1
|
Chen Y, Green HL, Berman JI, Putt ME, Otten K, Mol K, McNamee M, Allison O, Kuschner ES, Kim M, Bloy L, Liu S, Yount T, Roberts TPL, Christopher Edgar J. Functional and structural maturation of auditory cortex from 2 months to 2 years old. Clin Neurophysiol 2024; 166:232-243. [PMID: 39213880 PMCID: PMC11494624 DOI: 10.1016/j.clinph.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. METHODS AND PARTICIPANTS The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (the P2m response, measured using magnetoencephalography, MEG) in a cross-sectional (N = 47, 2 to 24 months, 19 females) as well as longitudinal cohort (N = 18, 2 to 29 months, 8 females) of typically developing infants and toddlers. Of 18 longitudinal infants, 2 infants had data from 3 timepoints and 16 infants had data from 2 timepoints. RESULTS In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. Auditory radiation diffusion accounted for significant variance in P2m latency, even after removing the variance associated with age in both P2m latency and auditory radiation diffusion measures. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. CONCLUSIONS Findings provide strong support for the hypothesis that an increase in thalamocortical neural conduction velocity, due to increased axon diameter and/or myelin maturation, contributes to a decrease in the infant P2m auditory evoked response latency. SIGNIFICANCE Infant multimodal brain imaging identifies brain mechanisms contributing to the rapid changes in neural circuit activity during the first two years of life.
Collapse
Affiliation(s)
- Yuhan Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharina Otten
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Kylie Mol
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marybeth McNamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Olivia Allison
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tess Yount
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Chen Y, Green HL, Berman JI, Putt ME, Otten K, Mol KL, McNamee M, Allison O, Kuschner ES, Kim M, Bloy L, Liu S, Yount T, Roberts TPL, Edgar JC. Functional and structural maturation of auditory cortex from 2 months to 2 years old. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597426. [PMID: 38895425 PMCID: PMC11185738 DOI: 10.1101/2024.06.05.597426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In school-age children, the myelination of the auditory radiation thalamocortical pathway is associated with the latency of auditory evoked responses, with the myelination of thalamocortical axons facilitating the rapid propagation of acoustic information. Little is known regarding this auditory system function-structure association in infants and toddlers. The present study tested the hypothesis that maturation of auditory radiation white-matter microstructure (e.g., fractional anisotropy (FA); measured using diffusion-weighted MRI) is associated with the latency of the infant auditory response (P2m measured using magnetoencephalography, MEG) in a cross-sectional (2 to 24 months) as well as longitudinal cohort (2 to 29 months) of typically developing infants and toddlers. In the cross-sectional sample, non-linear maturation of P2m latency and auditory radiation diffusion measures were observed. After removing the variance associated with age in both P2m latency and auditory radiation diffusion measures, auditory radiation still accounted for significant variance in P2m latency. In the longitudinal sample, latency and FA associations could be observed at the level of a single child. Findings provide strong support for a contribution of auditory radiation white matter to rapid cortical auditory encoding processes in infants.
Collapse
|
3
|
Sano M, Hirosawa T, Yoshimura Y, Hasegawa C, An KM, Tanaka S, Yaoi K, Naitou N, Kikuchi M. Neural responses to syllable-induced P1m and social impairment in children with autism spectrum disorder and typically developing Peers. PLoS One 2024; 19:e0298020. [PMID: 38457397 PMCID: PMC10923473 DOI: 10.1371/journal.pone.0298020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/17/2024] [Indexed: 03/10/2024] Open
Abstract
In previous magnetoencephalography (MEG) studies, children with autism spectrum disorder (ASD) have been shown to respond differently to speech stimuli than typically developing (TD) children. Quantitative evaluation of this difference in responsiveness may support early diagnosis and intervention for ASD. The objective of this research is to investigate the relationship between syllable-induced P1m and social impairment in children with ASD and TD children. We analyzed 49 children with ASD aged 40-92 months and age-matched 26 TD children. We evaluated their social impairment by means of the Social Responsiveness Scale (SRS) and their intelligence ability using the Kaufman Assessment Battery for Children (K-ABC). Multiple regression analysis with SRS score as the dependent variable and syllable-induced P1m latency or intensity and intelligence ability as explanatory variables revealed that SRS score was associated with syllable-induced P1m latency in the left hemisphere only in the TD group and not in the ASD group. A second finding was that increased leftward-lateralization of intensity was correlated with higher SRS scores only in the ASD group. These results provide valuable insights but also highlight the intricate nature of neural mechanisms and their relationship with autistic traits.
Collapse
Affiliation(s)
- Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kyung-Min An
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Nobushige Naitou
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Green HL, Shen G, Franzen RE, Mcnamee M, Berman JI, Mowad TG, Ku M, Bloy L, Liu S, Chen YH, Airey M, McBride E, Goldin S, Dipiero MA, Blaskey L, Kuschner ES, Kim M, Konka K, Roberts TPL, Edgar JC. Differential Maturation of Auditory Cortex Activity in Young Children with Autism and Typical Development. J Autism Dev Disord 2023; 53:4076-4089. [PMID: 35960416 PMCID: PMC9372967 DOI: 10.1007/s10803-022-05696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
Abstract
Maturation of auditory cortex neural encoding processes was assessed in children with typical development (TD) and autism. Children 6-9 years old were enrolled at Time 1 (T1), with follow-up data obtained ~ 18 months later at Time 2 (T2), and ~ 36 months later at Time 3 (T3). Findings suggested an initial period of rapid auditory cortex maturation in autism, earlier than TD (prior to and surrounding the T1 exam), followed by a period of faster maturation in TD than autism (T1-T3). As a result of group maturation differences, post-stimulus group differences were observed at T1 but not T3. In contrast, stronger pre-stimulus activity in autism than TD was found at all time points, indicating this brain measure is stable across time.
Collapse
Affiliation(s)
- Heather L Green
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Guannan Shen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rose E Franzen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marybeth Mcnamee
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa G Mowad
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Ku
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yu-Han Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan Airey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma McBride
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sophia Goldin
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marissa A Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Autism Research, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Konka
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Agyeman K, McCarty T, Multani H, Mattingly K, Koziar K, Chu J, Liu C, Kokkoni E, Christopoulos V. Task-based functional neuroimaging in infants: a systematic review. Front Neurosci 2023; 17:1233990. [PMID: 37655006 PMCID: PMC10466897 DOI: 10.3389/fnins.2023.1233990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Background Infancy is characterized by rapid neurological transformations leading to consolidation of lifelong function capabilities. Studying the infant brain is crucial for understanding how these mechanisms develop during this sensitive period. We review the neuroimaging modalities used with infants in stimulus-induced activity paradigms specifically, for the unique opportunity the latter provide for assessment of brain function. Methods Conducted a systematic review of literature published between 1977-2021, via a comprehensive search of four major databases. Standardized appraisal tools and inclusion/exclusion criteria were set according to the PRISMA guidelines. Results Two-hundred and thirteen papers met the criteria of the review process. The results show clear evidence of overall cumulative growth in the number of infant functional neuroimaging studies, with electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) to be the most utilized and fastest growing modalities with behaving infants. However, there is a high level of exclusion rates associated with technical limitations, leading to limited motor control studies (about 6 % ) in this population. Conclusion Although the use of functional neuroimaging modalities with infants increases, there are impediments to effective adoption of existing technologies with this population. Developing new imaging modalities and experimental designs to monitor brain activity in awake and behaving infants is vital.
Collapse
Affiliation(s)
- Kofi Agyeman
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Tristan McCarty
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Harpreet Multani
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Kamryn Mattingly
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Katherine Koziar
- Orbach Science Library, University of California, Riverside, Riverside, CA, United States
| | - Jason Chu
- Division of Neurosurgery, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Elena Kokkoni
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Vassilios Christopoulos
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Alho J, Khan S, Mamashli F, Perrachione TK, Losh A, McGuiggan NM, Graham S, Nayal Z, Joseph RM, Hämäläinen MS, Bharadwaj H, Kenet T. Atypical cortical processing of bottom-up speech binding cues in children with autism spectrum disorders. Neuroimage Clin 2023; 37:103336. [PMID: 36724734 PMCID: PMC9898310 DOI: 10.1016/j.nicl.2023.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
Individuals with autism spectrum disorder (ASD) commonly display speech processing abnormalities. Binding of acoustic features of speech distributed across different frequencies into coherent speech objects is fundamental in speech perception. Here, we tested the hypothesis that the cortical processing of bottom-up acoustic cues for speech binding may be anomalous in ASD. We recorded magnetoencephalography while ASD children (ages 7-17) and typically developing peers heard sentences of sine-wave speech (SWS) and modulated SWS (MSS) where binding cues were restored through increased temporal coherence of the acoustic components and the introduction of harmonicity. The ASD group showed increased long-range feedforward functional connectivity from left auditory to parietal cortex with concurrent decreased local functional connectivity within the parietal region during MSS relative to SWS. As the parietal region has been implicated in auditory object binding, our findings support our hypothesis of atypical bottom-up speech binding in ASD. Furthermore, the long-range functional connectivity correlated with behaviorally measured auditory processing abnormalities, confirming the relevance of these atypical cortical signatures to the ASD phenotype. Lastly, the group difference in the local functional connectivity was driven by the youngest participants, suggesting that impaired speech binding in ASD might be ameliorated upon entering adolescence.
Collapse
Affiliation(s)
- Jussi Alho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA.
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave, Boston, MA 02215, USA
| | - Ainsley Losh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Nicole M McGuiggan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Steven Graham
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Zein Nayal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St, Boston, MA 02118, USA
| | - Matti S Hämäläinen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Hari Bharadwaj
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical Engineering, Purdue University, 715 Clinic Drive, West Lafayette, IN 47907, USA
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA.
| |
Collapse
|
7
|
Research on the Correlation between Multisource Big Data Virtual Assisted Preschool Education and the Development of Children’s Innovative Ability. Occup Ther Int 2022; 2022:3880201. [PMID: 35572165 PMCID: PMC9068341 DOI: 10.1155/2022/3880201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Innovation ability is an important part of children’s core literacy and the core goal of science curriculum. As one of the important contents of scientific literacy, innovation ability is the key ability of young children to make informed decisions when facing scientific problems in social and personal life. In order to adapt to the future life, it is very important for children to have the ability to innovate. This research will provide a reference for the cultivation of children’s innovative ability. Method. In the process of database design, certain design principles need to be followed. In this paper, the system and user experience are greatly optimized by reasonably constructing table structure, allocating storage space, and establishing indexes. In this system, the MySQL database is used to store system data, such as user registration information, subscription information, and system-provided services, and the data uploaded by users that needs to be processed is stored in Hive. Although the GFP algorithm can solve the problem of load balancing, when the largest conditional pattern base of a frequent item is projected to other nodes, a large amount of data transmission will occur, resulting in increased communication between nodes. In order to solve this problem, the FP-growth parallel algorithm based on traffic optimization gives priority to assigning each frequent item to the node that needs the least traffic when grouping it. Results/Discussion. Experiments show that the TFP algorithm not only satisfies the load balance of nodes but also ensures a small amount of communication between nodes, which is more efficient than the traditional FP-growth parallel algorithm. The survey results of the influencing factors of children’s innovation ability match the theoretical hypothesis, and different influencing factors have different effects on each dimension of children’s innovation ability. Through the basic fit index of the model, the evaluation of the external quality of the model and the test of the internal quality of the model, it is shown that the survey results of the influencing factors of children’s innovation ability match the theoretical hypothesis. The three influencing factors of family participation and investment, teacher teaching, and peer collaboration and communication have a positive role in promoting children’s innovation ability.
Collapse
|
8
|
Roberts TPL, Kuschner ES, Edgar JC. Biomarkers for autism spectrum disorder: opportunities for magnetoencephalography (MEG). J Neurodev Disord 2021; 13:34. [PMID: 34525943 PMCID: PMC8442415 DOI: 10.1186/s11689-021-09385-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
This paper reviews a candidate biomarker for ASD, the M50 auditory evoked response component, detected by magnetoencephalography (MEG) and presents a position on the roles and opportunities for such a biomarker, as well as converging evidence from allied imaging techniques (magnetic resonance imaging, MRI and spectroscopy, MRS). Data is presented on prolonged M50 latencies in ASD as well as extension to include children with ASD with significant language and cognitive impairments in whom M50 latency delays are exacerbated. Modeling of the M50 latency by consideration of the properties of auditory pathway white matter is shown to be successful in typical development but challenged by heterogeneity in ASD; this, however, is capitalized upon to identify a distinct subpopulation of children with ASD whose M50 latencies lie well outside the range of values predictable from the typically developing model. Interestingly, this subpopulation is characterized by low levels of the inhibitory neurotransmitter GABA. Following from this, we discuss a potential use of the M50 latency in indicating “target engagement” acutely with administration of a GABA-B agonist, potentially distinguishing “responders” from “non-responders” with the implication of optimizing inclusion for clinical trials of such agents. Implications for future application, including potential evaluation of infants with genetic risk factors, are discussed. As such, the broad scope of potential of a representative candidate biological marker, the M50 latency, is introduced along with potential future applications. This paper outlines a strategy for understanding brain dysfunction in individuals with intellectual and developmental disabilities (IDD). It is proposed that a multimodal approach (collection of brain structure, chemistry, and neuronal functional data) will identify IDD subpopulations who share a common disease pathway, and thus identify individuals with IDD who might ultimately benefit from specific treatments. After briefly demonstrating the need and potential for scope, examples from studies examining brain function and structure in children with autism spectrum disorder (ASD) illustrate how measures of brain neuronal function (from magnetoencephalography, MEG), brain structure (from magnetic resonance imaging, MRI, especially diffusion MRI), and brain chemistry (MR spectroscopy) can help us better understand the heterogeneity in ASD and form the basis of multivariate biological markers (biomarkers) useable to define clinical subpopulations. Similar approaches can be applied to understand brain dysfunction in neurodevelopmental disorders (NDD) in general. In large part, this paper represents our endeavors as part of the CHOP/Penn NICHD-funded intellectual and developmental disabilities research center (IDDRC) over the past decade.
Collapse
Affiliation(s)
- Timothy P L Roberts
- Dept. of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Emily S Kuschner
- Dept. of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Dept. of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Alho J, Bharadwaj H, Khan S, Mamashli F, Perrachione TK, Losh A, McGuiggan NM, Joseph RM, Hämäläinen MS, Kenet T. Altered maturation and atypical cortical processing of spoken sentences in autism spectrum disorder. Prog Neurobiol 2021; 203:102077. [PMID: 34033856 DOI: 10.1016/j.pneurobio.2021.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is associated with widespread receptive language impairments, yet the neural mechanisms underlying these deficits are poorly understood. Neuroimaging has shown that processing of socially-relevant sounds, including speech and non-speech, is atypical in ASD. However, it is unclear how the presence of lexical-semantic meaning affects speech processing in ASD. Here, we recorded magnetoencephalography data from individuals with ASD (N = 22, ages 7-17, 4 females) and typically developing (TD) peers (N = 30, ages 7-17, 5 females) during unattended listening to meaningful auditory speech sentences and meaningless jabberwocky sentences. After adjusting for age, ASD individuals showed stronger responses to meaningless jabberwocky sentences than to meaningful speech sentences in the same left temporal and parietal language regions where TD individuals exhibited stronger responses to meaningful speech. Maturational trajectories of meaningful speech responses were atypical in temporal, but not parietal, regions in ASD. Temporal responses were associated with ASD severity, while parietal responses were associated with aberrant involuntary attentional shifting in ASD. Our findings suggest a receptive speech processing dysfunction in ASD, wherein unattended meaningful speech elicits abnormal engagement of the language system, while unattended meaningless speech, filtered out in TD individuals, engages the language system through involuntary attention capture.
Collapse
Affiliation(s)
- Jussi Alho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hari Bharadwaj
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA
| | - Ainsley Losh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Graduate School of Education, University of California, Riverside, CA, USA
| | - Nicole M McGuiggan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Matti S Hämäläinen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Kohl C, Parviainen T, Jones SR. Neural Mechanisms Underlying Human Auditory Evoked Responses Revealed By Human Neocortical Neurosolver. Brain Topogr 2021; 35:19-35. [PMID: 33876329 PMCID: PMC8813713 DOI: 10.1007/s10548-021-00838-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Auditory evoked fields (AEFs) are commonly studied, yet their underlying neural mechanisms remain poorly understood. Here, we used the biophysical modelling software Human Neocortical Neurosolver (HNN) whose foundation is a canonical neocortical circuit model to interpret the cell and network mechanisms contributing to macroscale AEFs elicited by a simple tone, measured with magnetoencephalography. We found that AEFs can be reproduced by activating the neocortical circuit through a layer specific sequence of feedforward and feedback excitatory synaptic drives, similar to prior simulation of somatosensory evoked responses, supporting the notion that basic structures and activation patterns are preserved across sensory regions. We also applied the modeling framework to develop and test predictions on neural mechanisms underlying AEF differences in the left and right hemispheres, as well as in hemispheres contralateral and ipsilateral to the presentation of the auditory stimulus. We found that increasing the strength of the excitatory synaptic cortical feedback inputs to supragranular layers simulates the commonly observed right hemisphere dominance, while decreasing the input latencies and simultaneously increasing the number of cells contributing to the signal accounted for the contralateral dominance. These results provide a direct link between human data and prior animal studies and lay the foundation for future translational research examining the mechanisms underlying alteration in this fundamental biomarker of auditory processing in healthy cognition and neuropathology.
Collapse
Affiliation(s)
- Carmen Kohl
- Department of Neuroscience, Carney Institute for Brain Sciences, Brown University, Providence, USA.
| | - Tiina Parviainen
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Meg Core Aalto Neuroimaging, Aalto University, AALTO, P.O. Box 15100, 00076, Espoo, Finland
| | - Stephanie R Jones
- Department of Neuroscience, Carney Institute for Brain Sciences, Brown University, Providence, USA
- Center for Neurorestoration and Neurotechnology, Providence VAMC, Providence, USA
| |
Collapse
|
11
|
Norcia AM, Lee A, Meredith WJ, Kohler PJ, Pei F, Ghassan SA, Libove RA, Phillips JM, Hardan AY. A case-control study of visual, auditory and audio-visual sensory interactions in children with autism spectrum disorder. J Vis 2021; 21:5. [PMID: 33830169 PMCID: PMC8039569 DOI: 10.1167/jov.21.4.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/09/2020] [Indexed: 01/23/2023] Open
Abstract
To assess the relative integrity of early visual and auditory processes in autism spectrum disorder (ASD), we used frequency-tagged visual and auditory stimulation and high-density electroencephalogram recordings of unimodal and dual-modality responses in a case-control design. To test for the specificity of effects on ASD, we recorded from a smaller group of children with attention-deficit hyperactivity disorder (ADHD). Horizontal 3 cycle per degree (cpd) gratings were presented at 5 Hz, and a random stream of /ba/, /da/, /ga/ syllables was presented at 6 Hz. Grating contrast response functions were measured unimodally and in the presence of a 64-dB auditory input. Auditory response functions were measured unimodally and in the presence of a 40% contrast grating. Children with ASD (n = 34) and ADHD (n = 13) showed a common lack of audio-visual interaction compared to typically developing children (n = 40) when measured at the first harmonic of the visual stimulus frequency. Both patient groups also showed depressed first harmonic responses at low contrast, but the ADHD group had consistently higher first-harmonic responses at high contrast. Children with ASD had a preferential loss of second-harmonic (transient) responses. The alteredtransient responses in ASD are likely to arise very early in the visual pathway and could thus have downstream consequences for many other visual mechanisms and processes. The alteration in audio-visual interaction could be a signature of a comorbid phenotype shared by ASD and ADHD, possibly due to alterations in attentional selection systems.
Collapse
Affiliation(s)
- Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Azalea Lee
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Peter J Kohler
- Department of Psychology, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
| | - Francesca Pei
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Stephanie A Ghassan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Robin A Libove
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jennifer M Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Dwyer P, De Meo-Monteil R, Saron CD, Rivera SM. Effects of age on loudness-dependent auditory ERPs in young autistic and typically-developing children. Neuropsychologia 2021; 156:107837. [PMID: 33781752 DOI: 10.1016/j.neuropsychologia.2021.107837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Limited research has investigated the development of auditory ERPs in young children, and particularly how stimulus intensity may affect these auditory ERPs. Previous research has also yielded inconsistent findings regarding differences in the development of auditory ERPs in autism and typical development. Furthermore, stimulus intensity may be of particular interest in autism insofar as autistic people may have atypical experiences of sound intensity (e.g., hyperacusis). Therefore, the present study examined associations between age and ERPs evoked by tones of differing intensities (50, 60, 70, and 80 dB SPL) in a large sample of young children (2-5 years) with and without an autism diagnosis. Correlations between age and P1 latencies were examined, while cluster-based permutation testing was used to examine associations between age and neural response amplitudes, as well as group differences in amplitude, over all electrode sites in the longer time window of 1-350 ms. Older autistic participants had faster P1 latencies, but these effects only attained significance over the right hemisphere in response to soft 50 dB sounds. Autistic participants had slower P1 responses to 80 dB sounds over the right hemisphere. Over the scalp regions associated with the later N2 response, more negative response amplitudes (that is, larger N2 responses) were observed in typically-developing than autistic participants. Furthermore, continuous associations between response amplitudes and age suggested that older typically-developing participants exhibited stronger N2 responses to all intensities, though this effect may have at least in part reflected the absence of small positive voltage deflections in the N2 latency window. Age was associated with amplitudes of responses to 50 dB through 70 dB sounds in autism, but in contrast to Typical Development (TD), little evidence of relationships between age and amplitudes in the N2 latency window was found in autism in the 80 dB condition. Although caution should be exercised in interpretation due to the cross-sectional nature of this study, these findings suggest that developmental changes in auditory responses may differ across diagnostic groups in a manner that depends on perceived loudness and/or stimulus intensity.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, United States; Center for Mind and Brain, UC Davis, United States.
| | | | - Clifford D Saron
- Center for Mind and Brain, UC Davis, United States; MIND Institute, UC Davis, United States
| | - Susan M Rivera
- Department of Psychology, UC Davis, United States; Center for Mind and Brain, UC Davis, United States; MIND Institute, UC Davis, United States
| |
Collapse
|
13
|
Shorter P1m Response in Children with Autism Spectrum Disorder without Intellectual Disabilities. Int J Mol Sci 2021; 22:ijms22052611. [PMID: 33807635 PMCID: PMC7961676 DOI: 10.3390/ijms22052611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022] Open
Abstract
(1) Background: Atypical auditory perception has been reported in individuals with autism spectrum disorder (ASD). Altered auditory evoked brain responses are also associated with childhood ASD. They are likely to be associated with atypical brain maturation. (2) Methods: This study examined children aged 5–8 years old: 29 with ASD but no intellectual disability and 46 age-matched typically developed (TD) control participants. Using magnetoencephalography (MEG) data obtained while participants listened passively to sinusoidal pure tones, bilateral auditory cortical response (P1m) was examined. (3) Results: Significantly shorter P1m latency in the left hemisphere was found for children with ASD without intellectual disabilities than for children with TD. Significant correlation between P1m latency and language conceptual ability was found in children with ASD, but not in children with TD. (4) Conclusions: These findings demonstrated atypical brain maturation in the auditory processing area in children with ASD without intellectual disability. Findings also suggest that ASD has a common neural basis for pure-tone sound processing and language development. Development of brain networks involved in language concepts in early childhood ASD might differ from that in children with TD.
Collapse
|
14
|
Kuschner ES, Kim M, Bloy L, Dipiero M, Edgar JC, Roberts TPL. MEG-PLAN: a clinical and technical protocol for obtaining magnetoencephalography data in minimally verbal or nonverbal children who have autism spectrum disorder. J Neurodev Disord 2021; 13:8. [PMID: 33485311 PMCID: PMC7827989 DOI: 10.1186/s11689-020-09350-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neuroimaging research on individuals who have autism spectrum disorder (ASD) has historically been limited primarily to those with age-appropriate cognitive and language performance. Children with limited abilities are frequently excluded from such neuroscience research given anticipated barriers like tolerating the loud sounds associated with magnetic resonance imaging and remaining still during data collection. To better understand brain function across the full range of ASD there is a need to (1) include individuals with limited cognitive and language performance in neuroimaging research (non-sedated, awake) and (2) improve data quality across the performance range. The purpose of this study was to develop, implement, and test the feasibility of a clinical/behavioral and technical protocol for obtaining magnetoencephalography (MEG) data. Participants were 38 children with ASD (8-12 years) meeting the study definition of minimally verbal/nonverbal language. MEG data were obtained during a passive pure-tone auditory task. RESULTS Based on stakeholder feedback, the MEG Protocol for Low-language/cognitive Ability Neuroimaging (MEG-PLAN) was developed, integrating clinical/behavioral and technical components to be implemented by an interdisciplinary team (clinicians, behavior specialists, scientists, and technologists). Using MEG-PLAN, a 74% success rate was achieved for acquiring MEG data, with a 71% success rate for evaluable and analyzable data. Exploratory analyses suggested nonverbal IQ and adaptive skills were related to reaching the point of acquirable data. No differences in group characteristics were observed between those with acquirable versus evaluable/analyzable data. Examination of data quality (evaluable trial count) was acceptable. Moreover, results were reproducible, with high intraclass correlation coefficients for pure-tone auditory latency. CONCLUSIONS Children who have ASD who are minimally verbal/nonverbal, and often have co-occurring cognitive impairments, can be effectively and comfortably supported to complete an electrophysiological exam that yields valid and reproducible results. MEG-PLAN is a protocol that can be disseminated and implemented across research teams and adapted across technologies and neurodevelopmental disorders to collect electrophysiology and neuroimaging data in previously understudied groups of individuals.
Collapse
Affiliation(s)
- Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA. .,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Marissa Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| |
Collapse
|
15
|
Aykan S, Gürses E, Tokgöz-Yılmaz S, Kalaycıoğlu C. Auditory Processing Differences Correlate With Autistic Traits in Males. Front Hum Neurosci 2020; 14:584704. [PMID: 33192419 PMCID: PMC7588834 DOI: 10.3389/fnhum.2020.584704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022] Open
Abstract
Autism spectrum disorder (ASD) has high prevalence among males compared to females but mechanisms underlying the differences between sexes are poorly investigated. Moreover, autistic symptoms show a continuity in the general population and are referred to as autistic traits in people without an ASD diagnosis. One of the symptoms of ASD is sensory processing differences both in sensitivity and perception. To investigate sensory processing differences in autistic traits, we examined auditory and visual processing in a healthy population. We recruited 75 individuals (39 females and 36 males, mean age = 23.01 years, SD = 3.23 years) and assessed autistic traits using the Autism Spectrum Quotient, and sensory sensitivity using the Sensory Sensitivity Scales. Sensory processing in the visual domain was examined with the radial motion stimulus and the auditory domain was assessed with the 1,000 Hz pure tone stimulus with electroencephalography-evoked potentials. The results showed that the auditory sensitivity scores of the males (raud (34) = 0.396, paud = 0.017) and the visual sensitivity scores of females were correlated with autistic traits (rvis (37) = 0.420, pvis = 0.008). Moreover, the P2 latency for the auditory stimulus was prolonged in the participants with a higher level of autistic traits (rs (61) = 0.411, p = 0.008), and this correlation was only observed in males (rs (31) = 0.542, p = 0.001). We propose that auditory processing differences are related to autistic traits in neurotypicals, particularly in males. Our findings emphasize the importance of considering sex differences in autistic traits and ASD.
Collapse
Affiliation(s)
- Simge Aykan
- Department of Physiology, School of Medicine, Ankara University, Ankara, Turkey
| | - Emre Gürses
- Department of Audiology, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Suna Tokgöz-Yılmaz
- Department of Audiology, Faculty of Health Sciences, Ankara University, Ankara, Turkey.,Audiology, Speech and Balance Diagnosis and Rehabilitation Center, School of Medicine, Ankara University, Ankara, Turkey
| | - Canan Kalaycıoğlu
- Department of Physiology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Auditory Mapping With MEG: An Update on the Current State of Clinical Research and Practice With Considerations for Clinical Practice Guidelines. J Clin Neurophysiol 2020; 37:574-584. [DOI: 10.1097/wnp.0000000000000518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
17
|
Stephen JM, Solis I, Janowich J, Stern M, Frenzel MR, Eastman JA, Mills MS, Embury CM, Coolidge NM, Heinrichs-Graham E, Mayer A, Liu J, Wang YP, Wilson TW, Calhoun VD. The Developmental Chronnecto-Genomics (Dev-CoG) study: A multimodal study on the developing brain. Neuroimage 2020; 225:117438. [PMID: 33039623 DOI: 10.1016/j.neuroimage.2020.117438] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/07/2020] [Accepted: 10/05/2020] [Indexed: 01/10/2023] Open
Abstract
Brain development has largely been studied through unimodal analysis of neuroimaging data, providing independent results for structural and functional data. However, structure clearly impacts function and vice versa, pointing to the need for performing multimodal data collection and analysis to improve our understanding of brain development, and to further inform models of typical and atypical brain development across the lifespan. Ultimately, such models should also incorporate genetic and epigenetic mechanisms underlying brain structure and function, although currently this area is poorly specified. To this end, we are reporting here a multi-site, multi-modal dataset that captures cognitive function, brain structure and function, and genetic and epigenetic measures to better quantify the factors that influence brain development in children originally aged 9-14 years. Data collection for the Developmental Chronnecto-Genomics (Dev-CoG) study (http://devcog.mrn.org/) includes cognitive, emotional, and social performance scales, structural and functional MRI, diffusion MRI, magnetoencephalography (MEG), and saliva collection for DNA analysis of single nucleotide polymorphisms (SNPs) and DNA methylation patterns. Across two sites (The Mind Research Network and the University of Nebraska Medical Center), data from over 200 participants were collected and these children were re-tested annually for at least 3 years. The data collection protocol, sample demographics, and data quality measures for the dataset are presented here. The sample will be made freely available through the collaborative informatics and neuroimaging suite (COINS) database at the conclusion of the study.
Collapse
Affiliation(s)
- J M Stephen
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States.
| | - I Solis
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - J Janowich
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - M Stern
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - M R Frenzel
- University of Nebraska Medical Center, Omaha, NE, United States
| | - J A Eastman
- University of Nebraska Medical Center, Omaha, NE, United States
| | - M S Mills
- University of Nebraska Medical Center, Omaha, NE, United States
| | - C M Embury
- University of Nebraska Medical Center, Omaha, NE, United States
| | - N M Coolidge
- University of Nebraska Medical Center, Omaha, NE, United States
| | | | - A Mayer
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - J Liu
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Y P Wang
- Tulane University, New Orleans, LA, United States
| | - T W Wilson
- University of Nebraska Medical Center, Omaha, NE, United States
| | - V D Calhoun
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| |
Collapse
|
18
|
Abstract
Magnetoencephalography (MEG) is a noninvasive neuroimaging technique that measures the electromagnetic fields generated by the human brain. This article highlights the benefits that pediatric MEG has to offer to clinical practice and pediatric research, particularly for infants and young children; reviews the existing literature on adult MEG systems for pediatric use; briefly describes the few pediatric MEG systems currently extant; and draws attention to future directions of research, with focus on the clinical use of MEG for patients with drug-resistant epilepsy.
Collapse
|
19
|
Matsuzaki J, Ku M, Dipiero M, Chiang T, Saby J, Blaskey L, Kuschner ES, Kim M, Berman JI, Bloy L, Chen YH, Dell J, Liu S, Brodkin ES, Embick D, Roberts TPL. Delayed Auditory Evoked Responses in Autism Spectrum Disorder across the Life Span. Dev Neurosci 2020; 41:223-233. [PMID: 32007990 DOI: 10.1159/000504960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/20/2019] [Indexed: 11/19/2022] Open
Abstract
The M50 and M100 auditory evoked responses reflect early auditory processes in the primary/secondary auditory cortex. Although previous M50 and M100 studies have been conducted on individuals with autism spectrum disorder (ASD) and indicate disruption of encoding simple sensory information, analogous investigations of the neural correlates of auditory processing through development from children into adults are very limited. Magnetoencephalography was used to record signals arising from the left and right superior temporal gyrus during auditory presentation of tones to children/adolescents and adults with ASD as well as typically developing (TD) controls. One hundred and thirty-two participants (aged 6-42 years) were included into the final analyses (children/adolescents: TD, n = 36, 9.21 ± 1.6 years; ASD, n = 58, 10.07 ± 2.38 years; adults: TD, n = 19, 26.97 ± 1.29 years; ASD, n = 19, 23.80 ± 6.26 years). There were main effects of group on M50 and M100 latency (p < 0.001) over hemisphere and frequency. Delayed M50 and M100 latencies were found in participants with ASD compared to the TD group, and earlier M50 and M100 latencies were associated with increased age. Furthermore, there was a statistically significant association between language ability and both M50 and M100 latencies. Importantly, differences in M50 and M100 latencies between TD and ASD cohorts, often reported in children, persisted into adulthood, with no evidence supporting latency convergence.
Collapse
Affiliation(s)
- Junko Matsuzaki
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew Ku
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marissa Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Taylor Chiang
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joni Saby
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yu-Han Chen
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John Dell
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Embick
- Department of Linguistics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA, .,Department of Linguistics, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
| |
Collapse
|
20
|
Abstract
47,XYY syndrome (XYY) is a male sex chromosome disorder where individuals have an X chromosome and two copies of the Y chromosome. XYY is associated with a physical phenotype and carries increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD). Latencies of auditory evoked responses measured by magnetoencephalography have shown atypical prolongations in several neuropsychiatric and genetic disorders; specifically, delayed auditory responses have been observed in ASD. In this study, we investigated the associations of genotype and clinical phenotype with auditory processing. Whole cortex magnetoencephalography recorded during a passive auditory paradigm (500 Hz tones) was used to assess the auditory evoked response in three groups of male children: idiopathic ASD, typically developing, and XYY boys. Response waveforms were computed for left and right auditory cortex and latencies of the ∼50 ms (M50) and ∼100 ms (M100) components were determined. M50 latencies were significantly delayed compared with typically developing controls in children with ASD in the right hemisphere only, and in children with XYY in the left hemisphere only, irrespective of whether they met diagnostic criteria for ASD. Findings on the later M100 component trended in the same directions but did not attain significance, due to increased variance. Replicating previous findings, decreased M50 and M100 latencies with age were observed bilaterally. Overall, while XYY shares an electrophysiological phenotype (delayed evoked response latency) with idiopathic ASD, the hemispheric differences warrant further investigation.
Collapse
|
21
|
Videman M, Stjerna S, Wikström V, Nybo T, Roivainen R, Vanhatalo S, Huotilainen M, Gaily E. Prenatal exposure to antiepileptic drugs and early processing of emotionally relevant sounds. Epilepsy Behav 2019; 100:106503. [PMID: 31525552 DOI: 10.1016/j.yebeh.2019.106503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Prenatal exposure to antiepileptic drugs (AEDs) is associated with developmental compromises in verbal intelligence and social skills in childhood. Our aim was to evaluate whether a multifeature Mismatch Negativity (MMN) paradigm assessing semantic and emotional components of linguistic and emotional processing would be useful to detect possible alterations in early auditory processing of newborns with prenatal AED exposure. MATERIAL AND METHODS Data on AED exposure, pregnancy outcome, neuropsychological evaluation of the mothers, information on maternal epilepsy type, and a structured neurological examination of the newborn were collected prospectively. Blinded to AED exposure, we compared a cohort of 36 AED-exposed with 46 control newborns at the age of two weeks by measuring MMN with a multifeature paradigm with six linguistically relevant deviant sounds and three emotionally uttered sounds. RESULTS Frontal responses for the emotionally uttered stimulus Happy differed significantly in the exposed newborns compared with the control newborns. In addition, responses to sounds with or without emotional component differed in newborns exposed to multiple AEDs compared with control newborns or to newborns exposed to only one AED. CONCLUSIONS These preliminary findings suggest that prenatal AED exposure may alter early processing of emotionally and linguistically relevant sound information.
Collapse
Affiliation(s)
- Mari Videman
- Department of Pediatric Neurology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland.
| | - Susanna Stjerna
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and New Children's Hospital, Helsinki University Hospital and University of Helsinki, Finland
| | - Valtteri Wikström
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Taina Nybo
- Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, Finland
| | - Reina Roivainen
- Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, Finland
| | - Sampsa Vanhatalo
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and New Children's Hospital, Helsinki University Hospital and University of Helsinki, Finland
| | - Minna Huotilainen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; CICERO Learning Network, Faculty of Educational Sciences, University of Helsinki, Finland; FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Finland
| | - Eija Gaily
- Department of Pediatric Neurology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|
22
|
Roberts TPL, Matsuzaki J, Blaskey L, Bloy L, Edgar JC, Kim M, Ku M, Kuschner ES, Embick D. Delayed M50/M100 evoked response component latency in minimally verbal/nonverbal children who have autism spectrum disorder. Mol Autism 2019; 10:34. [PMID: 31428297 PMCID: PMC6694560 DOI: 10.1186/s13229-019-0283-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
Abnormal auditory neuromagnetic M50 and M100 responses, reflecting primary/secondary auditory cortex processing, have been reported in children who have autism spectrum disorder (ASD). Some studies have reported an association between delays in these responses and language impairment. However, as most prior research has focused on verbal individuals with ASD without cognitive impairment, rather little is known about neural activity during auditory processing in minimally verbal or nonverbal children who have ASD (ASD-MVNV)-children with little or no speech and often significant cognitive impairment. To understand the neurophysiological mechanisms underlying auditory processing in ASD-MVNV children, magnetoencephalography (MEG) measured M50 and M100 responses arising from left and right superior temporal gyri during tone stimuli in three cohorts: (1) MVNV children who have ASD (ASD-MVNV), (2) verbal children who have ASD and no intellectual disability (ASD-V), and (3) typically developing (TD) children. One hundred and five participants (8-12 years) were included in the final analyses (ASD-MVNV: n = 16, 9.85 ± 1.32 years; ASD-V: n = 55, 10.64 ± 1.31 years; TD: n = 34, 10.18 ± 1.36 years). ASD-MVNV children showed significantly delayed M50 and M100 latencies compared to TD. These delays tended to be greater than the corresponding delays in verbal children with ASD. Across cohorts, delayed latencies were associated with language and communication skills, assessed by the Vineland Adaptive Behavior Scale Communication Domain. Findings suggest that auditory cortex neural activity measures could be dimensional objective indices of language impairment in ASD for either diagnostic (e.g., via threshold or cutoff) or prognostic (considering the continuous variable) use.
Collapse
Affiliation(s)
- Timothy P L Roberts
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Junko Matsuzaki
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Lisa Blaskey
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA.,2Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Luke Bloy
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - J Christopher Edgar
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Mina Kim
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA.,2Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Matthew Ku
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Emily S Kuschner
- 1Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104 USA.,2Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - David Embick
- 3Department of Linguistics, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
23
|
De Meo-Monteil R, Nordahl CW, Amaral DG, Rogers SJ, Harootonian SK, Martin J, Rivera SM, Saron CD. Differential Altered Auditory Event-Related Potential Responses in Young Boys on the Autism Spectrum With and Without Disproportionate Megalencephaly. Autism Res 2019; 12:1236-1250. [PMID: 31157516 PMCID: PMC7282708 DOI: 10.1002/aur.2137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorder (ASD), characterized by impairments in social communication and repetitive behaviors, often includes altered responses to sensory inputs as part of its phenotype. The neurobiological basis for altered sensory processing is not well understood. The UC Davis Medical Investigation of Neurodevelopmental Disorders Institute Autism Phenome Project is a longitudinal, multidisciplinary study of young children with ASD and age-matched typically developing (TD) controls. Previous analyses of the magnetic resonance imaging data from this cohort have shown that ∼15% of boys with ASD have disproportionate megalencephaly (DM) or brain size to height ratio, that is 1.5 standard deviations above the TD mean. Here, we investigated electrophysiological responses to auditory stimuli of increasing intensity (50-80 dB) in young toddlers (27-48 months old). Analyses included data from 36 age-matched boys, of which 24 were diagnosed with ASD (12 with and 12 without DM; ASD-DM and ASD-N) and 12 TD controls. We found that the two ASD subgroups differed in their electrophysiological response patterns to sounds of increasing intensity. At early latencies (55-115 ms), ASD-N does not show a loudness-dependent response like TD and ASD-DM, but tends to group intensities by soft vs. loud sounds, suggesting differences in sensory sensitivity in this group. At later latencies (145-195 ms), only the ASD-DM group shows significantly higher amplitudes for loud sounds. Because no similar effects were found in ASD-N and TD groups, this may be related to their altered neuroanatomy. These results contribute to the effort to delineate ASD subgroups and further characterize physiological responses associated with observable phenotypes. Autism Res 2019, 12: 1236-1250. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Approximately 15% of boys with ASD have much bigger brains when compared to individuals with typical development. By recording brain waves (electroencephalography) we compared how autistic children, with or without big brains, react to sounds compared to typically developing controls. We found that brain responses in the big-brained group are different from the two other groups, suggesting that they represent a specific autism subgroup.
Collapse
Affiliation(s)
| | - Christine Wu Nordahl
- UC Davis Health MIND Institute, Medical Center, Sacramento, California
- UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, Sacramento, California
| | - David G Amaral
- UC Davis Health MIND Institute, Medical Center, Sacramento, California
- UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, Sacramento, California
| | - Sally J Rogers
- UC Davis Health MIND Institute, Medical Center, Sacramento, California
- UC Davis Department of Psychiatry and Behavioral Sciences, School of Medicine, Sacramento, California
| | | | - Joshua Martin
- UC Davis Center for Mind and Brain, Davis, California
| | - Susan M Rivera
- UC Davis Center for Mind and Brain, Davis, California
- UC Davis Health MIND Institute, Medical Center, Sacramento, California
- UC Davis Department of Psychology, Davis, California
| | - Clifford D Saron
- UC Davis Center for Mind and Brain, Davis, California
- UC Davis Health MIND Institute, Medical Center, Sacramento, California
| |
Collapse
|
24
|
Chen YH, Saby J, Kuschner E, Gaetz W, Edgar JC, Roberts TPL. Magnetoencephalography and the infant brain. Neuroimage 2019; 189:445-458. [PMID: 30685329 DOI: 10.1016/j.neuroimage.2019.01.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that provides whole-head measures of neural activity with millisecond temporal resolution. Over the last three decades, MEG has been used for assessing brain activity, most commonly in adults. MEG has been used less often to examine neural function during early development, in large part due to the fact that infant whole-head MEG systems have only recently been developed. In this review, an overview of infant MEG studies is provided, focusing on the period from birth to three years. The advantages of MEG for measuring neural activity in infants are highlighted (See Box 1), including the ability to assess activity in brain (source) space rather than sensor space, thus allowing direct assessment of neural generator activity. Recent advances in MEG hardware and source analysis are also discussed. As the review indicates, efforts in this area demonstrate that MEG is a promising technology for studying the infant brain. As a noninvasive technology, with emerging hardware providing the necessary sensitivity, an expected deliverable is the capability for longitudinal infant MEG studies evaluating the developmental trajectory (maturation) of neural activity. It is expected that departures from neuro-typical trajectories will offer early detection and prognosis insights in infants and toddlers at-risk for neurodevelopmental disorders, thus paving the way for early targeted interventions.
Collapse
Affiliation(s)
- Yu-Han Chen
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joni Saby
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily Kuschner
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - William Gaetz
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|