinical manifestations, and a thorough approach to diagnosis and management in the paediatric population. The traditional approach for managing fish allergy is avoidance and rescue medication for accidental exposures. Food avoidance poses many obstacles and is not easily maintained. In the specific case of fish, food is also not the only source of allergens; aerosolisation of fish proteins when cooking is a common source of highly allergenic parvalbumin, and elimination diets cannot prevent these contacts. Novel management approaches based on immunomodulation are a promising strategy for the future of these patients.
Collapse
Affiliation(s)
- Betul Buyuktiryaki
- Division of Pediatric Allergy, Koc University Hospital, 34010 Istanbul, Turkey;
| | - Marzio Masini
- Department of Pediatrics, Sapienza University of Rome, 00185 Rome, Italy;
| | - Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Giulia Liccioli
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Lucrezia Sarti
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
| | - Lorenzo Lodi
- Department of Health Sciences, Division of Immunology, Section of Pediatrics, University of Florence and Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children’s University Hospital, 50139 Florence, Italy; (F.M.); (S.B.); (G.L.); (L.S.)
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Correspondence:
| | - George du Toit
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Children’s Allergy Service, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE5 9NU, UK
| | - Andreas Ludwig Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Maria Andreina Marques-Mejias
- Pediatric Allergy Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK; (G.d.T.); (M.A.M.-M.)
- Children’s Allergy Service, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| |
Collapse
|
25
|
Sharp MF, Taki AC, Ruethers T, Stephen JN, Daly NL, Lopata AL, Kamath SD. IgE and IgG 4 epitopes revealed on the major fish allergen Lat c 1. Mol Immunol 2021; 131:155-163. [PMID: 33423763 DOI: 10.1016/j.molimm.2020.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The IgE- and IgG4-binding patterns of the major fish allergen parvalbumins are not clearly understood. IgE antibody-binding to parvalbumin from Asian seabass, Lat c 1.01, is implicated in up to 90 % of allergic reactions, although the region of IgE or IgG4 epitopes are unknown. In the present study, we characterized the specific IgE- and IgG4-binding regions of Lat c 1.01 using serum from pediatric and adult patients with clinically-confirmed fish allergy. METHODS A comparative investigation of patient IgE- and IgG4-binding to recombinant Lat c 1.01 was performed by immunoblotting and indirect ELISA using serum from 15 children and eight adults with clinically confirmed IgE-mediated reactions to fish. The IgE- and IgG4-binding regions of Lat c 1.01 were determined by inhibition ELISA using seven overlapping peptides spanning the entire 102 amino acid sequence. Elucidated IgE-binding regions were modelled and compared to known antibody-binding regions of parvalbumins from five other fish species. RESULTS Ninety five percent (22/23) patients demonstrated IgE-binding to rLat c 1.01, while fewer patients (10/15 children and 7/8 adults) demonstrated robust IgG4 binding when determined by immunoblots. IgE-binding for both cohorts was significantly higher compared to IgG4-binding by ELISA. All patients in this study presented individual IgE and IgG4 epitope-recognition profiles. In addition to these patient-specific antibody binding sites, general IgE epitopes were also identified at the C- and N-terminal regions of this major fish allergen. CONCLUSIONS AND CLINICAL RELEVANCE Our findings demonstrate two specific IgE epitopes on parvalbumin from Asian seabass, while IgG4 binding is much lower and patient specific. This study highlights the importance of advancement in epitope analysis regardless of the age group for diagnostics and immunotherapies for fish allergy.
Collapse
Affiliation(s)
- Michael F Sharp
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| | - Aya C Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Juan N Stephen
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| | - Norelle L Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Sandip D Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Dorofeeva Y, Shilovskiy I, Tulaeva I, Focke‐Tejkl M, Flicker S, Kudlay D, Khaitov M, Karsonova A, Riabova K, Karaulov A, Khanferyan R, Pickl WF, Wekerle T, Valenta R. Past, present, and future of allergen immunotherapy vaccines. Allergy 2021; 76:131-149. [PMID: 32249442 PMCID: PMC7818275 DOI: 10.1111/all.14300] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
Allergen-specific immunotherapy (AIT) is an allergen-specific form of treatment for patients suffering from immunoglobulin E (IgE)-associated allergy; the most common and important immunologically mediated hypersensitivity disease. AIT is based on the administration of the disease-causing allergen with the goal to induce a protective immunity consisting of allergen-specific blocking IgG antibodies and alterations of the cellular immune response so that the patient can tolerate allergen contact. Major advantages of AIT over all other existing treatments for allergy are that AIT induces a long-lasting protection and prevents the progression of disease to severe manifestations. AIT is cost effective because it uses the patient´s own immune system for protection and potentially can be used as a preventive treatment. However, broad application of AIT is limited by mainly technical issues such as the quality of allergen preparations and the risk of inducing side effects which results in extremely cumbersome treatment schedules reducing patient´s compliance. In this article we review progress in AIT made from its beginning and provide an overview of the state of the art, the needs for further development, and possible technical solutions available through molecular allergology. Finally, we consider visions for AIT development towards prophylactic application.
Collapse
Affiliation(s)
- Yulia Dorofeeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Igor Shilovskiy
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Inna Tulaeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Margarete Focke‐Tejkl
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Sabine Flicker
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Dmitriy Kudlay
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Musa Khaitov
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Antonina Karsonova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Ksenja Riabova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Alexander Karaulov
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Roman Khanferyan
- Department of Immunology and AllergyRussian People’s Friendship UniversityMoscowRussian Federation
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Rudolf Valenta
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| |
Collapse
|
27
|
Jacquet A. Perspectives in Allergen-Specific Immunotherapy: Molecular Evolution of Peptide- and Protein-Based Strategies. Curr Protein Pept Sci 2020; 21:203-223. [PMID: 31416410 DOI: 10.2174/1389203720666190718152534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Allergen-specific Immunotherapy (AIT), through repetitive subcutaneous or sublingual administrations of allergen extracts, represents up to now the unique treatment against allergic sensitizations. However, the clinical efficacy of AIT can be largely dependent on the quality of natural allergen extracts. Moreover, the long duration and adverse side effects associated with AIT negatively impact patient adherence. Tremendous progress in the field of molecular allergology has made possible the design of safer, shorter and more effective new immunotherapeutic approaches based on purified and characterized natural or recombinant allergen derivatives and peptides. This review will summarize the characteristics of these different innovative vaccines including their effects in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
28
|
Holzhauser T, Schuler F, Dudek S, Kaul S, Vieths S, Mahler V. [Recombinant allergens, peptides, and virus-like particles for allergy immunotherapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:1412-1423. [PMID: 33095280 PMCID: PMC7648003 DOI: 10.1007/s00103-020-03231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 11/05/2022]
Abstract
Currently, extract-based therapeutic allergens from natural allergen sources (e.g., house dust mites, tree and grass pollen) are used for allergen-specific immunotherapy (AIT), the only causative therapy that can exhibit positive disease-modifying effects by tolerance induction and prevention of disease progression. Due to variations in the natural composition of the starting materials and different manufacturing processes, there are variations in protein content, allergen composition, and allergenic activity of similar products, which poses specific challenges for their standardization. The identification of the nucleotide sequences of allergenic proteins led to the development of molecular AIT approaches. This allows for the application of exclusively relevant structures as chemically synthesized peptides, recombinant single allergens, or molecules with hypoallergenic properties that potentially allow for an up-dosing with higher allergen-doses without allergic side effects leading more quickly to effective cumulative doses. Further modifications of AIT preparations to improve allergenic and immunogenic properties may be achieved, e.g., by including the use of virus-like particles (VLPs). To date, the herein described therapeutic approaches have been tested in clinical trials only. This article provides an overview of published molecular approaches for allergy treatment used in clinical AIT studies. Their added value and challenges compared to established therapeutic allergens are discussed. The aim of these approaches is to develop highly effective and well-tolerated AIT preparations with improved patient acceptance and adherence.
Collapse
Affiliation(s)
- Thomas Holzhauser
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland.
| | - Frank Schuler
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Simone Dudek
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Susanne Kaul
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Vera Mahler
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW More than 30 years ago, the first molecular structures of allergens were elucidated and defined recombinant allergens became available. We review the state of the art regarding molecular AIT with the goal to understand why progress in this field has been slow, although there is huge potential for treatment and allergen-specific prevention. RECENT FINDINGS On the basis of allergen structures, several AIT strategies have been developed and were advanced into clinical evaluation. In clinical AIT trials, promising results were obtained with recombinant and synthetic allergen derivatives inducing allergen-specific IgG antibodies, which interfered with allergen recognition by IgE whereas clinical efficacy could not yet be demonstrated for approaches targeting only allergen-specific T-cell responses. Available data suggest that molecular AIT strategies have many advantages over allergen extract-based AIT. SUMMARY Clinical studies indicate that recombinant allergen-based AIT vaccines, which are superior to existing allergen extract-based AIT can be developed for respiratory, food and venom allergy. Allergen-specific preventive strategies based on recombinant allergen-based vaccine approaches and induction of T-cell tolerance are on the horizon and hold promise that allergy can be prevented. However, progress is limited by lack of resources needed for clinical studies, which are necessary for the development of these innovative strategies.
Collapse
|
30
|
Larsen JM, Bang-Berthelsen CH, Qvortrup K, Sancho AI, Hansen AH, Andersen KIH, Thacker SSN, Eiwegger T, Upton J, Bøgh KL. Production of allergen-specific immunotherapeutic agents for the treatment of food allergy. Crit Rev Biotechnol 2020; 40:881-894. [PMID: 32515236 DOI: 10.1080/07388551.2020.1772194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergen-specific immunotherapy (IT) is emerging as a viable avenue for the treatment of food allergies. Clinical trials currently investigate raw or slightly processed foods as therapeutic agents, as trials using food-grade agents can be performed without the strict regulations to which conventional drugs are subjected. However, this limits the ability of standardization and may affect clinical trial outcomes and reproducibility. Herein, we provide an overview of methods used in the production of immunotherapeutic agents for the treatment of food allergies, including processed foods, allergen extracts, recombinant allergens, and synthetic peptides, as well as the physical and chemical processes for the reduction of protein allergenicity. Commercial interests currently favor producing standardized drug-grade allergen extracts for therapeutic use, and clinical trials are ongoing. In the near future, recombinant production could replace purification strategies since it allows the manufacturing of pure, native allergens or sequence-modified allergens with reduced allergenicity. A recurring issue within this field is the inadequate reporting of production procedures, quality control, product physicochemical characteristics, allergenicity, and immunological properties. This information is of vital importance in assessing therapeutic standardization and clinical safety profile, which are central parameters for the development of future therapeutic agents.
Collapse
Affiliation(s)
- Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ana Isabel Sancho
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | - Thomas Eiwegger
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Research Institute, The Hospital for Sick Children, Translational Medicine Program, Toronto, Canada.,Department of Immunology, The University of Toronto, Toronto, Canada
| | - Julia Upton
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
31
|
Sampath V, Sindher SB, Alvarez Pinzon AM, Nadeau KC. Can food allergy be cured? What are the future prospects? Allergy 2020; 75:1316-1326. [PMID: 31733120 DOI: 10.1111/all.14116] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022]
Abstract
Food allergies have become a significant heath burden as prevalence continues to rise, affecting 6%-13% of the global population. In the absence of drugs approved by regulatory agencies, the current standard of care remains avoidance of allergenic foods and management of acute allergic reactions with antihistamines and epinephrine autoinjectors. Allergen immunotherapy has been shown to increase the threshold of reactivity in the majority of food-allergic individuals. However, challenges include long treatment periods, high rates of adverse reactions, and lack of permanence of desensitization and established protocols. To address these limitations, adjunctive allergen-specific immunotherapy, vaccines, and non-allergen-specific therapies (eg, monoclonal antibodies) are being explored. The future of food allergy treatment is promising with a number of clinical trials in progress. Currently, although desensitization can be achieved for the majority of individuals with food allergy through immunotherapy, continued ingestion of allergen is needed for most individuals to maintain desensitization. Further understanding of the mechanisms of food allergy and identification of biomarkers to distinguish between temporary and permanent resolution of allergies is needed before a cure, where reactivity to the allergen is permanently lost enabling the individual to consume the allergen in any amount at any time, can be envisioned.
Collapse
Affiliation(s)
- Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
- Division of Pulmonary and Critical Care Medicine Stanford University Stanford CA USA
| | - Sayantani B. Sindher
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
- Division of Pulmonary and Critical Care Medicine Stanford University Stanford CA USA
| | - Andres M. Alvarez Pinzon
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
- Division of Pulmonary and Critical Care Medicine Stanford University Stanford CA USA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
- Division of Pulmonary and Critical Care Medicine Stanford University Stanford CA USA
| |
Collapse
|
32
|
Zolfaghari Emameh R, Masoori L, Taheri RA, Falak R. Identification and characterization of parvalbumin-like protein in Trichophyton violaceum. Fungal Biol 2020; 124:592-600. [PMID: 32448450 DOI: 10.1016/j.funbio.2020.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 01/15/2020] [Accepted: 02/23/2020] [Indexed: 01/08/2023]
Abstract
Parvalbumins play crucial physiological roles in neuromuscular systems of vertebrates, such as cell-cycle, development of neurons, contraction of muscles, and regulation of intracellular calcium. To perform these neuromuscular functions, parvalbumin may be in associated with other proteins including calbindin, carbonic anhydrase, and cytochrome oxidase. Humans may show an IgE-specific hypersensitivity to parvalbumins after consumption of some distinct fish species. While this protein is abundant in fish muscles, literature review of publications related to fish parvalbumins, do not point to the presence of parvalbumins in eukaryotic microbes. In this study, we propose that distantly related parvalbumins may be found in some non-fish species. Bioinformatics studies such as multiple sequence alignment (MSA), phylogenetic analysis as well as molecular-based experiments indicate that, at least two parvalbumins sequences (UniProt IDs: A0A178F775 and A0A178F7E4) with EF-hand domains and Ca2+-binding sites could be identified in Trichophyton violaceum, a pathogenic fungal species. It was determined that both genes consisted of a single exon and encoded for parvalbumin proteins possessing conserved amino acid motifs. Antigenicity prediction revealed antigenic sites located in both sides of the Ca2+-binding site of the first EF-hand domain. Our phylogenetic analysis revealed that one of parvalbumins (UniProt ID: 0A178F775) can be evolved to other parvalbumins in T. violaceum (UniProt ID: A0A178F7E4) and fish species through evolutionary phenomenon. To confirm our in-silico findings, we designed three primer pairs to detect one of the T. violaceum parvalbumins (UniProt ID: A0A178F7E4) by polymerase chain reaction (PCR); one primer pair showed a strong and specific band in agarose gel electrophoresis. To evaluate the specificity of the method, the primers were tested on extracted DNA from Trichophyton rubrum and T. mentagrophytes. The results demonstrated that the evaluated parvalbumin gene (UniProt ID: A0A178F7E4) was T. violaceum-specific and this pathogenic fungus can be differentiated from T. rubrum and T. mentagrophytes through identification of parvalbumin genes. Further studies are necessary to unravel the biochemical and physiological functions of parvalbumins in T. violaceum.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Leila Masoori
- Department of Laboratory Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Freidl R, Gstöttner A, Baranyi U, Swoboda I, Stolz F, Focke‐Tejkl M, Wekerle T, van Ree R, Valenta R, Linhart B. Resistance of parvalbumin to gastrointestinal digestion is required for profound and long-lasting prophylactic oral tolerance. Allergy 2020; 75:326-335. [PMID: 31325321 PMCID: PMC7065025 DOI: 10.1111/all.13994] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
Background Early introduction of food allergens into children's diet is considered as a strategy for the prevention of food allergy. The major fish allergen parvalbumin exhibits high stability against gastrointestinal digestion. We investigated whether resistance of carp parvalbumin to digestion affects oral tolerance induction. Methods Natural Cyp c 1, nCyp c 1, and a gastrointestinal digestion‐sensitive recombinant Cyp c 1 mutant, mCyp c 1, were analyzed for their ability to induce oral tolerance in a murine model. Both antigens were compared by gel filtration, circular dichroism measurement, in vitro digestion, and splenocyte proliferation assays using synthetic Cyp c 1‐derived peptides. BALB/c mice were fed once with high doses of nCyp c 1 or mCyp c 1, before sensitization to nCyp c 1. Immunological tolerance was studied by measuring Cyp c 1‐specific antibodies and cellular responses by ELISA, basophil activation, splenocyte proliferations, and intragastric allergen challenge. Results Wild‐type and mCyp c 1 showed the same physicochemical properties and shared the same major T‐cell epitope. However, mCyp c 1 was more sensitive to enzymatic digestion in vitro than nCyp c 1. A single high‐dose oral administration of nCyp c 1 but not of mCyp c 1 induced long‐term oral tolerance, characterized by lack of parvalbumin‐specific antibody and cellular responses. Moreover, mCyp c 1‐fed mice, but not nCyp c 1‐fed mice developed allergic symptoms upon challenge with nCyp c 1. Conclusion Sensitivity to digestion in the gastrointestinal tract influences the capacity of an allergen to induce prophylactic oral tolerance.
Collapse
Affiliation(s)
- Raphaela Freidl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Antonia Gstöttner
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Surgery Medical University of Vienna Vienna Austria
| | - Ines Swoboda
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | | | - Margarete Focke‐Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery Medical University of Vienna Vienna Austria
| | - Ronald van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology Academic Medical Center Amsterdam Netherlands
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy Sechenov First Moscow State Medical University Moscow Russia
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
34
|
Nicolaides RE, Parrish CP, Bird JA. Food Allergy Immunotherapy with Adjuvants. Immunol Allergy Clin North Am 2020; 40:149-173. [DOI: 10.1016/j.iac.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Klueber J, Schrama D, Rodrigues P, Dickel H, Kuehn A. Fish Allergy Management: From Component-Resolved Diagnosis to Unmet Diagnostic Needs. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00235-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose of review
Fish is a common elicitor of IgE-mediated food allergy. Fish includes a large variety of foods, in terms of species and food processing, with marked distinction in local diets around the globe. Fish-allergic patients present with phenotypic diversity and major differences in levels of clinical cross-reactivity, features that pose an important challenge for the clinical diagnosis and management.
Recent findings
Parvalbumin is the major fish allergen. However, a single molecule is not sufficient but several homologs, allergens different from parvalbumin and allergen extracts, are needed for IgE-based diagnosis.
Summary
Parvalbumin-specific IgE are markers for clinical cross-reactions. Added value is provided by IgE typing to parvalbumin homologs from distantly related fish. IgE co-sensitization profiles (parvalbumin, enolase, aldolase) are referred as severity markers. The allergen panel seems to be not yet complete why fish extracts still play a crucial role in serum IgE analysis. Further clinical validation of a multiplex approach in molecular fish allergy diagnosis is needed for striving to avoid unnecessary food restrictions and in a further sense, improved patient care.
Collapse
|
36
|
Eichhorn S, Hörschläger A, Steiner M, Laimer J, Jensen BM, Versteeg SA, Pablos I, Briza P, Jongejan L, Rigby N, Asturias JA, Portolés A, Fernandez‐Rivas M, Papadopoulos NG, Mari A, Poulsen LK, Lackner P, van Ree R, Ferreira F, Gadermaier G. Rational Design, Structure-Activity Relationship, and Immunogenicity of Hypoallergenic Pru p 3 Variants. Mol Nutr Food Res 2019; 63:e1900336. [PMID: 31207117 PMCID: PMC6790652 DOI: 10.1002/mnfr.201900336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/28/2019] [Indexed: 11/09/2022]
Abstract
SCOPE Allergies to lipid transfer proteins involve severe adverse reactions; thus, effective and sustainable therapies are desired. Previous attempts disrupting disulfide bonds failed to maintain immunogenicity; thus, the aim is to design novel hypoallergenic Pru p 3 variants and evaluate the applicability for treatment of peach allergy. METHODS AND RESULTS Pru p 3 proline variant (PV) designed using in silico mutagenesis, cysteine variant (CV), and wild-type Pru p 3 (WT) are purified from Escherichia coli. Variants display homogenous and stable protein conformations with an altered secondary structure in circular dichroism. PV shows enhanced long-term storage capacities compared to CV similar to the highly stable WT. Using sera of 33 peach allergic patients, IgE-binding activity is reduced by 97% (PV) and 71% (CV) compared to WT. Both molecules show strong hypoallergenicity in Pru p 3 ImmunoCAP cross-inhibition and histamine release assays. Immunogenicity of PV is demonstrated with a phosphate-based adjuvant formulation in a mouse model. CONCLUSIONS An in silico approach is used to generate a PV without targeting disulfide bonds, T cell epitopes, or previously reported IgE epitopes of Pru p 3. PV is strongly hypoallergenic while structurally stable and immunogenic, thus representing a promising candidate for peach allergen immunotherapy.
Collapse
Affiliation(s)
- Stephanie Eichhorn
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Angelika Hörschläger
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Markus Steiner
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Josef Laimer
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Bettina M Jensen
- Allergy Clinic, Dept. 22Herlev‐Gentofte HospitalKildegaardsvej 282900HellerupDenmark
| | - Serge A Versteeg
- Department of Experimental ImmunologyAmsterdam University Medical CentersMeibergdreef 91105AZAmsterdamThe Netherlands
| | - Isabel Pablos
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Peter Briza
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Laurian Jongejan
- Department of Experimental ImmunologyAmsterdam University Medical CentersMeibergdreef 91105AZAmsterdamThe Netherlands
| | - Neil Rigby
- Food & Health ProgrammeInst. of Food ResearchNorwichNorfolkNR4 7UQUnited Kingdom
| | - Juan A Asturias
- R&D DepartmentROXALL GroupParque Científico y Tecnológico de BizkaiaEdif. 40148170ZamudioSpain
| | - Antonio Portolés
- Department of Clinical PharmacologyHospital Clinico San Carlosc/ Prof. Martín Lagos s/n28040MadridSpain
| | | | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory MedicineUniversity of ManchesterRoyal Manchester Children's HospitalManchesterM13 9WLUnited Kingdom
- Allergy Dpt, 2nd Pediatric Clinic, University of Athens41, FidippidouAthens115 27Greece
| | - Adriano Mari
- Center of Molecular AllergologyIDIVia dei Monti di Creta 104ZIP 00167RomeItaly
- Associated Centers for Molecular AllergologyVia Portuense 700ZIP 00149RomeItaly
| | - Lars K Poulsen
- Allergy Clinic, Dept. 22Herlev‐Gentofte HospitalKildegaardsvej 282900HellerupDenmark
| | - Peter Lackner
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Ronald van Ree
- Department of Experimental ImmunologyAmsterdam University Medical CentersMeibergdreef 91105AZAmsterdamThe Netherlands
- Department of OtorhinolaryngologyAmsterdam University Medical CentersMeibergdreef 91105AZAmsterdamThe Netherlands
| | - Fatima Ferreira
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| | - Gabriele Gadermaier
- Department of BiosciencesUniversity of SalzburgHellbrunnerstraße 345020SalzburgAustria
| |
Collapse
|
37
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
38
|
Linhart B, Freidl R, Elisyutina O, Khaitov M, Karaulov A, Valenta R. Molecular Approaches for Diagnosis, Therapy and Prevention of Cow´s Milk Allergy. Nutrients 2019; 11:E1492. [PMID: 31261965 PMCID: PMC6683018 DOI: 10.3390/nu11071492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cow´s milk is one of the most important and basic nutrients introduced early in life in our diet but can induce IgE-associated allergy. IgE-associated allergy to cow´s milk can cause severe allergic manifestations in the gut, skin and even in the respiratory tract and may lead to life-threatening anaphylactic shock due to the stability of certain cow´s milk allergens. Here, we provide an overview about the allergen molecules in cow´s milk and the advantages of the molecular diagnosis of IgE sensitization to cow´s milk by serology. In addition, we review current strategies for prevention and treatment of cow´s milk allergy and discuss how they could be improved in the future by innovative molecular approaches that are based on defined recombinant allergens, recombinant hypoallergenic allergen derivatives and synthetic peptides.
Collapse
Affiliation(s)
- Birgit Linhart
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Raphaela Freidl
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Olga Elisyutina
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
39
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Food allergy is a growing health problem worldwide that impacts millions of individuals. Current treatment options are limited and strict dietary avoidance remains the standard of care. Immunotherapy using whole, native allergens is under active clinical investigation but harbors the risk of severe side effects including anaphylaxis. Newer food-specific therapies with hypoallergenic proteins may potentially offer safer treatment alternatives, and this review seeks to investigate the evidence supporting the use of these modalities. RECENT FINDINGS The utilization of different methods to alter allergen structure and IgE binding leads to reduced allergenicity and decreases the risk for systemic reactions, making the use of potential therapies including extensively heated egg/milk, peptide immunotherapy, recombinant allergen immunotherapy, and DNA vaccines safe and possibly efficacious forms of treatment in food allergy. However, for the majority of these treatment modalities, limited data currently exists looking at the safety and efficacy in human subjects with food allergy. This review provides a comprehensive overview of the current evidence examining the safety and efficacy of hypoallergenic proteins in the treatment of food allergies.
Collapse
Affiliation(s)
- Luanna Yang
- School of Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, 3330 Thurston Building, CB# 7280, Chapel Hill, NC, 27599-7280, USA.
| | - Mike Kulis
- School of Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, 3330 Thurston Building, CB# 7280, Chapel Hill, NC, 27599-7280, USA
| |
Collapse
|
41
|
Dantzer JA, Wood RA. Next-Generation Approaches for the Treatment of Food Allergy. Curr Allergy Asthma Rep 2019; 19:5. [PMID: 30689123 DOI: 10.1007/s11882-019-0839-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW IgE-mediated food allergies are an increasing health concern, and current management includes food avoidance and use of emergency medications. Effective treatment of food allergy is highly desirable. Next generation approaches for the treatment of food allergy aim to improve both safety and efficacy, potentially including long-term tolerance. RECENT FINDINGS Oral immunotherapy (OIT) and epicutaneous immunotherapy (EPIT) will likely be integrated into clinical practice as part of food allergy management in the near future. Newer approaches, such as sublingual immunotherapy (SLIT), modified proteins, lysosomal-associated membrane protein DNA (LAMP DNA) vaccines, and the use of immunomodulatory agents, are early in development and depending on results, could also become important treatment options. This is a review of novel approaches to the treatment of food allergy that are currently under investigation, including the use of SLIT, modified proteins, probiotics, Chinese herbal supplements, biologic therapies, and DNA vaccines, as well as a summary of the current status of OIT and EPIT.
Collapse
Affiliation(s)
- Jennifer A Dantzer
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, John Hopkins University School of Medicine, 600 N. Wolfe St., CMSC 1102, Baltimore, MD, 21287, USA
| | - Robert A Wood
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, John Hopkins University School of Medicine, 600 N. Wolfe St., CMSC 1102, Baltimore, MD, 21287, USA.
| |
Collapse
|
42
|
Frew AJ. Immunotherapy of Allergic Disease. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Leung ASY, Leung NYH, Wai CYY, Leung TF, Wong GWK. Allergen immunotherapy for food allergy from the Asian perspective: key challenges and opportunities. Expert Rev Clin Immunol 2018; 15:153-164. [PMID: 30488732 DOI: 10.1080/1744666x.2019.1554432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Prevalence of food allergy is rising in different regions of the world. Asia has not been spared from this epidemic, but epidemiological data have revealed a different pattern of food allergens in this continent. Allergen-specific immunotherapy (AIT) for food allergy, which has been revolutionary as the main focus of research in recent years, needs to be adapted for the different populations in Asia. Areas covered: Recent evidence shows increasing popularity and superiority of AIT over strict food avoidance as the cornerstone of food allergy management. Asia is a distinctive continent with specific food allergy triggers, in particular, seafood, and wheat. Peanut, on the contrary, is not a common food allergen in most parts of Asia. The common Asian food allergens, as well as the rapidly developing food-specific AIT in this region will be covered in this article. Expert commentary: Evidence on oral immunotherapy for wheat allergy and preclinical data on shellfish AIT are promising. Further work should be done on resolving cross-sensitization between environmental allergens with wheat and shellfish allergens, and a modified AIT approach to enhance the safety and effectiveness of food-specific immunotherapy.
Collapse
Affiliation(s)
- Agnes Sze Yin Leung
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| | - Nicki Yat Hin Leung
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| | - Christine Yee Yan Wai
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| | - Ting Fan Leung
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| | - Gary Wing Kin Wong
- a Department of Paediatrics , The Chinese University of Hong Kong, Prince of Wales Hospital Shatin , New Territories , Hong Kong
| |
Collapse
|
44
|
Valenta R, Karaulov A, Niederberger V, Zhernov Y, Elisyutina O, Campana R, Focke-Tejkl M, Curin M, Namazova-Baranova L, Wang JY, Pawankar R, Khaitov M. Allergen Extracts for In Vivo Diagnosis and Treatment of Allergy: Is There a Future? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1845-1855.e2. [PMID: 30297269 PMCID: PMC6390933 DOI: 10.1016/j.jaip.2018.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Today, in vivo allergy diagnosis and allergen-specific immunotherapy (AIT) are still based on allergen extracts obtained from natural allergen sources. Several studies analyzing the composition of natural allergen extracts have shown severe problems regarding their quality such as the presence of undefined nonallergenic materials, contaminants as well as high variabilities regarding contents and biological activity of individual allergens. Despite the increasing availability of sophisticated analytical technologies, these problems cannot be overcome because they are inherent to allergen sources and methods of extract production. For in vitro allergy diagnosis problems related to natural allergen extracts have been largely overcome by the implementation of recombinant allergen molecules that are defined regarding purity and biological activity. However, no such advances have been made for allergen preparations to be used in vivo for diagnosis and therapy. No clinical studies have been performed for allergen extracts available for in vivo allergy diagnosis that document safety, sensitivity, and specificity of the products. Only for very few therapeutic allergen extracts state-of-the-art clinical studies have been performed that provide evidence for safety and efficacy. In this article, we discuss problems related to the inconsistent quality of products based on natural allergen extracts and share our observations that most of the products available for in vivo diagnosis and AIT do not meet the international standards for medicinal products. We argue that a replacement of natural allergen extracts by defined recombinantly produced allergen molecules and/or mixtures thereof may be the only way to guarantee the supply of clinicians with state-of-the-art medicinal products for in vivo diagnosis and treatment of allergic patients in the future.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Yury Zhernov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | | | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Leyla Namazova-Baranova
- Department of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jiu-Yao Wang
- Center for Allergy and Immunology Research (ACIR), College of Medicine, National Cheng Kung University (Hospital), Tainan, Taiwan
| | - Ruby Pawankar
- Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| |
Collapse
|
45
|
Protease resistance of food proteins: a mixed picture for predicting allergenicity but a useful tool for assessing exposure. Clin Transl Allergy 2018; 8:30. [PMID: 30116520 PMCID: PMC6085708 DOI: 10.1186/s13601-018-0216-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/10/2022] Open
Abstract
Background Susceptibility to pepsin digestion of candidate transgene products is regarded an important parameter in the weight-of-evidence approach for allergenicity risk assessment of genetically modified crops. It has been argued that protocols used for this assessment should better reflect physiological conditions encountered in representative food consumption scenarios. Aim To evaluate whether inclusion of more physiological conditions, such as sub-optimal and lower pepsin concentrations, in combination with pancreatin digestion, improved the performance of digestibility protocols used in characterization of protein stability. Methods Four pairs of established allergens and their related non/weakly-allergenic counterparts (seed albumins, muscle tropomyosins, plant lipid transfer proteins [LTP] and collagens) plus fish parvalbumin, were subjected to nine combinations of pH (1.2-2.5-4.0) and pepsin-to-protein ratio (PPR: 10-1-0.1 U/µg) for pepsin digestion, followed by pancreatin digestion in the presence of bile salts. Digestion was monitored by SDS-PAGE in conjunction with Coomassie staining and immunoblotting using rabbit antisera and human IgE. Results At pH 4.0 and at PPR 0.1 most proteins, both allergen and non-allergen, were highly resistant to pepsin. Under conditions known to favor pepsin proteolysis, the established major allergens Ara h 2, Pru p 3 and Pen a 1 were highly resistant to proteolysis, while the allergen Cyp c 1 was not. However, this resistance to pepsin digestion only made Ara h 2 and to a lesser extent Pen a 1 and Pru p 3 stand out compared to their non-allergenic counterparts. Largely irrespective of preceding pepsin digestion conditions, pancreatin digestion was very effective for all tested proteins, allergens and non-allergens, except for Cyp c 1 and bovine collagen. Conclusions Sub-optimal pH, low pepsin-to protein ratio, and sequential pepsin and pancreatin digestion protocols do not improve the predictive value in distinguish allergens from non-allergens. Digestion conditions facilitating such distinction differ per protein pair.
Collapse
|
46
|
Gunawardana NC, Durham SR. New approaches to allergen immunotherapy. Ann Allergy Asthma Immunol 2018; 121:293-305. [PMID: 30025907 DOI: 10.1016/j.anai.2018.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE New insights into mechanisms should enable strategic improvement of allergen immunotherapy, aiming to make it safer, faster, more effective, and able to induce long-term tolerance. We review novel approaches with potential to translate into clinical use. DATA SOURCES Database searches were conducted in PubMed, Scopus, and Google Scholar. STUDY SELECTIONS Search terms were based on current and novel approaches in immunotherapy. Literature was selected primarily from recent randomized double-blinded placebo-controlled trials and meta-analyses. RESULTS Alum, microcrystalline tyrosine, and calcium phosphate are adjuvants in current use. Toll-like receptor-4 agonists combined with allergen have potential to shorten duration of treatment. Other novel adjuvants, nanoparticles, and virus-like particles in combination with allergen have shown early promise. Omalizumab lessens systemic side effects but does not improve efficacy. Intralymphatic immunotherapy for aeroallergens, epicutaneous immunotherapy for food allergens, and use of modified allergens (allergoids), recombinant allergens (and hypoallergenic variants), and T- and B-cell peptide approaches have shown evidence of efficacy and permitted shortened courses but have only rarely been compared with conventional extracts. CONCLUSION Novel routes of immunotherapy, use of modified allergens, and combination of allergens with immunostimulatory adjuvants or immune modifiers have been developed to augment downregulation of T-helper cell type 2 immunity and/or induce "protective" blocking antibodies. Although these strategies have permitted shortened courses, confirmatory phase 3 trials are required to confirm efficacy and safety and head-to-head trials are required for comparative efficacy. Currently, subcutaneous and sublingual immunotherapies using in-house standardized crude extracts remain the only approaches proved to induce long-term tolerance.
Collapse
Affiliation(s)
- Natasha C Gunawardana
- Imperial College London, London, United Kingdom; Royal Brompton and Harefield Hospitals, NHS Foundation Trust, London, United Kingdom
| | - Stephen R Durham
- Imperial College London, London, United Kingdom; Royal Brompton and Harefield Hospitals, NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
47
|
Arasi S, Corsello G, Villani A, Pajno GB. The future outlook on allergen immunotherapy in children: 2018 and beyond. Ital J Pediatr 2018; 44:80. [PMID: 29996875 PMCID: PMC6042356 DOI: 10.1186/s13052-018-0519-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/02/2018] [Indexed: 11/10/2022] Open
Abstract
Allergen immunotherapy (AIT) is the only currently available immune-modifying and aetiological treatment for patients suffering from IgE-mediated diseases. In childhood, it represents a suitable therapeutic option to intervene during the early phases of respiratory allergic diseases such as rhino-conjunctivitis and asthma, which is when their progression may be more easily influenced. A growing body of evidence shows that oral immunotherapy represents a promising treatment option in children with persistent IgE- mediated food allergy. The efficacy of AIT is under investigation also in patients with extrinsic atopic dermatitis, currently with controversial results. Furthermore, AIT might be a strategy to prevent the development of a new sensitization or of a (new) allergic disease. However, there are still some methodological criticisms, such as: a) the regimen of administration and the amount of the maintenance dose are both largely variable; b) the protocols of administration are not standardized; c) the description and classification of side effects is variable among studies and needs to be standardized; d) quality of life and evaluation of health economics are overall missing. All these aspects make difficult to compare each study with another. In addition, the content of major allergen(s) remains largely variable among manufacturers and the availability of AIT products differences among countries. The interest and the attention to AIT treatment are currently fervent and increasing. Well-designed studies are awaited in the near future in order to overcome the current gaps in the evidence and furtherly promote implementation strategies.
Collapse
Affiliation(s)
- Stefania Arasi
- Allergy Unit- Department of Pediatrics, University of Messina, Messina, Italy. .,SIAF- Schweizerischers Institut für Allergie-und Asthmaforschung, Davos, Switzerland. .,Pediatric Allergy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo, Italy
| | - Alberto Villani
- Pediatric and Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
48
|
Curin M, Khaitov M, Karaulov A, Namazova-Baranova L, Campana R, Garib V, Valenta R. Next-Generation of Allergen-Specific Immunotherapies: Molecular Approaches. Curr Allergy Asthma Rep 2018; 18:39. [PMID: 29886521 PMCID: PMC5994214 DOI: 10.1007/s11882-018-0790-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to discuss how allergen-specific immunotherapy (AIT) can be improved through molecular approaches. We provide a summary of next-generation molecular AIT approaches and of their clinical evaluation. Furthermore, we discuss the potential of next generation molecular AIT forms for the treatment of severe manifestations of allergy and mention possible future molecular strategies for the secondary and primary prevention of allergy. RECENT FINDINGS AIT has important advantages over symptomatic forms of allergy treatment but its further development is limited by the quality of the therapeutic antigen preparations which are derived from natural allergen sources. The field of allergy diagnosis is currently undergoing a dramatic improvement through the use of molecular testing with defined, mainly recombinant allergens which allows high-resolution diagnosis. Several studies demonstrate that molecular testing in early childhood can predict the development of symptomatic allergy later on in life. Clinical studies indicate that molecular AIT approaches have the potential to improve therapy of allergic diseases and may be used as allergen-specific forms of secondary and eventually primary prevention for allergy.
Collapse
Affiliation(s)
- Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Victoria Garib
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- International Network of Universities for Molecular Allergololgy and Immunology, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
- International Network of Universities for Molecular Allergololgy and Immunology, Vienna, Austria.
| |
Collapse
|
49
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
50
|
Pajno GB, Fernandez-Rivas M, Arasi S, Roberts G, Akdis CA, Alvaro-Lozano M, Beyer K, Bindslev-Jensen C, Burks W, Ebisawa M, Eigenmann P, Knol E, Nadeau KC, Poulsen LK, van Ree R, Santos AF, du Toit G, Dhami S, Nurmatov U, Boloh Y, Makela M, O'Mahony L, Papadopoulos N, Sackesen C, Agache I, Angier E, Halken S, Jutel M, Lau S, Pfaar O, Ryan D, Sturm G, Varga EM, van Wijk RG, Sheikh A, Muraro A. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy 2018; 73:799-815. [PMID: 29205393 DOI: 10.1111/all.13319] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 02/05/2023]
Abstract
Food allergy can result in considerable morbidity, impairment of quality of life, and healthcare expenditure. There is therefore interest in novel strategies for its treatment, particularly food allergen immunotherapy (FA-AIT) through the oral (OIT), sublingual (SLIT), or epicutaneous (EPIT) routes. This Guideline, prepared by the European Academy of Allergy and Clinical Immunology (EAACI) Task Force on Allergen Immunotherapy for IgE-mediated Food Allergy, aims to provide evidence-based recommendations for active treatment of IgE-mediated food allergy with FA-AIT. Immunotherapy relies on the delivery of gradually increasing doses of specific allergen to increase the threshold of reaction while on therapy (also known as desensitization) and ultimately to achieve post-discontinuation effectiveness (also known as tolerance or sustained unresponsiveness). Oral FA-AIT has most frequently been assessed: here, the allergen is either immediately swallowed (OIT) or held under the tongue for a period of time (SLIT). Overall, trials have found substantial benefit for patients undergoing either OIT or SLIT with respect to efficacy during treatment, particularly for cow's milk, hen's egg, and peanut allergies. A benefit post-discontinuation is also suggested, but not confirmed. Adverse events during FA-AIT have been frequently reported, but few subjects discontinue FA-AIT as a result of these. Taking into account the current evidence, FA-AIT should only be performed in research centers or in clinical centers with an extensive experience in FA-AIT. Patients and their families should be provided with information about the use of FA-AIT for IgE-mediated food allergy to allow them to make an informed decision about the therapy.
Collapse
|