1
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
2
|
Ren J, Li H, Zeng G, Pang B, Wang Q, Wei J. Gut microbiome-mediated mechanisms in aging-related diseases: are probiotics ready for prime time? Front Pharmacol 2023; 14:1178596. [PMID: 37324466 PMCID: PMC10267478 DOI: 10.3389/fphar.2023.1178596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Chronic low-grade inflammation affects health and is associated with aging and age-related diseases. Dysregulation of the gut flora is an important trigger for chronic low-grade inflammation. Changes in the composition of the gut flora and exposure to related metabolites have an effect on the inflammatory system of the host. This results in the development of crosstalk between the gut barrier and immune system, contributing to chronic low-grade inflammation and impairment of health. Probiotics can increase the diversity of gut microbiota, protect the gut barrier, and regulate gut immunity, thereby reducing inflammation. Therefore, the use of probiotics is a promising strategy for the beneficial immunomodulation and protection of the gut barrier through gut microbiota. These processes might positively influence inflammatory diseases, which are common in the elderly.
Collapse
Affiliation(s)
- Jing Ren
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guixing Zeng
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxian Pang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qiuhong Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Clegg ME, Methven L, Lanham-New SA, Green MA, Duggal NA, Hetherington MM. The Food4Years Ageing Network: Improving foods and diets as a strategy for supporting quality of life, independence and healthspan in older adults. NUTR BULL 2023; 48:124-133. [PMID: 36718711 PMCID: PMC10946951 DOI: 10.1111/nbu.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023]
Abstract
By 2050, it is predicted that one in four people in the United Kingdom will be aged 65 years and over. Increases in lifespan are not always translated into years spent in good health. Incidence rates for chronic diseases are increasing, with treatments allowing people to live longer with their disease. There is good evidence to support changes to lifestyle to maintain or improve body composition, cognitive health, musculoskeletal health, immune function and vascular health in older adults. Much research has been done in this area, which has produced significant support for foods and nutrients that contribute to improved healthspan. Yet two major barriers remain: firstly, older adult consumers are not meeting current UK recommendations for macro- and micronutrients that could benefit health and quality of life and secondly, the UK-specific recommendations may not be sufficient to support the ageing population, particularly for nutrients with key physiological roles. More work is needed to improve intakes of specific foods, diets and nutrients by older adults, through a variety of mechanisms including (i) development of specific food products; (ii) improved clarity of information and (iii) appropriate marketing, and policy changes to enable incentives. The Food4Years Ageing Network aims to build a wide-reaching and multidisciplinary community that is committed to the development, integration and communication of healthy, affordable foods and specific diets for all older adults across the UK food landscape. The Network will identify evidence-based strategies for improving food intake and nutrition in older adults, paving the way to "living well while living longer."
Collapse
Affiliation(s)
- Miriam E Clegg
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Susan A Lanham-New
- Nutritional Sciences Department, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Mark A Green
- Department of Geography and Planning, University of Liverpool, Liverpool, UK
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
4
|
Sugita S, Tahir P, Kinjo S. The effects of microbiome-targeted therapy on cognitive impairment and postoperative cognitive dysfunction-A systematic review. PLoS One 2023; 18:e0281049. [PMID: 36749772 PMCID: PMC9904456 DOI: 10.1371/journal.pone.0281049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gut-brain axis involves bidirectional communication between the gut-microbiota and central nervous system. This study aimed to investigate whether probiotics and/or prebiotics, known as Microbiome-targeted Therapies (MTTs), improve cognition and prevent postoperative cognitive dysfunction (POCD). METHODS Relevant animal and human studies were identified using a systematic database search (PubMed, EMBASE, Cochrane Library, and Web of Science), focusing on the effects of MTTs on inflammation, perioperative and non-perioperative cognitive impairment. Screening and data extraction were conducted by two independent reviewers. The Risk of bias was assessed using the SYRCLE's risk of bias tool for animal studies. The revised Cochrane risk of bias tool (RoB 2) was used for human studies. RESULTS A total of 24 articles were selected; 16 of these involved animal studies, and 8 described studies in humans. In these papers, the use of MTTs consistently resulted in decreased inflammation in perioperative and non-perioperative settings. Out of 16 animal studies, 5 studies (2 associated with delirium and 3 studies related to POCD) were conducted in a perioperative setting. MTTs improved perioperative cognitive behavior and reduced inflammation in all 5 animal studies. Eleven animal studies were conducted in a non-perioperative setting. In all of these studies, MTTs showed improvement in learning and memory function. MTTs showed a positive effect on levels of pro-inflammatory cytokines and biomarkers related to cognitive function. Among the 8 human studies, only one study examined the effects of perioperative MTTs on cognitive function. This study showed a reduced incidence of POCD along with improved cognitive function. Of the remaining 7 studies, 6 suggested that MTTs improved behavioral test results and cognition in non-perioperative environments. One study failed to show any significant differences in memory, biomarkers of inflammation, or oxidative factors. CONCLUSION In the studies we examined, most showed that MTTs decrease inflammation by down-regulating inflammatory cytokines and oxidative stress in both perioperative and non-perioperative settings. In general, MTTs also seem to have a positive effect on cognition through neural, immune, endocrine, and metabolic pathways. However, these effects have not yet resulted in a consensus regarding preventative strategies or treatments. Based on these current research results, MTTs could be a potential new preventative strategy for cognitive impairment after surgery.
Collapse
Affiliation(s)
- Saiko Sugita
- Department of Anesthesiology, Nippon Medical School, Tama-Nagayama Hospital, Tokyo, Japan
| | - Peggy Tahir
- University of California San Francisco Library, University of California, San Francisco, San Francisco, California, United States of America
| | - Sakura Kinjo
- Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Wang X, Wu M. Research progress of gut microbiota and frailty syndrome. Open Med (Wars) 2021; 16:1525-1536. [PMID: 34712824 PMCID: PMC8511967 DOI: 10.1515/med-2021-0364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Frailty is a clinical syndrome caused by homeostasis imbalance. It is characterized by marked vulnerability to endogenous or exogenous stressors, reduced self-care ability, and increased mortality risk. This aging-related syndrome is common in individuals older than 65 years and carries an increased risk for poor health outcomes. These include falls, incident disability, incapacity, and mortality. In addition, it can result in a poor prognosis for other comorbidities. With the aging population, frailty increases the burden of adverse health outcomes. Studies on frailty are at their infancy. In addition, there is a lack of thorough understanding of its pathogenesis. Several studies have suggested that frailty is caused by chronic inflammation due to enhanced intestinal permeability following gut microbiota imbalance as well as pathogen-related antibodies entering the circulation system. These result in musculoskeletal system disorders and neurodegenerative diseases. However, this assumption has not been validated in large cohort-based studies. Several studies have suggested that inflammation is not the only cause of frailty. Hence, further studies are necessary to extend our understanding of its pathogenesis. This review summarizes the research findings in the field and expands on the possible role of the gut microbiota in frailty syndrome.
Collapse
Affiliation(s)
- Xiao Wang
- Geriatrics Department, Zhejiang Hospital, Hangzhou 310013, China
| | - Min Wu
- Geriatrics Department, Zhejiang Hospital, Hangzhou 310013, China
| |
Collapse
|
6
|
Zhang J, Zhao A. Dietary Diversity and Healthy Aging: A Prospective Study. Nutrients 2021; 13:nu13061787. [PMID: 34073820 PMCID: PMC8225052 DOI: 10.3390/nu13061787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Population aging is a global phenomenon. The present study determined the effects of dietary diversity score (DDS) and food consumption on healthy aging. A subset of the data of the China Health and Nutrition Survey was utilized in this study. DDSs were calculated using the dietary data collected in the years 2009 and 2011. A healthy aging score (HAS) was calculated by summing the standardized scores on physical functional limitation, comorbidity, cognitive function, and psychological stress based on the data collected in the year 2015, with a lower HAS indicating a healthier aging process. Life quality was self-reported in the year 2015. This study found that DDS was inversely associated with HAS (T3 vs. T1: β −0.16, 95%CI −0.20 to −0.11, p-trend <0.001). The consumption of meat and poultry, aquatic products, and fruits was inversely associated with HAS, and participants in the highest tertile of staple foods consumption had a higher HAS than those in the lowest tertile. HAS was inversely associated with good self-reported life quality and positively associated with bad life quality. In conclusion, food consumption may influence the aging process, and adherence to a diverse diet is associated with a healthier aging process in elderly people.
Collapse
Affiliation(s)
- Jian Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100091, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100091, China;
- Correspondence: ; Tel.: +86-138-1113-1994
| |
Collapse
|
7
|
Castro-Herrera VM, Fisk HL, Wootton M, Lown M, Owen-Jones E, Lau M, Lowe R, Hood K, Gillespie D, Hobbs FDR, Little P, Butler CC, Miles EA, Calder PC. Combination of the Probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis, BB-12 Has Limited Effect on Biomarkers of Immunity and Inflammation in Older People Resident in Care Homes: Results From the Probiotics to Reduce Infections iN CarE home reSidentS Randomized, Controlled Trial. Front Immunol 2021; 12:643321. [PMID: 33746986 PMCID: PMC7969511 DOI: 10.3389/fimmu.2021.643321] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with a decline in many components of the immune system (immunosenescence). Probiotics may improve the immune response in older people. The objective was to determine the effect of the combination of two probiotic organisms [Lacticaseibacillus (previously known as Lactobacillus) rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12)] on a range of immune biomarkers measured in the blood of older people resident in care homes in the UK. In a randomized controlled trial, older people [aged 67-97 (mean 86) years] resident in care homes received the combination of LGG+BB-12 (1.3-1.6 × 109 CFU per day) or placebo for up to 12 months. Full blood count, blood immune cell phenotypes, plasma immune mediator concentrations, phagocytosis, and blood culture responses to immune stimulation were all measured. Response to seasonal influenza vaccination was measured in a subset of participants. Paired samples (i.e., before and after intervention) were available for 30 participants per group. LGG and BB-12 were more likely to be present in feces in the probiotic group and were present at higher numbers. There was no significant effect of the probiotics on components of the full blood count, blood immune cell phenotypes, plasma immune mediator concentrations, phagocytosis by neutrophils and monocytes, and blood culture responses to immune stimulation. There was an indication that the probiotics improved the response to seasonal influenza vaccination with significantly (p = 0.04) higher seroconversion to the A/Michigan/2015 vaccine strain in the probiotic group than in the placebo group (47 vs. 15%).
Collapse
Affiliation(s)
- Vivian M Castro-Herrera
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helena L Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Mark Lown
- School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eleri Owen-Jones
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Mandy Lau
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Rachel Lowe
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Kerenza Hood
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - David Gillespie
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Paul Little
- School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christopher C Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
8
|
Abstract
Aging increases the incidence of chronic liver disease (CLD), worsens its prognosis, and represents the predominant risk factor for its development at all different stages. The hepatic sinusoid, which is fundamental for maintaining liver homeostasis, is composed by hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages. During CLD progression, hepatic cells suffer deregulations in their phenotype, which ultimately lead to disease development. The effects of aging on the hepatic sinusoid phenotype and function are not well understood, nevertheless, studies performed in experimental models of liver diseases and aging demonstrate alterations in all hepatic sinusoidal cells. This review provides an updated description of age-related changes in the hepatic sinusoid and discusses the implications for CLD development and treatment. Lastly, we propose aging as a novel therapeutic target to treat liver diseases and summarize the most promising therapies to prevent or improve CLD and extend healthspan.
Collapse
Affiliation(s)
- Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University Health System, Durham, North Carolina
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain.,Division of Hepatology, Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Zhao D, Liu X, Zhao S, Li Z, Qin X. 1H NMR-Based Fecal Metabolomics Reveals Changes in Gastrointestinal Function of Aging Rats Induced by d-Galactose. Rejuvenation Res 2020; 24:86-96. [PMID: 32847490 DOI: 10.1089/rej.2020.2352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
d-galactose (d-gal) is widely used to induce aging. However, it is still unclear whether long-term injection of d-gal affects the gastrointestinal functions of aging rats, and how. In this study, we investigated the effects of d-gal on the gastrointestinal functions of aging rats, especially from the perspective of fecal metabolomics. Biochemical and behavioral analyses were performed. Besides, a 1H NMR-based metabolomics approach was built and applied in combination with multivariate data analysis including principal components analysis (PCA) and orthogonal partial least squares-discriminate analysis (OPLS-DA). Regarding gastrointestinal functions, d-gal significantly decreased the small intestine propulsion rates and prolonged gastrointestinal transit time. In addition, d-gal significantly increased the oxidative damages. PCA results showed that d-gal interrupted the metabolic profiles of endogenous small molecules in aging rats. Furthermore, OPLS-DA showed that 40 metabolites were screened and identified to be involved in the disruption of gastrointestinal functions in aging rats. Accordingly, seven metabolic pathways were recognized as the most influenced pathways associated with gastrointestinal functions of aging rats induced by d-gal, including amino acid metabolism, energy metabolism, intestinal flora metabolism, and metabolism of short chain fatty acids. It is the first report to investigate the effects and underlying mechanisms of d-gal on gastrointestinal functions of aging rats from the perspective of fecal metabolomics. The current results are conducive to further comprehensively understand d-gal-induced aging and will expand the applications of d-gal in pharmacological researches.
Collapse
Affiliation(s)
- Di Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Sijun Zhao
- Department of Pharmacology, Shanxi Institute for Food and Drug Control, Taiyuan, P.R. China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| |
Collapse
|
10
|
Guedj A, Volman Y, Geiger-Maor A, Bolik J, Schumacher N, Künzel S, Baines JF, Nevo Y, Elgavish S, Galun E, Amsalem H, Schmidt-Arras D, Rachmilewitz J. Gut microbiota shape 'inflamm-ageing' cytokines and account for age-dependent decline in DNA damage repair. Gut 2020; 69:1064-1075. [PMID: 31586932 DOI: 10.1136/gutjnl-2019-318491] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Failing to properly repair damaged DNA drives the ageing process. Furthermore, age-related inflammation contributes to the manifestation of ageing. Recently, we demonstrated that the efficiency of repair of diethylnitrosamine (DEN)-induced double-strand breaks (DSBs) rapidly declines with age. We therefore hypothesised that with age, the decline in DNA damage repair stems from age-related inflammation. DESIGN We used DEN-induced DNA damage in mouse livers and compared the efficiency of their resolution in different ages and following various permutations aimed at manipulating the liver age-related inflammation. RESULTS We found that age-related deregulation of innate immunity was linked to altered gut microbiota. Consequently, antibiotic treatment, MyD88 ablation or germ-free mice had reduced cytokine expression and improved DSBs rejoining in 6-month-old mice. In contrast, feeding young mice with a high-fat diet enhanced inflammation and facilitated the decline in DSBs repair. This latter effect was reversed by antibiotic treatment. Kupffer cell replenishment or their inactivation with gadolinium chloride reduced proinflammatory cytokine expression and reversed the decline in DSBs repair. The addition of proinflammatory cytokines ablated DSBs rejoining mediated by macrophage-derived heparin-binding epidermal growth factor-like growth factor. CONCLUSIONS Taken together, our results reveal a previously unrecognised link between commensal bacteria-induced inflammation that results in age-dependent decline in DNA damage repair. Importantly, the present study support the notion of a cell non-autonomous mechanism for age-related decline in DNA damage repair that is based on the presence of 'inflamm-ageing' cytokines in the tissue microenvironment, rather than an intrinsic cellular deficiency in the DNA repair machinery.
Collapse
Affiliation(s)
- Avital Guedj
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Volman
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Geiger-Maor
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia Bolik
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Sven Künzel
- Institute for Evolutionary Biology, Max Planck, Plön, Germany
| | - John F Baines
- Institute for Evolutionary Biology, Max Planck, Plön, Germany.,Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Sharona Elgavish
- Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Amsalem
- Department of Obstetrics and Gynecology, Hadassah University Hospital-Mount Scopus, Jerusalem, Israel
| | | | - Jacob Rachmilewitz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Nakov R, Segal JP, Settanni CR, Bibbò S, Gasbarrini A, Cammarota G, Ianiro G. Microbiome: what intensivists should know. Minerva Anestesiol 2020; 86:777-785. [PMID: 32368882 DOI: 10.23736/s0375-9393.20.14278-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The standard conditions of critical illness (including sepsis, acute respiratory distress syndrome, and multiorgan failure) cause enormous global mortality and a growing economic burden. Increasing evidence suggests that critical illness may be associated with loss of commensal microbes and overgrowth of potentially pathogenic and inflammatory bacteria. This state could be associated with poor outcomes. Therefore, microbiota-targeted interventions are potentially attractive novel treatment options. Although the precise mechanisms of microbiome-directed treatments such as prebiotics, probiotics, and fecal microbiota transplantation remain to be determined, they can be utilized in the Intensive Care Unit (ICU) setting. The current review aims to offer intensivists an evidenced-based approach on what we currently know about the role of the microbiome in critical illness and how the microbiome could be targeted in the clinical practice to improve ICU-related outcomes.
Collapse
Affiliation(s)
- Radislav Nakov
- Department of Gastroenterology, Tsaritsa Yoanna University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | | | - Carlo R Settanni
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Stefano Bibbò
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy -
| |
Collapse
|
12
|
Chen R, Liu B, Wang X, Chen K, Zhang K, Zhang L, Fei C, Wang C, Yingchun L, Xue F, Gu F, Wang M. Effects of polysaccharide from Pueraria lobata on gut microbiota in mice. Int J Biol Macromol 2020; 158:S0141-8130(20)33067-1. [PMID: 32387359 DOI: 10.1016/j.ijbiomac.2020.04.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Polysaccharide was derived from Pueraria lobata (PPL) which was considered as one of the traditional Chinese medicinal and edible herbs. In the present study, PPL was administered in equal doses (12.5 mg/kg) to both normal mice and antibiotic-associated diarrhea (AAD) mice for two weeks, and was evaluated in terms of body weight, organ indices, gut structure, gut microbiota and short chain fatty acids. The results showed that normal mice treated with PPL not only reduced the isovaleric acid concentration (P < 0.05), but also significantly increased the abundance of beneficial bacteria, involving Oscillospira and Anaerotruncus (P < 0.05). In addition, PPL could relieve colonic pathological changes and gut microbiota dysbiosis caused by AAD. It indicated that PPL was a potential functional food ingredient by modulating gut microbiota.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Bo Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kai Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lifang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Liu Yingchun
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
13
|
Probiotic Lactobacillus strains from Mongolia improve calcium transport and uptake by intestinal cells in vitro. Food Res Int 2020; 133:109201. [PMID: 32466902 DOI: 10.1016/j.foodres.2020.109201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 01/04/2023]
Abstract
The aim of this study was to investigate the probiotic properties of 174 Lactobacillus strains isolated from Mongolian dairy products, and particularly their impact on intestinal calcium uptake and absorption. All isolates underwent a first screening based on cell surface hydrophobicity, acid tolerance, tolerance to gastro-intestinal digestion, autoaggregation, adhesion and cytotoxicity against intestinal cells. Six Lactobacillus strains from different species (L. casei, L. kefiranofaciens, L. plantarum, L. fermentum, L. helveticus and L. delbrueckii) were selected, and their impact on intestinal calcium uptake and transport was investigated using Caco-2. Five strains were able to improve total calcium transport after 24 h contact with a differentiated Caco-2 cell monolayer. Concomitantly the L. plantarum strain was able to increase cellular calcium uptake in Caco-2 cells by 10% in comparison to control conditions. To determine which pathway(s) of calcium absorption was modulated by the strains, a qPCR-based study on 4 genes related to calcium/vitamin D metabolism or tight junction integrity was conducted on mucus-secreting intestinal HT-29 MTX cells. The L. plantarum strain modulates the transcellular pathway by regulating the expression of vitamin D receptor (1.79 fold of control) and calcium transporter (4.77 fold of control) while the L. delbrueckii strain acts on the paracellular pathway by modulating claudin-2 expression (2.83 fold of control). This work highlights the impact of Lactobacillus probiotic strains on intestinal calcium absorption and for the first time give some evidence about the cellular pathways involved.
Collapse
|
14
|
Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13:157-171. [PMID: 30791781 DOI: 10.1080/17474124.2019.1549988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholesterol gallstone disease have relationships with various conditions linked with insulin resistance, but also with heart disease, atherosclerosis, and cancer. These associations derive from mechanisms active at a local (i.e. gallbladder, bile) and a systemic level and are involved in inflammation, hormones, nuclear receptors, signaling molecules, epigenetic modulation of gene expression, and gut microbiota. Despite advanced knowledge of these pathways, the available therapeutic options for symptomatic gallstone patients remain limited. Therapy includes oral litholysis by the bile acid ursodeoxycholic acid (UDCA) in a small subgroup of patients at high risk of postdissolution recurrence, or laparoscopic cholecystectomy, which is the therapeutic radical gold standard treatment. Cholecystectomy, however, may not be a neutral event, and potentially generates health problems, including the metabolic syndrome. Areas covered: Several studies on risk factors and pathogenesis of cholesterol gallstone disease, acting at a systemic level have been reviewed through a PubMed search. Authors have focused on primary prevention and novel potential therapeutic strategies. Expert commentary: The ultimate goal appears to target the manageable systemic mechanisms responsible for gallstone occurrence, pointing to primary prevention measures. Changes must target lifestyles, as well as experimenting innovative pharmacological tools in subgroups of patients at high risk of developing gallstones.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- a Division of Internal Medicine , Hospital of Bisceglie , Bisceglie , Italy
| | - David Q-H Wang
- b Department of Medicine, Division of Gastroenterology and Liver Diseases , Marion Bessin Liver Research Center, Albert Einstein College of Medicine , Bronx , NY , USA
| | - Piero Portincasa
- c Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , University of Bari Medical School , Bari , Italy
| |
Collapse
|
15
|
Setbo E, Campbell K, O'Cuiv P, Hubbard R. Utility of Probiotics for Maintenance or Improvement of Health Status in Older People - A Scoping Review. J Nutr Health Aging 2019; 23:364-372. [PMID: 30932135 DOI: 10.1007/s12603-019-1187-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the available evidence on probiotic use in older adults from human studies. DESIGN systematic review. METHODS The databases Embase, CINAHL and Medline were searched in December of 2017 for studies in humans where probiotics were used to modify a health outcome in older people. The quality of studies was evaluated using the Critical Appraisal Skills Program (CASP) assessment tool and the Cochrane Risk of Bias Assessment tool. PARTICIPANTS Subjects aged over sixty years either through specified selection criteria or where the mean participant age was greater than sixty. INTERVENTIONS Probiotic supplements. MEASUREMENTS Pre-specified clinically measurable health outcomes in age related conditions. RESULTS 1210 articles were identified. After quality assessment and selection criteria were applied, 33 articles were identified to be included for review. As these studies cover a variety of applications and used customised protocols accordingly, meta-analysis was not possible and synthesis is in narrative form. CONCLUSIONS A growing body of research has applied commercially available probiotic preparations across care settings for age related conditions including gut dysmotility, osteoporosis, common infectious diseases and cognitive impairment. Although methodologies vary, randomised controlled trials have reproduced results in these areas, and so warrant consideration of probiotics as a low risk adjuvant treatment for specific indications in the elderly.
Collapse
Affiliation(s)
- E Setbo
- Emerald Setbo, University of Queensland, Brisbane, Queensland Australia,
| | | | | | | |
Collapse
|
16
|
Abstract
Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects the clinical course of non-CVD health problems is controversial. This uncertainty is an important issue to address because older patients with CVD are often affected by multimorbidity and frailty - which affect clinical manifestations, prognosis, and response to treatment - and are associated with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and interfering with homeostatic signalling is supported by mechanistic studies but requires confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset of cardiovascular frailty should be tested in clinical trials.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Elisa Fabbri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Riaz Rajoka MS, Zhao H, Li N, Lu Y, Lian Z, Shao D, Jin M, Li Q, Zhao L, Shi J. Origination, change, and modulation of geriatric disease-related gut microbiota during life. Appl Microbiol Biotechnol 2018; 102:8275-8289. [PMID: 30066188 DOI: 10.1007/s00253-018-9264-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
Abstract
The age-related changes in the diversity and composition of the gut microbiota are well described in recent studies. These changes have been suggested to be influenced by age-associated weakening of the immune system and low-grade chronic inflammation, resulting in numerous age-associated pathological conditions. Gut microbiota homeostasis is important throughout the life of the host by providing vital functions to regulate various immunological functions and homeostasis. Based on published results, we summarize the relationship between the gut microbiota and aging-related diseases, especially Parkinson's disease, immunosenescence, rheumatoid arthritis, bone loss, and metabolic syndrome. The change in composition of the gut microbiota and gut ecosystem during life and its influence on the host immunologic and metabolic phenotype are also analyzed to determine factors that affect aging-related diseases. Approaches to maintain host health and prevent or cure geriatric diseases are also discussed.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.,Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Haobin Zhao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Na Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Yao Lu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Ziyang Lian
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
18
|
Di Sabatino A, Lenti MV, Cammalleri L, Corazza GR, Pilotto A. Frailty and the gut. Dig Liver Dis 2018; 50:533-541. [PMID: 29628357 DOI: 10.1016/j.dld.2018.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 02/08/2023]
Abstract
Frailty, which is a syndrome that encompasses losses in physical, psychological and social domains, is responsible for enhanced vulnerability to endogenous and/or exogenous stressors. Frailty is a public health problem for an ageing society; however, it is poorly understood and often under-recognised in clinical settings. In particular, the impact of frailty on either intestinal functions, i.e. immune response, permeability, and absorption, or gut microbiota composition is as yet mostly unexplored. A better comprehension of the intestinal dysfunction occurring in the elderly would help in clarifying the mechanisms predisposing frail patients to a higher risk of infectious or inflammatory events. Moreover, recent evidence suggests that senescence-induced perturbations of the gut-brain axis are involved in the neuroinflammation process, thus raising the hypothesis that preserving gut permeability and preventing frailty-related changes in the microbiota composition might reduce the susceptibility to develop neurodegenerative disorders. In this review, we highlight the current insights concerning the relationship between frailty, intestinal functions, microbiota, and gut-brain axis.
Collapse
Affiliation(s)
- Antonio Di Sabatino
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Marco Vincenzo Lenti
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Lisa Cammalleri
- Department of Geriatric Care, OrthoGeriatrics and Rehabilitation, Frailty Area, Galliera Hospital, Genova, Italy
| | - Gino Roberto Corazza
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Alberto Pilotto
- Department of Geriatric Care, OrthoGeriatrics and Rehabilitation, Frailty Area, Galliera Hospital, Genova, Italy.
| |
Collapse
|
19
|
Hughes GM, Leech J, Puechmaille SJ, Lopez JV, Teeling EC. Is there a link between aging and microbiome diversity in exceptional mammalian longevity? PeerJ 2018; 6:e4174. [PMID: 29333342 PMCID: PMC5764031 DOI: 10.7717/peerj.4174] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
A changing microbiome has been linked to biological aging in mice and humans, suggesting a possible role of gut flora in pathogenic aging phenotypes. Many bat species have exceptional longevity given their body size and some can live up to ten times longer than expected with little signs of aging. This study explores the anal microbiome of the exceptionally long-lived Myotis myotis bat, investigating bacterial composition in both adult and juvenile bats to determine if the microbiome changes with age in a wild, long-lived non-model organism, using non-lethal sampling. The anal microbiome was sequenced using metabarcoding in more than 50 individuals, finding no significant difference between the composition of juvenile and adult bats, suggesting that age-related microbial shifts previously observed in other mammals may not be present in Myotis myotis. Functional gene categories, inferred from metabarcoding data, expressed in the M. myotis microbiome were categorized identifying pathways involved in metabolism, DNA repair and oxidative phosphorylation. We highlight an abundance of ‘Proteobacteria’ relative to other mammals, with similar patterns compared to other bat microbiomes. Our results suggest that M. myotis may have a relatively stable, unchanging microbiome playing a role in their extended ‘health spans’ with the advancement of age, and suggest a potential link between microbiome and sustained, powered flight.
Collapse
Affiliation(s)
- Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - John Leech
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Sébastien J Puechmaille
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Zoology Institute, Greifswald, Germany
| | - Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, United States of America
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
O'Hagan C, Li JV, Marchesi JR, Plummer S, Garaiova I, Good MA. Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats. Neurobiol Learn Mem 2017; 144:36-47. [DOI: 10.1016/j.nlm.2017.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
|
21
|
Coffman MA, Camire ME. Perceived Barriers to Increased Whole Grain Consumption by Older Adults in Long-Term Care. J Nutr Gerontol Geriatr 2017; 36:178-188. [PMID: 29252145 DOI: 10.1080/21551197.2017.1385564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many older adults fail to consume adequate amounts of dietary fiber from food sources, including whole grains. Little information is available about consumption of dietary fiber and whole grains by residents of long-term care facilities. Surveys were mailed to 3,000 randomly selected US members of the Academy of Nutrition and Dietetics who worked in practice groups related to elder care. Net response rate was 22.7% (n = 681). Cost was a barrier to whole grain use for 27.1% of respondents, followed by dietary needs (22.1%), contracts in place (20.3%), and overall nutritional content (20.1%). Over 75% of respondents stated their patients require dietary fiber supplementation. Nutrition professionals most frequently (23.6%) reported spending $11-20 monthly per patient on dietary fiber supplements. Although a majority of facilities served whole grain foods daily, 89.5% of respondents would like to serve more whole grains. Ready-to-eat cereals, bread, bagels, and hot cereals were the most common whole grain products served at the facilities where survey respondents worked. An economic analysis of the benefits of increased consumption of whole grains and other high-fiber foods versus the use of laxative supplements may be helpful to administrators of long-term care facilities.
Collapse
Affiliation(s)
- Melodie A Coffman
- a School of Food & Agriculture , University of Maine , Orono , Maine , USA
| | - Mary Ellen Camire
- a School of Food & Agriculture , University of Maine , Orono , Maine , USA
| |
Collapse
|
22
|
Ticinesi A, Milani C, Lauretani F, Nouvenne A, Mancabelli L, Lugli GA, Turroni F, Duranti S, Mangifesta M, Viappiani A, Ferrario C, Maggio M, Ventura M, Meschi T. Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Sci Rep 2017; 7:11102. [PMID: 28894183 PMCID: PMC5593887 DOI: 10.1038/s41598-017-10734-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
Reduced biodiversity and increased representation of opportunistic pathogens are typical features of gut microbiota composition in aging. Few studies have investigated their correlation with polypharmacy, multimorbidity and frailty. To assess it, we analyzed the fecal microbiota from 76 inpatients, aged 83 ± 8. Microbiome biodiversity (Chao1 index) and relative abundance of individual bacterial taxa were determined by next-generation 16S rRNA microbial profiling. Their correlation with number of drugs, and indexes of multimorbidity and frailty were verified using multivariate linear regression models. The impact of gut microbiota biodiversity on mortality, rehospitalizations and incident sepsis was also assessed after a 2-year follow-up, using Cox regression analysis. We found a significant negative correlation between the number of drugs and Chao1 Index at multivariate analysis. The number of drugs was associated with the average relative abundance of 15 taxa. The drug classes exhibiting the strongest association with single taxa abundance were proton pump inhibitors, antidepressants and antipsychotics. Conversely, frailty and multimorbidity were not significantly associated with gut microbiota biodiversity. Very low Chao1 index was also a significant predictor of mortality, but not of rehospitalizations and sepsis, at follow-up. In aging, polypharmacy may thus represent a determinant of gut microbiota composition, with detrimental clinical consequences.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy. .,Dipartimento Medico-Geriatrico-Riabilitativo, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Fulvio Lauretani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Dipartimento Medico-Geriatrico-Riabilitativo, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Dipartimento Medico-Geriatrico-Riabilitativo, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marta Mangifesta
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Dipartimento Medico-Geriatrico-Riabilitativo, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Dipartimento Medico-Geriatrico-Riabilitativo, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
23
|
Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, Van de Wiele C, De Spiegeleer B. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In vitro and In vivo. Front Neurosci 2017; 11:183. [PMID: 28446863 PMCID: PMC5388746 DOI: 10.3389/fnins.2017.00183] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans.
Collapse
Affiliation(s)
- Frederick Verbeke
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Severine De Craemer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Nathan Debunne
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Yorick Janssens
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, AZ GroeningeKortrijk, Belgium.,Department of Nuclear Medicine and Radiology, Faculty of Medicine and Health Sciences, Ghent UniversityGhent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
24
|
Kitsios GD, Morowitz MJ, Dickson RP, Huffnagle GB, McVerry BJ, Morris A. Dysbiosis in the intensive care unit: Microbiome science coming to the bedside. J Crit Care 2017; 38:84-91. [PMID: 27866110 PMCID: PMC5328797 DOI: 10.1016/j.jcrc.2016.09.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022]
Abstract
Complex microbial communities within the human body, constituting the microbiome, have a broad impact on human health and disease. A growing body of research now examines the role of the microbiome in patients with critical illness, such as sepsis and acute respiratory failure. In this article, we provide an introduction to microbiome concepts and terminology and we systematically review the current evidence base of the critical-illness microbiome, including 51 studies in animal models and pediatric and adult critically ill patients. We further examine how this emerging scientific discipline may transform the way we manage infectious and inflammatory diseases in intensive care units. The evolving molecular, culture-independent techniques offer the ability to study microbial communities in unprecedented depth and detail, and in the short-term, may enable us to diagnose and treat infections in critical care more precisely and effectively. Longer term, these tools may also give us insights in the underlying pathophysiology of critical illness and reveal previously unsuspected targets for innovative, microbiome-targeted therapeutics. We finally propose a roadmap for future studies in the field for transforming critical care from its current isolated focus on the host to a more personalized paradigm addressing both human and microbial contributions to critical illness.
Collapse
Affiliation(s)
- Georgios D Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Center for Medicine and the Microbiome, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA.
| | - Michael J Morowitz
- Center for Medicine and the Microbiome, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Pediatric Surgery, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bryan J McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Center for Medicine and the Microbiome, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA.
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Center for Medicine and the Microbiome, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
The Effect of Bifidobacterium animalis ssp. lactis HN019 on Cellular Immune Function in Healthy Elderly Subjects: Systematic Review and Meta-Analysis. Nutrients 2017; 9:nu9030191. [PMID: 28245559 PMCID: PMC5372854 DOI: 10.3390/nu9030191] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
Elderly people have increased susceptibility to infections and cancer that are associated with decline in cellular immune function. The objective of this work was to determine the efficacy of Bifidobacterium (B.) animalis ssp. lactis HN019 (HN019) supplementation on cellular immune activity in healthy elderly subjects. We conducted a systematic review of Medline and Embase for controlled trials that reported polymorphonuclear (PMN) cell phagocytic capacity or natural killer (NK) cell tumoricidal activity following B. lactis HN019 consumption in the elderly. A random effects meta-analysis was performed with standardized mean difference (SMD) and 95% confidence interval between probiotic and control groups for each outcome. A total of four clinical trials were included in this analysis. B. lactis HN019 supplementation was highly efficacious in increasing PMN phagocytic capacity with an SMD of 0.74 (95% confidence interval: 0.38 to 1.11, p < 0.001) and moderately efficacious in increasing NK cell tumoricidal activity with an SMD of 0.43 (95% confidence interval: 0.08 to 0.78, p = 0.02). The main limitations of this research were the small number of included studies, short-term follow-up, and assessment of a single probiotic strain. In conclusion, daily consumption of B. lactis HN019 enhances NK cell and PMN function in healthy elderly adults.
Collapse
|
26
|
Affiliation(s)
- Yoon Jin Choi
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Bjørklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition 2016; 33:311-321. [PMID: 27746034 DOI: 10.1016/j.nut.2016.07.018] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/14/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
Diet may be defined as a complex process that should involve a deeper comprehension of metabolism, energy balance, and the molecular pathways involved in cellular stress response and survival, gut microflora genetics, enzymatic polymorphism within the human population, and the role of plant-derived polyphenols in this context. Metabolic syndrome, encompassing pathologies with a relatively high morbidity, such as type 2 diabetes, obesity, and cardiovascular disease, is a bullet point of the big concern about how daily dietary habits should promote health and prevent metabolic impairments to prevent hospitalization and the need for health care. From a clinical point of view, very few papers deal with this concern, whereas most of the evidence reported focuses on in vitro and animal models, which study the activity of phytochemicals contained in the daily diet. A fundamental issue addressed by dietitians deals with the role exerted by redox-derived reactive species. Most plant polyphenols act as antioxidants, but recent evidence supports the idea that these compounds primarily activate a mild oxidative stress to elicit a positive, beneficial response from cells. How these compounds may act upon the detoxifying system exerting a scavenging role from reactive oxygen or nitrogen species is still a matter of debate; however, it can be argued that their role is even more complex than expected, acting as signaling molecules in the cross-talk mitochondria-endoplasmic reticulum and in enzymatic pathways involved in the energetic balance. In this relationship, a fundamental role is played by the brain-adipose tissue-gut axis. The aim of this review was to elucidate this topic and the state of art about the role of reactive species in cell signaling and the function of metabolism and survival to reappraise the role of plant-derived chemicals.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|