1
|
Makovka YV, Oshchepkov DY, Fedoseeva LA, Markel AL, Redina OE. Effect of Short-Term Restraint Stress on the Expression of Genes Associated with the Response to Oxidative Stress in the Hypothalamus of Hypertensive ISIAH and Normotensive WAG Rats. Antioxidants (Basel) 2024; 13:1302. [PMID: 39594444 PMCID: PMC11590967 DOI: 10.3390/antiox13111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Normotensive and hypertensive organisms respond differently to stress factors; however, the features of the central molecular genetic mechanisms underlying the reaction of the hypertensive organism to stress have not been fully established. In this study, we examined the transcriptome profiles of the hypothalamus of hypertensive ISIAH rats, modeling a stress-sensitive form of arterial hypertension, and normotensive WAG rats at rest and after exposure to a single short-term restraint stress. It was shown that oxidative phosphorylation is the most significantly enriched process among metabolic changes in the hypothalamus of rats of both strains when exposed to a single short-term restraint stress. The analysis revealed DEGs representing both a common response to oxidative stress for both rat strains and a strain-specific response to oxidative stress for hypertensive ISIAH rats. Among the genes of the common response to oxidative stress, the most significant changes in the transcription level were observed in Nos1, Ppargc1a, Abcc1, Srxn1, Cryab, Hspb1, and Fosl1, among which Abcc1 and Nos1 are associated with hypertension, and Fosl1 and Ppargc1a encode transcription factors. The response to oxidative stress specific to hypertensive rats is associated with the activation of the Fos gene. The DEG's promoter region enrichment analysis allowed us to hypothesize that the response to oxidative stress may be mediated by the participation of the transcription factor CREB1 (Cyclic AMP-responsive element-binding protein 1) and the glucocorticoid receptor (NR3C1) under restraint stress in the hypothalamus of both rat strains. The results of the study revealed common and strain-specific features in the molecular mechanisms associated with oxidative phosphorylation and oxidative stress response in the hypothalamus of hypertensive ISIAH and normotensive WAG rats following a single short-term restraint stress. The obtained results expand the understanding of the most significant molecular targets for further research aimed at developing new therapeutic strategies for the prevention of the consequences of acute emotional stress, taking into account the hypertensive state of the patient.
Collapse
Affiliation(s)
- Yulia V. Makovka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Dmitry Yu. Oshchepkov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
- Kurchatov Genomic Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Larisa A. Fedoseeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
| | - Arcady L. Markel
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga E. Redina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
| |
Collapse
|
2
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
3
|
Musazzi L, Mingardi J, Ieraci A, Barbon A, Popoli M. Stress, microRNAs, and stress-related psychiatric disorders: an overview. Mol Psychiatry 2023; 28:4977-4994. [PMID: 37391530 DOI: 10.1038/s41380-023-02139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown. Epigenetic mechanisms have been shown to mediate the effects of the environment on brain gene expression and behavior. MicroRNAs, small non-coding RNAs estimated to control the expression of about 60% of all genes by post-transcriptional regulation, are a fundamental epigenetic mechanism. Many microRNAs are expressed in the brain, where they work as fine-tuners of gene expression, with a key role in the regulation of homeostatic balance, and a likely influence on pro- or maladaptive brain changes. Here we have selected a number of microRNAs, which have been strongly implicated as mediators of the effects of stress in the brain and in the development of stress-related psychiatric disorders. For all of them recent evidence is reported, obtained from rodent stress models, manipulation of microRNAs levels with related behavioral changes, and clinical studies of stress-related psychiatric disorders. Moreover, we have performed a bioinformatic analysis of the predicted brain-expressed target genes of the microRNAs discussed, and found a central role for mechanisms involved in the regulation of synaptic function. The complex regulatory role of microRNAs has suggested their use as biomarkers for diagnosis and treatment response, as well as possible therapeutic drugs. While, microRNA-based diagnostics have registered advancements, particularly in oncology and other fields, and many biotech companies have launched miRNA therapeutics in their development pipeline, the development of microRNA-based tests and drugs for brain disorders is comparatively slower.
Collapse
Affiliation(s)
- Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
- Molecular Pharmacology, Cellular and Behavioral Physiology; Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
4
|
Aghighi F, Salami M, Talaei SA. Effect of postnatal environmental enrichment on LTP induction in the CA1 area of hippocampus of prenatally traffic noise-stressed female rats. AIMS Neurosci 2023; 10:269-281. [PMID: 38188003 PMCID: PMC10767064 DOI: 10.3934/neuroscience.2023021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 01/09/2024] Open
Abstract
Early-life stress negatively alters mammalian brain programming. Environmental enrichment (EE) has beneficial effects on brain structure and function. This study aimed to evaluate the effects of postnatal environmental enrichment on long-term potentiation (LTP) induction in the hippocampal CA1 area of prenatally stressed female rats. The pregnant Wistar rats were housed in a standard animal room and exposed to traffic noise stress 2 hours/day during the third week of pregnancy. Their offspring either remained intact (ST) or received enrichment (SE) for a month starting from postnatal day 21. The control groups either remained intact (CO) or received enrichment (CE). Basic field excitatory post-synaptic potentials (fEPSPs) were recorded in the CA1 area; then, LTP was induced by high-frequency stimulation. Finally, the serum levels of corticosterone were measured. Our results showed that while the prenatal noise stress decreased the baseline responses of the ST rats when compared to the control rats (P < 0.001), the postnatal EE increased the fEPSPs of both the CE and SE animals when compared to the respective controls. Additionally, high-frequency stimulation (HFS) induced LTP in the fEPSPs of the CO rats (P < 0.001) and failed to induce LTP in the fEPSPs of the ST animals. The enriched condition caused increased potentiation of post-HFS responses in the controls (P < 0.001) and restored the disrupted synaptic plasticity of the CA1 area in the prenatally stressed rats. Likewise, the postnatal EE decreased the elevated serum corticosterone of prenatally stressed offspring (P < 0.001). In conclusion, the postnatal EE restored the stress induced impairment of synaptic plasticity in rats' female offspring.
Collapse
Affiliation(s)
| | | | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
5
|
Dee G, Ryznar R, Dee C. Epigenetic Changes Associated with Different Types of Stressors and Suicide. Cells 2023; 12:cells12091258. [PMID: 37174656 PMCID: PMC10177343 DOI: 10.3390/cells12091258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Stress is associated with various epigenetic changes. Some stress-induced epigenetic changes are highly dynamic, whereas others are associated with lasting marks on the epigenome. In our study, a comprehensive narrative review of the literature was performed by investigating the epigenetic changes that occur with acute stress, chronic stress, early childhood stress, and traumatic stress exposures, along with examining those observed in post-mortem brains or blood samples of suicide completers and attempters. In addition, the transgenerational effects of these changes are reported. For all types of stress studies examined, the genes Nr3c1, OXTR, SLC6A4, and BDNF reproducibly showed epigenetic changes, with some modifications observed to be passed down to subsequent generations following stress exposures. The aforementioned genes are known to be involved in neuronal development and hormonal regulation and are all associated with susceptibility to mental health disorders including depression, anxiety, personality disorders, and PTSD (post-traumatic stress disorder). Further research is warranted in order to determine the scope of epigenetic actionable targets in individuals suffering from the long-lasting effects of stressful experiences.
Collapse
Affiliation(s)
- Garrett Dee
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80112, USA
| | - Colton Dee
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
6
|
Huang H, Wang W. Molecular mechanisms of glucocorticoid resistance. Eur J Clin Invest 2023; 53:e13901. [PMID: 36346177 DOI: 10.1111/eci.13901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND As a powerful anti-inflammatory, immunosuppressive, and antiproliferative drug, glucocorticoid (GC) plays an important role in the treatment of various diseases. However, some patients may experience glucocorticoid resistance (GCR) in clinical, and its molecular mechanism have not been determined. METHODS The authors performed a review of the literature on GCR focusing on mutations in the NR3C1 gene and impaired glucocorticoid receptor (GR) signalling, using METSTR (2000 through May 2022) to identify original articles and reviews on this topic. The search terms included 'glucocorticoid resistance/insensitive', 'steroid resistance/insensitive', 'NR3C1', and 'glucocorticoid receptor'. RESULTS Primary GCR is mainly caused by NR3C1 gene mutation, and 31 NR3C1 gene mutations have been reported so far. Secondary GCR is caused by impaired GC signalling pathways, including decreased expression of GR, impaired nuclear translocation of GR, and impaired binding of GR to GC and GR to target genes. However, the current research is more on the expression level of GR, and there are relatively few studies on other mechanisms. In addition, methods for improving GC sensitivity are rarely reported. CONCLUSION The molecular mechanisms of GCR are complex and may differ in different diseases or different patients. In future studies, when exploring the mechanism of GCR, methods to improve GC sensitivity should also be investigated.
Collapse
Affiliation(s)
- Huanming Huang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Wenqing Wang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Peripheral mRNA Expression and Prognostic Significance of Emotional Stress Biomarkers in Metastatic Breast Cancer Patients. Int J Mol Sci 2022; 23:ijms232214097. [PMID: 36430579 PMCID: PMC9694977 DOI: 10.3390/ijms232214097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Emotional stress is believed to be associated with increased tumor progression. Stress-induced epigenetic modifications can contribute to the severity of disease and poor prognosis in cancer patients. The current study aimed to investigate the expression profiles along with the prognostic significance of psychological stress-related genes in metastatic breast cancer patients, to rationalize the molecular link between emotional stress and cancer progression. We profiled the expression of selected stress-associated genes (5-HTT, NR3C1, OXTR, and FKBP5) in breast cancer including the stress evaluation of all participants using the Questionnaire on Distress in Cancer Patients-short form (QSC-R10). A survival database, the Kaplan-Meier Plotter, was used to explore the prognostic significance of these genes in breast cancer. Our results showed relatively low expressions of 5-HTT (p = 0.02) and OXTR (p = 0.0387) in metastatic breast cancer patients as compared to the non-metastatic group of patients. The expression of NR3C1 was low in tumor grade III as compared to grade II (p = 0.04). Additionally, the expression of NR3C1 was significantly higher in patients with positive estrogen receptor status. However, no significant difference was found regarding FKBP5 expression in breast cancer. The results suggest a potential implication of these genes in breast cancer pathology and prognosis.
Collapse
|
8
|
Variability in Behavioral Phenotypes after Forced Swimming-Induced Stress in Rats Is Associated with Expression of the Glucocorticoid Receptor, Nurr1, and IL-1β in the Hippocampus. Int J Mol Sci 2021; 22:ijms222312700. [PMID: 34884503 PMCID: PMC8657438 DOI: 10.3390/ijms222312700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/05/2022] Open
Abstract
Individual differences in coping with stress may determine either a vulnerable or resilient phenotype. Therefore, it is important to better understand the biology underlying the behavioral phenotype. We assessed whether individual behavioral phenotype to acute stress is related with the hippocampal expression of glucocorticoid receptor (GR), Nurr1, interleukin-1 beta (IL-1β) or brain-derived neurotrophic factor (BDNF). Wistar male rats were exposed to forced swimming for 15 min and sacrificed at different times. Behavioral response was analyzed, and it was compared with the gene and protein expression of GR, Nurr1, IL-1β and BDNF in the hippocampus for each time point. Behavioral phenotyping showed a group with high immobility (vulnerable) while another had low immobility (resilient). No significant differences were found in the Nurr1, IL-1β and BDNF mRNA levels between resilient and vulnerable rats at different recovery times except for Nr3c1 (gene for GR). However, exposure to stress caused significantly higher levels of GR, Nurr1 and IL-1β proteins of vulnerable compared to resilient rats. This variability of behavioral phenotypes is associated with a differential molecular response to stress that involves GR, Nurr1, and IL-1β as mediators in coping with stress. This contributes to identifying biomarkers of susceptibility to stress.
Collapse
|
9
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
10
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|
11
|
Mifsud KR, Kennedy CLM, Salatino S, Sharma E, Price EM, Haque SN, Gialeli A, Goss HM, Panchenko PE, Broxholme J, Engledow S, Lockstone H, Cordero Llana O, Reul JMHM. Distinct regulation of hippocampal neuroplasticity and ciliary genes by corticosteroid receptors. Nat Commun 2021; 12:4737. [PMID: 34362910 PMCID: PMC8346558 DOI: 10.1038/s41467-021-24967-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid hormones (GCs) - acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) - are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.
Collapse
Affiliation(s)
- Karen R Mifsud
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Clare L M Kennedy
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Silvia Salatino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily M Price
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Samantha N Haque
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Andriana Gialeli
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Hannah M Goss
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Polina E Panchenko
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Simon Engledow
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Oscar Cordero Llana
- Stem Cell Biology Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
12
|
Lu L, Huang J, Deng X, Sun X, Dong J. Application of glucocorticoids in patients with novel coronavirus infection: From bench to bedside. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s257590002030009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) have potential anti-inflammatory and immunosuppressive effects. There is plenty of controversy about the application of glucocorticoids in the treatment of coronavirus disease 2019 (COVID-19). This paper briefly summarizes the mechanism of glucocorticoids and their receptors and clinical applications in COVID-19. Through reviewing the current literature, our aim is to have a deeper understanding of the mechanism of GCs and their clinical applications, so as to find possible ways to enhance their efficacy and reduce drug resistance or side effects.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
13
|
Sales AJ, Maciel IS, Suavinha ACDR, Joca SRL. Modulation of DNA Methylation and Gene Expression in Rodent Cortical Neuroplasticity Pathways Exerts Rapid Antidepressant-Like Effects. Mol Neurobiol 2021; 58:777-794. [PMID: 33025509 DOI: 10.1007/s12035-020-02145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Stress increases DNA methylation, primarily a suppressive epigenetic mechanism catalyzed by DNA methyltransferases (DNMT), and decreases the expression of genes involved in neuronal plasticity and mood regulation. Despite chronic antidepressant treatment decreases stress-induced DNA methylation, it is not known whether inhibition of DNMT would convey rapid antidepressant-like effects. AIM This work tested such a hypothesis and evaluated whether a behavioral effect induced by DNMT inhibitors (DNMTi) corresponds with changes in DNA methylation and transcript levels in genes consistently associated with the neurobiology of depression and synaptic plasticity (BDNF, TrkB, 5-HT1A, NMDA, and AMPA). METHODS Male Wistar rats received intraperitoneal (i.p.) injection of two pharmacologically different DNMTi (5-AzaD 0.2 and 0.6 mg/kg or RG108 0.6 mg/kg) or vehicle (1 ml/kg), 1 h or 7 days before the learned helplessness test (LH). DNA methylation in target genes and the correspondent transcript levels were measured in the hippocampus (HPC) and prefrontal cortex (PFC) using meDIP-qPCR. In parallel separate groups, the antidepressant-like effect of 5-AzaD and RG108 was investigated in the forced swimming test (FST). The involvement of cortical BDNF-TrkB-mTOR pathways was assessed by intra-ventral medial PFC (vmPFC) injections of rapamycin (mTOR inhibitor), K252a (TrkB receptor antagonist), or vehicle (0.2 μl/side). RESULTS We found that both 5-AzaD and RG108 acutely and 7 days before the test decreased escape failures in the LH. LH stress increased DNA methylation and decreased transcript levels of BDNF IV and TrkB in the PFC, effects that were not significantly attenuated by RG108 treatment. The systemic administration of 5-AzaD (0.2 mg/kg) and RG108 (0.2 mg/kg) induced an antidepressant-like effect in FST, which was, however, attenuated by TrkB and mTOR inhibition into the vmPFC. CONCLUSION These findings suggest that acute inhibition of stress-induced DNA methylation promotes rapid and sustained antidepressant effects associated with increased BDNF-TrkB-mTOR signaling in the PFC.
Collapse
Affiliation(s)
- Amanda J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- FMRP-USP, Av Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Izaque S Maciel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angélica C D R Suavinha
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia R L Joca
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- FCFRP-USP, Av Café, sn, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
14
|
Unteroberdörster M, Herring A, Bendix I, Lückemann L, Petschulat J, Sure U, Keyvani K, Hetze S, Schedlowski M, Hadamitzky M. Neurobehavioral effects in rats with experimentally induced glioblastoma after treatment with the mTOR-inhibitor rapamycin. Neuropharmacology 2020; 184:108424. [PMID: 33285202 DOI: 10.1016/j.neuropharm.2020.108424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
Psychiatric symptoms as seen in affective and anxiety disorders frequently appear during glioblastoma (GBM) treatment and disease progression, additionally deteriorate patient's daily life routine. These central comorbidities are difficult to recognize and the causes for these effects are unknown. Since overactivation of mechanistic target of rapamycin (mTOR)- signaling is one key driver in GBM growth, the present study aimed at examining in rats with experimentally induced GBM, neurobehavioral consequences during disease progression and therapy. Male Fisher 344 rats were implanted with syngeneic RG2 tumor cells in the right striatum and treated with the mTOR inhibitor rapamycin (3 mg/kg; once daily, for eight days) before behavioral performance, brain protein expression, and blood samples were analyzed. We could show that treatment with rapamycin diminished GBM tumor growth, confirming mTOR-signaling as one key driver for tumor growth. Importantly, in GBM animals' anxiety-like behavior was observed but only after treatment with rapamycin. These behavioral alterations were moreover accompanied by aberrant glucocorticoid receptor, phosphorylated p70 ribosomal S6 kinase alpha (p-p70s6k), and brain derived neurotrophic factor protein expression in the hippocampus and amygdala in the non-tumor-infiltrated hemisphere of the brain. Despite the beneficial effects on GBM tumor growth, our findings indicate that therapy with rapamycin impaired neurobehavioral functioning. This experimental approach has a high translational value. For one, it emphasizes aberrant mTOR functioning as a central feature mechanistically linking complex brain diseases and behavioral disturbances. For another, it highlights the importance of elaborating the cause of unwanted central effects of immunosuppressive and antiproliferative drugs used in transplantation medicine, immunotherapy, and oncology.
Collapse
Affiliation(s)
- Meike Unteroberdörster
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany; Department of Neurosurgery, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, 45122, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/ Neonatology & Experimental Perinatal Neuroscience, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Jasmin Petschulat
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, 45122, Essen, Germany
| | - Susann Hetze
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany; Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
15
|
Sajjadi FS, Aghighi F, Vahidinia Z, Azami-Tameh A, Salami M, Talaei SA. Prenatal urban traffic noise exposure impairs spatial learning and memory and reduces glucocorticoid receptor expression in the hippocampus of male rat offspring. Physiol Int 2020; 107:209-219. [PMID: 32750028 DOI: 10.1556/2060.2020.00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 03/11/2020] [Indexed: 11/19/2022]
Abstract
Introduction Exposure to noise stress during early life may permanently affect the structure and function of the central nervous system. The aim of this study was to evaluate the effects of prenatal exposure to urban traffic noise on the spatial learning and memory of the rats' offspring and the expression of glucocorticoid receptors (GRs) in their hippocampi. Methods Three g\roups of pregnant rats were exposed to recorded urban traffic noise for 1, 2 or 4 h/day during the last week of pregnancy. At the age of 45 days, their male offspring were introduced to the Morris water maze (MWM) for assessment of spatial learning and memory. The corticosterone levels were measured in the offspring's sera by radioimmunoassay, and the relative expression of glucocorticoid and mineralocorticoid receptors (MRs) in their hippocampi was evaluated via RT-PCR. Results Facing urban traffic noise for 2 and 4 h/day during the third trimester of pregnancy caused the offspring to spend more time and to travel a larger distance than the controls to find the target platform. Analogously, these two groups were inferior to their control counterparts in the probe test. Also, prenatal noise stress elevated the corticosterone concentration in the sera of the rats' offspring and dose-dependently decreased the relative expression of the mRNA of both GRs and MRs in their hippocampi. Conclusions Urban traffic noise exposure during the last trimester of pregnancy impairs spatial learning and memory of rat offspring and reduces GRs and MRs gene expression in the hippocampus.
Collapse
Affiliation(s)
- F S Sajjadi
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - F Aghighi
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Z Vahidinia
- 2Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - A Azami-Tameh
- 2Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - M Salami
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - S A Talaei
- 1Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
16
|
Olescowicz G, Sampaio TB, de Paula Nascimento-Castro C, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Protective Effects of Agmatine Against Corticosterone-Induced Impairment on Hippocampal mTOR Signaling and Cell Death. Neurotox Res 2020; 38:319-329. [DOI: 10.1007/s12640-020-00212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
|
17
|
Stoffel M, Gardini E, Ehrenthal J, Abbruzzese E, Ditzen B. Evaluation of Stress Management and Stress Prevention Using Epigenetic Markers. VERHALTENSTHERAPIE 2020. [DOI: 10.1159/000506323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Baumbach JL, Zovkic IB. Hormone-epigenome interactions in behavioural regulation. Horm Behav 2020; 118:104680. [PMID: 31927018 DOI: 10.1016/j.yhbeh.2020.104680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Interactions between hormones and epigenetic factors are key regulators of behaviour, but the mechanisms that underlie their effects are complex. Epigenetic factors can modify sensitivity to hormones by altering hormone receptor expression, and hormones can regulate epigenetic factors by recruiting epigenetic regulators to DNA. The bidirectional nature of this relationship is becoming increasingly evident and suggests that the ability of hormones to regulate certain forms of behaviour may depend on their ability to induce changes in the epigenome. Moreover, sex differences have been reported for several epigenetic modifications, and epigenetic factors are thought to regulate sexual differentiation of behaviour, although specific mechanisms remain to be understood. Indeed, hormone-epigenome interactions are highly complex and involve both canonical and non-canonical regulatory pathways that may permit for highly specific gene regulation to promote variable forms of behavioural adaptation.
Collapse
Affiliation(s)
- Jennet L Baumbach
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|
19
|
Chaix R, Fagny M, Cosin-Tomás M, Alvarez-López M, Lemee L, Regnault B, Davidson RJ, Lutz A, Kaliman P. Differential DNA methylation in experienced meditators after an intensive day of mindfulness-based practice: Implications for immune-related pathways. Brain Behav Immun 2020; 84:36-44. [PMID: 31733290 PMCID: PMC7010561 DOI: 10.1016/j.bbi.2019.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
The human methylome is dynamically influenced by psychological stress. However, its responsiveness to stress management remains underexplored. Meditation practice has been shown to significantly reduce stress level, among other beneficial neurophysiological outcomes. Here, we evaluated the impact of a day of intensive meditation practice (t2-t1 = 8 h) on the methylome of peripheral blood mononuclear cells in experienced meditators (n = 17). In parallel, we assessed the influence of a day of leisure activities in the same environment on the methylome of matched control subjects with no meditation experience (n = 17). DNA methylation profiles were analyzed using the Illumina 450 K beadchip array. We fitted for each methylation site a linear model for multi-level experiments which adjusts the variation between t1 and t2 for baseline differences. No significant baseline differences in methylation profiles was detected between groups. In the meditation group, we identified 61 differentially methylated sites (DMS) after the intervention. These DMS were enriched in genes mostly associated with immune cell metabolism and ageing and in binding sites for several transcription factors involved in immune response and inflammation, among other functions. In the control group, no significant change in methylation level was observed after the day of leisure activities. These results suggest that a short meditation intervention in trained subjects may rapidly influence the epigenome at sites of potential relevance for immune function and provide a better understanding of the dynamics of the human methylome over short time windows.
Collapse
Affiliation(s)
- R Chaix
- Unité d'Eco-anthropologie (EA), Museum National d'Histoire Naturelle, CNRS, Université Paris Diderot, 75016 Paris, France.
| | - M Fagny
- Génétique Quantitative et Évolution, Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - M Cosin-Tomás
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - M Alvarez-López
- Unitat de Farmacologia, Facultat de Farmàcia, Institut de Biomedicina, Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes, Barcelone, Spain
| | - L Lemee
- Plate-forme de Génotypage des Eucaryotes, Pôle Biomics, Institut Pasteur, Paris, France; Plateforme Biomics, Institut Pasteur, Paris, France
| | - B Regnault
- Plate-forme de Génotypage des Eucaryotes, Pôle Biomics, Institut Pasteur, Paris, France; Biology of Infection Unit, Inserm U1117. Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - R J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, USA
| | - A Lutz
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - P Kaliman
- Center for Healthy Minds, University of Wisconsin-Madison, USA; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
20
|
Stoffel M, Gardini E, Ehrenthal J, Abbruzzese E, Ditzen B. Evaluation von Stressprävention und Stressbewältigung mittels epigenetischer Marker. VERHALTENSTHERAPIE 2020. [DOI: 10.1159/000505595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Bartlett AA, Lapp HE, Hunter RG. Epigenetic Mechanisms of the Glucocorticoid Receptor. Trends Endocrinol Metab 2019; 30:807-818. [PMID: 31699238 DOI: 10.1016/j.tem.2019.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/17/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
The glucocorticoid receptor (GR) has been shown to be important for mediating cellular responses to stress and circulating glucocorticoids. Ligand-dependent transcriptional changes induced by GR are observed across numerous tissues. However, the mechanisms by which GR achieves cell and tissue-specific effects are less clear. Epigenetic mechanisms have been proposed to explain some of these differences as well as some of the lasting, even transgenerational, effects of stress and glucocorticoid action. GR functions in tandem with epigenetic cellular machinery to coordinate transcription and shape chromatin structure. Here, we describe GR interactions with these effectors and how GR acts to reshape the epigenetic landscape in response to the environment.
Collapse
Affiliation(s)
- Andrew A Bartlett
- Department of Psychology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| | - Hannah E Lapp
- Department of Psychology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| | - Richard G Hunter
- Department of Psychology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA.
| |
Collapse
|
22
|
Wong APY, French L, Leonard G, Perron M, Pike GB, Richer L, Veillette S, Pausova Z, Paus T. Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. Cereb Cortex 2019; 28:1272-1281. [PMID: 28334178 DOI: 10.1093/cercor/bhx040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
Age-related decreases in cortical thickness observed during adolescence may be related to fluctuations in sex and stress hormones. We examine this possibility by relating inter-regional variations in age-related cortical thinning (data from the Saguenay Youth Study) to inter-regional variations in expression levels of relevant genes (data from the Allen Human Brain Atlas); we focus on genes coding for glucocorticoid receptor (NR3C1), androgen receptor (AR), progesterone receptor (PGR), and estrogen receptors (ESR1 and ESR2). Across 34 cortical regions (Desikan-Killiany parcellation), age-related cortical thinning varied as a function of mRNA expression levels of NR3C1 in males (R2 = 0.46) and females (R2 = 0.30) and AR in males only (R2 = 0.25). Cortical thinning did not vary as a function of expression levels of PGR, ESR1, or ESR2 in either sex; this might be due to the observed low consistency of expression profiles of these 3 genes across donors. Inter-regional levels of the NR3C1 and AR expression interacted with each other vis-à-vis cortical thinning: age-related cortical thinning varied as a function of NR3C1 mRNA expression in brain regions with low (males: R2 = 0.64; females: R2 = 0.58) but not high (males: R2 = 0.0045; females: R2 = 0.15) levels of AR mRNA expression. These results suggest that glucocorticoid and androgen receptors contribute to cortical maturation during adolescence.
Collapse
Affiliation(s)
- Angelita Pui-Yee Wong
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Rotman Research Institute, Baycrest, Toronto M6A 2E1, Canada
| | - Leon French
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada
| | - Gabriel Leonard
- Montreal Neurological Institute, McGill University, Montréal H3A 2B4, Canada
| | - Michel Perron
- ECOBES, Cégep de Jonquière, Jonquière G7X 7W2, Canada.,University of Quebec in Chicoutimi, Chicoutimi G7H 2B1, Canada
| | - G Bruce Pike
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Louis Richer
- University of Quebec in Chicoutimi, Chicoutimi G7H 2B1, Canada
| | - Suzanne Veillette
- ECOBES, Cégep de Jonquière, Jonquière G7X 7W2, Canada.,University of Quebec in Chicoutimi, Chicoutimi G7H 2B1, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, Canada
| | - Tomáš Paus
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Rotman Research Institute, Baycrest, Toronto M6A 2E1, Canada.,Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada.,Child Mind Institute, New York, NY 10022, USA
| |
Collapse
|
23
|
Sillivan SE, Jones ME, Jamieson S, Rumbaugh G, Miller CA. Bioinformatic analysis of long-lasting transcriptional and translational changes in the basolateral amygdala following acute stress. PLoS One 2019; 14:e0209846. [PMID: 30629705 PMCID: PMC6328204 DOI: 10.1371/journal.pone.0209846] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
Stress profoundly impacts the brain and increases the risk of developing a psychiatric disorder. The brain’s response to stress is mediated by a number of pathways that affect gene expression and protein function throughout the cell. Understanding how stress achieves such dramatic effects on the brain requires an understanding of the brain’s stress response pathways. The majority of studies focused on molecular changes have employed repeated or chronic stress paradigms to assess the long-term consequences of stress and have not taken an integrative genomic and/or proteomic approach. Here, we determined the lasting impact of a single stressful event (restraint) on the broad molecular profile of the basolateral amygdala complex (BLC), a key brain region mediating emotion, memory and stress. Molecular profiling performed thirty days post-restraint consisted of small RNA sequencing, RNA sequencing and quantitative mass spectrometry and identified long-lasting changes in microRNA (miRNA), messenger RNA (mRNA) and proteins. Alignment of the three datasets further delineated the regulation of stress-specific pathways which were validated by qPCR and Western Blot analysis. From this analysis, mir-29a-5p was identified as a putative regulator of stress-induced adaptations in the BLC. Further, a number of predicted mir-29a-5p targets are regulated at the mRNA and protein level. The concerted and long-lasting disruption of multiple molecular pathways in the amygdala by a single stress event is expected to be sufficient to alter behavioral responses to a wide array of future experiences, including exposure to additional stressors.
Collapse
Affiliation(s)
- Stephanie E. Sillivan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Meghan E. Jones
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Sarah Jamieson
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Courtney A. Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Viudez-Martínez A, García-Gutiérrez MS, Manzanares J. Cannabidiol regulates the expression of hypothalamus-pituitary-adrenal axis-related genes in response to acute restraint stress. J Psychopharmacol 2018; 32:1379-1384. [PMID: 30324842 DOI: 10.1177/0269881118805495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Research interest has grown around the potential therapeutic use of cannabidiol in mood-related disorders, due to its anxiolytic and antidepressant-like effects. These have been partially attributed to its action as an allosteric modulator of 5-HTR1A. However, the exact mechanism supporting cannabidiol properties remains unclear. AIMS To assess the effects of cannabidiol on different targets of the hypothalamus-pituitary-adrenal axis under baseline and stress conditions. METHODS We administered cannabidiol (5 mg/kg, 15 mg/kg or 30 mg/kg, intraperitoneally) or vehicle to male C57BL/6J mice 90 min before single restraint stress exposure (20 min). Using real-time polymerase chain reaction analysis, we measured alterations in the relative gene expression of corticotropin-releasing factor in the paraventricular nucleus, pro-opiomelanocortin in the arcuate nucleus of the hypothalamus, glucocorticoid receptor in the hippocampus, and serotonin 5-HTR1A receptor in the hippocampus and amygdala. RESULTS Under baseline conditions, cannabidiol did not modify any element of the hypothalamus-pituitary-adrenal axis. In contrast, all doses induced alterations in 5-HTR1A in the amygdala and hippocampus. Interestingly, cannabidiol at low (5 mg/kg) and intermediate doses (15 mg/kg) successfully blocked the effects induced by acute stress on corticotropin-releasing factor, pro-opiomelanocortin and glucocorticoid receptor gene expression. Also, restraint stress induced the opposite effects in 5-HTR1A gene expression in the hippocampus and amygdala, an effect not seen in mice treated with cannabidiol at low doses. CONCLUSIONS Taken together, these data suggest the ability of cannabidiol to regulate acute stress hypothalamus-pituitary-adrenal axis activation might be explained, at least in part, by its action on 5-HTR1A receptors.
Collapse
Affiliation(s)
| | - María S García-Gutiérrez
- 1 Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,2 Red Temática de Investigación Cooperativa en Salud, Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Manzanares
- 1 Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,2 Red Temática de Investigación Cooperativa en Salud, Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
26
|
Do J, Woo J. From Gut to Brain: Alteration in Inflammation Markers in the Brain of Dextran Sodium Sulfate-induced Colitis Model Mice. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2018; 16:422-433. [PMID: 30466215 PMCID: PMC6245298 DOI: 10.9758/cpn.2018.16.4.422] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
Abstract
Objective Neuropsychiatric manifestations like depression and cognitive dysfunction commonly occur in inflammatory bowel disease (IBD). In the context of the brain-gut axis model, colitis can lead to alteration of brain function in a bottom-up manner. Here, the changes in the response of the hypothalamic-pituitary-adrenal axis and inflammation-related markers in the brain in colitis were studied. Methods Dextran sodium sulfate (DSS) was used to generate a mouse model of colitis. Mice were treated with DSS for 3 or 7 days and sacrificed. We analyzed the gene expression of brain-derived neurotrophic factor (BDNF), cyclo-oxygenase 2 (COX-2), and glial fibrillary acidic protein (GFAP), and the expression of GFAP, in the hippocampus, hypothalamus, and amygdala. Additionally, the levels of C-reactive protein (CRP) and serum cortisol/corticosterone were measured. Results Alteration of inflammatory-related markers varied depending on the brain region and exposure time. In the hippocampus, COX-2 mRNA, GFAP mRNA, and GFAP expression were upregulated during exposure to DSS. However, in the hypothalamus, COX-2 mRNA was upregulated only 3 days after treatment. In the amygdala, BDNF and COX-2 mRNAs were downregulated. CRP and corticosterone expression increased with DSS treatment at day 7. Conclusion IBD could lead to neuroinflammation in a bottom-up manner, and this effect varied according to brain region. Stress-related hormones and serum inflammatory markers, such as CRP, were upregulated from the third day of DSS treatment. Therefore, early and active intervention is required to prevent psychological and behavioral changes caused by IBD, and region-specific studies can help understand the precise mechanisms by which IBD affects the brain.
Collapse
Affiliation(s)
- Jongho Do
- Department of Psychiatry, Kyungpook National University Hospital, Daegu, Korea
| | - Jungmin Woo
- Department of Psychiatry, Kyungpook National University Hospital, Daegu, Korea.,Depatment of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
27
|
Deletion of exchange proteins directly activated by cAMP (Epac) causes defects in hippocampal signaling in female mice. PLoS One 2018; 13:e0200935. [PMID: 30048476 PMCID: PMC6062027 DOI: 10.1371/journal.pone.0200935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Previous studies demonstrate essential roles for the exchange proteins directly activated by cAMP 1 and 2 (Epac1 and Epac2; here collectively referred to as Epac) in the brain. In the hippocampus, Epac contributes to the control of neuronal growth and differentiation and has been implicated in memory and learning as well as in anxiety and depression. In the present study we address the hypothesis that Epac affects hippocampal cellular responses to acute restraint stress. Stress causes activation of the hypothalamus-pituitary-adrenal (HPA)-axis, and glucocorticoid receptor (GR) signaling is essential for proper feedback regulation of the stress response, both in the brain and along the HPA axis. In the hippocampus, GR expression is regulated by cAMP and the brain enriched micro RNA miR-124. Epac has been associated with miR-124 expression in hippocampal neurons, but not in regulation of GR. We report that hippocampal expression of Epac1 and Epac2 increased in response to acute stress in female wild type mice. In female mice genetically deleted for Epac, nuclear translocation of GR in response to restraint stress was significantly delayed, and moreover, miR-124 expression was decreased in these mice. Male mice lacking Epac also showed abnormalities in miR-124 expression, but the phenotype was less profound than in females. Serum corticosterone levels were slightly altered immediately after stress in both male and female mice deleted for Epac. The presented data indicate that Epac1 and Epac2 are involved in controlling cellular responses to acute stress in the mouse hippocampus and provide novel insights into the underlying transcriptional and signaling networks. Interestingly, we observe sex specific differences when Epac is deleted. As the incidence and prevalence of stress-related diseases are higher in women than in men, the Epac knockout models might serve as genetic tools to further elucidate the cellular mechanisms underlying differences between male and female with regard to regulation of stress.
Collapse
|
28
|
Abstract
Resistance to steroid hormones presents a serious problem with respect to their mass use in therapy. It may be caused genetically by mutation of genes involved in hormonal signaling, not only steroid receptors, but also other players in the signaling cascade as co-regulators and other nuclear factors, mediating the hormone-born signal. Another possibility is acquired resistance which may develop under long-term steroid treatment, of which a particular case is down regulation of the receptors. In the review recent knowledge is summarized on the mechanism of main steroid hormone action, pointing to already proven or potential sites causing steroid resistance. We have attempted to address following questions: 1) What does stay behind differences among patients as to their response to the (anti)steroid treatment? 2) Why do various tissues/cells respond differently to the same steroid hormone though they contain the same receptors? 3) Are such differences genetically dependent? The main attention was devoted to glucocorticoids as the most frequently used steroid therapeutics. Further, androgen insensitivity is discussed with a particular attention to acquired resistance to androgen deprivation therapy of prostate cancer. Finally the potential causes are outlined of breast and related cancer(s) resistance to antiestrogen therapy.
Collapse
Affiliation(s)
- R Hampl
- Institute of Endocrinology, Prague, Czech Republic.
| | | |
Collapse
|
29
|
Sobolewski M, Varma G, Adams B, Anderson DW, Schneider JS, Cory-Slechta DA. Developmental Lead Exposure and Prenatal Stress Result in Sex-Specific Reprograming of Adult Stress Physiology and Epigenetic Profiles in Brain. Toxicol Sci 2018; 163:478-489. [PMID: 29481626 PMCID: PMC5974781 DOI: 10.1093/toxsci/kfy046] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Developmental exposure to lead (Pb) and prenatal stress (PS) both impair cognition, which could derive from their joint targeting of the hypothalamic-pituitary-adrenal axis and the brain mesocorticolimbic (MESO) system, including frontal cortex (FC) and hippocampus (HIPP). Glucocorticoids modulate both FC and HIPP function and associated mediation of cognitive and other behavioral functions. This study sought to determine whether developmental Pb ± PS exposures altered glucocorticoid-related epigenetic profiles in brain MESO regions in offspring of female mice exposed to 0 or 100 ppm Pb acetate drinking water from 2 mos prior to breeding until weaning, with half further exposed to prenatal restraint stress from gestational day 11-18. Overall, changes in females occured in response to Pb exposure. In males, however, Pb-induced neurotoxicity was modulated by PS. Changes in serum corticosterone levels were seen in males, while glucocorticoid receptor changes were seen in both sexes. In contrast, both Pb and PS broadly impacted brain DNA methyltransferases and binding proteins, particularly DNMT1, DNMT3a and methyl-CpG-binding protein 2, with patterns that differed by sex and brain regions. Specifically, in males, effects on FC epigenetic modifiers were primarily influenced by Pb, whereas extensive changes in HIPP were produced by PS. In females, Pb exposure and not PS primarily altered epigenetic modifiers in both FC and HIPP. Collectively, these findings indicate that epigenetic mechanisms may underlie associated neurotoxicity of Pb and of PS, particularly associated cognitive deficits. However, mechanisms by which this may occur will be different in males versus females.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York,To whom correspondence should be addressed at Department of Environmental Medicine, University of Rochester School of Medicine, University of Rochester Medical Center, Box EHSC, Rochester, NY 14642. Fax: 585-256-2591; E-mail:
| | - Garima Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Beth Adams
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David W Anderson
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jay S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
30
|
Nagy C, Vaillancourt K, Turecki G. A role for activity-dependent epigenetics in the development and treatment of major depressive disorder. GENES BRAIN AND BEHAVIOR 2018; 17:e12446. [DOI: 10.1111/gbb.12446] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/17/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- C. Nagy
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| | - K. Vaillancourt
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| | - G. Turecki
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| |
Collapse
|
31
|
Clayton SA, Jones SW, Kurowska-Stolarska M, Clark AR. The role of microRNAs in glucocorticoid action. J Biol Chem 2018; 293:1865-1874. [PMID: 29301941 PMCID: PMC5808749 DOI: 10.1074/jbc.r117.000366] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are steroids with profound anti-inflammatory and immunomodulatory activities. Synthetic GCs are widely used for managing chronic inflammatory and autoimmune conditions, as immunosuppressants in transplantation, and as anti-tumor agents in certain hematological cancers. However, prolonged GC exposure can cause adverse effects. A detailed understanding of GCs' mechanisms of action may enable harnessing of their desirable actions while minimizing harmful effects. Here, we review the impact on the GC biology of microRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression. Emerging evidence indicates that microRNAs modulate GC production by the adrenal glands and the cells' responses to GCs. Furthermore, GCs influence cell proliferation, survival, and function at least in part by regulating microRNA expression. We propose that the beneficial effects of GCs may be enhanced through combination with reagents targeting specific microRNAs.
Collapse
Affiliation(s)
- Sally A Clayton
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Simon W Jones
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Mariola Kurowska-Stolarska
- the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom.,the Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, and
| | - Andrew R Clark
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, .,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| |
Collapse
|
32
|
Kang SW, Madkour M, Kuenzel WJ. Tissue-Specific Expression of DNA Methyltransferases Involved in Early-Life Nutritional Stress of Chicken, Gallus gallus. Front Genet 2017; 8:204. [PMID: 29270191 PMCID: PMC5723639 DOI: 10.3389/fgene.2017.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
DNA methylation was reported as a possible stress-adaptation mechanism involved in the transcriptional regulation of stress responsive genes. Limited data are available on effects of psychological stress and early-life nutritional stress on DNA methylation regulators [DNMTs: DNA (cytosine-5)-methyltransferase 1 (DNMT1), DNMT1 associated protein (DMAP1), DNMT 3 alpha (DNMT3A) and beta (DNMT3B)] in avian species. The objectives of this study were to: (1) investigate changes in expression of DNMT1, DMAP1, DNMT3A, and DNMT3B following acute (AS) or chronic immobilization stress (CS); (2) test immediate effect of early-life nutritional stress [food deprivation (FD) for 12 h (12hFD) or 36 h (36hFD) at the post-hatching period] on expression of DNA methylation regulators and glucocorticoid receptor (GR), and the long-term effect of early-life nutritional stress at 6 weeks of age. Expression of DNMTs and plasma corticosterone (CORT) concentration decreased by CS compared to AS (p < 0.05), indicating differential roles of DNA methylation regulators in the stress response. Plasma CORT at 12hFD and 36hFD birds increased compared to control birds (12hF and 36hF), but there were no significant differences in plasma CORT of 12hFD and 36hFD birds at 6 weeks of age compared to 6 week controls. DNMT1, DMAP1, and DNMT3B expression in the anterior pituitary increased by 12hFD, but decreased at 36hFD compared to their controls (P < 0.05). In liver, DNMT1, DNMT3A, and DNMT3B expression decreased by 12hFD, however, no significant changes occurred at 36hFD. Expression of DMAP1, DNMT3A, and DNMT3B in anterior pituitary and DMAP1 and DNMT3A expression in liver at 6 weeks of age were higher in 36hFD stressed birds compared to controls as well as 12hFD stressed birds. Hepatic GR expression decreased by 12hFD and increased by 36hFD (p < 0.05). Expression patterns of GR in the liver of FD stress-induced birds persisted until 6 weeks of age, suggesting the possible lifelong involvement of liver GR in early-life nutritional stress response of birds. Taken together, results suggest that DNA methylation regulator genes are tissue-specifically responsive to acute and chronic stress, and hepatic GR may play a critical role in regulating the early-life nutritional stress response of birds. In addition, the downregulation of DNMT1 and DMAP1 may be one of the adaptive mechanisms to chronic early-life nutritional stress via passive demethylation.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, FayettevilleAR, United States
| | - Mahmoud Madkour
- Department of Animal Production, National Research CenterGiza, Egypt
| | - Wayne J. Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, FayettevilleAR, United States
| |
Collapse
|
33
|
Trollope AF, Mifsud KR, Saunderson EA, Reul JMHM. Molecular and Epigenetic Mechanisms Underlying Cognitive and Adaptive Responses to Stress. EPIGENOMES 2017; 1:17. [PMID: 31921466 PMCID: PMC6952278 DOI: 10.3390/epigenomes1030017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Consolidation of contextual memories after a stressful encounter is essential for the survival of an organism and in allowing a more appropriate response to be elicited should the perceived threat reoccur. Recent evidence has explored the complex role that epigenetic mechanisms play in the formation of such memories, and the underlying signaling pathways are becoming more apparent. The glucocorticoid receptor (GR) has been shown to play a key role in these events having both genomic and non-genomic actions in the brain. GR has been shown to interact with the extracellular signal-regulated kinase mitogen-activated protein kinase (ERK MAPK) signaling pathway which, in concert, drives epigenetic modifications and chromatin remodeling, resulting in gene induction and memory consolidation. Evidence indicates that stressful events can have an effect on the offspring in utero, and that epigenetic marks altered early in life may persist into adulthood. A new and controversial area of research, however, suggests that epigenetic modifications could be inherited through the germline, a concept known as transgenerational epigenetics. This review explores the role that epigenetic processes play in the central nervous system, specifically in the consolidation of stress-induced memories, the concept of transgenerational epigenetic inheritance, and the potential role of epigenetics in revolutionizing the treatment of stress-related disorders through the emerging field of pharmacoepigenetics and personalized medical treatment.
Collapse
Affiliation(s)
- Alexandra F. Trollope
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Anatomy, College of Medicine and Dentistry, James Cook University, Townsville 4811, Australia
| | - Karen R. Mifsud
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Emily A. Saunderson
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Johannes M. H. M. Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
34
|
Navarrete F, García-Gutiérrez MS, Laborda J, Manzanares J. Deletion of Dlk2 increases the vulnerability to anxiety-like behaviors and impairs the anxiolytic action of alprazolam. Psychoneuroendocrinology 2017; 85:134-141. [PMID: 28863347 DOI: 10.1016/j.psyneuen.2017.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/26/2017] [Accepted: 08/10/2017] [Indexed: 12/09/2022]
Abstract
The purpose of this study was to evaluate the role of the non-canonical DLK2 NOTCH ligand in the regulation of emotional behavior. To this aim, anxiety and depressive-like behaviors were examined in Dlk2 knock-out (Dlk2-/-) and its corresponding wild-type (WT) mice. Furthermore, relative gene expression analyses of corticotropin releasing hormone (Crh) in the paraventricular nucleus (PVN), glucocorticoid receptor (NR3C1) and FK506 binding protein 5 (FKBP5) in the hippocampus (HIPP), and the transcription factors Hes1, Hes5 and Hey1 in the PVN, HIPP and amygdala (AMY) were carried out in Dlk2-/- and WT mice under basal conditions and after exposure to restraint stress. The anxiolytic action of alprazolam and the relative gene expression levels of the GABA-A alpha 2 and gamma 2 receptor subunits (Gabra2 and Gabrg2) were also evaluated in the HIPP and AMY of WT and Dlk2-/- mice. The results reveal that deletion of Dlk2 increased anxiety and depressive-like behaviors and altered the vulnerability to restraint stress on Crh gene expression in the PVN, Nr3c1 and Fkbp5 gene expression in the HIPP, and Hes1, Hes5 and Hey1 gene expression in the PVN, HIPP and AMY. Interestingly, the administration of alprazolam failed to produce an anxiolytic action in Dlk2-/- mice. Indeed, Gabra2 and Gabrg2 gene expression levels were significantly affected under basal conditions and after stress exposure in Dlk2-/- mice compared with WT mice. In conclusion, the results suggest that DLK2 plays an important role in the regulation of emotional behaviors and relevant targets of the stress axis, NOTCH pathway and GABAergic neurotransmission. In addition, the deletion of Dlk2 blocked the anxiolytic response to alprazolam. Future studies are needed to determine the relevance of DLK2 as a potential therapeutic target for the treatment of neuropsychiatric disorders with anxiety or depressive-like behaviors.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María S García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Laborda
- Facultad de Farmacia, Centro Regional de Investigaciones Biomédicas (CRIB), Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
35
|
Glucocorticoid receptor expression on circulating leukocytes in healthy and asthmatic adolescents in response to exercise. Pediatr Res 2017; 82:261-271. [PMID: 28796240 PMCID: PMC5788180 DOI: 10.1038/pr.2017.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/04/2017] [Indexed: 12/20/2022]
Abstract
BackgroundPoor aerobic fitness is associated with worsening of asthma symptoms, and fitness training may improve asthma control. The mechanism linking fitness with asthma is not known. We hypothesized that repeated bouts of exercise would lead to a downregulation of glucocorticoid receptor (GR) expression on circulating leukocytes, reflecting a reduced responsiveness to stress.MethodsIn a prospective exercise training intervention of healthy and asthmatic adolescents, GR expression in leukocytes was measured using flow cytometry in response to an acute exercise challenge before and after the exercise training intervention. Peripheral blood mononuclear cell (PBMC) gene expression of GR, GRβ, HSP70, TGFβ1, and TGFβ2 was determined using reverse-transcriptase PCR (RT-PCR).ResultsPeak VO2 increased by 14.6±2.3%, indicating an effective training (P<0.01). There was a significant difference in GR expression among leukocyte subtypes, with highest expression in eosinophils. Following the exercise training intervention, there was a significant decrease in baseline GR expression (P<0.05) in leukocyte and monocyte subtypes in both healthy and asthmatic adolescents.ConclusionsThis is the first study in adolescents to show that exercise training reduces GR expression in circulating leukocytes. We speculate that exercise training downregulates the stress response in general, manifested by decreased GR expression, and may explain why improving fitness improves asthma health.
Collapse
|
36
|
Nyman C, Fischer S, Aubin-Horth N, Taborsky B. Effect of the early social environment on behavioural and genomic responses to a social challenge in a cooperatively breeding vertebrate. Mol Ecol 2017; 26:3186-3203. [DOI: 10.1111/mec.14113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Cecilia Nyman
- Division of Behavioural Ecology; Institute for Ecology and Evolution; University of Bern; Wohlenstrasse 50A CH-3032 Hinterkappelen Switzerland
| | - Stefan Fischer
- Institute of Integrative Biology; University of Liverpool; Leahurst Campus Chester High Road Neston CH64 7TE UK
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes; Université Laval; Quebec Canada G1V OA6
| | - Barbara Taborsky
- Division of Behavioural Ecology; Institute for Ecology and Evolution; University of Bern; Wohlenstrasse 50A CH-3032 Hinterkappelen Switzerland
| |
Collapse
|