1
|
Obiezu F, Almpani K, Kim HJ, Zalewski C, Chu E, Jahanmir G, Roszko KL, Boyce A, Farhadi F, Weinstein LS, Gafni RI, Ferreira CR, Jüppner H, Collins MT, Lee JS, Jha S. Jansen metaphyseal chondrodysplasia: analysis of craniofacial manifestations. JBMR Plus 2025; 9:ziae156. [PMID: 39830149 PMCID: PMC11736719 DOI: 10.1093/jbmrpl/ziae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Jansen metaphyseal chondrodysplasia (JMC) is an ultra-rare disorder caused by constitutive activation of parathyroid hormone type 1 receptor (PTH1R). We sought to characterize the craniofacial phenotype of patients with the disease. Six patients with genetically confirmed JMC underwent comprehensive craniofacial phenotyping revealing a distinct facial appearance that prompted a cephalometric analysis demonstrating a pattern of mandibular retrognathia. Oral examination was notable for flat and shallow palate, delayed eruption pattern, and impacted maxillary teeth. Subclinical and/or mild hearing loss was noted in 4 of 5 patients studied. The most common etiology was conductive, likely due to overcrowding of epitympanum which impedes the normal vibration of ossicles to sound. Paranasal sinus obliteration was noted in 5 of 6 patients. Computed tomography (CT) scan evaluation of craniofacial bones revealed bilaterally symmetric expansile lesions with predominant involvement of neural crest cell (NCC)-derived bones. Bilateral narrowing of facial nerve canals, particularly at the labyrinthine segment, was seen in 5 of 6 patients when compared to age-matched controls; 1 patient presented with progressive facial nerve palsy. Sagittal suture craniosynostosis was present in 5 of 6 patients-one of whom had a history of cranial reconstruction for pansynostosis in infancy. All patients demonstrated a significant degree of upper airway stenosis, as well as a more anterior hyoid bone displacement. Two patients had a diagnosis of obstructive sleep apnea. 18F-NaF Positron-emission tomography (PET)-CT revealed increased uptake associated with the skull base and gnathic bones in all patients. In conclusion, this first detailed systematic evaluation of the craniofacial phenotype of patients with JMC demonstrates a distinct and pronounced phenotype that predominantly affects the NCC-derived cranial bones indicating a critical role of PTH1R signaling in their development. These affects can result in significant disease-related morbidity, include hearing loss, nerve compression, craniosynostosis, dentoskeletal malocclusion, and airway compromise; all of which require close monitoring.
Collapse
Affiliation(s)
- Fiona Obiezu
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Konstantinia Almpani
- Craniofacial Anomalies and Bone Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hung Jeffrey Kim
- Audiology Unit, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christopher Zalewski
- Audiology Unit, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Bethesda, MD 20892, United States
| | - Emily Chu
- Department of Biomaterials and Regenerative Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, United States
| | - Golnar Jahanmir
- NIH Dental Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kelly L Roszko
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alison Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Faraz Farhadi
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Rachel I Gafni
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Carlos R Ferreira
- Skeletal Genomics Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Janice S Lee
- Craniofacial Anomalies and Bone Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Smita Jha
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Ajami S, Van den Dam Z, Hut J, Savery D, Chin M, Koudstaal M, Steacy M, Carriero A, Pitsillides A, Chang YM, Rau C, Marathe S, Dunaway D, Jeelani NUO, Schievano S, Pauws E, Borghi A. Cranial bone microarchitecture in a mouse model for syndromic craniosynostosis. J Anat 2024; 245:864-873. [PMID: 39096036 PMCID: PMC11547221 DOI: 10.1111/joa.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Crouzon syndrome is a congenital craniofacial disorder caused by mutations in the Fibroblast Growth Factor Receptor 2 (FGFR2). It is characterized by the premature fusion of cranial sutures, leading to a brachycephalic head shape, and midfacial hypoplasia. The aim of this study was to investigate the effect of the FGFR2 mutation on the microarchitecture of cranial bones at different stages of postnatal skull development, using the FGFR2C342Y mouse model. Apart from craniosynostosis, this model shows cranial bone abnormalities. High-resolution synchrotron microtomography images of the frontal and parietal bone were acquired for both FGFR2C342Y/+ (Crouzon, heterozygous mutant) and FGFR2+/+ (control, wild-type) mice at five ages (postnatal days 1, 3, 7, 14 and 21, n = 6 each). Morphometric measurements were determined for cortical bone porosity: osteocyte lacunae and canals. General linear model to assess the effect of age, anatomical location and genotype was carried out for each morphometric measurement. Histological analysis was performed to validate the findings. In both groups (Crouzon and wild-type), statistical difference in bone volume fraction, average canal volume, lacunar number density, lacunar volume density and canal volume density was found at most age points, with the frontal bone generally showing higher porosity and fewer lacunae. Frontal bone showed differences between the Crouzon and wild-type groups in terms of lacunar morphometry (average lacunar volume, lacunar number density and lacunar volume density) with larger, less dense lacunae around the postnatal age of P7-P14. Histological analysis of bone showed marked differences in frontal bone only. These findings provide a better understanding of the pathogenesis of Crouzon syndrome and will contribute to computational models that predict postoperative changes with the aim to improve surgical outcome.
Collapse
Affiliation(s)
- Sara Ajami
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Craniofacial Unit, Great Ormond Street Hospital, London, UK
| | - Zoe Van den Dam
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Julia Hut
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dawn Savery
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Milton Chin
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Oral and Maxillofacial Department, Erasmus MC, Rotterdam, The Netherlands
| | - Maarten Koudstaal
- Oral and Maxillofacial Department, Erasmus MC, Rotterdam, The Netherlands
| | - Miranda Steacy
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Andrew Pitsillides
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, UK
| | - Y-M Chang
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, UK
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - David Dunaway
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Craniofacial Unit, Great Ormond Street Hospital, London, UK
| | - Noor Ul Owase Jeelani
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Craniofacial Unit, Great Ormond Street Hospital, London, UK
| | - Silvia Schievano
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Craniofacial Unit, Great Ormond Street Hospital, London, UK
| | - Erwin Pauws
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alessandro Borghi
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Craniofacial Unit, Great Ormond Street Hospital, London, UK
- Department of Engineering, Durham University, Durham, UK
| |
Collapse
|
3
|
Li D, Jiang X, Xiao J, Liu C. A novel perspective of calvarial development: the cranial morphogenesis and differentiation regulated by dura mater. Front Cell Dev Biol 2024; 12:1420891. [PMID: 38979034 PMCID: PMC11228331 DOI: 10.3389/fcell.2024.1420891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
There are lasting concerns on calvarial development because cranium not only accommodates the growing brain, but also safeguards it from exogenous strikes. In the past decades, most studies attributed the dynamic expansion and remodeling of cranium to the proliferation of osteoprecursors in cranial primordium, and the proliferation of osteoprogenitors at the osteogenic front of cranial suture mesenchyme. Further investigations identified series genes expressed in suture mesenchymal cells as the markers of the progenitors, precursors and postnatal stem cells in cranium. However, similar to many other organs, it is suggested that the reciprocal interactions among different tissues also play essential roles in calvarial development. Actually, there are increasing evidence indicating that dura mater (DM) is indispensable for the calvarial morphogenesis and osteogenesis by secreting multiple growth factors, cytokines and extracellular matrix (ECM). Thus, in this review, we first briefly introduce the development of cranium, suture and DM, and then, comprehensively summarize the latest studies exploring the involvement of ECM in DM and cranium development. Eventually, we discussed the reciprocal interactions between calvarium and DM in calvarial development. Actually, our review provides a novel perspective for cranium development by integrating previous classical researches with a spotlight on the mutual interplay between the developing DM and cranium.
Collapse
Affiliation(s)
| | | | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Bastedo WE, Scott RW, Arostegui M, Underhill TM. Single-cell analysis of mesenchymal cells in permeable neural vasculature reveals novel diverse subpopulations of fibroblasts. Fluids Barriers CNS 2024; 21:31. [PMID: 38575991 PMCID: PMC10996213 DOI: 10.1186/s12987-024-00535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND In the choroid plexus and pituitary gland, vasculature is known to have a permeable, fenestrated phenotype which allows for the free passage of molecules in contrast to the blood brain barrier observed in the rest of the CNS. The endothelium of these compartments, along with secretory, neural-lineage cells (choroid epithelium and pituitary endocrine cells) have been studied in detail, but less attention has been given to the perivascular mesenchymal cells of these compartments. METHODS The Hic1CreERT2 Rosa26LSL-TdTomato mouse model was used in conjunction with a PdgfraH2B-EGFP mouse model to examine mesenchymal cells, which can be subdivided into Pdgfra+ fibroblasts and Pdgfra- pericytes within the choroid plexus (CP) and pituitary gland (PG), by histological, immunofluorescence staining and single-cell RNA-sequencing analyses. RESULTS We found that both CP and PG possess substantial populations of distinct Hic1+ mesenchymal cells, including an abundance of Pdgfra+ fibroblasts. Within the pituitary, we identified distinct subpopulations of Hic1+ fibroblasts in the glandular anterior pituitary and the neurosecretory posterior pituitary. We also identified multiple distinct markers of CP, PG, and the meningeal mesenchymal compartment, including alkaline phosphatase, indole-n-methyltransferase and CD34. CONCLUSIONS Novel, distinct subpopulations of mesenchymal cells can be found in permeable vascular interfaces, including the CP, PG, and meninges, and make distinct contributions to both organs through the production of structural proteins, enzymes, transporters, and trophic molecules.
Collapse
Affiliation(s)
- William E Bastedo
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - R Wilder Scott
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- School of Biomedical Engineering and the Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Martin Arostegui
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- School of Biomedical Engineering and the Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
5
|
Nasr El-Din WA, Potu BK, Fadel RA, Salem AH, Sequeira RP, Almarabheh A, El-Fark MMO. Impact of maternal topiramate ingestion on ossification of skull and appendicular bones in rat fetuses. Morphologie 2024; 108:100702. [PMID: 37890283 DOI: 10.1016/j.morpho.2023.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 10/29/2023]
Abstract
The skull and appendicular bones are derived from different embryological sources during their development. The impact of prenatal exposure of topiramate on ossification of these bones is not adequately studied. The goal of this study was to assess the ossification patterns of the craniofacial bones and bones of the forelimbs and hindlimbs in 20-day-old rat fetuses after maternal exposure to topiramate at doses equivalent to human therapeutic doses. Three groups of Sprague-Dawley pregnant rats were used: control, topiramate 50mg/kg/day (T50) and topiramate 100mg/kg/day (T100). Topiramate was given by oral gavage from day 6 to day19 of gestation. Ossification was evaluated in the bones of 20 days fetuses after staining with Alizarin red. Results showed a significant reduction in complete ossified centers of the metacarpal, metatarsal and craniofacial bones in topiramate-exposed fetuses at both doses when compared to the control group. Also, a significant decrease in the length of ossified part of the long bones of the forelimbs and hindlimbs in topiramate-exposed fetuses at both doses was noted when compared to the control group. Crown-rump length and fetal weight were significantly decreased in topiramate treated groups compared to the control group. In all examined groups, there was a positive correlation between the crown-rump length and the lengths of humerus and femur. No abnormalities in the ossified bones and no significant changes in their ossification pattern were observed between the treated groups. In conclusion, prenatal administration of topiramate in doses equivalent to human therapeutic doses delayed ossification and development of craniofacial and appendicular bones in rat fetuses and their effects are not dose dependent at doses investigated. The implications of these findings in women who require topiramate therapy in pregnancy merit further evaluation.
Collapse
Affiliation(s)
- W A Nasr El-Din
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain; Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - B K Potu
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
| | - R A Fadel
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain; Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - A H Salem
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain; Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - R P Sequeira
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - A Almarabheh
- Department of Family and Community Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - M M O El-Fark
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Doro D, Liu A, Lau JS, Rajendran AK, Healy C, Krstic M, Grigoriadis AE, Iseki S, Liu KJ. Cranial suture lineage and contributions to repair of the mouse skull. Development 2024; 151:dev202116. [PMID: 38345329 PMCID: PMC10911112 DOI: 10.1242/dev.202116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
The cranial sutures are proposed to be a stem cell niche, harbouring skeletal stem cells that are directly involved in development, homeostasis and healing. Like the craniofacial bones, the sutures are formed from both mesoderm and neural crest. During cranial bone repair, neural crest cells have been proposed to be key players; however, neural crest contributions to adult sutures are not well defined, and the relative importance of suture proximity is unclear. Here, we use genetic approaches to re-examine the neural crest-mesoderm boundaries in the adult mouse skull. These are combined with calvarial wounding experiments suggesting that suture proximity improves the efficiency of cranial repair. Furthermore, we demonstrate that Gli1+ and Axin2+ skeletal stem cells are present in all calvarial sutures examined. We propose that the position of the defect determines the availability of neural crest-derived progenitors, which appear to be a key element in the repair of calvarial defects.
Collapse
Affiliation(s)
- Daniel Doro
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Annie Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Jia Shang Lau
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Arun Kumar Rajendran
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Christopher Healy
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Marko Krstic
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Agamemnon E. Grigoriadis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
7
|
Ashari S, Saekhu M, Gunawan K, Aldilla A, Zaragita N, Nugroho SW. Bone fusion in transcele reconstruction of frontoethmoidal meningoencephalocele. Br J Neurosurg 2023; 37:1619-1623. [PMID: 35254175 DOI: 10.1080/02688697.2022.2047156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/23/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE In surgical correction of frontoethmoidal encephalocele with transcranial approach, advanced facilities are required. While with extracranial approach, though deemed as a safe option in area with limited facilities, procedure was associated with cerebrospinal fluid (CSF) leakage. In this case series, we evaluate the results of transcele reconstruction of frontoethmoidal encephalocele, our approach to reduce the incidence of CSF leaks by focusing on the closure of layers by its embryological derivatives, by its bone fusion. METHODS A case series of 14 patients with various types of frontoethmoidal encephalocele who underwent surgery for defect closure using transcele approach between June 2015 and December 2018 was carried out. Surgery was done by a single surgeon in the Department of Neurosurgery of Cipto Mangunkusumo Hospital in Jakarta, Indonesia. We collected the data of intraoperative blood loss and any signs of infection and CSF leak during the patients' one-year follow up. Bone fusion in the defect was evaluated from 3D rendering of head CT scan that was performed before and in 1 year after surgery. RESULTS The median percentage of intraoperative blood loss was 5.9% (0.5-18.7%). All 3D rendering of head CT post-surgery during 1 year follow up showed bone fusion and no patient experienced CSF leaks or CNS infections. CONCLUSIONS This study showed that using transcele approach in frontoethmoidal reconstruction could give good bone fusion with minimal blood loss and no CSF leaks. We assumed that closure of the layers by its embryological derivative played an important part in bone fusion and in reducing the incidence of CSF leaks, although this finding has to be validated with large-scale studies.
Collapse
Affiliation(s)
- Samsul Ashari
- Department of Neurosurgery, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Mohammad Saekhu
- Department of Neurosurgery, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Kevin Gunawan
- Department of Neurosurgery, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Amanda Aldilla
- Department of Neurosurgery, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Nadya Zaragita
- Department of Neurosurgery, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Setyo Widi Nugroho
- Department of Neurosurgery, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|
8
|
Anthwal N, Hall RP, de la Rosa Hernandez FA, Koger M, Yohe LR, Hedrick BP, Davies KTJ, Mutumi GL, Roseman CC, Dumont ER, Dávalos LM, Rossiter SJ, Sadier A, Sears KE. Cochlea development shapes bat sensory system evolution. Anat Rec (Hoboken) 2023. [PMID: 37994725 DOI: 10.1002/ar.25353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Sensory organs must develop alongside the skull within which they are largely encased, and this relationship can manifest as the skull constraining the organs, organs constraining the skull, or organs constraining one another in relative size. How this interplay between sensory organs and the developing skull plays out during the evolution of sensory diversity; however, remains unknown. Here, we examine the developmental sequence of the cochlea, the organ responsible for hearing and echolocation, in species with distinct diet and echolocation types within the ecologically diverse bat super-family Noctilionoidea. We found the size and shape of the cochlea largely correlates with skull size, with exceptions of Pteronotus parnellii, whose high duty cycle echolocation (nearly constant emission of sound pulses during their echolocation process allowing for detailed information gathering, also called constant frequency echolocation) corresponds to a larger cochlear and basal turn, and Monophyllus redmani, a small-bodied nectarivorous bat, for which interactions with other sensory organs restrict cochlea size. Our findings support the existence of developmental constraints, suggesting that both developmental and anatomical factors may act synergistically during the development of sensory systems in noctilionoid bats.
Collapse
Affiliation(s)
- Neal Anthwal
- King's College London, Centre for Craniofacial and Regenerative Biology, London, UK
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Ronald P Hall
- Department of Life and Environment Sciences, University of California Merced, Merced, California, USA
| | | | - Michael Koger
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kalina T J Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Gregory L Mutumi
- Department of Life and Environment Sciences, University of California Merced, Merced, California, USA
| | - Charles C Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Elizabeth R Dumont
- Department of Life and Environment Sciences, University of California Merced, Merced, California, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York, USA
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Cabrera Pereira A, Dasgupta K, Ho TV, Pacheco-Vergara M, Kim J, Kataria N, Liang Y, Mei J, Yu J, Witek L, Chai Y, Jeong J. Lineage-specific mutation of Lmx1b provides new insights into distinct regulation of suture development in different areas of the calvaria. Front Physiol 2023; 14:1225118. [PMID: 37593235 PMCID: PMC10427921 DOI: 10.3389/fphys.2023.1225118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The calvaria (top part of the skull) is made of pieces of bone as well as multiple soft tissue joints called sutures. The latter is crucial to the growth and morphogenesis of the skull, and thus a loss of calvarial sutures can lead to severe congenital defects in humans. During embryogenesis, the calvaria develops from the cranial mesenchyme covering the brain, which contains cells originating from the neural crest and the mesoderm. While the mechanism that patterns the cranial mesenchyme into bone and sutures is not well understood, function of Lmx1b, a gene encoding a LIM-domain homeodomain transcription factor, plays a key role in this process. In the current study, we investigated a difference in the function of Lmx1b in different parts of the calvaria using neural crest-specific and mesoderm-specific Lmx1b mutants. We found that Lmx1b was obligatory for development of the interfrontal suture and the anterior fontanel along the dorsal midline of the skull, but not for the posterior fontanel over the midbrain. Also, Lmx1b mutation in the neural crest-derived mesenchyme, but not the mesoderm-derived mesenchyme, had a non-cell autonomous effect on coronal suture development. Furthermore, overexpression of Lmx1b in the neural crest lineage had different effects on the position of the coronal suture on the apical part and the basal part. Other unexpected phenotypes of Lmx1b mutants led to an additional finding that the coronal suture and the sagittal suture are of dual embryonic origin. Together, our data reveal a remarkable level of regional specificity in regulation of calvarial development.
Collapse
Affiliation(s)
- Angel Cabrera Pereira
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Krishnakali Dasgupta
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Maria Pacheco-Vergara
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Julie Kim
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Niam Kataria
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Yaowei Liang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Jeslyn Mei
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- Department of Psychology, Hunter College, City University of New York, New York, NY, United States
| | - Jinyeong Yu
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- Department of Biology, College of Arts and Sciences, New York University, New York, NY, United States
| | - Lukasz Witek
- Biomaterials Division, New York University College of Dentistry, New York, NY, United States
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Juhee Jeong
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| |
Collapse
|
10
|
Pitirri MK, Richtsmeier JT, Kawasaki M, Coupe AP, Perrine SM, Kawasaki K. Come together over me: Cells that form the dermatocranium and chondrocranium in mice. Anat Rec (Hoboken) 2023:10.1002/ar.25295. [PMID: 37497849 PMCID: PMC10818014 DOI: 10.1002/ar.25295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Most bone develops either by intramembranous ossification where bone forms within a soft connective tissue, or by endochondral ossification by way of a cartilage anlagen or model. Bones of the skull can form endochondrally or intramembranously or represent a combination of the two types of ossification. Contrary to the classical definition of intramembranous ossification, we have previously described a tight temporo-spatial relationship between cranial cartilages and dermal bone formation and proposed a mechanistic relationship between chondrocranial cartilage and dermal bone. Here, we further investigate this relationship through an analysis of how cells organize to form cranial cartilages and dermal bone. Using Wnt1-Cre2 and Mesp1-Cre transgenic mice, we determine the derivation of cells that comprise cranial cartilages from either cranial neural crest (CNC) or paraxial mesoderm (PM). We confirm a previously determined CNC-PM boundary that runs through the hypophyseal fenestra in the cartilaginous braincase floor and identify four additional CNC-PM boundaries in the chondrocranial lateral wall, including a boundary that runs along the basal and apical ends of the hypochiasmatic cartilage. Based on the knowledge that as osteoblasts differentiate from CNC- and PM-derived mesenchyme, the differentiating cells express the transcription factor genes RUNX2 and osterix (OSX), we created a new transgenic mouse line called R2Tom. R2Tom mice carry a tdTomato reporter gene joined with an evolutionarily well-conserved enhancer sequence of RUNX2. R2Tom mice crossed with Osx-GFP mice yield R2Tom;Osx-GFP double transgenic mice in which various stages of osteoblasts and their precursors are detected with different fluorescent reporters. We use the R2Tom;Osx-GFP mice, new data on the cell derivation of cranial cartilages, histology, immunohistochemistry, and detailed morphological observations combined with data from other investigators to summarize the differentiation of cranial mesenchyme as it forms condensations that become chondrocranial cartilages and associated dermal bones of the lateral cranial wall. These data advance our previous findings of a tendency of cranial cartilage and dermal bone development to vary jointly in a coordinated manner, promoting a role for cranial cartilages in intramembranous bone formation.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mizuho Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abigail P Coupe
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Susan Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Goswami A, Noirault E, Coombs EJ, Clavel J, Fabre AC, Halliday TJD, Churchill M, Curtis A, Watanabe A, Simmons NB, Beatty BL, Geisler JH, Fox DL, Felice RN. Developmental origin underlies evolutionary rate variation across the placental skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220083. [PMID: 37183904 PMCID: PMC10184245 DOI: 10.1098/rstb.2022.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The placental skull has evolved into myriad forms, from longirostrine whales to globular primates, and with a diverse array of appendages from antlers to tusks. This disparity has recently been studied from the perspective of the whole skull, but the skull is composed of numerous elements that have distinct developmental origins and varied functions. Here, we assess the evolution of the skull's major skeletal elements, decomposed into 17 individual regions. Using a high-dimensional morphometric approach for a dataset of 322 living and extinct eutherians (placental mammals and their stem relatives), we quantify patterns of variation and estimate phylogenetic, allometric and ecological signal across the skull. We further compare rates of evolution across ecological categories and ordinal-level clades and reconstruct rates of evolution along lineages and through time to assess whether developmental origin or function discriminate the evolutionary trajectories of individual cranial elements. Our results demonstrate distinct macroevolutionary patterns across cranial elements that reflect the ecological adaptations of major clades. Elements derived from neural crest show the fastest rates of evolution, but ecological signal is equally pronounced in bones derived from neural crest and paraxial mesoderm, suggesting that developmental origin may influence evolutionary tempo, but not capacity for specialisation. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Anjali Goswami
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Eve Noirault
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Ellen J Coombs
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Julien Clavel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622 Villeurbanne, France
| | - Anne-Claire Fabre
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Thomas J D Halliday
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Morgan Churchill
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Abigail Curtis
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Akinobu Watanabe
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Brian L Beatty
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Jonathan H Geisler
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - David L Fox
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan N Felice
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Zhang N, Barrell WB, Liu KJ. Identification of distinct subpopulations of Gli1-lineage cells in the mouse mandible. J Anat 2023; 243:90-99. [PMID: 36899483 PMCID: PMC10273353 DOI: 10.1111/joa.13858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
The Hedgehog pathway gene Gli1 has been proposed to mark a subpopulation of skeletal stem cells (SSCs) in craniofacial bone. Skeletal stem cells (SSCs) are multi-potent cells crucial for the development and homeostasis of bone. Recent studies on long bones have suggested that skeletal stem cells in endochondral or intramembranous ossification sites have different differentiation capacities. However, this has not been well-defined in neural crest derived bones. Generally, the long bones are derived from mesoderm and follow an endochondral ossification model, while most of the cranial bones are neural crest (NC) in origin and follow an intramembranous ossification model. The mandible is unique: It is derived from the neural crest lineage but makes use of both modes of ossification. Early in fetal development, the mandibular body is generated by intramembranous ossification with subsequent endochondral ossification forming the condyle. The identities and properties for SSCs in these two sites remain unknown. Here, we use genetic lineage tracing in mouse to identify cells expressing the Hedgehog responsive gene Gli1, which is thought to mark the tissue resident SSCs. We track the Gli1+ cells, comparing cells within the perichondrium to those in the periosteum covering the mandibular body. In juvenile mice, these have distinct differentiation and proliferative potential. We also assess the presence of Sox10+ cells, thought to mark neural crest stem cells, but find no substantial population associated with the mandibular skeleton, suggesting that Sox10+ cells have limited contribution to maintaining postnatal mandibular bone. All together, our study indicates that the Gli1+ cells display distinct and limited differentiation capacity dependent on their regional associations.
Collapse
Affiliation(s)
- Nian Zhang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
- State Key Laboratory of Oral Disease, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatogy, Sichuan UniversityChengduChina
| | - William B. Barrell
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| |
Collapse
|
13
|
Zhao X, Erhardt S, Sung K, Wang J. FGF signaling in cranial suture development and related diseases. Front Cell Dev Biol 2023; 11:1112890. [PMID: 37325554 PMCID: PMC10267317 DOI: 10.3389/fcell.2023.1112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Suture mesenchymal stem cells (SMSCs) are a heterogeneous stem cell population with the ability to self-renew and differentiate into multiple cell lineages. The cranial suture provides a niche for SMSCs to maintain suture patency, allowing for cranial bone repair and regeneration. In addition, the cranial suture functions as an intramembranous bone growth site during craniofacial bone development. Defects in suture development have been implicated in various congenital diseases, such as sutural agenesis and craniosynostosis. However, it remains largely unknown how intricate signaling pathways orchestrate suture and SMSC function in craniofacial bone development, homeostasis, repair and diseases. Studies in patients with syndromic craniosynostosis identified fibroblast growth factor (FGF) signaling as an important signaling pathway that regulates cranial vault development. A series of in vitro and in vivo studies have since revealed the critical roles of FGF signaling in SMSCs, cranial suture and cranial skeleton development, and the pathogenesis of related diseases. Here, we summarize the characteristics of cranial sutures and SMSCs, and the important functions of the FGF signaling pathway in SMSC and cranial suture development as well as diseases caused by suture dysfunction. We also discuss emerging current and future studies of signaling regulation in SMSCs.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Kihan Sung
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
14
|
Bolte AC, Shapiro DA, Dutta AB, Ma WF, Bruch KR, Kovacs MA, Royo Marco A, Ennerfelt HE, Lukens JR. The meningeal transcriptional response to traumatic brain injury and aging. eLife 2023; 12:e81154. [PMID: 36594818 PMCID: PMC9810333 DOI: 10.7554/elife.81154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders, however, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one-week post-injury. Then, using bulk RNA-seq, we assessed the differential long-term outcomes between young and aged mice following TBI. In our scRNA-seq studies, we highlight injury-related changes in differential gene expression seen in major meningeal cell populations including macrophages, fibroblasts, and adaptive immune cells. We found that TBI leads to an upregulation of type I interferon (IFN) signature genes in macrophages and a controlled upregulation of inflammatory-related genes in the fibroblast and adaptive immune cell populations. For reasons that remain poorly understood, even mild injuries in the elderly can lead to cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges 1.5 months after TBI. Notably, we found that aging alone induced upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited upregulation of immune-related genes and downregulation of genes involved in extracellular matrix remodeling. Overall, these findings illustrate the dynamic transcriptional response of the meninges to mild head trauma in youth and aging.
Collapse
Affiliation(s)
- Ashley C Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Daniel A Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Arun B Dutta
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Wei Feng Ma
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Katherine R Bruch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Michael A Kovacs
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Ana Royo Marco
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Hannah E Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| |
Collapse
|
15
|
Ang PS, Matrongolo MJ, Zietowski ML, Nathan SL, Reid RR, Tischfield MA. Cranium growth, patterning and homeostasis. Development 2022; 149:dev201017. [PMID: 36408946 PMCID: PMC9793421 DOI: 10.1242/dev.201017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Craniofacial development requires precise spatiotemporal regulation of multiple signaling pathways that crosstalk to coordinate the growth and patterning of the skull with surrounding tissues. Recent insights into these signaling pathways and previously uncharacterized progenitor cell populations have refined our understanding of skull patterning, bone mineralization and tissue homeostasis. Here, we touch upon classical studies and recent advances with an emphasis on developmental and signaling mechanisms that regulate the osteoblast lineage for the calvaria, which forms the roof of the skull. We highlight studies that illustrate the roles of osteoprogenitor cells and cranial suture-derived stem cells for proper calvarial growth and homeostasis. We also discuss genes and signaling pathways that control suture patency and highlight how perturbing the molecular regulation of these pathways leads to craniosynostosis. Finally, we discuss the recently discovered tissue and signaling interactions that integrate skull and cerebrovascular development, and the potential implications for both cerebrospinal fluid hydrodynamics and brain waste clearance in craniosynostosis.
Collapse
Affiliation(s)
- Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Shelby L. Nathan
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
16
|
Hantel F, Liu H, Fechtner L, Neuhaus H, Ding J, Arlt D, Walentek P, Villavicencio-Lorini P, Gerhardt C, Hollemann T, Pfirrmann T. Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. J Cell Sci 2022; 135:jcs259209. [PMID: 35543157 PMCID: PMC9264362 DOI: 10.1242/jcs.259209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Cilia are evolutionarily conserved organelles that orchestrate a variety of signal transduction pathways, such as sonic hedgehog (SHH) signaling, during embryonic development. Our recent studies have shown that loss of GID ubiquitin ligase function results in aberrant AMP-activated protein kinase (AMPK) activation and elongated primary cilia, which suggests a functional connection to cilia. Here, we reveal that the GID complex is an integral part of the cilium required for primary cilia-dependent signal transduction and the maintenance of ciliary protein homeostasis. We show that GID complex subunits localize to cilia in both Xenopus laevis and NIH3T3 cells. Furthermore, we report SHH signaling pathway defects that are independent of AMPK and mechanistic target of rapamycin (MTOR) activation. Despite correct localization of SHH signaling components at the primary cilium and functional GLI3 processing, we find a prominent reduction of some SHH signaling components in the cilium and a significant decrease in SHH target gene expression. Since our data reveal a critical function of the GID complex at the primary cilium, and because suppression of GID function in X. laevis results in ciliopathy-like phenotypes, we suggest that GID subunits are candidate genes for human ciliopathies that coincide with defects in SHH signal transduction.
Collapse
Affiliation(s)
- Friederike Hantel
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Huaize Liu
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Lisa Fechtner
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Herbert Neuhaus
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Jie Ding
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Danilo Arlt
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Christoph Gerhardt
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| |
Collapse
|
17
|
Liao J, Huang Y, Wang Q, Chen S, Zhang C, Wang D, Lv Z, Zhang X, Wu M, Chen G. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development. Cell Mol Life Sci 2022; 79:158. [PMID: 35220463 PMCID: PMC11072871 DOI: 10.1007/s00018-022-04208-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC's vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-β, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiang Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sisi Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chenyang Zhang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhengbing Lv
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Mengrui Wu
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Kim SE, Robles-Lopez K, Cao X, Liu K, Chothani PJ, Bhavani N, Rahman L, Mukhopadhyay S, Wlodarczyk BJ, Finnell RH. Wnt1 Lineage Specific Deletion of Gpr161 Results in Embryonic Midbrain Malformation and Failure of Craniofacial Skeletal Development. Front Genet 2021; 12:761418. [PMID: 34887903 PMCID: PMC8650154 DOI: 10.3389/fgene.2021.761418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Sonic hedgehog (Shh) signaling regulates multiple morphogenetic processes during embryonic neurogenesis and craniofacial skeletal development. Gpr161 is a known negative regulator of Shh signaling. Nullizygous Gpr161 mice are embryonic lethal, presenting with structural defects involving the neural tube and the craniofacies. However, the lineage specific role of Gpr161 in later embryonic development has not been thoroughly investigated. We studied the Wnt1-Cre lineage specific role of Gpr161 during mouse embryonic development. We observed three major gross morphological phenotypes in Gpr161 cKO (Gpr161 f/f; Wnt1-Cre) fetuses; protrusive tectum defect, encephalocele, and craniofacial skeletal defect. The overall midbrain tissues were expanded and cell proliferation in ventricular zones of midbrain was increased in Gpr161 cKO fetuses, suggesting that protrusive tectal defects in Gpr161 cKO are secondary to the increased proliferation of midbrain neural progenitor cells. Shh signaling activity as well as upstream Wnt signaling activity were increased in midbrain tissues of Gpr161 cKO fetuses. RNA sequencing further suggested that genes in the Shh, Wnt, Fgf and Notch signaling pathways were differentially regulated in the midbrain of Gpr161 cKO fetuses. Finally, we determined that cranial neural crest derived craniofacial bone formation was significantly inhibited in Gpr161 cKO fetuses, which partly explains the development of encephalocele. Our results suggest that Gpr161 plays a distinct role in midbrain development and in the formation of the craniofacial skeleton during mouse embryogenesis.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Karla Robles-Lopez
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States.,Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kristyn Liu
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Pooja J Chothani
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Nikitha Bhavani
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Lauren Rahman
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bogdan J Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Richard H Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, United States.,Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
19
|
Holmes G, Gonzalez-Reiche AS, Saturne M, Motch Perrine SM, Zhou X, Borges AC, Shewale B, Richtsmeier JT, Zhang B, van Bakel H, Jabs EW. Single-cell analysis identifies a key role for Hhip in murine coronal suture development. Nat Commun 2021; 12:7132. [PMID: 34880220 PMCID: PMC8655033 DOI: 10.1038/s41467-021-27402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Craniofacial development depends on formation and maintenance of sutures between bones of the skull. In sutures, growth occurs at osteogenic fronts along the edge of each bone, and suture mesenchyme separates adjacent bones. Here, we perform single-cell RNA-seq analysis of the embryonic, wild type murine coronal suture to define its population structure. Seven populations at E16.5 and nine at E18.5 comprise the suture mesenchyme, osteogenic cells, and associated populations. Expression of Hhip, an inhibitor of hedgehog signaling, marks a mesenchymal population distinct from those of other neurocranial sutures. Tracing of the neonatal Hhip-expressing population shows that descendant cells persist in the coronal suture and contribute to calvarial bone growth. In Hhip-/- coronal sutures at E18.5, the osteogenic fronts are closely apposed and the suture mesenchyme is depleted with increased hedgehog signaling compared to those of the wild type. Collectively, these data demonstrate that Hhip is required for normal coronal suture development.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ana S. Gonzalez-Reiche
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Madrikha Saturne
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Susan M. Motch Perrine
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Xianxiao Zhou
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ana C. Borges
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bhavana Shewale
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Joan T. Richtsmeier
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Harm van Bakel
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ethylin Wang Jabs
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.21107.350000 0001 2171 9311Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
20
|
Aguirre JI, Castillo EJ, Kimmel DB. Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021; 153:116168. [PMID: 34487892 PMCID: PMC8478908 DOI: 10.1016/j.bone.2021.116168] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe, debilitating condition affecting patients with cancer and patients with osteoporosis who have been treated with powerful antiresorptives (pARs) or angiogenesis inhibitors (AgIs). Oral risk factors associated with the development of MRONJ include tooth extraction and inflammatory dental disease (e.g., periodontitis, periapical infection). In bone tissues, osteocytes play a bidirectional role in which they not only act as the "receiver" of systemic signals from blood vessels, such as hormones and drugs, or local signals from the mineralized matrix as it is deformed, but they also play a critical role as "transmitter" of signals to the cells that execute bone modeling and remodeling (osteoclasts, osteoblasts and lining cells). When the survival capacity of osteocytes is overwhelmed, they can die. Osteocyte death has been associated with several pathological conditions. Whereas the causes and mechanisms of osteocyte death have been studied in conditions like osteonecrosis of the femoral head (ONFH), few studies of the causes and mechanisms of osteocyte death have been done in MRONJ. The three forms of cell death that affect most of the different cells in the body (apoptosis, autophagy, and necrosis) have been recognized in osteocytes. Notably, necroptosis, a form of regulated cell death with "a necrotic cell death phenotype," has also been identified as a form of cell death in osteocytes under certain pathologic conditions. Improving the understanding of osteocyte death in MRONJ may be critical for preventing disease and developing treatment approaches. In this review, we intend to provide insight into the biology of osteocytes, cell death, in general, and osteocyte death, in particular, and discuss hypothetical mechanisms involved in osteocyte death associated with MRONJ.
Collapse
Affiliation(s)
- J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| |
Collapse
|
21
|
Abstract
BACKGROUND Fusion of cranial-base sutures/synchondroses presents a clinical conundrum, given their often unclear "normal" timing of closure. This study investigates the physiologic fusion timelines of cranial-base sutures/synchondroses. METHODS Twenty-three age intervals were analyzed in subjects aged 0 to 18 years. For each age interval, 10 head computed tomographic scans of healthy subjects were assessed. Thirteen cranial-base sutures/synchondroses were evaluated for patency. Partial closure in greater than or equal to 50 percent of subjects and complete bilateral closure in less than 50 percent of subjects defined the fusion "midpoint." Factor analysis identified clusters of related fusion patterns. RESULTS Two hundred thirty scans met inclusion criteria. The sutures' fusion midpoints and completion ages, respectively, were as follows: frontoethmoidal, 0 to 2 months and 4 years; frontosphenoidal, 6 to 8 months and 12 years; and sphenoparietal, 6 to 8 months and 4 years. Sphenosquamosal, sphenopetrosal, parietosquamosal, and parietomastoid sutures reached the midpoint at 6 to 8 months, 8 years, 9 to 11 months, and 12 years, respectively, but rarely completed fusion. The occipitomastoid suture partially closed in less than or equal to 30 percent of subjects. The synchondroses' fusion midpoints and completion ages, respectively, were as follows: sphenoethmoidal, 3 to 5 months and 5 years; spheno-occipital, 9 years and 17 years; anterior intraoccipital, 4 years and 10 years; and posterior intraoccipital, 18 to 23 months and 4 years. The petro-occipital synchondrosis reached the midpoint at 11 years and completely fused in less than 50 percent of subjects. Order of fusion of the sutures, but not the synchondroses, followed the anterior-to-posterior direction. Factor analysis suggested three separate fusion patterns. CONCLUSIONS The fusion timelines of cranial-base sutures/synchondroses may help providers interpret computed tomographic data of patients with head-shape abnormalities. Future work should elucidate the mechanisms and sequelae of cranial-base suture fusion that deviates from normal timelines.
Collapse
|
22
|
Liu X, Chen W, Shao B, Zhang X, Wang Y, Zhang S, Wu W. Mussel patterned with 4D biodegrading elastomer durably recruits regenerative macrophages to promote regeneration of craniofacial bone. Biomaterials 2021; 276:120998. [PMID: 34237507 DOI: 10.1016/j.biomaterials.2021.120998] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Crosstalk between bone marrow mesenchymal stem cells (BMSCs) and macrophages plays vital role in bone healing. By investigating the mechanism of collagen membrane-guided bone regeneration, we found compact structure and rapid membrane degradation compromised the duration of M2 macrophages influx, which restricts the recruitment of BMSCs that is essential for bone healing. To tackle this issue, a biodegrading elastomeric compound consisting of poly(glycerol sebacate) (PGS) and polycaprolactone (PCL) was fabricated into hierarchically porous membrane. The rational design of 3D microstructure enabled sufficient polydopamine (PDA) coating. Without any addition of growth factors, the 3D-patterned PDA membrane enables early and durable influx of M2 macrophages, which in turn promotes BMSCs recruitment and osteogenic differentiation. Furthermore, 4D-morphing of the membrane fully regenerates the dome shaped calvarial bone as well as arc-shape bone in peri-implant alveolar defect without filling xenogenous substitute. This study revealed the superiority of 3D printed microstructures in immunomodulatory materials. The availability of 4D-morphing for PGS/PCL construct expanded their advantages in reconstructing craniofacial bone.
Collapse
Affiliation(s)
- Xuzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China; Department of Oral Implant Center, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, 010110, PR China
| | - Wanli Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Bo Shao
- Department of Oral Implant Center, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, 010110, PR China
| | - Xinchi Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yinggang Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Siqian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
23
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
24
|
White HE, Goswami A, Tucker AS. The Intertwined Evolution and Development of Sutures and Cranial Morphology. Front Cell Dev Biol 2021; 9:653579. [PMID: 33842480 PMCID: PMC8033035 DOI: 10.3389/fcell.2021.653579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Phenotypic variation across mammals is extensive and reflects their ecological diversification into a remarkable range of habitats on every continent and in every ocean. The skull performs many functions to enable each species to thrive within its unique ecological niche, from prey acquisition, feeding, sensory capture (supporting vision and hearing) to brain protection. Diversity of skull function is reflected by its complex and highly variable morphology. Cranial morphology can be quantified using geometric morphometric techniques to offer invaluable insights into evolutionary patterns, ecomorphology, development, taxonomy, and phylogenetics. Therefore, the skull is one of the best suited skeletal elements for developmental and evolutionary analyses. In contrast, less attention is dedicated to the fibrous sutural joints separating the cranial bones. Throughout postnatal craniofacial development, sutures function as sites of bone growth, accommodating expansion of a growing brain. As growth frontiers, cranial sutures are actively responsible for the size and shape of the cranial bones, with overall skull shape being altered by changes to both the level and time period of activity of a given cranial suture. In keeping with this, pathological premature closure of sutures postnatally causes profound misshaping of the skull (craniosynostosis). Beyond this crucial role, sutures also function postnatally to provide locomotive shock absorption, allow joint mobility during feeding, and, in later postnatal stages, suture fusion acts to protect the developed brain. All these sutural functions have a clear impact on overall cranial function, development and morphology, and highlight the importance that patterns of suture development have in shaping the diversity of cranial morphology across taxa. Here we focus on the mammalian cranial system and review the intrinsic relationship between suture development and morphology and cranial shape from an evolutionary developmental biology perspective, with a view to understanding the influence of sutures on evolutionary diversity. Future work integrating suture development into a comparative evolutionary framework will be instrumental to understanding how developmental mechanisms shaping sutures ultimately influence evolutionary diversity.
Collapse
Affiliation(s)
- Heather E White
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
25
|
DeSisto J, O'Rourke R, Jones HE, Pawlikowski B, Malek AD, Bonney S, Guimiot F, Jones KL, Siegenthaler JA. Single-Cell Transcriptomic Analyses of the Developing Meninges Reveal Meningeal Fibroblast Diversity and Function. Dev Cell 2021; 54:43-59.e4. [PMID: 32634398 DOI: 10.1016/j.devcel.2020.06.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/18/2020] [Accepted: 06/01/2020] [Indexed: 01/18/2023]
Abstract
The meninges are a multilayered structure composed of fibroblasts, blood and lymphatic vessels, and immune cells. Meningeal fibroblasts secrete a variety of factors that control CNS development, yet strikingly little is known about their heterogeneity or development. Using single-cell sequencing, we report distinct transcriptional signatures for fibroblasts in the embryonic dura, arachnoid, and pia. We define new markers for meningeal layers and show conservation in human meninges. We find that embryonic meningeal fibroblasts are transcriptionally distinct between brain regions and identify a regionally localized pial subpopulation marked by the expression of μ-crystallin. Developmental analysis reveals a progressive, ventral-to-dorsal maturation of telencephalic meninges. Our studies have generated an unparalleled view of meningeal fibroblasts, providing molecular profiles of embryonic meningeal fibroblasts by layer and yielding insights into the mechanisms of meninges development and function.
Collapse
Affiliation(s)
- John DeSisto
- Department of Pediatrics Section of Hematology, Oncology, Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rebecca O'Rourke
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hannah E Jones
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bradley Pawlikowski
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alexandra D Malek
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie Bonney
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fabien Guimiot
- INSERM UMR 1141, Hôpital Robert Debré, 75019 Paris, France
| | - Kenneth L Jones
- Department of Pediatrics Section of Hematology, Oncology, Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
26
|
Tissue-Nonspecific Alkaline Phosphatase-A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease. Biomolecules 2020; 10:biom10121648. [PMID: 33302551 PMCID: PMC7763311 DOI: 10.3390/biom10121648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme’s role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.
Collapse
|
27
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
28
|
Chen G, Xu H, Yao Y, Xu T, Yuan M, Zhang X, Lv Z, Wu M. BMP Signaling in the Development and Regeneration of Cranium Bones and Maintenance of Calvarial Stem Cells. Front Cell Dev Biol 2020; 8:135. [PMID: 32211409 PMCID: PMC7075941 DOI: 10.3389/fcell.2020.00135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway is highly conserved across many species, and its importance for the patterning of the skeletal system has been demonstrated. A disrupted BMP signaling pathway results in severe skeletal defects. Murine calvaria has been identified to have dual-tissue lineages, namely, the cranial neural-crest cells and the paraxial mesoderm. Modulations of the BMP signaling pathway have been demonstrated to be significant in determining calvarial osteogenic potentials and ossification in vitro and in vivo. More importantly, the BMP signaling pathway plays a role in the maintenance of the homeostasis of the calvarial stem cells, indicating a potential clinic significance in calvarial bone and in expediting regeneration. Following the inherent evidence of BMP signaling in craniofacial biology, we summarize recent discoveries relating to BMP signaling in the development of calvarial structures, functions of the suture stem cells and their niche and regeneration. This review will not only provide a better understanding of BMP signaling in cranial biology, but also exhibit the molecular targets of BMP signaling that possess clinical potential for tissue regeneration.
Collapse
Affiliation(s)
- Guiqian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haodong Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifeng Yao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tingting Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengting Yuan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengrui Wu
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Chen G, Yao Y, Xu G, Zhang X. Regional difference in microRNA regulation in the skull vault. Dev Dyn 2019; 248:1009-1019. [PMID: 31397024 DOI: 10.1002/dvdy.97] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The murine calvaria has several membrane bones with different tissue origins (e.g., neural crest-derived frontal bone vs. mesoderm-derived parietal bone). Neural crest-derived frontal bone exhibits superior osteogenic activities and bone regeneration. MicroRNA (miRNA) has been emerged as a crucial regulator during organogenesis and is involved in a range of developmental processes. However, the underlying roles of miRNA regulation in frontal bone and parietal bone is unknown. RESULTS Total of 83 significantly expressed known miRNAs were identified in frontal bones versus parietal bones. The significantly enriched gene ontology and KEGG pathway that were predicted by the enrichment miRNAs were involved in several biological processes (cell differentiation, cell adhesion, and transcription), and multiple osteogenic pathways (e.g., focal adhesion, MAPK, VEGF, Wnt, and insulin signaling pathway. Focal adhesion and insulin signaling pathway were selected for target verification and functional analysis, and several genes were predicted to be targets genes by the differentially expressed miRNAs, and these targets genes were tested with significant expressions. CONCLUSIONS Our results revealed a novel pattern of miRNAs in murine calvaria with dual tissue origins, and explorations of these miRNAs will be valuable for the translational studies to enhance osteogenic potential and bone regeneration in the clinic.
Collapse
Affiliation(s)
- Guiqian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Yifeng Yao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Guangtao Xu
- Department of Pathology and Molecular Medicine, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Xingen Zhang
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
30
|
Tanaka M. Embryological Consideration of Dural AVFs in Relation to the Neural Crest and the Mesoderm. Neurointervention 2019; 14:9-16. [PMID: 30827062 PMCID: PMC6433192 DOI: 10.5469/neuroint.2018.01095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/29/2019] [Accepted: 02/15/2019] [Indexed: 01/08/2023] Open
Abstract
Intracranial and spinal dural arteriovenous fistulas (DAVFs) are vascular pathologies of the dural membrane with arteriovenous shunts. They are abnormal communications between arteries and veins or dural venous sinuses that sit between the two sheets of the dura mater. The dura propria faces the surface of brain, and the osteal dura faces the bone. The location of the shunt points is not distributed homogeneously on the surface of the dural membrane, but there are certain areas susceptible to DAVFs. The dura mater of the olfactory groove, falx cerebri, inferior sagittal sinus, tentorium cerebelli, and falx cerebelli, and the dura mater at the level of the spinal cord are composed only of dura propria, and these areas are derived from neural crest cells. The dura mater of the cavernous sinus, transverse sinus, sigmoid sinus, and anterior condylar confluence surrounding the hypoglossal canal are composed of both dura propria and osteal dura; this group is derived from mesoderm. Although the cause of this heterogeneity has not yet been determined, there are some specific characteristics and tendencies in terms of the embryological features. The possible reasons for the segmental susceptibility to DAVFs are summarized based on the embryology of the dura mater.
Collapse
Affiliation(s)
- Michihiro Tanaka
- Department of Neurosurgery, Kameda Medical Center, Kamogawa, Japan
| |
Collapse
|