1
|
Peerapen P, Boonmark W, Chantarasaka S, Thongboonkerd V. Trigonelline prevents high-glucose-induced endothelial-to-mesenchymal transition, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial EA.hy926 cells. Biomed Pharmacother 2024; 179:117320. [PMID: 39191024 DOI: 10.1016/j.biopha.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Trigonelline (TRIG) is a natural compound in an alkaloid family found in diverse plants. This compound exerts anti-inflammatory, anti-allergic, anti-oxidative and anti-fibrotic activities in several disease models. However, its beneficial role in endothelial injury, especially induced by diabetes, is unclear. We, therefore, evaluated the effects of TRIG on the cellular proteome of human endothelial (EA.hy926) cells followed by functional validation in high-glucose (HG)-induced endothelial deteriorations. Label-free quantification using nanoLC-ESI-Qq-TOF MS/MS revealed 40 downregulated and 29 upregulated proteins induced by TRIG. Functional enrichment analysis using DAVID and REVIGO tools suggested the involvement of these altered proteins in several biological processes and molecular functions, particularly cell-cell adhesion, ATP metabolic process, cell redox homeostasis, cadherin binding, and ATP hydrolysis activity. Experimental validation showed that HG triggered endothelial-to-mesenchymal transition (EndMT) (as demonstrated by increased spindle index and mesenchymal markers, i.e., fibronectin and vimentin, and decreased endothelial markers, i.e., PECAM-1 and VE-cadherin), increased oxidized proteins, and reduced intracellular ATP, active mitochondria, endothelial tube/mesh formation and VEGF secretion. However, TRIG successfully abolished all these defects induced by HG. These data indicate that TRIG prevents HG-induced EndMT, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial cells.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suwichaya Chantarasaka
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
2
|
Peng LH, Tan Y, Bajinka O. The influence of maternal diet on offspring's gut microbiota in early life. Arch Gynecol Obstet 2024; 309:1183-1190. [PMID: 38057588 DOI: 10.1007/s00404-023-07305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The influence of maternal diet on offspring's health is an area of study that is linked to epigenetics. Maternal diet contributes to determining the health status of offspring and maternally linked mechanisms and is a global health challenge that requires attention. The impact of gut microbiota on host metabolism and offspring health is still not established. OBJECTIVE In this review, we intend to discuss the evidence on the impact of maternal diet and the health of offspring gut microbiota. The paper focuses on the gut microbiome of animal models. It captures the maternal diet and its influence on the offspring's gut microbiota, behavior that is supported by cell experimental results. Both inflammation and immune status of offspring induced by maternal diet are discussed. Finally, this review used predicted biological pathways involved in maternal diet and offspring health, and the influence of maternal diet on gut microbiota and offspring behavior. Obesity, diabetes, asthma and allergies, and neurodegenerative disorders and prospects for maternal diet, and microbiota and offspring health were discussed. CONCLUSION The review was able to gather that a high-fat diet during pregnancy created a long-lasting metabolic signature on the infant's innate immune system, altering inflammation in the offspring microbiota, which predisposed offspring to obesity and metabolic diseases in adulthood.
Collapse
Affiliation(s)
- Li-Hua Peng
- Department of Physiology, Hunan Yongzhou Vocational Technical College, Yongzhou, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- School of Medicine and Allied Health Sciences, University of The Gambia, Serrekunda, Gambia.
| |
Collapse
|
3
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Pharmacological Activities, Therapeutic Effects, and Mechanistic Actions of Trigonelline. Int J Mol Sci 2024; 25:3385. [PMID: 38542359 PMCID: PMC10970276 DOI: 10.3390/ijms25063385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
Trigonelline (TRG) is a natural polar hydrophilic alkaloid that is found in many plants such as green coffee beans and fenugreek seeds. TRG potentially acts on multiple molecular targets, including nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor γ, glycogen synthase kinase, tyrosinase, nerve growth factor, estrogen receptor, amyloid-β peptide, and several neurotransmitter receptors. In this review, we systematically summarize the pharmacological activities, medicinal properties, and mechanistic actions of TRG as a potential therapeutic agent. Mechanistically, TRG can facilitate the maintenance and restoration of the metabolic homeostasis of glucose and lipids. It can counteract inflammatory constituents at multiple levels by hampering pro-inflammatory factor release, alleviating inflammatory propagation, and attenuating tissue injury. It concurrently modulates oxidative stress by the blockage of the detrimental Nrf2 pathway when autophagy is impaired. Therefore, it exerts diverse therapeutic effects on a variety of pathological conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional effects, including neuroprotection from neurodegenerative disorders and diabetic peripheral neuropathy, neuromodulation, mitigation of cardiovascular disorders, skin diseases, diabetic mellitus, liver and kidney injuries, and anti-pathogen and anti-tumor activities. Further validations are required to define its specific targeting molecules, dissect the underlying mechanistic networks, and corroborate its efficacy in clinical trials.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
4
|
Safain KS, Crouse MS, Syring JG, Entzie YL, King LE, Hirchert MR, Ward AK, Reynolds LP, Borowicz PP, Dahlen CR, Swanson KC, Caton JS. One-carbon metabolites supplementation and nutrient restriction alter the fetal liver metabolomic profile during early gestation in beef heifers. J Anim Sci 2024; 102:skae258. [PMID: 39234988 PMCID: PMC11465369 DOI: 10.1093/jas/skae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024] Open
Abstract
Maternal nutrition is pivotal for proper fetal development, with one-carbon metabolites (OCM) playing a key role in fetal epigenetic programming through DNA and histone methylation. The study aimed to investigate the effects of nutrient restriction and OCM supplementation on fetal liver metabolomics in pregnant beef-heifers, focusing on metabolites and pathways associated with amino acid, vitamin and cofactor, carbohydrate, and energy metabolism at day 63 of gestation. Thirty-one crossbred Angus heifers were artificially inseminated and allocated to 4 nutritional treatments in a 2 × 2 factorial arrangement of treatments, with the 2 factors being dietary intake/rate of gain (control-diet [CON]; 0.60 kg/d ADG, vs. restricted-diet [RES]; -0.23 kg/d ADG) and OCM supplementation (supplemented [+OCM] vs. not supplemented [-OCM]). The resulting treatment groups-CON - OCM, CON + OCM, RES - OCM, and RES + OCM were maintained for 63 day post-breeding. Following this period, fetal liver tissues were collected and subjected to metabolomic analysis using UPLC-tandem mass-spectrometry. We identified 288 metabolites, with the majority (n = 54) being significantly influenced by the main effect of gain (P ≤ 0.05). Moreover, RES showed decreased abundances of most metabolites in pathways such as lysine metabolism; leucine, isoleucine, and valine metabolism; and tryptophan metabolism, compared to CON. Supplementation with OCM vs. no OCM supplementation, resulted in greater abundance of metabolites (P ≤ 0.05) affecting pathways associated with methionine, cysteine, S-adenosylmethionine and taurine metabolism; guanidino and acetamido metabolism; and nicotinate and nicotinamide metabolism. Notably, OCM supplementation with a moderate rate of gain increased the concentrations of ophthalmate, N-acetylglucosamine, and ascorbic-acid 3-sulfate, which are important for proper fetal development (P ≤ 0.05). Nutrient restriction reduced the majority of liver metabolites, while OCM supplementation increased a smaller number of metabolites. Thus, OCM supplementation may be protective of metabolite concentrations in key developmental pathways, which could potentially enhance fetal development under nutrient-restricted conditions.
Collapse
Affiliation(s)
- Kazi Sarjana Safain
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Jessica G Syring
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Yssi L Entzie
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Layla E King
- Department of Agriculture and Natural Resources, University of Minnesota Crookston, Crookston, MN 56716, USA
| | - Mara R Hirchert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kendall C Swanson
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
5
|
Ding K, Sun E, Huang R, Heng W, Li X, Liu J, Zhao J, Li C, Feng L, Jia X. Integrated metabolome-microbiome analysis investigates the different regulations of Pudilan Xiaoyan oral liquid in young rats with acute pharyngitis compared to adult rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155037. [PMID: 37611464 DOI: 10.1016/j.phymed.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Pudilan Xiaoyan Oral Liquid (PDL) is a famous traditional Chinese prescription recorded in the Chinese Pharmacopeia, which is widely used to treat inflammatory diseases of the respiratory tract in children and adults. However, the endogenous changes in children and adults with PDL in the treatment of acute pharyngitis remain unclear. PURPOSE The differential regulatory roles of PDL in endogenous metabolism and gut microbes in young and adult rats were investigated with a view to providing a preclinical data reference for PDL in medication for children. METHODS An acute pharyngitis model was established, and serum levels of inflammatory factors and histopathology were measured. This study simulated the growth and development of children in young rats and explored the endogenous metabolic characteristics and intestinal microbial composition after the intervention of PDL by using serum metabolomic technique and 16S rRNA high-throughput sequencing technique. RESULTS The results showed that PDL had therapeutic effects on young and adult rats with acute pharyngitis. Sixteen biomarkers were identified by metabolomics in the serum of young rats and 23 in adult rats. PDL can also affect intestinal microbial diversity and community richness in young and adult rats. Alloprevotella, Allobaculum, Alistipes, Bifidobacterium, and Enterorhabdus were prominent bacteria in young rats. Bacteria from the phylum Firmicutes of the adult rats changed more significantly under the treatment of PDL. In young rats, amino acid metabolism was the primary regulatory mode of PDL, whereas, in adult rats, glycerophospholipid metabolism was studied. CONCLUSION The regulation of PDL on the serum metabolite group and intestinal microflora in young rats was different from that in adult rats, indicating the necessity of an independent study on children's medication. PDL may also exert therapeutic effects on young and adult rats by regulating gut microbial homeostasis. The results support the clinical application of PDL.
Collapse
Affiliation(s)
- Ke Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - E Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Ran Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wangqin Heng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xuan Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Jun Liu
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Chao Li
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
6
|
Dong R, Peng K, Shi L, Niu Q, Rafique H, Liu Y, Yuan L, Zou L, Li L, Messia MC, Hu X. Oat bran prevents high-fat-diet induced muscular dysfunction, systemic inflammation and oxidative stress through reconstructing gut microbiome and circulating metabolome. Food Res Int 2023; 172:113127. [PMID: 37689892 DOI: 10.1016/j.foodres.2023.113127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Western-type diet characterized by high fat emerges a promoter of skeletal muscle dysfunctions. Oat bran was typically considered a healthy food of premium quality for its abundant dietary fiber. The present study comprehensively explored the effects of a diet rich in oat bran on skeletal muscle disfunctions in high-fat diet (HFD) fed mice. Dietary-fiber-rich oat bran significantly ameliorated HFD-induced skeletal muscle function abnormalities, as evidenced by a phenotype improvement in mice grip strength and endurance treadmill running distance, accompanied with the regulation of muscle functions related gene expressions, namely Fis1, Cytc, Mhy2 and Mhy4. Oat bran suppressed the production of systemic inflammatory cytokines while promoted superoxide dismutase and glutathione. Furthermore, oat bran significantly impacted gut microbiota composition by promoting short chain fatty acids (SCFAs) producers and certain probiotic genera, along with the enhancement of SCFAs. Oat bran also significantly decreased the circulating levels of inflammation-related metabolites and played roles in MAPK signaling, thereafter influencing skeletal muscle functions. Collectively, benefits from integration of biomedical indicators, microbiomics, and metabolomics demonstrates the benefits of oat bran consumption on prevention of HFD-related muscular dysfunctions via alleviating HFD-induced inflammation, gut dysbiosis, and systemic metabolism, pinpointing a novel mechanism underlying the muscle-promoting property of oat bran.
Collapse
Affiliation(s)
- Rui Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kejie Peng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Qianwen Niu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Liu
- Physical Education School, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Lu Li
- Guilin Seamild Foods Co., Ltd, Guilin, Guangxi 541004, China
| | - Maria Cristina Messia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
7
|
Shah RV, Steffen LM, Nayor M, Reis JP, Jacobs DR, Allen NB, Lloyd-Jones D, Meyer K, Cole J, Piaggi P, Vasan RS, Clish CB, Murthy VL. Dietary metabolic signatures and cardiometabolic risk. Eur Heart J 2023; 44:557-569. [PMID: 36424694 PMCID: PMC10169425 DOI: 10.1093/eurheartj/ehac446] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS Observational studies of diet in cardiometabolic-cardiovascular disease (CM-CVD) focus on self-reported consumption of food or dietary pattern, with limited information on individual metabolic responses to dietary intake linked to CM-CVD. Here, machine learning approaches were used to identify individual metabolic patterns related to diet and relation to long-term CM-CVD in early adulthood. METHODS AND RESULTS In 2259 White and Black adults (age 32.1 ± 3.6 years, 45% women, 44% Black) in the Coronary Artery Risk Development in Young Adults (CARDIA) study, multivariate models were employed to identify metabolite signatures of food group and composite dietary intake across 17 food groups, 2 nutrient groups, and healthy eating index-2015 (HEI2015) diet quality score. A broad array of metabolites associated with diet were uncovered, reflecting food-related components/catabolites (e.g. fish and long-chain unsaturated triacylglycerols), interactions with host features (microbiome), or pathways broadly implicated in CM-CVD (e.g. ceramide/sphingomyelin lipid metabolism). To integrate diet with metabolism, penalized machine learning models were used to define a metabolite signature linked to a putative CM-CVD-adverse diet (e.g. high in red/processed meat, refined grains), which was subsequently associated with long-term diabetes and CVD risk numerically more strongly than HEI2015 in CARDIA [e.g. diabetes: standardized hazard ratio (HR): 1.62, 95% confidence interval (CI): 1.32-1.97, P < 0.0001; CVD: HR: 1.55, 95% CI: 1.12-2.14, P = 0.008], with associations replicated for diabetes (P < 0.0001) in the Framingham Heart Study. CONCLUSION Metabolic signatures of diet are associated with long-term CM-CVD independent of lifestyle and traditional risk factors. Metabolomics improves precision to identify adverse consequences and pathways of diet-related CM-CVD.
Collapse
Affiliation(s)
- Ravi V Shah
- Vanderbilt University Medical Center, Vanderbilt Clinical and Translational Research Center (VTRACC), Nashville, TN, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Matthew Nayor
- Cardiology Division, Boston University School of Medicine, Boston, MA, USA
| | - Jared P Reis
- Epidemiology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Katie Meyer
- Nutrition Department, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Joanne Cole
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Ramachandran S Vasan
- Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, and Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Venkatesh L Murthy
- Department of Medicine and Radiology, University of Michigan, 1338 Cardiovascular Center, Ann Arbor, MI 48109-5873, USA
| |
Collapse
|
8
|
Peerapen P, Chanthick C, Thongboonkerd V. Quantitative proteomics reveals common and unique molecular mechanisms underlying beneficial effects of caffeine and trigonelline on human hepatocytes. Biomed Pharmacother 2023; 158:114124. [PMID: 36521247 DOI: 10.1016/j.biopha.2022.114124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Caffeine and trigonelline are the major bioactive compounds in coffee. Caffeine alone or combined with other coffee compounds shows hepatoprotective effects. However, molecular mechanisms underlying such hepatoprotective effects remain unclear. We therefore addressed molecular effects of caffeine and trigonelline on human hepatocytes using quantitative proteomics followed by bioinformatic analyses to obtain topological and functional significance. HepG2 cells were treated with 100 μM caffeine or trigonelline for 24-h and evaluated by quantitative proteomics using nanoLC-ESI-LTQ-Orbitrap MS/MS. A total of 26 and 25 significantly altered proteins were identified in caffeine-treated and trigonelline-treated cells, respectively, compared with control cells. Topological analyses revealed that ribosomal and translation regulatory proteins predominantly served as the hub proteins associated with protein clusters. Functional analyses also revealed that these two bioactive compounds shared some molecular mechanisms via induction of translational processes. There were also other unique molecular functions and biological processes triggered or suppressed by either caffeine or trigonelline. These data highlight common and unique molecular mechanisms underlying the hepatoprotective effects of caffeine and trigonelline that may be useful for future clinical applications.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanettee Chanthick
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
A Low Dose of Ouabain Alters the Metabolic Profile of Adult Rats Experiencing Intrauterine Growth Restriction in a Sex-Specific Manner. Reprod Sci 2022; 30:1594-1607. [PMID: 36333644 DOI: 10.1007/s43032-022-01118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of type 2 diabetes mellitus (T2DM) and metabolic diseases. The pancreas of fetuses with IUGR is usually characterized by pancreatic dysplasia and reduced levels of insulin secretion caused by the diminished replication of β-cells. Previous studies showed that a low dose of ouabain could reduce the apoptosis of embryonic nephric cells during IUGR and partially restore the number of nephrons at birth. The rescued kidneys functioned well and decreased the prevalence of hypertension. Thus, we hypothesized that ouabain could rescue pancreatic development during IUGR and reduce the morbidity of T2DM and metabolic diseases. Maternal malnutrition was used to induce the IUGR model, and then a low dose of ouabain was administered to rats with IUGR during pregnancy. Throughout the experiment, we monitored the pattern of weight increase and evaluated the metabolic parameters in the offspring in different stages. Male, but not female, offspring in the IUGR group presented catch-up growth. Ouabain could benefit the impaired glucose tolerance of male offspring; however, this desirable effect was eliminated by aging. The insulin sensitivity was significantly impaired in male offspring with IUGR, but it was improved by ouabain, even during old age. However, in the female offspring, low birth weight appeared to be a beneficial factor even in old age; administering ouabain exacerbated these favorable effects. Our data suggested that IUGR influenced glucose metabolism in a sex-specific manner and ouabain treatment during pregnancy exerted strongly contrasting effects in male and female rats.
Collapse
|
10
|
Wang H, Chen X, Miao X, Lu K, He M, Wu X. Dendrobium mixture improves gestational diabetes mellitus through regulating Nrf2/HO1 signaling pathway. Biomed Pharmacother 2022; 155:113656. [PMID: 36116251 DOI: 10.1016/j.biopha.2022.113656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is characterized by insulin resistance during pregnancy, and it is always combined with serious complications. Dendrobium mixture (DMix) is a kind of traditional Chinese medicine, and it has been proved to be an effective treatment for diabetes. However, the regulatory role of DMix in GDM remains elusive. METHODS High fat feed combined with streptozotocin injection and high glucose medium were used to establish GDM animal and cell models, respectively. The levels of blood glucose, blood lipid, and insulin were measured with commercial kits. Western blotting was used to detect protein expression. RESULTS DMix improved pancreas and placenta injury in GDM rats. DMix reversed the influence of GDM on the levels of SOD, MDA, and glutathione in the serum. Hyperglycemia and hyperlipidemia in GDM rats were suppressed by DMix. The activation of MAPK and inhibition of Nrf2/HO1 in GDM animal and cell models were reversed by DMix. The increase of ROS intensity, apoptosis, and inflammation factors in HG treated cells were reversed by DMix. CONCLUSION This research proved that DMix improved GDM through inhibiting oxidative condition, inflammation factors, hyperglycemia and hyperlipidemia. This study might provide a novel thought for the prevention and treatment of GDM.
Collapse
Affiliation(s)
- Hongri Wang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital to Fujian University of Traditional Chinese Medicine, No. 282, Wusi Road, Fuzhou 350001, Fujian, China.
| | - Xuzheng Chen
- Academy of integratived Medicine, Fujian University of Traditional Chinese Medicine, No. 282, Wusi Road, Fuzhou 350001, Fujian, China.
| | - Xueqin Miao
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital to Fujian University of Traditional Chinese Medicine, No. 282, Wusi Road, Fuzhou 350001, Fujian, China.
| | - Kunbin Lu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital to Fujian University of Traditional Chinese Medicine, No. 282, Wusi Road, Fuzhou 350001, Fujian, China.
| | - Mengjuan He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital to Fujian University of Traditional Chinese Medicine, No. 282, Wusi Road, Fuzhou 350001, Fujian, China.
| | - Xiaomei Wu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital to Fujian University of Traditional Chinese Medicine, No. 282, Wusi Road, Fuzhou 350001, Fujian, China.
| |
Collapse
|
11
|
Valenzuela I, Kinoshita M, van der Merwe J, Maršál K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta 2022; 126:90-113. [PMID: 35796064 DOI: 10.1016/j.placenta.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 12/09/2022]
Abstract
Fetal growth restriction (FGR) in human pregnancy is associated with perinatal mortality, short- and long-term morbidities. No prenatal therapy is currently established despite decades of research. We aimed to review interventions in animal models for prenatal FGR treatment, and to seek the next steps for an effective clinical therapy. We registered our protocol and searched MEDLINE, Embase, and The Cochrane Library with no language restrictions, in accordance with the PRISMA guideline. We included all studies that reported the effects of any prenatal intervention in animal models of induced FGR. From 3257 screened studies, 202 describing 237 interventions were included for the final synthesis. Mice and rats were the most used animals (79%) followed by sheep (16%). Antioxidants (23%), followed by vasodilators (18%), nutrients (14%), and immunomodulators (12%) were the most tested therapy. Two-thirds of studies only reported delivery or immediate neonatal outcomes. Adverse effects were rarely reported (11%). Most studies (73%), independent of the intervention, showed a benefit in fetal survival or birthweight. The risk of bias was high, mostly due to the lack of randomization, allocation concealment, and blinding. Future research should aim to describe both short- and long-term outcomes across various organ systems in well-characterized models. Further efforts must be made to reduce selection, performance, and detection bias.
Collapse
|
12
|
Murthy VL, Nayor M, Carnethon M, Reis JP, Lloyd-Jones D, Allen NB, Kitchen R, Piaggi P, Steffen LM, Vasan RS, Freedman JE, Clish CB, Shah RV. Circulating metabolite profile in young adulthood identifies long-term diabetes susceptibility: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Diabetologia 2022; 65:657-674. [PMID: 35041022 PMCID: PMC8969893 DOI: 10.1007/s00125-021-05641-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS The aim of this work was to define metabolic correlates and pathways of diabetes pathogenesis in young adults during a subclinical latent phase of diabetes development. METHODS We studied 2083 young adults of Black and White ethnicity in the prospective observational cohort Coronary Artery Risk Development in Young Adults (CARDIA) study (mean ± SD age 32.1 ± 3.6 years; 43.9% women; 42.7% Black; mean ± SD BMI 25.6 ± 4.9 kg/m2) and 1797 Framingham Heart Study (FHS) participants (mean ± SD age 54.7 ± 9.7 years; 52.1% women; mean ± SD BMI 27.4 ± 4.8 kg/m2), examining the association of comprehensive metabolite profiles with endophenotypes of diabetes susceptibility (adipose and muscle tissue phenotypes and systemic inflammation). Statistical learning techniques and Cox regression were used to identify metabolite signatures of incident diabetes over a median of nearly two decades of follow-up across both cohorts. RESULTS We identified known and novel metabolites associated with endophenotypes that delineate the complex pathophysiological architecture of diabetes, spanning mechanisms of muscle insulin resistance, inflammatory lipid signalling and beta cell metabolism (e.g. bioactive lipids, amino acids and microbe- and diet-derived metabolites). Integrating endophenotypes of diabetes susceptibility with the metabolome generated two multi-parametric metabolite scores, one of which (a proinflammatory adiposity score) was associated with incident diabetes across the life course in participants from both the CARDIA study (young adults; HR in a fully adjusted model 2.10 [95% CI 1.72, 2.55], p<0.0001) and FHS (middle-aged and older adults; HR 1.33 [95% CI 1.14, 1.56], p=0.0004). A metabolite score based on the outcome of diabetes was strongly related to diabetes in CARDIA study participants (fully adjusted HR 3.41 [95% CI 2.85, 4.07], p<0.0001) but not in the older FHS population (HR 1.15 [95% CI 0.99, 1.33], p=0.07). CONCLUSIONS/INTERPRETATION Selected metabolic abnormalities in young adulthood identify individuals with heightened diabetes risk independent of race, sex and traditional diabetes risk factors. These signatures replicate across the life course.
Collapse
Affiliation(s)
- Venkatesh L Murthy
- Department of Medicine and Radiology, University of Michigan, Ann Arbor, MI, USA.
| | - Matthew Nayor
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Jared P Reis
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | | | - Robert Kitchen
- Simches Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Lyn M Steffen
- University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Jane E Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
13
|
Chen C, Ma J, Miao CS, Zhang H, Zhang M, Cao X, Shi Y. Trigonelline induces autophagy to protect mesangial cells in response to high glucose via activating the miR-5189-5p-AMPK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153614. [PMID: 34500303 DOI: 10.1016/j.phymed.2021.153614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/19/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a primary cause of end-stage renal disease. Increasing evidence indicates that microRNAs (miRNAs) are involved in DN pathogenesis. Trigonelline (TRL) has been shown to lower blood sugar and cholesterol levels, promote nerve regeneration, and exert anti-cancer and sedative properties. METHOD The effect of TRL on human mesangial cell (HMC) growth was assessed using the MTT assay. Differentially expressed miRNAs were validated using real-time quantitative polymerase chain reaction (real-time PCR). Bioinformatics, cell transfection, and Western blot analyses were utilized to confirm the binding of miR-5189-5p to HIF1AN. The effects of miR-5189-5 expression on cell proliferation were also assessed. Western blot analysis was used to determine the activation of multiple signaling molecules including phosphorylated-(p)-AMPK, SIRT1, LC3B, p62, and Beclin-1 in the autophagy pathway. RESULTS TRL improved proliferation, increased the expression of miR-5189-5p, reduced HIF1AN, and restored the inhibition of autophagy in HMCs induced by high glucose. MiR-5189-5p mimics inhibited HIF1AN expression, and the miR-5189-5p inhibitor increased HIF1AN expression. MiR-5189-5p mimics significantly improved the proliferation of HMCs induced by high glucose, reduced the relative protein expression of p-AMPK, SIRT1, LC3B, and Beclin-1, and significantly increased the relative protein expression of p62. CONCLUSION We showed that TRL up-regulated miR-5189-5p expression, activated the AMPK pathway, and activated autophagy in HMCs. Our study demonstrates that TRL could be a new treatment strategy to protect mesangial cells in response to high glucose.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Chun Sheng Miao
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Huayu Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Ming Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Xia Cao
- Department of Pharmacology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| | - Yan Shi
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
14
|
Hur B, Gupta VK, Huang H, Wright KA, Warrington KJ, Taneja V, Davis JM, Sung J. Plasma metabolomic profiling in patients with rheumatoid arthritis identifies biochemical features predictive of quantitative disease activity. Arthritis Res Ther 2021; 23:164. [PMID: 34103083 PMCID: PMC8185925 DOI: 10.1186/s13075-021-02537-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, autoimmune disorder characterized by joint inflammation and pain. In patients with RA, metabolomic approaches, i.e., high-throughput profiling of small-molecule metabolites, on plasma or serum has thus far enabled the discovery of biomarkers for clinical subgroups, risk factors, and predictors of treatment response. Despite these recent advancements, the identification of blood metabolites that reflect quantitative disease activity remains an important challenge in precision medicine for RA. Herein, we use global plasma metabolomic profiling analyses to detect metabolites associated with, and predictive of, quantitative disease activity in patients with RA. Methods Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was performed on a discovery cohort consisting of 128 plasma samples from 64 RA patients and on a validation cohort of 12 samples from 12 patients. The resulting metabolomic profiles were analyzed with two different strategies to find metabolites associated with RA disease activity defined by the Disease Activity Score-28 using C-reactive protein (DAS28-CRP). More specifically, mixed-effects regression models were used to identify metabolites differentially abundant between two disease activity groups (“lower”, DAS28-CRP ≤ 3.2; and “higher”, DAS28-CRP > 3.2) and to identify metabolites significantly associated with DAS28-CRP scores. A generalized linear model (GLM) was then constructed for estimating DAS28-CRP using plasma metabolite abundances. Finally, for associating metabolites with CRP (an indicator of inflammation), metabolites differentially abundant between two patient groups (“low-CRP”, CRP ≤ 3.0 mg/L; “high-CRP”, CRP > 3.0 mg/L) were investigated. Results We identified 33 metabolites differentially abundant between the lower and higher disease activity groups (P < 0.05). Additionally, we identified 51 metabolites associated with DAS28-CRP (P < 0.05). A GLM based upon these 51 metabolites resulted in higher prediction accuracy (mean absolute error [MAE] ± SD: 1.51 ± 1.77) compared to a GLM without feature selection (MAE ± SD: 2.02 ± 2.21). The predictive value of this feature set was further demonstrated on a validation cohort of twelve plasma samples, wherein we observed a stronger correlation between predicted and actual DAS28-CRP (with feature selection: Spearman’s ρ = 0.69, 95% CI: [0.18, 0.90]; without feature selection: Spearman’s ρ = 0.18, 95% CI: [−0.44, 0.68]). Lastly, among all identified metabolites, the abundances of eight were significantly associated with the CRP patient groups while controlling for potential confounders (P < 0.05). Conclusions We demonstrate for the first time the prediction of quantitative disease activity in RA using plasma metabolomes. The metabolites identified herein provide insight into circulating pro-/anti-inflammatory metabolic signatures that reflect disease activity and inflammatory status in RA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02537-4.
Collapse
Affiliation(s)
- Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Vinod K Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Harvey Huang
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Kerry A Wright
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kenneth J Warrington
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - John M Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA. .,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA. .,Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Branquinho LS, Verdan MH, Santos ED, Neves SCD, Oliveira RJ, Cardoso CAL, Kassuya CAL. Aqueous extract from leaves of Doliocarpus dentatus (Aubl.) Standl. relieves pain without genotoxicity activity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113440. [PMID: 33022341 DOI: 10.1016/j.jep.2020.113440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the State of Mato Grosso do Sul, the watery sap of Doliocarpus dentatus is used to alleviate thirst, and the leaves of this species are used to relieve pain and swelling associated with inflammatory processes. AIM OF THE STUDY This study aimed to analyze the compounds of the leaves from the aqueous extract of D. dentatus (EADd) and evaluate its toxicogenetic and pain relief effects in animal models. MATERIALS AND METHODS Compounds were identified in EADd by UHPLC-HRMS (Ultra high-performance liquid chromatography coupled to high resolution mass spectrometry). The oral dose of 17 mg/kg EADd, calculated according to ethnopharmacological uses, and doses between 30 and 300 mg/kg were used to test Swiss mice in formalin- and acetic acid-induced models of pain and behavior. EADd (100-2000 mg/kg) was assayed in mice by comet, micronucleus, and phagocytosis tests and by peripheral leukocyte counts. RESULTS Phenolic compounds and flavonoids as well as trigonelline and isoquercetin were identified in EADd. All oral doses of EADd exhibited antinociceptive activity, as indicated by a decrease in pain in both phases, a decrease in cold hypersensitivity induced by formalin, and a decrease in abdominal contortions induced by acetic acid. EADd did not alter the exploratory, motor or motivational activities of the animals. The comet and micronucleus tests indicated that EADd was not genotoxic and did not change the phagocytic activity or peripheral leukocyte count. CONCLUSIONS These results demonstrate that EADd could act as an antinociceptive agent that does not present genotoxicity. This study should contribute to justifying, in part, the popular use of D. dentatus in pain management, ensuring its safe use.
Collapse
Affiliation(s)
- Lidiane Schultz Branquinho
- School of Health Sciences, Federal University of Grande Dourados - Dourados, Mato Grosso do Sul State, Brazil.
| | - Maria Helena Verdan
- Postgraduate Program in Chemistry, Federal University of Grande Dourados - Dourados, Mato Grosso do Sul State, Brazil.
| | - Elisangela Dos Santos
- School of Health Sciences, Federal University of Grande Dourados - Dourados, Mato Grosso do Sul State, Brazil.
| | | | | | - Cláudia Andrea Lima Cardoso
- Postgraduate Program in Chemistry, Federal University of Grande Dourados - Dourados, Mato Grosso do Sul State, Brazil; Center of Studies in Natural Resources, State University of Mato Grosso Do Sul - Dourados, Mato Grosso do Sul State, Brazil.
| | | |
Collapse
|
16
|
Sheweita SA, ElHady SA, Hammoda HM. Trigonella stellata reduced the deleterious effects of diabetes mellitus through alleviation of oxidative stress, antioxidant- and drug-metabolizing enzymes activities. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112821. [PMID: 32251758 DOI: 10.1016/j.jep.2020.112821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genus Trigonella has a history of folkloric medicinal uses in China, Japan, Egypt and India. There are a variety of therapeutic actions of Trigonella including hypocholesterolemia, hypoglycemia, antibacterial, antiviral, anti-inflammatory activities, antioxidants and appetite stimulant. AIM OF THE STUDY The prevalence of diabetes mellitus is increasing annually. The present study aims at investigating the protective effects of Trigonella stellata against the adverse effects of diabetes mellitus through investigation of the changes in phase I & II drug-metabolizing enzyme activities, protein expression of cytochrome P450 isoenzymes [CYP2E1 & 3A4], oxidative stress, antioxidant enzymes as well as histopathology of both liver and kidney tissues. METHODS GC-MS and MALDI-TOF were used to analyze the main constituents of the aqueous and the ethanolic extract of Trigonella stellata. Western immunoblotting technique used to show the protein expression of CYP450 isozymes in different groups. Spectrophotometric- and fluorophotometric techniques were also used for assessment of different hepatic integrity enzymes. Histopathological techniques used to illustrate the changes in the tissues of both livers and kidneys after different treatments. RESULTS Trigonelline was found to be the main constituent of both aqueous and ethanolic extract of Trigonella stellata. Administration of the aqueous and/or the ethanolic extracts of Trigonella stellata to the diabetic rats was found to decrease the blood glucose level, the biochemical markers of both liver (transaminases activities, Lactate dehydrogenase, gamma-glutamyl transferase) and the renal functions (urea, creatinine and bilirubin) which were increased in diabetic-treated rats relative to their normal levels. Diabetes mellitus potentially induced the oxidative stress, and also activities of dimethylnitrosamine N-demethylase I, cytochrome c-reductase, ethoxyresourfin O-deethylase, and the total hepatic content of cytochrome P450. On the other hand, the activity of catalase [CAT], superoxide dismutase [SOD], glutathione S-transferase [GST], glutathione reductase [GR], glutathione peroxidase [GPx] and levels of reduced glutathione [GSH] were potentially inhibited in diabetic rats compared to the control rats. However, treatments of diabetic rats with either aqueous and/or ethanolic extracts of Trigonella stellata restored such changes caused by diabetes almost nearly to their normal levels compared to the control group. Supporting the activity of dimethyl nitrosamine N-demethylase I activity, the protein expression of CYP2E1 was also induced in diabetic rats. However, the aqueous extract of Trigonella stellata was more effective than ethanolic extract in restoring the changes in the protein expression of CYP2E. On the other hand, the protein expression of CYP3A4 was markedly decreased in diabetic rats, and this decrease was partially restored to its normal level after treatment of diabetic rats with aqueous and/or ethanolic extracts. In addition, Trigonella stellata extracts alleviated the histopathological changes in livers and kidneys caused by diabetes mellitus. CONCLUSION It is concluded that diabetes mellitus induced changes in oxidative stress, phase I & II drug-metabolizing enzymes, and antioxidant enzymes activities, whereas both extracts of Trigonella stellata alleviated such changes. Alterations in cytochrome P450 system should be considered when therapeutic drugs are administered to diabetic patients since most of xenobiotic are mainly metabolized by this system.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Sara A ElHady
- Department of Biochemistry, Faculty of Pharmacy, Pharos University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Colombo R, Papetti A. Decaffeinated coffee and its benefits on health: focus on systemic disorders. Crit Rev Food Sci Nutr 2020; 61:2506-2522. [PMID: 32551832 DOI: 10.1080/10408398.2020.1779175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The current literature has mainly focused on benefits and risks deriving from the consumption of caffeinated coffee and its implications for inflammation, cardiovascular diseases, neurodegenerative disorders, and cancer. Today, data about the role of caffeine in many disorders are controversial and the attention has increasingly focused on decaffeinated coffee and its non-caffeine compounds, which could have mainly beneficial effects. In fact, coffee phenolic compounds not only exhibit well-known antioxidant properties, but they can also antagonize some negative effects of caffeine, for example in inflammatory pathway and in glucose metabolism and homeostasis. In this review, we consider the literature of the last two decades and critically discuss the effects of decaffeinated coffee compounds on systemic disorders, mainly inflammation, cardiovascular diseases, hepatic dysfunctions, and cancer.
Collapse
Affiliation(s)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Induction of peroxisome proliferator activated receptor γ (PPARγ) mediated gene expression and inhibition of induced nitric oxide production by Maerua subcordata (Gilg) DeWolf. BMC Complement Med Ther 2020; 20:80. [PMID: 32164648 PMCID: PMC7076844 DOI: 10.1186/s12906-020-2856-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The health benefits of botanicals is linked to their phytochemicals that often exert pleiotropic effects via targeting multiple molecular signaling pathways such as the peroxisome proliferator-activated receptors (PPARs) and the nuclear factor kappaB (NFκB). The PPARs are transcription factors that control metabolic homeostasis and inflammation while the NF-κB is a master regulator of inflammatory genes such as the inducible nitric-oxide synthase that result in nitric oxide (NO) overproduction. METHODS Extracts of Maerua subcordata (MS) and selected candidate constituents thereof, identified by liquid chromatography coupled to mass spectroscopy, were tested for their ability to induce PPARγ mediated gene expression in U2OS-PPARγ cells using luciferase reporter gene assay and also for their ability to inhibit lipopolysaccharide (LPS) induced NO production in RAW264.7 macrophages. While measuring the effect of test samples on PPARγ mediated gene expression, a counter assay that used U2OS-Cytotox cells was performed to monitor cytotoxicity or any non-specific changes in luciferase activity. RESULTS The results revealed that the fruit, root, and seed extracts were non-cytotoxic up to a concentration of 30 g dry weight per litre (gDW/L) and induced PPARγ mediated gene expression but the leaf extract showed some cytotoxicity and exhibited minimal induction. Instead, all extracts showed concentration (1-15 gDW/L) dependent inhibition of LPS induced NO production. The root extract showed weaker inhibition. Among the candidate constituents, agmatine, stachydrine, trigonelline, indole-3-carboxyaldehyde, plus ethyl-, isobutyl-, isopropyl, and methyl-isothiocyanates showed similar inhibition, and most showed increased inhibition with increasing concentration (1-100 μM) although to a lesser potency than the positive control, aminoguanidine. CONCLUSION The present study demonstrated for the first time the induction of PPARγ mediated gene expression by MS fruit, root, and seed extracts and the inhibition of LPS induced NO production by MS fruit, leaf, root, and seed extracts and some candidate constituents thereof.
Collapse
|
19
|
Liu W, Xia M, Yang L, Wang Z, Wang R, Shi Y. Development and optimization of a method for determining betaine and trigonelline in the fruits of Lycium species by using solid-phase extraction combined with high-performance liquid chromatography-diode array detector. J Sep Sci 2020; 43:2073-2078. [PMID: 32129569 DOI: 10.1002/jssc.201901124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 11/07/2022]
Abstract
Betaine is an essential nutrient for humans and a source of methyl donors for methionine and S-adenosylmethionine formation, and it is used as a biomarker for pharmacological activities and to evaluate the quality of Lycium species and common foods. However, because of its special structural features, poor ultraviolet-chromophore, and high polarity, the existing methods for betaine extraction and quantification cannot provide higher extraction efficiency, better sensitivity, or resolution degree. A simple, fast, and efficient high-performance liquid chromatography-diode array detector coupled with solid-phase extraction was adopted for simultaneous separation and quantification of betaine in four types of Lycium species. The results revealed that after degreasing with dichloromethane, extraction with 80% ethanol (pH adjusted to 1.0 with hydrochloric acid), and elution with aluminum oxide (OH- form), the improvement in the average yield rate of betaine was thrice of that of the existing methods. In addition, trigonelline was identified as the interfering substance of betaine for the first time in Lycium species, and betaine and trigonelline were simultaneously separated and quantified. Furthermore, their chemical characteristics and content distribution in different Lycium species were carried out.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Mengqin Xia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Li Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- The MOE key laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhengtao Wang
- The MOE key laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yanhong Shi
- The MOE key laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Institute of TCM International Standardization, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
20
|
Qiu Z, Wang K, Jiang C, Su Y, Fan X, Li J, Xue S, Yao L. Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway. Chem Biol Interact 2020; 317:108946. [PMID: 31935362 DOI: 10.1016/j.cbi.2020.108946] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 01/03/2023]
Abstract
Trigonelline is a plant alkaloid that has generated interest for its neuroprotective roles in brain pathology. However, the protective effect of trigonelline on cerebral ischemia/reperfusion (I/R) injury and the potential mechanism have not been fully evaluated. Our results showed that trigonelline pretreatment ameliorated oxygen-glucose deprivation/reperfusion (OGD/R)-induced hippocampal neurons injury. The OGD/R-caused reactive oxygen species (ROS) generation and decreased concentrations of superoxide dismutases (SOD) and glutathione peroxidase (GPx) were markedly attenuated by trigonelline. In addition, the increased levels of TNF-α, IL-6 and IL-1β in OGD/R-induced hippocampal neurons were significantly decreased by trigonelline pretreatment. Trigonelline also suppressed caspase-3 activity and bax expression, and induced bcl-2 expression in OGD/R-induced hippocampal neurons. Furthermore, trigonelline induced the activation of PI3K/Akt pathway in hippocampal neurons exposed to OGD/R condition. Inhibition of PI3K/Akt signaling reversed the protective effects of trigonelline on OGD/R-induced hippocampal neurons injury. Taken together, these findings indicated that trigonelline protected hippocampal neurons from OGD/R-induced injury, which was mediated by the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Kefeng Wang
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Chao Jiang
- The Third Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuqiang Su
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiaoying Fan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Jing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Sha Xue
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Li Yao
- Department of Neurology, The Hospital of Xidian Group, Xi'an, Shaanxi, 710077, China.
| |
Collapse
|
21
|
Peerapen P, Thongboonkerd V. Protective roles of trigonelline against oxalate-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells: An in vitro study. Food Chem Toxicol 2020; 135:110915. [DOI: 10.1016/j.fct.2019.110915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
|
22
|
Li Y, Li Q, Wang C, Lou Z, Li Q. Trigonelline reduced diabetic nephropathy and insulin resistance in type 2 diabetic rats through peroxisome proliferator-activated receptor-γ. Exp Ther Med 2019; 18:1331-1337. [PMID: 31363374 DOI: 10.3892/etm.2019.7698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
Trigonelline has been reported to serve an important role in cell cycle control, oxidative and ultraviolet stress and DNA methylation. In the present study, the effects of trigonelline were examined on type-2 diabetes mellitus (T2DM)-induced renal dysfunction, and its possible mechanism was investigated. Sprague-Dawley rats were fed with high-fat diet (HFD) for 4 weeks and intraperitoneally injected with 35 mg/kg of streptozotocin for 4 weeks. As a result, trigonelline increased body weight, inhibited the kidney weight/body weight ratio and blood glucose levels, and reduced the levels of blood urea nitrogen, creatinine and albumin in type 2 diabetic rats. In addition, trigonelline also reduced inflammation, oxidative stress and kidney cell apoptosis in T2DM rats. In terms of the molecular mechanisms involved, trigonelline induced the protein expression of peroxisome proliferator-activated receptor (PPAR)-γ and suppressed glucose transporter 4 but suppressed the protein expression of tumor necrosis factor-α and leptin in T2DM rats. The present results demonstrated that trigonelline reduced diabetic nephropathy and insulin resistance in T2DM rats through PPAR-γ.
Collapse
Affiliation(s)
- Yinyan Li
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qaobei Li
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunyan Wang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhe Lou
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
23
|
Omidi-Ardali H, Lorigooini Z, Soltani A, Balali-Dehkordi S, Amini-Khoei H. Inflammatory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: protective effect of the trigonelline. Inflammopharmacology 2019; 27:1265-1273. [PMID: 30924005 DOI: 10.1007/s10787-019-00581-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Pathogenesis of the inflammatory bowel disease (IBD) involves the combination of immunological and inflammatory factors. IBD is associated with several extra-intestinal manifestations. The exact underlying bridge between the probable cardiac diseases in IBD patients is undetermined. Trigonelline is an alkaloid with several therapeutic potential properties. In this study, we aimed to assess the probable underlying mechanisms of this comorbidity as well as protective effect of trigonelline focusing inflammatory response and oxidative state in mouse model of colitis. Dextran sodium sulfate (DSS) was used for induction of colitis in mice. Trigonelline (10, 50 and 100 mg/kg) was administrated via intraperitoneal rout (i.p.) for 14 continuous days. Heart, intestine and serum samples were taken for assessment of total antioxidant capacity, malondialdehyde (MDA), gene expressions of inflammatory markers including tumor necrosis factor alpha (Tnf-α), interleukin 1-beta (Il/1β), toll- like receptor 4 (Tlr4) as well as for evaluation of histopathological alterations. Results demonstrated that trigonelline effectively attenuated the cellular/molecular and histopathological adverse effects of colitis in the intestine and heart tissues. In this regards, we found that trigonelline decreased the MDA level, attenuated the expression of Tnf-α, Il/1β and, Tlr4 as well as modulated the histopathological alterations in the intestine. Furthermore, trigonelline increased the antioxidant capacity in the related experimental groups. We concluded that IBD (colitis) is associated with comorbid cellular/molecular modifications in the heart and for the first time, we found that trigonelline has potential therapeutic effects (at least partially) to attenuate the cardiac manifestations of the colitis.
Collapse
Affiliation(s)
- Hossein Omidi-Ardali
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shima Balali-Dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
24
|
Fahanik-Babaei J, Baluchnejadmojarad T, Nikbakht F, Roghani M. Trigonelline protects hippocampus against intracerebral Aβ(1-40) as a model of Alzheimer's disease in the rat: insights into underlying mechanisms. Metab Brain Dis 2019; 34:191-201. [PMID: 30421246 DOI: 10.1007/s11011-018-0338-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common phenotype of dementia. Trigonelline is an alkaloid found in medicinal plants such as fenugreek seeds and coffee beans with neuroprotective potential and according to existing evidences, a favorable agent for treatment of neurodegenerative disorders. In this study, the possible protective effect of trigonelline against intracerebral Aβ(1-40) as a model of AD in the rat was investigated. For induction of AD, aggregated A(1-40) (10 μg/2 휇l for each side) was bilaterally microinjected into the hippocampal CA1 area. Trigonelline was administered p.o. at a dose of 100 mg/kg. The results showed that trigonelline pretreatment of Aβ-microinjected rats significantly improves spatial recognition memory in Y maze and performance in novel object recognition (NOR) task, mitigates hippocampal malondialdehyde (MDA), protein carbonyl, lactate dehydrogenase (LDH), and improves mitochondrial membrane potential (MMP), glutathione (GSH), and superoxide dismutase (SOD) with no significant change of catalase activity, nitrite level, caspase 3 activity, and DNA fragmentation. Additionally, trigonelline ameliorated hippocampal levels of glial fibrillary acidic protein (GFAP), S100b, cyclooxygenase 2 (Cox2), tumor necrosis factor α (TNFα), and interleukin 6 (IL-6) with no significant alteration of inducible nitric oxide synthase (iNOS). In addition, trigonelline pretreatment prevented loss of hippocampal CA1 neurons in Aβ-microinjected group. Therefore, our results suggest that trigonelline pretreatment in Aβ model of AD could improve cognition and is capable to alleviate neuronal loss through suppressing oxidative stress, astrocyte activity, and inflammation and also through preservation of mitochondrial integrity.
Collapse
Affiliation(s)
| | - Tourandokht Baluchnejadmojarad
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Farnaz Nikbakht
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
25
|
Liu L, Du X, Zhang Z, Zhou J. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice. Eur J Pharmacol 2018; 836:115-121. [DOI: 10.1016/j.ejphar.2018.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
|
26
|
Khalili M, Alavi M, Esmaeil-Jamaat E, Baluchnejadmojarad T, Roghani M. Trigonelline mitigates lipopolysaccharide-induced learning and memory impairment in the rat due to its anti-oxidative and anti-inflammatory effect. Int Immunopharmacol 2018; 61:355-362. [PMID: 29935483 DOI: 10.1016/j.intimp.2018.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Brain inflammation is associated with cognitive dysfunction, especially in elderly. Trigonelline is a plant alkaloid and a major component of coffee and fenugreek with anti-diabetic, antioxidant, anti-inflammatory, and neuroprotective effects. In this study, the beneficial effect of trigonelline against lipopolysaccharide (LPS)-induced cognitive decline was assessed in the rat. LPS was injected i.p. at a dose of 500 μg/kg to induce neuroinflammation and trigonelline was administered p.o. at doses of 20, 40, or 80 mg/kg/day 1 h after LPS that continued for one week. Trigonelline-treated LPS-challenged rats showed improved spatial recognition memory in Y maze, discrimination ratio in novel object discrimination test, and retention and recall in passive avoidance paradigm. Additionally, trigonelline lowered hippocampal malondialdehyde (MDA) and acetylcholinesterase (AChE) activity and improved superoxide dismutase (SOD), catalase, and glutathione (GSH). Furthermore, trigonelline depressed hippocampal nuclear factor-kappaB (NF-κB), toll-like receptor 4 (TLR4), and tumor necrosis factor α (TNF α) in LPS-challenged rats. All of the effects of trigonelline followed a dose-dependent pattern and in some aspects, it acted even better than the routinely-used anti-inflammatory drug dexamethasone. Collectively, trigonelline is capable to diminish LPS-induced cognitive decline via suppression of hippocampal oxidative stress and inflammation and appropriate modulation of NF-κB/TLR4 and AChE activity.
Collapse
Affiliation(s)
- Mohsen Khalili
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Mitra Alavi
- School of Medicine, Shahed University, Tehran, Iran
| | | | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|