1
|
Colom M, Kraev I, Stramek AK, Loza IB, Rostron CL, Heath CJ, Dommett EJ, Singer BF. Conditioning- and reward-related dendritic and presynaptic plasticity of nucleus accumbens neurons in male and female sign-tracker rats. Eur J Neurosci 2024; 60:5694-5717. [PMID: 39193632 DOI: 10.1111/ejn.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
For a subset of individuals known as sign-trackers, discrete Pavlovian cues associated with rewarding stimuli can acquire incentive properties and exert control over behaviour. Because responsiveness to cues is a feature of various neuropsychiatric conditions, rodent models of sign-tracking may prove useful for exploring the neurobiology of individual variation in psychiatric vulnerabilities. Converging evidence points towards the involvement of dopaminergic neurotransmission in the nucleus accumbens core (NAc) in the development of sign-tracking, yet whether this phenotype is associated with specific accumbal postsynaptic properties is unknown. Here, we examined dendritic spine structural organisation, as well as presynaptic and postsynaptic markers of activity, in the NAc core of male and female rats following a Pavlovian-conditioned approach procedure. In contrast to our prediction that cue re-exposure would increase spine density, experiencing the discrete lever-cue without reward delivery resulted in lower spine density than control rats for which the lever was unpaired with reward during training; this effect was tempered in the most robust sign-trackers. Interestingly, this same behavioural test (lever presentation without reward) resulted in increased levels of a marker of presynaptic activity (synaptophysin), and this effect was greatest in female rats. Whilst some behavioural differences were observed in females during initial Pavlovian training, final conditioning scores did not differ from males and were unaffected by the oestrous cycle. This work provides novel insights into how conditioning impacts the neuronal plasticity of the NAc core, whilst highlighting the importance of studying the behaviour and neurobiology of both male and female rats.
Collapse
Affiliation(s)
- Morgane Colom
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Agata K Stramek
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Iwona B Loza
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Claire L Rostron
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Eleanor J Dommett
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Bryan F Singer
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- School of Psychology, Sussex Neuroscience, Sussex Addiction Research and Intervention Centre, University of Sussex, Brighton, UK
| |
Collapse
|
2
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 recognition landscape reveals incomplete divergence of paralogous EVH1 domains. Protein Sci 2024; 33:e5094. [PMID: 38989636 PMCID: PMC11237882 DOI: 10.1002/pro.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alejandra Ramos
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Amy E. Keating
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Jenks KR, Cai Y, Nayan ME, Tsimring K, Li K, Zepeda JC, Heller GR, Delepine C, Shih J, Yuan S, Zhu Y, Wang Y, Duan Y, Fu AKY, Ku T, Yun DH, Chung K, Zhang C, Boyden ES, Mellios N, Sur M, Kan Ip JP. The noncoding circular RNA circHomer1 regulates developmental experience-dependent plasticity in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.603416. [PMID: 39091722 PMCID: PMC11291094 DOI: 10.1101/2024.07.19.603416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Circular RNAs (circRNAs) are noncoding RNAs abundant in brain tissue, and many are derived from activity-dependent, linear mRNAs encoding for synaptic proteins, suggesting that circRNAs may directly or indirectly play a role in regulating synaptic development, plasticity, and function. However, it is unclear if the circular forms of these RNAs are similarly regulated by activity and what role these circRNAs play in developmental plasticity. Here, we employed transcriptome-wide analysis comparing differential expression of both mRNAs and circRNAs in juvenile mouse primary visual cortex (V1) following monocular deprivation (MD), a model of developmental plasticity. Among the differentially expressed mRNAs and circRNAs following 3-day MD, the circular and the activity-dependent linear forms of the Homer1 gene, circHomer1 and Homer1a respectively, were of interest as their expression changed in opposite directions: circHomer1 expression increased while the expression of Homer1a decreased following MD. Knockdown of circHomer1 prevented the depression of closed-eye responses normally observed after 3-day MD. circHomer1-knockdown led to a reduction in average dendritic spine size prior to MD, but critically there was no further reduction after 3-day MD, consistent with impaired structural plasticity. circHomer1-knockdown also prevented the reduction of surface AMPA receptors after 3-day MD. Synapse-localized puncta of the AMPA receptor endocytic protein Arc increased in volume after MD but were smaller in circHomer1-knockdown neurons, suggesting that circHomer1 regulates plasticity through mechanisms of activity-dependent AMPA receptor endocytosis. Thus, activity-dependent circRNAs regulate developmental synaptic plasticity, and our findings highlight the essential role of circHomer1 in V1 plasticity induced by short-term MD.
Collapse
Affiliation(s)
- Kyle R. Jenks
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Ying Cai
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Marvin Eduarte Nayan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Katya Tsimring
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Keji Li
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - José C. Zepeda
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Gregg R. Heller
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Chloe Delepine
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jennifer Shih
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Shiyang Yuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Zhu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yangyang Duan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Amy K. Y. Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dae Hee Yun
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Chi Zhang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Edward S. Boyden
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Howard Hughes Medical Institute, Cambridge, Massachusetts, 02139, USA
| | - Nikolaos Mellios
- Circular Genomics Inc, Albuquerque, New Mexico, 87110, USA
- Previously at: University of New Mexico, Department of Neurosciences, Albuquerque, New Mexico, 87131, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Gokalp D, Unal G. The role of mGluR5 on the therapeutic effects of ketamine in Wistar rats. Psychopharmacology (Berl) 2024; 241:1399-1415. [PMID: 38459971 PMCID: PMC11199271 DOI: 10.1007/s00213-024-06571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
RATIONALE Ketamine produces dissociative, psychomimetic, anxiolytic, antidepressant, and anesthetic effects in a dose dependent manner. It has a complex mechanism of action that involve alterations in other glutamate receptors. The metabotropic glutamate receptor 5 (mGluR5) has been investigated in relation to the psychotic and anesthetic properties of ketamine, while its role in mediating the therapeutic effects of ketamine remains unknown. OBJECTIVES We investigated the role of mGluR5 on the antidepressant, anxiolytic and fear memory-related effects of ketamine in adult male Wistar rats. METHODS Two sets of experiments were conducted. We first utilized the positive allosteric modulator CDPPB to investigate how acute mGluR5 activation regulates the therapeutic effects of ketamine (10 mg/kg). We then tested the synergistic antidepressant effect of mGluR5 antagonism and ketamine by combining MTEP with a sub-effective dose of ketamine (1 mg/kg). Behavioral despair, locomotor activity, anxiety-like behavior, and fear memory were respectively assessed in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and auditory fear conditioning. RESULTS Enhancing mGluR5 activity via CDPPB occluded the antidepressant effect of ketamine without changing locomotor activity. Furthermore, concomitant administration of MTEP and ketamine exhibited a robust synergistic antidepressant effect. The MTEP + ketamine treatment, however, blocked the anxiolytic effect observed by sole administration of MTEP or the low dose ketamine. CONCLUSIONS These findings suggest that suppressed mGluR5 activity is required for the antidepressant effects of ketamine. Consequently, the antagonism of mGluR5 enhances the antidepressant effectiveness of low dose ketamine, but eliminates its anxiolytic effects.
Collapse
Affiliation(s)
- Dilan Gokalp
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
5
|
Wang J, Zhu H, Tian R, Zhang Q, Zhang H, Hu J, Wang S. Physiological and pathological effects of phase separation in the central nervous system. J Mol Med (Berl) 2024; 102:599-615. [PMID: 38441598 PMCID: PMC11055734 DOI: 10.1007/s00109-024-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Phase separation, also known as biomolecule condensate, participates in physiological processes such as transcriptional regulation, signal transduction, gene expression, and DNA damage repair by creating a membrane-free compartment. Phase separation is primarily caused by the interaction of multivalent non-covalent bonds between proteins and/or nucleic acids. The strength of molecular multivalent interaction can be modified by component concentration, the potential of hydrogen, posttranslational modification, and other factors. Notably, phase separation occurs frequently in the cytoplasm of mitochondria, the nucleus, and synapses. Phase separation in vivo is dynamic or stable in the normal physiological state, while abnormal phase separation will lead to the formation of biomolecule condensates, speeding up the disease progression. To provide candidate suggestions for the clinical treatment of nervous system diseases, this review, based on existing studies, carefully and systematically represents the physiological roles of phase separation in the central nervous system and its pathological mechanism in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, China.
| | - Ruijia Tian
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Qian Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Haoliang Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Jin Hu
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
6
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 Recognition Landscape Reveals Incomplete Divergence of Paralogous EVH1 Domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576863. [PMID: 38645240 PMCID: PMC11030225 DOI: 10.1101/2024.01.23.576863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of Short Linear Motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. In doing so, we expanded current understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- MIT Department of Biology, Cambridge, Massachusetts, USA
| | | | - Amy E. Keating
- MIT Department of Biology, Cambridge, Massachusetts, USA
- MIT Department of Biological Engineering, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Hoang TH, Manahan-Vaughan D. Differentiated somatic gene expression is triggered in the dorsal hippocampus and the anterior retrosplenial cortex by hippocampal synaptic plasticity prompted by spatial content learning. Brain Struct Funct 2024; 229:639-655. [PMID: 37690045 PMCID: PMC10978647 DOI: 10.1007/s00429-023-02694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Hippocampal afferent inputs, terminating on proximal and distal subfields of the cornus ammonis (CA), enable the functional discrimination of 'what' (item identity) and 'where' (spatial location) elements of a spatial representation. This kind of information is supported by structures such as the retrosplenial cortex (RSC). Spatial content learning promotes the expression of hippocampal synaptic plasticity, particularly long-term depression (LTD). In the CA1 region, this is specifically facilitated by the learning of item-place features of a spatial environment. Gene-tagging, by means of time-locked fluorescence in situ hybridization (FISH) to detect nuclear expression of immediate early genes, can reveal neuronal populations that engage in experience-dependent information encoding. In the current study, using FISH, we examined if learning-facilitated LTD results in subfield-specific information encoding in the hippocampus and RSC. Rats engaged in novel exploration of small items during stimulation of Schaffer collateral-CA1 synapses. This resulted in LTD (> 24 h). FISH, to detect nuclear expression of Homer1a, revealed that the distal-CA1 and proximal-CA3 subcompartments were particularly activated by this event. By contrast, all elements of the proximodistal cornus ammonis-axis showed equal nuclear Homer1a expression following LTD induction solely by means of afferent stimulation. The RSC exhibited stronger nuclear Homer1a expression in response to learning-facilitated LTD, and to novel item-place experience, compared to LTD induced by sole afferent stimulation in CA1. These results show that both the cornus ammonis and RSC engage in differentiated information encoding of item-place learning that is salient enough, in its own right, to drive the expression of hippocampal LTD. These results also reveal a novel role of the RSC in item-place learning.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
8
|
Beylerli O, Beilerli A, Ilyasova T, Shumadalova A, Shi H, Sufianov A. CircRNAs in Alzheimer's disease: What are the prospects? Noncoding RNA Res 2024; 9:203-210. [PMID: 38125754 PMCID: PMC10730436 DOI: 10.1016/j.ncrna.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Circular RNAs (circRNAs) is a fascinating covalently closed circular non-coding RNA that is abundantly present in the transcriptome of eukaryotic cells. Its versatile nature allows it to participate in a multitude of pathological and physiological processes within the organism. One of its crucial functions is acting as a microRNA sponge, modulating protein transcription levels, and forming interactions with essential RNA-binding proteins. Remarkably, circRNAs demonstrates a specific enrichment in various vital areas of the brain, including the cortex, hippocampus, white matter, and photoreceptor neurons, particularly in aging organisms. This intriguing characteristic has led scientists to explore its potential as a significant biological marker of neurodegeneration, offering promising insights into neurodegenerative diseases like Alzheimer's disease (AD). In AD, there has been an interesting observation of elevated levels of circRNAs in both peripheral blood and synaptic terminals of affected individuals. This intriguing finding raises the possibility that circRNAs may have a central role in the initiation and progression of AD. Notably, different categories of circRNAs, including HDAC9, HOMER1, Cwc27, Tulp4, and PTK2, have been implicated in driving the pathological changes associated with AD through diverse mechanisms. For instance, these circRNAs have been demonstrated to contribute to the accumulation of beta-amyloid, which is a hallmark characteristic of AD. Additionally, these circRNAs contribute to the excessive phosphorylation of tau protein, a phenomenon associated with neurofibrillary tangles, further exacerbating the disease. Moreover, they are involved in aggravating neuroinflammation, which is known to play a critical role in AD's pathogenesis. Lastly, these circRNAs can cause mitochondrial dysfunction, disrupting cellular energy production and leading to cognitive impairment. As researchers delve deeper into the intricate workings of circRNAs, they hope to unlock its full potential as a diagnostic tool and therapeutic target for neurodegenerative disorders, paving the way for innovative treatments and better management of such devastating conditions.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Ford K, Zuin E, Righelli D, Medina E, Schoch H, Singletary K, Muheim C, Frank MG, Hicks SC, Risso D, Peixoto L. A Global Transcriptional Atlas of the Effect of Sleep Deprivation in the Mouse Frontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569011. [PMID: 38076891 PMCID: PMC10705260 DOI: 10.1101/2023.11.28.569011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Sleep deprivation (SD) has negative effects on brain function. Sleep problems are prevalent in neurodevelopmental, neurodegenerative and psychiatric disorders. Thus, understanding the molecular consequences of SD is of fundamental importance in neuroscience. In this study, we present the first simultaneous bulk and single-nuclear (sn)RNA sequencing characterization of the effects of SD in the mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of thousands of transcripts. At both the global and cell-type specific level, SD has a large repressive effect on transcription, down-regulating thousands of genes and transcripts; underscoring the importance of accounting for the effects of sleep loss in transcriptome studies of brain function. As a resource we provide extensive characterizations of cell types, genes, transcripts and pathways affected by SD; as well as tutorials for data analysis.
Collapse
Affiliation(s)
- Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Elena Zuin
- Department of Biology, University of Padova, Italy
- Department of Statistical Sciences, University of Padova, Italy
| | - Dario Righelli
- Department of Statistical Sciences, University of Padova, Italy
| | - Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Hannah Schoch
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Christine Muheim
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Marcos G Frank
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, MD, USA
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Italy
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| |
Collapse
|
10
|
Benson CA, King JF, Kauer SD, Waxman SG, Tan AM. Increased astrocytic GLT-1 expression in tripartite synapses is associated with SCI-induced hyperreflexia. J Neurophysiol 2023; 130:1358-1366. [PMID: 37877184 PMCID: PMC10972632 DOI: 10.1152/jn.00234.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 10/26/2023] Open
Abstract
Spasticity is a chronic neurological complication associated with spinal cord injury (SCI), characterized by increased muscle tone and stiffness. A physiological sign of spasticity is hyperreflexia, evident by the loss of evoked rate-dependent depression (RDD) in the H-reflex. Although previous work has shown that SCI-induced astrogliosis contributes to hyperexcitability disorders, including neuropathic pain and spasticity, it is unclear how reactive astrocytes can modulate synaptic transmission within the injured spinal cord. To study astrocytes' role in post-SCI hyperreflexia, we examined glutamate transporter-1 (GLT-1) and postsynaptic density protein 95 (PSD-95) proteins in astrocytes and neurons, respectively, within the ventral horn (lamina IX) below the level of injury (spinal segment L4-5). The close juxtaposition of GLT-1 and PSD-95 markers is a molecular correlate of tripartite synapses and is thought to be a key element in the astrocyte-induced plasticity of neuronal synapses. Our study compared animals with and without SCI-induced hyperreflexia and spasticity and investigated potential synaptic abnormalities associated with astrocyte involvement. As expected, 4 wk after SCI, we observed a loss in evoked H-reflex RDD in hindlimb electromyogram recordings, i.e., hyperreflexia, in contrast to uninjured sham. Importantly, our main findings show a significant increase in the presence of GLT-1-PSD-95 tripartite synapses in the ventral spinal cord motor regions of animals exhibiting SCI-induced hyperreflexia. Taken together, our study suggests the involvement of astrocyte-neuron synaptic complexes in the plasticity-driven progression of chronic spasticity.NEW & NOTEWORTHY The role of astrocytes in H-reflex hyperexcitability following SCI remains understudied. Our findings establish a relationship between GLT-1 expression, its proximity to neuronal PSD-95 in the spinal cord ventral horn, and the loss of H-reflex RDD, i.e., hyperreflexia. Our findings provide a new perspective on synaptic alterations and the development of SCI-related spasticity.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| |
Collapse
|
11
|
Mısır E, Akay GG. Synaptic dysfunction in schizophrenia. Synapse 2023:e22276. [PMID: 37210696 DOI: 10.1002/syn.22276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Schizophrenia is a chronic disease presented with psychotic symptoms, negative symptoms, impairment in the reward system, and widespread neurocognitive deterioration. Disruption of synaptic connections in neural circuits is responsible for the disease's development and progression. Because deterioration in synaptic connections results in the impaired effective processing of information. Although structural impairments of the synapse, such as a decrease in dendritic spine density, have been shown in previous studies, functional impairments have also been revealed with the development of genetic and molecular analysis methods. In addition to abnormalities in protein complexes regulating exocytosis in the presynaptic region and impaired vesicle release, especially, changes in proteins related to postsynaptic signaling have been reported. In particular, impairments in postsynaptic density elements, glutamate receptors, and ion channels have been shown. At the same time, effects on cellular adhesion molecular structures such as neurexin, neuroligin, and cadherin family proteins were detected. Of course, the confusing effect of antipsychotic use in schizophrenia research should also be considered. Although antipsychotics have positive and negative effects on synapses, studies indicate synaptic deterioration in schizophrenia independent of drug use. In this review, the deterioration in synapse structure and function and the effects of antipsychotics on the synapse in schizophrenia will be discussed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Güvem Gümüş Akay
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
- Faculty of Medicine, Department of Physiology, Ankara University, Ankara, Turkey
- Brain Research Center (AÜBAUM), Ankara University, Ankara, Turkey
- Department of Cellular Neuroscience and Advanced Microscopic Neuroimaging, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
12
|
Cabej NR. On the origin and nature of nongenetic information in eumetazoans. Ann N Y Acad Sci 2023. [PMID: 37154677 DOI: 10.1111/nyas.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nongenetic information implies all the forms of biological information not related to genes and DNA in general. Despite the deep scientific relevance of the concept, we currently lack reliable knowledge about its carriers and origins; hence, we still do not understand its true nature. Given that genes are the targets of nongenetic information, it appears that a parsimonious approach to find the ultimate source of that information is to trace back the sequential steps of the causal chain upstream of the target genes up to the ultimate link as the source of the nongenetic information. From this perspective, I examine seven nongenetically determined phenomena: placement of locus-specific epigenetic marks on DNA and histones, changes in snRNA expression patterns, neural induction of gene expression, site-specific alternative gene splicing, predator-induced morphological changes, and cultural inheritance. Based on the available evidence, I propose a general model of the common neural origin of all these forms of nongenetic information in eumetazoans.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania
| |
Collapse
|
13
|
Wang W, Lu D, Xu Q, Jin Y, Pang G, Liu Y. Remodeling of the ryanodine receptor isoform 1 channel regulates the sweet and umami taste perception of Rattus norvegicus. FUNDAMENTAL RESEARCH 2023; 3:459-468. [PMID: 38933774 PMCID: PMC11197482 DOI: 10.1016/j.fmre.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022] Open
Abstract
Sweet and umami tastes are elicited by sweet and umami receptors on the tongue and palate epithelium, respectively. However, the molecular machinery allowing the taste reaction remains incompletely understood. Through a phosphoproteomic approach, we identified the key proteins that trigger taste mechanisms based on phosphorylation cascades. Ryanodine receptor isoform 1 (RYR1) was further verified by sensory and behavioral assays. We propose a model of RYR1-mediated sweet/umami signaling in which the RYR1 channel, which mediates Ca2+ release from the endoplasmic reticulum, is closed by dephosphorylation in bud tissue after sweet/umami treatment. The alteration in Ca2+ content in the cytosol induces transient membrane depolarization and generates a cell current for taste signal transduction. We demonstrate that RYR1 is a new channel involved in the regulation of sweet/umami signal transduction and propose a "metabolic clock" notion based on sweet/umami sensing. Our study provides a valuable foundation for a system-level understanding of the taste perception mechanism.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dingqiang Lu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Qiuda Xu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yulian Jin
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Guangchang Pang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Schubert M, Pelz A, Trautmann G, Block K, Furlan S, Gutsmann M, Kohler S, Volpe P, Blottner D, Meisel A, Salanova M. Opposite Regulation of Homer Signal at the NMJ Postsynaptic Micro Domain between Slow- and Fast-Twitch Muscles in an Experimentally Induced Autoimmune Myasthenia Gravis (EAMG) Mouse Model. Int J Mol Sci 2022; 23:ijms232315052. [PMID: 36499379 PMCID: PMC9738765 DOI: 10.3390/ijms232315052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Accelerated postsynaptic remodelling and disturbance of neuromuscular transmission are common features of autoimmune neurodegenerative diseases. Homer protein isoform expression, crosslinking activity and neuromuscular subcellular localisation are studied in mouse hind limb muscles of an experimentally induced autoimmune model of Myasthenia Gravis (EAMG) and correlated to motor end plate integrity. Soleus (SOL), extensor digitorum longus (EDL) and gastrocnemius (GAS) skeletal muscles are investigated. nAChR membrane clusters were studied to monitor neuromuscular junction (NMJ) integrity. Fibre-type cross-sectional area (CSA) analysis is carried out in order to determine the extent of muscle atrophy. Our findings clearly showed that crosslinking activity of Homer long forms (Homer 1b/c and Homer2a/b) are decreased in slow-twitch and increased in fast-twitch muscle of EAMG whereas the short form of Homer that disrupts Homer crosslinking (Homer1a) is upregulated in slow-twitch muscle only. Densitometry analysis showed a 125% increase in Homer protein expression in EDL, and a 45% decrease in SOL of EAMG mice. In contrast, nAChR fluorescence pixel intensity decreased in endplates of EAMG mice, more distinct in type-I dominant SOL muscle. Morphometric CSA of EAMG vs. control (CTR) revealed a significant reduction in EDL but not in GAS and SOL. Taken together, these results indicate that postsynaptic Homer signalling is impaired in slow-twitch SOL muscle from EAMG mice and provide compelling evidence suggesting a functional coupling between Homer and nAChR, underscoring the key role of Homer in skeletal muscle neurophysiology.
Collapse
Affiliation(s)
- Martin Schubert
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10115 Berlin, Germany
| | - Andreas Pelz
- Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Gabor Trautmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10115 Berlin, Germany
| | - Katharina Block
- Center of Space Medicine Berlin, Neuromuscular Signaling and System, 10115 Berlin, Germany
| | - Sandra Furlan
- C.N.R. Institute of Neuroscience, 35131 Padova, Italy
| | - Martina Gutsmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10115 Berlin, Germany
| | - Siegfried Kohler
- Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10115 Berlin, Germany
- Center of Space Medicine Berlin, Neuromuscular Signaling and System, 10115 Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10115 Berlin, Germany
- Center of Space Medicine Berlin, Neuromuscular Signaling and System, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450528-354
| |
Collapse
|
15
|
Plumbly W, Patikas N, Field SF, Foskolou S, Metzakopian E. Derivation of nociceptive sensory neurons from hiPSCs with early patterning and temporally controlled NEUROG2 overexpression. CELL REPORTS METHODS 2022; 2:100341. [PMID: 36452863 PMCID: PMC9701618 DOI: 10.1016/j.crmeth.2022.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/09/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Despite development of protocols to differentiate human pluripotent stem cells (hPSCs), those used to produce sensory neurons remain difficult to replicate and result in heterogenous populations. There is a growing clinical burden of chronic pain conditions, highlighting the need for relevant human cellular models. This study presents a hybrid differentiation method to produce nociceptive sensory neurons from hPSCs. Lines harboring an inducible NEUROG2 construct were patterned toward precursors with small molecules followed by NEUROG2 overexpression. Neurons expressed key markers, including BRN3A and ISL1, with single-cell RNA sequencing, revealing populations of nociceptors expressing SCN9A and TRP channels. Physiological profiling with multi-electrode arrays revealed that neurons responded to noxious stimuli, including capsaicin. Finally, we modeled pain-like states to identify genes and pathways involved in pain transduction. This study presents an optimized method to efficiently produce nociceptive sensory neurons and provides a tool to aid development of chronic pain research.
Collapse
Affiliation(s)
- William Plumbly
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| | - Sarah F. Field
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stefanie Foskolou
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| |
Collapse
|
16
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
17
|
Yang AJT, Mohammad A, Tsiani E, Necakov A, MacPherson REK. Chronic AMPK Activation Reduces the Expression and Alters Distribution of Synaptic Proteins in Neuronal SH-SY5Y Cells. Cells 2022; 11:cells11152354. [PMID: 35954198 PMCID: PMC9367429 DOI: 10.3390/cells11152354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal growth and synaptic function are dependent on precise protein production and turnover at the synapse. AMPK-activated protein kinase (AMPK) represents a metabolic node involved in energy sensing and in regulating synaptic protein homeostasis. However, there is ambiguity surrounding the role of AMPK in regulating neuronal growth and health. This study examined the effect of chronic AMPK activation on markers of synaptic function and growth. Retinoic-acid-differentiated SH-SY5Y human neuroblastoma cells were treated with A-769662 (100 nM) or Compound C (30 nM) for 1, 3, or 5 days before AMPK, mTORC1, and markers for synapse function were examined. Cell morphology, neuronal marker content, and location were quantified after 5 days of treatment. AMPK phosphorylation was maintained throughout all 5 days of treatment with A-769662 and resulted in chronic mTORC1 inhibition. Lower total, soma, and neuritic neuronal marker contents were observed following 5 d of AMPK activation. Neurite protein abundance and distribution was lower following 5 days of A-769662 treatment. Our data suggest that chronic AMPK activation impacts synaptic protein content and reduces neurite protein abundance and distribution. These results highlight a distinct role that metabolism plays on markers of synapse health and function.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Ahmad Mohammad
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
- Correspondence:
| |
Collapse
|
18
|
Shen X, He Y, Ge C. Role of circRNA in pathogenesis of Alzheimer 's disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:960-966. [PMID: 36039594 PMCID: PMC10930285 DOI: 10.11817/j.issn.1672-7347.2022.210729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 06/15/2023]
Abstract
Circular RNA (circRNA) is a covalently closed-loop non-coding RNA that exists widely in the transcriptome of eukaryotic cells. It participates in a variety of pathophysiological processes by acting as a microRNA sponge, regulating the level of protein transcription, and interacting with RNA binding proteins. CircRNA is enriched in the cortex, hippocampus, brain white matter, and photoreceptor neurons of aging bodies, and they can be used as a biomarker for neural senescence. The expression levels of circRNA in peripheral blood and synapses in Alzheimer's disease (AD) patients are increased, which are involved in the occurrence and prognosis of AD. Different circRNAs such as HDAC9, Homer1, Cwc27, Tulp4, and PTK2 can lead to AD pathological changes via increasing amyloid-β deposition, promoting tau protein hyperphosphorylation, aggravating neuroinflammation and mitochondrial dysfunction, which result in the cognitive decline.
Collapse
Affiliation(s)
- Xueyang Shen
- Department of Neurology, Second Hospital of Lanzhou University, Lanzhou 730030, China.
| | - Yaling He
- Department of Neurology, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Chaoming Ge
- Department of Neurology, Second Hospital of Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
19
|
Nambu MF, Lin YJ, Reuschenbach J, Tanaka KZ. What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Curr Opin Neurobiol 2022; 75:102568. [PMID: 35660988 DOI: 10.1016/j.conb.2022.102568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 01/03/2023]
Abstract
Long-lasting synaptic changes within the neuronal network mediate memory. Neurons bearing such physical traces of memory (memory engram cells) are often equated with neurons expressing immediate early genes (IEGs) during a specific experience. However, past studies observed the expression of different IEGs in non-overlapping neurons or synaptic plasticity in neurons that do not express a particular IEG. Importantly, recent studies revealed that distinct subsets of neurons expressing different IEGs or even IEG negative-(yet active) neurons support different aspects of memory or computation, suggesting a more complex nature of memory engram cells than previously thought. In this short review, we introduce studies revealing such heterogeneous composition of the memory engram and discuss how the memory system benefits from it.
Collapse
Affiliation(s)
- Miyu F Nambu
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan. https://twitter.com/meowmiyu
| | - Yu-Ju Lin
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan. https://twitter.com/linyuru25199808
| | - Josefine Reuschenbach
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan. https://twitter.com/Jausefine
| | - Kazumasa Z Tanaka
- Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
20
|
Lin CH, Lane HY. Blood D-Amino Acid Oxidase Levels Increased With Cognitive Decline Among People With Mild Cognitive Impairment: A Two-Year Prospective Study. Int J Neuropsychopharmacol 2022; 25:660-665. [PMID: 35430632 PMCID: PMC9380713 DOI: 10.1093/ijnp/pyac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Dysregulation of N-methyl-D-aspartate receptor (NMDAR) neurotransmission has been reported to be implicated in the pathogenesis of Alzheimer's disease (AD). D-amino acid oxidase (DAO), responsible for degradation of NMDAR-related D-amino acids such as D-serine, regulates NMDAR function. A cross-section study found that serum DAO levels were positively related with the severity of cognitive aging among elderly individuals. This 2-year prospective study aimed to explore the role of DAO levels in predicting the outcome of patients with very early-phase AD, such as mild cognitive impairment (MCI). METHODS Fifty-one patients with MCI and 21 healthy individuals were recruited. Serum DAO levels and cognitive function, measured by the AD assessment scale-cognitive subscale and the Mini-Mental Status Examination, were monitored every 6 months. We employed multiple regressions to examine the role of DAO concentration in cognitive decline in the 2-year period. RESULTS From baseline to endpoint (24 months), serum DAO levels increased significantly, and cognitive ability declined according to both cognitive tests in the MCI patients. Among the healthy individuals, DAO concentrations also increased and Mini-Mental Status Examination scores declined; however, AD assessment scale-cognitive subscale scores did not significantly change. Further, DAO levels at both months 12 and 18 were predictive of cognitive impairment at month 24 among the MCI patients. CONCLUSIONS To our knowledge, this is the first study to demonstrate that blood DAO levels increased with cognitive deterioration among the MCI patients in a prospective manner. If replicated by future studies, blood DAO concentration may be regarded as a biomarker for monitoring cognitive change in the patients with MCI.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Correspondence: Hsien-Yuan Lane, MD, PhD, Department of Psychiatry, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 404, Taiwan ()
| |
Collapse
|
21
|
Du Y, Brennan FH, Popovich PG, Zhou M. Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia 2022; 70:1359-1379. [PMID: 35394085 PMCID: PMC9324808 DOI: 10.1002/glia.24179] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022]
Abstract
Microglial control of activity‐dependent plasticity and synaptic remodeling in neuronal networks has been the subject of intense research in the past several years. Although microglia–neuron interactions have been extensively studied, less is known about how microglia influence astrocyte‐dependent control over neuronal structure and function. Here, we explored a role for microglia in regulating the structure and function of the astrocyte syncytium in mouse hippocampus. After depleting microglia using a CSF1R antagonist (PLX5622, Plexxikon), we observed severe disruption of astrocyte syncytial isopotentiality and dye coupling. A decrease in astrocyte‐specific gap junction connexin (Cx) 30 and 43 expression, at least partially accounts for these microglia‐dependent changes in astrocytes. Because neuronal function requires intact astrocyte coupling, we also evaluated the effects of microglia depletion on synaptic transmission in the hippocampus. Without microglia, the strength of synaptic transmission was reduced at baseline and after long‐term potentiation (LTP). Conversely, priming microglia with systemic injections of lipopolysaccharide enhanced CA3‐CA1 synaptic transmission. This microglia‐induced scaling of synaptic transmission was associated with increased expression of post‐synaptic scaffold proteins (Homer1) in CA1. However, astrocyte network function was not affected by microglia priming, indicating that microglia‐dependent effects on astrocytes and neurons vary across functional states. Through manipulation of microglia in the brain, our results reveal the importance of microglia in homeostatic regulation of the astrocyte syncytium and scaling of synaptic transmission. These novel mechanisms uncover a new direction for future studies interrogating microglia function in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Yixing Du
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
22
|
Stillman M, Lautz JD, Johnson RS, MacCoss MJ, Smith SEP. Activity dependent dissociation of the Homer1 interactome. Sci Rep 2022; 12:3207. [PMID: 35217690 PMCID: PMC8881602 DOI: 10.1038/s41598-022-07179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/09/2022] [Indexed: 11/12/2022] Open
Abstract
Neurons encode information by rapidly modifying synaptic protein complexes, which changes the strength of specific synaptic connections. Homer1 is abundantly expressed at glutamatergic synapses, and is known to alter its binding to metabotropic glutamate receptor 5 (mGlu5) in response to synaptic activity. However, Homer participates in many additional known interactions whose activity-dependence is unclear. Here, we used co-immunoprecipitation and label-free quantitative mass spectrometry to characterize activity-dependent interactions in the cerebral cortex of wildtype and Homer1 knockout mice. We identified a small, high-confidence protein network consisting of mGlu5, Shank2 and 3, and Homer1–3, of which only mGlu5 and Shank3 were significantly reduced following neuronal depolarization. We identified several other proteins that reduced their co-association in an activity-dependent manner, likely mediated by Shank proteins. We conclude that Homer1 dissociates from mGlu5 and Shank3 following depolarization, but our data suggest that direct Homer1 interactions in the cortex may be more limited than expected.
Collapse
Affiliation(s)
- Mason Stillman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Dartmouth-Hitchcock Medical Center Psychiatry Residency Program, Dartmouth, NH, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, WA, USA. .,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
24
|
Reciprocal Homer1a and Homer2 Isoform Expression Is a Key Mechanism for Muscle Soleus Atrophy in Spaceflown Mice. Int J Mol Sci 2021; 23:ijms23010075. [PMID: 35008503 PMCID: PMC8744925 DOI: 10.3390/ijms23010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms of skeletal muscle atrophy under extended periods of either disuse or microgravity are not yet fully understood. The transition of Homer isoforms may play a key role during neuromuscular junction (NMJ) imbalance/plasticity in space. Here, we investigated the expression pattern of Homer short and long isoforms by gene array, qPCR, biochemistry, and laser confocal microscopy in skeletal muscles from male C57Bl/N6 mice (n = 5) housed for 30 days in space (Bion-flight = BF) compared to muscles from Bion biosatellite on the ground-housed animals (Bion ground = BG) and from standard cage housed animals (Flight control = FC). A comparison study was carried out with muscles of rats subjected to hindlimb unloading (HU). Gene array and qPCR results showed an increase in Homer1a transcripts, the short dominant negative isoform, in soleus (SOL) muscle after 30 days in microgravity, whereas it was only transiently increased after four days of HU. Conversely, Homer2 long-form was downregulated in SOL muscle in both models. Homer immunofluorescence intensity analysis at the NMJ of BF and HU animals showed comparable outcomes in SOL but not in the extensor digitorum longus (EDL) muscle. Reduced Homer crosslinking at the NMJ consequent to increased Homer1a and/or reduced Homer2 may contribute to muscle-type specific atrophy resulting from microgravity and HU disuse suggesting mutual mechanisms.
Collapse
|
25
|
Hippocampal neurons' cytosolic and membrane-bound ribosomal transcript profiles are differentially regulated by learning and subsequent sleep. Proc Natl Acad Sci U S A 2021; 118:2108534118. [PMID: 34819370 PMCID: PMC8640746 DOI: 10.1073/pnas.2108534118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep loss disrupts consolidation of hippocampus-dependent memory. To understand the cellular basis for this effect, we quantified RNAs associated with translating ribosomes in cytosol and on cellular membranes of different hippocampal neuron populations. Our analysis suggests that while sleep loss (but not learning) alters numerous ribosomal transcripts in cytosol, learning has dramatic effects on transcript profiles for less–well-characterized membrane-bound ribosomes. We demonstrate that postlearning sleep deprivation occludes already minimal learning-driven changes on cytosolic ribosomes. It simultaneously alters transcripts associated with metabolic and biosynthetic processes in membrane-bound ribosomes in excitatory hippocampal neurons and highly active, putative “engram” neurons, respectively. Together, these findings provide insights into the cellular mechanisms altered by learning and their disruption by subsequent sleep loss. The hippocampus is essential for consolidating transient experiences into long-lasting memories. Memory consolidation is facilitated by postlearning sleep, although the underlying cellular mechanisms are largely unknown. We took an unbiased approach to this question by using a mouse model of hippocampally mediated, sleep-dependent memory consolidation (contextual fear memory). Because synaptic plasticity is associated with changes to both neuronal cell membranes (e.g., receptors) and cytosol (e.g., cytoskeletal elements), we characterized how these cell compartments are affected by learning and subsequent sleep or sleep deprivation (SD). Translating ribosome affinity purification was used to profile ribosome-associated RNAs in different subcellular compartments (cytosol and membrane) and in different cell populations (whole hippocampus, Camk2a+ neurons, or highly active neurons with phosphorylated ribosomal subunit S6 [pS6+]). We examined how transcript profiles change as a function of sleep versus SD and prior learning (contextual fear conditioning; CFC). While sleep loss altered many cytosolic ribosomal transcripts, CFC altered almost none, and CFC-driven changes were occluded by subsequent SD. In striking contrast, SD altered few transcripts on membrane-bound (MB) ribosomes, while learning altered many more (including long non-coding RNAs [lncRNAs]). The cellular pathways most affected by CFC were involved in structural remodeling. Comparisons of post-CFC MB transcript profiles between sleeping and SD mice implicated changes in cellular metabolism in Camk2a+ neurons and protein synthesis in highly active pS6+ (putative “engram”) neurons as biological processes disrupted by SD. These findings provide insights into how learning affects hippocampal neurons and suggest that the effects of SD on memory consolidation are cell type and subcellular compartment specific.
Collapse
|
26
|
Yeo SH, Herde MK, Herbison AE. Morphological assessment of GABA and glutamate inputs to GnRH neurons in intact female mice using expansion microscopy. J Neuroendocrinol 2021; 33:e13021. [PMID: 34427015 DOI: 10.1111/jne.13021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023]
Abstract
The roles GABAergic and glutamatergic inputs in regulating the activity of the gonadotrophin-releasing hormone (GnRH) neurons at the time of the preovulatory surge remain unclear. We used expansion microscopy to compare the density of GABAergic and glutamatergic synapses on the GnRH neuron cell body and proximal dendrite in dioestrous and pro-oestrous female mice. An evaluation of all synapses immunoreactive for synaptophysin revealed that the highest density of inputs to rostral preoptic area GnRH neurons occurred within the first 45 µm of the primary dendrite (approximately 0.19 synapses µm-1 ) with relatively few synapses on the GnRH neuron soma or beyond 45 µm of the dendrite (0.05-0.08 synapses µm-1 ). Triple immunofluorescence labelling demonstrated a predominance of glutamatergic signalling with twice as many vesicular glutamate transporter 2 synapses detected compared to vesicular GABA transporter. Co-labelling with the GABAA receptor scaffold protein gephyrin and the glutamate receptor postsynaptic density marker Homer1 confirmed these observations, as well as the different spatial distribution of GABA and glutamate inputs along the dendrite. Quantitative assessments revealed no differences in synaptophysin, GABA or glutamate synapses at the proximal dendrite and soma of GnRH neurons between dioestrous and pro-oestrous mice. Taken together, these studies demonstrate that the GnRH neuron receives twice as many glutamatergic synapses compared to GABAergic synapses and that these inputs preferentially target the first 45 µm of the GnRH neuron proximal dendrite. These inputs appear to be structurally stable before the onset of pro-oestrous GnRH surge.
Collapse
Affiliation(s)
- Shel-Hwa Yeo
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michel K Herde
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Gender-Dependent Deregulation of Linear and Circular RNA Variants of HOMER1 in the Entorhinal Cortex of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179205. [PMID: 34502114 PMCID: PMC8430762 DOI: 10.3390/ijms22179205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
The HOMER1 gene is involved in synaptic plasticity, learning and memory. Recent studies show that circular RNA derived from HOMER1 (circHOMER1) expression is altered in some Alzheimer’s disease (AD) brain regions. In addition, HOMER1 messenger (mRNA) levels have been associated with β-Amyloid (Aβ) deposits in brain cortical regions. Our aim was to measure the expression levels of HOMER1 circRNAs and their linear forms in the human AD entorhinal cortex. First, we showed downregulation of HOMER1B/C and HOMER1A mRNA and hsa_circ_0006916 and hsa_circ_0073127 levels in AD female cases compared to controls by RT-qPCR. A positive correlation was observed between HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073128 with HOMER1B/C protein only in females. Global average area of Aβ deposits in entorhinal cortex samples was negatively correlated with HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073127 in both genders. Furthermore, no differences in DNA methylation were found in two regions of HOMER1 promoter between AD cases and controls. To sum up, we demonstrate that linear and circular RNA variants of HOMER1 are downregulated in the entorhinal cortex of female patients with AD. These results add to the notion that HOMER1 and its circular forms could be playing a female-specific role in the pathogenesis of AD.
Collapse
|
28
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
29
|
Reshetnikov VV, Bondar NP. The Role of Stress-Induced Changes of Homer1 Expression in Stress Susceptibility. BIOCHEMISTRY (MOSCOW) 2021; 86:613-626. [PMID: 34225586 DOI: 10.1134/s0006297921060018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stress negatively affects processes of synaptic plasticity and is a major risk factor of various psychopathologies such as depression and anxiety. HOMER1 is an important component of the postsynaptic density: constitutively expressed long isoforms HOMER1b and HOMER1c bind to group I metabotropic glutamate receptors MGLUR1 (GRM1) and MGLUR5 and to other effector proteins, thereby forming a postsynaptic protein scaffold. Activation of the GLUR1-HOMER1b,c and/or GLUR5-HOMER1b,c complex regulates activity of the NMDA and AMPA receptors and Ca2+ homeostasis, thus modulating various types of synaptic plasticity. Dominant negative transcript Homer1a is formed as a result of activity-induced alternative termination of transcription. Expression of this truncated isoform in response to neuronal activation impairs interactions of HOMER1b,c with adaptor proteins, triggers ligand-independent signal transduction through MGLUR1 and/or MGLUR5, leads to suppression of the AMPA- and NMDA-mediated signal transmission, and thereby launches remodeling of the postsynaptic protein scaffold and inhibits long-term potentiation. The studies on animal models confirm that the HOMER1a-dependent remodeling most likely plays an important part in the stress susceptibility, whereas HOMER1a itself can be regarded as a neuroprotector. In this review article, we consider the effects of different stressors in various animal models on HOMER1 expression as well as impact of different HOMER1 variants on human behavior as well as structural and functional characteristics of the brain.
Collapse
Affiliation(s)
- Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
30
|
Bockaert J, Perroy J, Ango F. The Complex Formed by Group I Metabotropic Glutamate Receptor (mGluR) and Homer1a Plays a Central Role in Metaplasticity and Homeostatic Synaptic Scaling. J Neurosci 2021; 41:5567-5578. [PMID: 34193623 PMCID: PMC8244974 DOI: 10.1523/jneurosci.0026-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
G-protein-coupled receptors can be constitutively activated following physical interaction with intracellular proteins. The first example described was the constitutive activation of Group I metabotropic glutamate receptors (mGluR: mGluR1,5) following their interaction with Homer1a, an activity-inducible early-termination variant of the scaffolding protein Homer that lacks dimerization capacity (Ango et al., 2001). Homer1a disrupts the links, maintained by the long form of Homer (cross-linking Homers), between mGluR1,5 and the Shank-GKAP-PSD-95-ionotropic glutamate receptor network. Two characteristics of the constitutive activation of the Group I mGluR-Homer1a complex are particularly interesting: (1) it affects a large number of synapses in which Homer1a is upregulated following enhanced, long-lasting neuronal activity; and (2) it mainly depends on Homer1a protein turnover. The constitutively active Group I mGluR-Homer1a complex is involved in the two main forms of non-Hebbian neuronal plasticity: "metaplasticity" and "homeostatic synaptic scaling," which are implicated in a large series of physiological and pathologic processes. Those include non-Hebbian plasticity observed in visual system, synapses modulated by addictive drugs (rewarded synapses), chronically overactivated synaptic networks, normal sleep, and sleep deprivation.
Collapse
Affiliation(s)
- Joël Bockaert
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Julie Perroy
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Fabrice Ango
- Institut des Neurosciences de Montpellier, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34295 Montpellier, France
| |
Collapse
|
31
|
Hoang TH, Böge J, Manahan-Vaughan D. Hippocampal subfield-specific Homer1a expression is triggered by learning-facilitated long-term potentiation and long-term depression at medial perforant path synapses. Hippocampus 2021; 31:897-915. [PMID: 33964041 DOI: 10.1002/hipo.23333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 12/23/2022]
Abstract
Learning about general aspects, or content details, of space results in differentiated neuronal information encoding within the proximodistal axis of the hippocampus. These processes are tightly linked to long-term potentiation (LTP) and long-term depression (LTD). Here, we explored the precise sites of encoding of synaptic plasticity in the hippocampus that are mediated by information throughput from the perforant path. We assessed nuclear Homer1a-expression that was triggered by electrophysiological induction of short and long forms of hippocampal synaptic plasticity, and compared it to Homer1a-expression that was triggered by LTP and LTD enabled by different forms of spatial learning. Plasticity responses were induced by patterned stimulation of the perforant path and were recorded in the dentate gyrus (DG) of freely behaving rats. We used fluorescence in situ hybridization to detect experience-dependent nuclear encoding of Homer1a in proximodistal hippocampal subfields. Induction of neither STP nor STD resulted in immediate early gene (IEG) encoding. Electrophysiological induction of robust LTP, or LTD, resulted in highly significant and widespread induction of nuclear Homer1a in all hippocampal subfields. LTP that was facilitated by novel spatial exploration triggered similar widespread Homer1a-expression. The coupling of synaptic depression with the exploration of a novel configuration of landmarks resulted in localized IEG expression in the proximal CA3 region and the lower (infrapyramidal) blade of the DG. Our findings support that synaptic plasticity induction via perforant path inputs promotes widespread hippocampal information encoding. Furthermore, novel spatial exploration promotes the selection of a hippocampal neuronal network by means of LTP that is distributed in an experience-dependent manner across all hippocampus subfields. This network may be modified during spatial content learning by LTD in specific hippocampal subfields. Thus, long-term plasticity-inducing events result in IEG expression that supports establishment and/or restructuring of neuronal networks that are necessary for long-term information storage.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Juliane Böge
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
32
|
Expression Analysis of Zinc Transporters in Nervous Tissue Cells Reveals Neuronal and Synaptic Localization of ZIP4. Int J Mol Sci 2021; 22:ijms22094511. [PMID: 33925953 PMCID: PMC8123391 DOI: 10.3390/ijms22094511] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
In the last years, research has shown that zinc ions play an essential role in the physiology of brain function. Zinc acts as a potent neuromodulatory agent and signaling ions, regulating healthy brain development and the function of both neurons and glial cells. Therefore, the concentration of zinc within the brain and its cells is tightly controlled. Zinc transporters are key regulators of (extra-) cellular zinc levels, and deregulation of zinc homeostasis and zinc transporters has been associated with neurodegenerative and neuropsychiatric disorders. However, to date, the presence of specific family members and their subcellular localization within brain cells have not been investigated in detail. Here, we analyzed the expression of all zinc transporters (ZnTs) and Irt-like proteins (ZIPs) in the rat brain. We further used primary rat neurons and rat astrocyte cell lines to differentiate between the expression found in neurons or astrocytes or both. We identified ZIP4 expressed in astrocytes but significantly more so in neurons, a finding that has not been reported previously. In neurons, ZIP4 is localized to synapses and found in a complex with major postsynaptic scaffold proteins of excitatory synapses. Synaptic ZIP4 reacts to short-term fluctuations in local zinc levels. We conclude that ZIP4 may have a so-far undescribed functional role at excitatory postsynapses.
Collapse
|
33
|
Crosstalk among Calcium ATPases: PMCA, SERCA and SPCA in Mental Diseases. Int J Mol Sci 2021; 22:ijms22062785. [PMID: 33801794 PMCID: PMC8000800 DOI: 10.3390/ijms22062785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium in mammalian neurons is essential for developmental processes, neurotransmitter release, apoptosis, and signal transduction. Incorrectly processed Ca2+ signal is well-known to trigger a cascade of events leading to altered response to variety of stimuli and persistent accumulation of pathological changes at the molecular level. To counterbalance potentially detrimental consequences of Ca2+, neurons are equipped with sophisticated mechanisms that function to keep its concentration in a tightly regulated range. Calcium pumps belonging to the P-type family of ATPases: plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and secretory pathway Ca2+-ATPase (SPCA) are considered efficient line of defense against abnormal Ca2+ rises. However, their role is not limited only to Ca2+ transport, as they present tissue-specific functionality and unique sensitive to the regulation by the main calcium signal decoding protein—calmodulin (CaM). Based on the available literature, in this review we analyze the contribution of these three types of Ca2+-ATPases to neuropathology, with a special emphasis on mental diseases.
Collapse
|
34
|
Gürth CM, Dankovich TM, Rizzoli SO, D'Este E. Synaptic activity and strength are reflected by changes in the post-synaptic secretory pathway. Sci Rep 2020; 10:20576. [PMID: 33239744 PMCID: PMC7688657 DOI: 10.1038/s41598-020-77260-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
Neurons are highly asymmetric cells that span long distances and need to react promptly to local demands. Consequently, neuronal secretory pathway elements are distributed throughout neurites, specifically in post-synaptic compartments, to enable local protein synthesis and delivery. Whether and how changes in local synaptic activity correlate to post-synaptic secretory elements is still unclear. To assess this, we used STED nanoscopy and automated quantitative image analysis of post-synaptic markers of the endoplasmic reticulum, ER-Golgi intermediate compartment, trans-Golgi network, and spine apparatus. We found that the distribution of these proteins was dependent on pre-synaptic activity, measured as the amount of recycling vesicles. Moreover, their abundance correlated to both pre- and post-synaptic markers of synaptic strength. Overall, the results suggest that in small, low-activity synapses the secretory pathway components are tightly clustered in the synaptic area, presumably to enable rapid local responses, while bigger synapses utilise secretory machinery components from larger, more diffuse areas.
Collapse
Affiliation(s)
- Clara-Marie Gürth
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Tal M Dankovich
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany.
| |
Collapse
|
35
|
So LY, Miller JE. Social context-dependent singing alters molecular markers of synaptic plasticity signaling in finch basal ganglia Area X. Behav Brain Res 2020; 398:112955. [PMID: 33031871 DOI: 10.1016/j.bbr.2020.112955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/14/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022]
Abstract
Vocal communication is a crucial skill required throughout life. However, there is a critical gap in our understanding of the underlying molecular brain mechanisms, thereby motivating our use of the zebra finch songbird model. Adult male zebra finches show differences in neural activity patterns in song-dedicated brain nuclei when they sing in two distinct social contexts: a male singing by himself (undirected, UD) and a male singing to a female (female-directed, FD). In our prior work, we showed that in song-dedicated basal ganglia Area X, protein levels of a N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) increased with more UD song and decreased with more FD song. We hypothesized that molecules downstream of this receptor would show differential protein expression levels in Area X between UD and FD song. Specifically, we investigated calcium/calmodulin dependent protein kinase II beta (CaMKIIB), homer scaffold protein 1 (HOMER1), serine/threonine protein kinase (Akt), and mechanistic target of rapamycin kinase (mTOR) following singing and non-singing states in Area X. We show relationships between social context and protein levels. HOMER1 protein levels decreased with time spent singing FD song, and mTOR protein levels decreased with the amount of and time spent singing FD song. For both HOMER1 and mTOR, there were no differences with the amount of UD song. With time spent singing UD, CaMKIIB protein levels trended in a U-shaped curve whereas Akt protein levels trended down. Both molecules showed no change with FD song. Our results support differential involvement of molecules in synaptic plasticity pathways between UD and FD song behaviors.
Collapse
Affiliation(s)
- Lisa Y So
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Gould-Simpson Building, Tucson, AZ, 85721, United States; Department of Neuroscience, University of Arizona, Gould-Simpson Building, Tucson, AZ, 85721, United States
| | - Julie E Miller
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Gould-Simpson Building, Tucson, AZ, 85721, United States; Department of Neuroscience, University of Arizona, Gould-Simpson Building, Tucson, AZ, 85721, United States; Department of Speech, Language, and Hearing Sciences, University of Arizona, Speech, Language, and Hearing Sciences Building, Tucson, AZ, 85721, United States.
| |
Collapse
|
36
|
Clifton NE, Thomas KL, Wilkinson LS, Hall J, Trent S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020; 6:5-19. [PMID: 34883502 PMCID: PMC7673588 DOI: 10.1159/000506858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E. Clifton
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
37
|
The Effects of Antipsychotics on the Synaptic Plasticity Gene Homer1a Depend on a Combination of Their Receptor Profile, Dose, Duration of Treatment, and Brain Regions Targeted. Int J Mol Sci 2020; 21:ijms21155555. [PMID: 32756473 PMCID: PMC7432375 DOI: 10.3390/ijms21155555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Antipsychotic agents modulate key molecules of the postsynaptic density (PSD), including the Homer1a gene, implicated in dendritic spine architecture. How the antipsychotic receptor profile, dose, and duration of administration may influence synaptic plasticity and the Homer1a pattern of expression is yet to be determined. Methods: In situ hybridization for Homer1a was performed on rat tissue sections from cortical and striatal regions of interest (ROI) after acute or chronic administration of three antipsychotics with divergent receptor profile: Haloperidol, asenapine, and olanzapine. Univariate and multivariate analyses of the effects of topography, treatment, dose, and duration of antipsychotic administration were performed. Results: All acute treatment regimens were found to induce a consistently higher expression of Homer1a compared to chronic ones. Haloperidol increased Homer1a expression compared to olanzapine in striatum at the acute time-point. A dose effect was also observed for acute administration of haloperidol. Conclusions: Biological effects of antipsychotics on Homer1a varied strongly depending on the combination of their receptor profile, dose, duration of administration, and throughout the different brain regions. These molecular data may have translational valence and may reflect behavioral sensitization/tolerance phenomena observed with prolonged antipsychotics.
Collapse
|
38
|
Okuda K, Højgaard K, Privitera L, Bayraktar G, Takeuchi T. Initial memory consolidation and the synaptic tagging and capture hypothesis. Eur J Neurosci 2020; 54:6826-6849. [PMID: 32649022 DOI: 10.1111/ejn.14902] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 01/05/2023]
Abstract
Everyday memories are retained automatically in the hippocampus and then decay very rapidly. Memory retention can be boosted when novel experiences occur shortly before or shortly after the time of memory encoding via a memory stabilization process called "initial memory consolidation." The dopamine release and new protein synthesis in the hippocampus during a novel experience are crucial for this novelty-induced memory boost. The mechanisms underlying initial memory consolidation are not well-understood, but the synaptic tagging and capture (STC) hypothesis provides a conceptual basis of synaptic plasticity events occurring during initial memory consolidation. In this review, we provide an overview of the STC hypothesis and its relevance to dopaminergic signalling, in order to explore the cellular and molecular mechanisms underlying initial memory consolidation in the hippocampus. We summarize electrophysiological STC processes based on the evidence from two-pathway experiments and a behavioural tagging hypothesis, which translates the STC hypothesis into a related behavioural hypothesis. We also discuss the function of two types of molecules, "synaptic tags" and "plasticity-related proteins," which have a crucial role in the STC process and initial memory consolidation. We describe candidate molecules for the roles of synaptic tag and plasticity-related proteins and interpret their candidacy based on evidence from two-pathway experiments ex vivo, behavioural tagging experiments in vivo and recent cutting-edge optical imaging experiments. Lastly, we discuss the direction of future studies to advance our understanding of molecular mechanisms underlying the STC process, which are critical for initial memory consolidation in the hippocampus.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Kristoffer Højgaard
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - Gülberk Bayraktar
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Institut für Klinische Neurobiologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Tomonori Takeuchi
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
39
|
Brancato A, Castelli V, Lavanco G, Marino RAM, Cannizzaro C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J Psychopharmacol 2020; 34:663-679. [PMID: 32338122 DOI: 10.1177/0269881120916135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cannabinoid consumption during pregnancy has been increasing on the wave of the broad-based legalisation of cannabis in Western countries, raising concern about the putative detrimental outcomes on foetal neurodevelopment. Indeed, since the endocannabinoid system regulates synaptic plasticity, emotional and cognitive processes from early stages of life interfering with it and other excitability endogenous modulators, such as neuropeptide Y (NPY), might contribute to the occurrence of a vulnerable phenotype later in life. AIMS This research investigated whether in utero exposure to Δ9-tetrahydrocannabinol (THC) may induce deficits in emotional/cognitive processes and alcohol vulnerability in adolescent offspring. NPY and excitatory postsynaptic density (PSD) machinery were measured as markers of neurobiological vulnerability. METHODS Following in utero THC exposure (2 mg/kg delivered subcutaneously), preadolescent male rat offspring were assessed for: behavioural reactivity in the open field test, neutral declarative memory and aversive limbic memory in the Novel Object and Emotional Object Recognition tests, immunofluorescence for NPY neurons and the PSD proteins Homer-1, 1b/c and 2 in the prefrontal cortex, amygdala and nucleus accumbens at adolescence (cohort 1); and instrumental learning, alcohol taking, relapse and conflict behaviour in the operant chamber throughout adolescence until early adulthood (cohort 2). RESULTS In utero THC-exposed adolescent rats showed: (a) increased locomotor activity; (b) no alteration in neutral declarative memory; (c) impaired aversive limbic memory; (d) decreased NPY-positive neurons in limbic regions; (e) region-specific variations in Homer-1, 1b/c and 2 immunoreactivity; (f) decreased instrumental learning and increased alcohol drinking, relapse and conflict behaviour in the operant chamber. CONCLUSION Gestational THC impaired the formation of memory traces when integration between environmental encoding and emotional/motivational processing was required and promoted the development of alcohol-addictive behaviours. The abnormalities in NPY signalling and PSD make-up may represent the common neurobiological background, suggesting new targets for future research.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Rosa Anna Maria Marino
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, USA
| | - Carla Cannizzaro
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties of Excellence 'G. D'Alessandro', University of Palermo, Palermo, Italy
| |
Collapse
|
40
|
Abstract
In this issue of Neuron, Holz et al. (2019) show that the synaptic protein Homer1a switches mGluR5 signaling to increase AMPA receptor activity for the rapid antidepressant actions of sleep deprivation.
Collapse
|
41
|
Bridi M, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Porcari GS, Lejards C, Hahn CG, Giese KP, Havekes R, Spruston N, Abel T. Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling. JCI Insight 2020; 5:92385. [PMID: 32069266 DOI: 10.1172/jci.insight.92385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of 2 classes of regulatory complexes: permissive coactivators and silencing corepressors. Much work has focused on coactivator complexes, but little is known about the corepressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the corepressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the postsynaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the metabotropic glutamate receptor 1α (mGluR1α) and mGluR5 dependence of long-term potentiation, and increases activation of ERK in the hippocampus after learning. Our studies define a critical role for corepressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.
Collapse
Affiliation(s)
| | | | | | | | - Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Nelson Spruston
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, Virginia, USA
| | | |
Collapse
|
42
|
Reibring CG, Hallberg K, Linde A, Gritli-Linde A. Distinct and Overlapping Expression Patterns of the Homer Family of Scaffolding Proteins and Their Encoding Genes in Developing Murine Cephalic Tissues. Int J Mol Sci 2020; 21:ijms21041264. [PMID: 32070057 PMCID: PMC7072945 DOI: 10.3390/ijms21041264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Public Dental Service, Region Västra Götaland, SE-45131 Uddevalla, Sweden
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Correspondence: ; Tel.: +46-31-7863392
| |
Collapse
|