1
|
Khalil A, Painter I, Souter V. Congenital heart defects during COVID-19 pandemic. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024. [PMID: 39541959 DOI: 10.1002/uog.29126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024]
Affiliation(s)
- A Khalil
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - I Painter
- Foundation for Health Care Quality, Seattle, WA, USA
| | - V Souter
- Foundation for Health Care Quality, Seattle, WA, USA
| |
Collapse
|
2
|
Yates EF, Mulkey SB. Viral infections in pregnancy and impact on offspring neurodevelopment: mechanisms and lessons learned. Pediatr Res 2024; 96:64-72. [PMID: 38509227 PMCID: PMC11257821 DOI: 10.1038/s41390-024-03145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Pregnant individuals with viral illness may experience significant morbidity and have higher rates of pregnancy and neonatal complications. With the growing number of viral infections and new viral pandemics, it is important to examine the effects of infection during pregnancy on both the gestational parent and the offspring. Febrile illness and inflammation during pregnancy are correlated with risk for autism, attention deficit/hyperactivity disorder, and developmental delay in the offspring in human and animal models. Historical viral epidemics had limited follow-up of the offspring of affected pregnancies. Infants exposed to seasonal influenza and the 2009 H1N1 influenza virus experienced increased risks of congenital malformations and neuropsychiatric conditions. Zika virus exposure in utero can lead to a spectrum of abnormalities, ranging from severe microcephaly to neurodevelopmental delays which may appear later in childhood and in the absence of Zika-related birth defects. Vertical infection with severe acute respiratory syndrome coronavirus-2 has occurred rarely, but there appears to be a risk for developmental delays in the infants with antenatal exposure. Determining how illness from infection during pregnancy and specific viral pathogens can affect pregnancy and neurodevelopmental outcomes of offspring can better prepare the community to care for these children as they grow. IMPACT: Viral infections have impacted pregnant people and their offspring throughout history. Antenatal exposure to maternal fever and inflammation may increase risk of developmental and neurobehavioral disorders in infants and children. The recent SARS-CoV-2 pandemic stresses the importance of longitudinal studies to follow pregnancies and offspring neurodevelopment.
Collapse
Affiliation(s)
- Emma F Yates
- Frank H. Netter School of Medicine at Quinnipiac University, North Haven, CT, USA
| | - Sarah B Mulkey
- Children's National Hospital, Washington, DC, USA.
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
3
|
Celik IH, Tanacan A, Canpolat FE. Neonatal outcomes of maternal prenatal coronavirus infection. Pediatr Res 2024; 95:445-455. [PMID: 38057579 DOI: 10.1038/s41390-023-02950-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to significant changes in life and healthcare all over the world. Pregnant women and their newborns require extra attention due to the increased risk of adverse outcomes. Adverse pregnancy outcomes include intensive care unit (ICU) admission, pulmonary, cardiac, and renal impairment leading to mortality. Immaturity and variations of the neonatal immune system may be advantageous in responding to the virus. Neonates are at risk of vertical transmission and in-utero infection. Impaired intrauterine growth, prematurity, vertical transmission, and neonatal ICU admission are the most concerning issues. Data on maternal and neonatal outcomes should be interpreted cautiously due to study designs, patient characteristics, clinical variables, the effects of variants, and vaccination beyond the pandemic. Cesarean section, immediate separation of mother-infant dyads, isolation of neonates, and avoidance of breast milk were performed to reduce transmission risk at the beginning of the pandemic in the era of insufficient knowledge. Vertical transmission was found to be low with favorable short-term outcomes. Serious fetal and neonatal outcomes are not expected, according to growing evidence. Long-term effects may be associated with fetal programming. Knowledge and lessons from COVID-19 will be helpful for the next pandemic if it occurs. IMPACT: Prenatal infection with SARS-CoV-2 is associated with adverse maternal and neonatal outcomes. Our review includes the effects of COVID-19 on the fetus and neonates, transmission routes, placental effects, fetal and neonatal outcomes, and long-term effects on neonates. There is a growing body of data and evidence about the COVID-19 pandemic. Knowledge and lessons from the pandemic will be helpful for the next pandemic if it happens.
Collapse
Affiliation(s)
- Istemi Han Celik
- Department of Pediatrics, Division of Neonatology, University of Health Sciences Türkiye; Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, 06010, Ankara, Türkiye.
| | - Atakan Tanacan
- Department of Obstetrics and Gynecology, Perinatology Clinic, University of Health Sciences Turkiye, Ankara Bilkent City Hospital, 06800, Ankara, Türkiye
| | - Fuat Emre Canpolat
- Department of Pediatrics, Division of Neonatology, University of Health Sciences Türkiye, Ankara Bilkent City Hospital, 06800, Ankara, Türkiye
| |
Collapse
|
4
|
Ramasauskaite D, Grinciute D. Review of short-term and long-term adverse effects of covid-19 vaccination during pregnancy. Travel Med Infect Dis 2023; 56:102667. [PMID: 37951411 DOI: 10.1016/j.tmaid.2023.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The covid-19 pandemic sparked a debate about the safety of vaccines during pregnancy. However, pregnant women were excluded from the Pfizer-BioNTech vaccine phase 3 trials. As two years have passed since the first Covid-19 vaccine and more studies have been conducted, we want to evaluate the scientific literature to determine any actual risks in taking the vaccine during pregnancy. METHODS We conducted literature research using PubMed and Google Scholar databases from January to April 2023. As the review considers short- and long-term adverse effects it was divided into two parts. The first part was conducted as a systematic review. The second concerning long-term negative effects due to lack of research is a literature review. The inclusion criteria for the systematic review part were singleton pregnancies, women vaccinated during pregnancy, and studies from 2020 and later. The most common short-term pregnancy adverse effects were included in the search: preterm delivery, small gestation age, intrauterine death, congenital defects, stillborn, fetal growth retardation, spontaneous abortion. Maternal immune activation was the primary concern for the long-term adverse effects and whether vaccination could cause it. The search terms included maternal immune activation, fetal neurodevelopment, neuropsychiatric disorders and the studies used were from 2019. RESULTS Most studies showed no significant difference in short-term adverse effects between vaccinated and non-vaccinated women and their fetuses. However, the literature is insufficient to evaluate possible long-term adverse effects. CONCLUSION Available evidence supports the safety of administering SARS-CoV-2 vaccines to pregnant women, but further systematic reviews and meta-analyses are essential. Maternal immune activation caused by vaccination may impact a child's neurodevelopment and should be a concern for future studies.
Collapse
Affiliation(s)
- Diana Ramasauskaite
- Center of Obstetrics and Gynaecology, Vilnius University Faculty of Medicine, PO: Santariškių 2, Vilnius, LT08661, Lithuania.
| | | |
Collapse
|
5
|
Alves de Araujo Junior D, Motta F, Fernandes GM, Castro MECD, Sasaki LMP, Luna LP, Rodrigues TS, Kurizky PS, Soares AADSM, Nobrega ODT, Espindola LS, Zaconeta AM, Gomes CM, Martins-Filho OA, de Albuquerque CP, da Mota LMH. Neuroimaging assessment of pediatric cerebral changes associated with SARS-CoV-2 infection during pregnancy. Front Pediatr 2023; 11:1194114. [PMID: 37292371 PMCID: PMC10244818 DOI: 10.3389/fped.2023.1194114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Background SARS-CoV-2 infection and perinatal neurologic outcomes are still not fully understood. However, there is recent evidence of white matter disease and impaired neurodevelopment in newborns following maternal SARS-CoV-2 infection. These appear to occur as a consequence of both direct viral effects and a systemic inflammatory response, with glial cell/myelin involvement and regional hypoxia/microvascular dysfunction. We sought to characterize the consequences of maternal and fetal inflammatory states in the central nervous system of newborns following maternal SARS-CoV-2 infection. Methods We conducted a longitudinal prospective cohort study from June 2020 to December 2021, with follow-up of newborns born to mothers exposed or not exposed to SARS-CoV-2 infection during pregnancy. Brain analysis included data from cranial ultrasound scans (CUS) with grayscale, Doppler studies (color and spectral), and ultrasound-based brain elastography (shear-wave mode) in specific regions of interest (ROIs): deep white matter, superficial white matter, corpus callosum, basal ganglia, and cortical gray matter. Brain elastography was used to estimate brain parenchymal stiffness, which is an indirect quantifier of cerebral myelin tissue content. Results A total of 219 single-pregnancy children were enrolled, including 201 born to mothers exposed to SARS-CoV-2 infection and 18 from unexposed controls. A neuroimaging evaluation was performed at 6 months of adjusted chronological age and revealed 18 grayscale and 21 Doppler abnormalities. Predominant findings were hyperechogenicity of deep brain white matter and basal ganglia (caudate nuclei/thalamus) and a reduction in the resistance and pulsatility indices of intracranial arterial flow. The anterior brain circulation (middle cerebral and pericallosal arteries) displayed a wider range of flow variation than the posterior circulation (basilar artery). Shear-wave US elastography analysis showed a reduction in stiffness values in the SARS-CoV-2 exposed group in all analyzed regions of interest, especially in the deep white matter elasticity coefficients (3.98 ± 0.62) compared to the control group (7.76 ± 0.77); p-value < 0.001. Conclusion This study further characterizes pediatric structural encephalic changes associated with SARS-CoV-2 infection during pregnancy. The maternal infection has been shown to be related to cerebral deep white matter predominant involvement, with regional hyperechogenicity and reduction of elasticity coefficients, suggesting zonal impairment of myelin content. Morphologic findings may be subtle, and functional studies such as Doppler and elastography may be valuable tools to more accurately identify infants at risk of neurologic damage.
Collapse
Affiliation(s)
- David Alves de Araujo Junior
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Felipe Motta
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Geraldo Magela Fernandes
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Maria Eduarda Canellas De Castro
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Lizandra Moura Paravidine Sasaki
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Licia Pacheco Luna
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Patricia Shu Kurizky
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | | | | | | | | | - Ciro Martins Gomes
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Cleandro Pires de Albuquerque
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Licia Maria Henrique da Mota
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
6
|
Heeralall C, Ibrahim UH, Lazarus L, Gathiram P, Mackraj I. The effects of COVID-19 on placental morphology. Placenta 2023; 138:88-96. [PMID: 37235921 DOI: 10.1016/j.placenta.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The impact of the COVID-19 infection, caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), during the pandemic has been considerably more severe in pregnant women than non-pregnant women. Therefore, a review detailing the morphological alterations and physiological changes associated with COVID-19 during pregnancy and the effect that these changes have on the feto-placental unit is of high priority. This knowledge is crucial for these mothers, their babies and clinicians to ensure a healthy life post-pandemic. Hence, we review the placental morphological changes due to COVID-19 to enhance the general understanding of how pregnant mothers, their placentas and unborn children may have been affected by this pandemic. Based on current literature, we deduced that COVID-19 pregnancies were oxygen deficient, which could further result in other pregnancy-related complications like preeclampsia and IUGR. Therefore, we present an up-to-date review of the COVID-19 pathophysiological implications on the placenta, covering the function of the placenta in COVID-19, the effects of this virus on the placenta, its functions and its link to other gestational complications. Furthermore, we highlight the possible effects of COVID-19 therapeutic interventions on pregnant mothers and their unborn children. Based on the literature, we strongly suggest that consistent surveillance for the mothers and infants from COVID-19 pregnancies be prioritised in the future. Though the pandemic is now in the past, its effects are long-term, necessitating the monitoring of clinical manifestations in the near future.
Collapse
Affiliation(s)
- C Heeralall
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - U H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - L Lazarus
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - P Gathiram
- Discipline of Family Medicine, School of Public Health and Nursing, University of KwaZulu-Natal, Durban, South Africa
| | - I Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
7
|
Massimo M, Barelli C, Moreno C, Collesi C, Holloway RK, Crespo B, Zentilin L, Williams A, Miron VE, Giacca M, Long KR. Haemorrhage of human foetal cortex associated with SARS-CoV-2 infection. Brain 2023; 146:1175-1185. [PMID: 36642091 PMCID: PMC9976976 DOI: 10.1093/brain/awac372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 01/17/2023] Open
Abstract
Maternal viral infection and immune response are known to increase the risk of altered development of the foetal brain. Given the ongoing global pandemic of coronavirus disease 2019 (COVID-19), investigating the impact of SARS-CoV-2 on foetal brain health is of critical importance. Here, we report the presence of SARS-CoV-2 in first and second trimester foetal brain tissue in association with cortical haemorrhages. SARS-CoV-2 spike protein was sparsely detected within progenitors and neurons of the cortex itself, but was abundant in the choroid plexus of haemorrhagic samples. SARS-CoV-2 was also sparsely detected in placenta, amnion and umbilical cord tissues. Cortical haemorrhages were linked to a reduction in blood vessel integrity and an increase in immune cell infiltration into the foetal brain. Our findings indicate that SARS-CoV-2 infection may affect the foetal brain during early gestation and highlight the need for further study of its impact on subsequent neurological development.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Carlotta Barelli
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Catalina Moreno
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Rebecca K Holloway
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, UK
- Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Barlo Multiple Sclerosis Centre and Keenan Research Institute for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Berta Crespo
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Veronique E Miron
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, UK
- Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Barlo Multiple Sclerosis Centre and Keenan Research Institute for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, London, UK
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
8
|
Sierakowska A, Roszak M, Lipińska M, Bieniasiewicz A, Łabuz-Roszak B. AUTISM SPECTRUM DISORDER AND SCHIZOPHRENIA - SIMILARITIES BETWEEN THE TWO DISORDERS WITH A CASE REPORT OF A PATIENT WITH DUAL DIAGNOSIS. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:172-177. [PMID: 37254766 DOI: 10.36740/merkur202302111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper presents the genetic, molecular and neuroanatomical similarities between autism spectrum disorder (ASD) and schizophrenia using the case report of a 34-year-old female patient with a previous diagnosis of schizophrenia as an example. As a result of repeat hospitalization, expanded history, psychological testing and verification of persistent symptoms of psychopathology, a cooccurring diagnosis of autism spectrum disorder was made.
Collapse
Affiliation(s)
- Alicja Sierakowska
- STUDENT ASSOCIATION OF NEUROLOGY AT THE DEPARTMENT OF NEUROLOGY, INSTITUTE OF MEDICAL SCIENCES, OPOLE UNIVERSITY, OPOLE, POLAND
| | - Mateusz Roszak
- STUDENT ASSOCIATION OF NEUROLOGY AT THE DEPARTMENT OF NEUROLOGY, INSTITUTE OF MEDICAL SCIENCES, OPOLE UNIVERSITY, OPOLE, POLAND
| | - Milena Lipińska
- DEPARTMENT OF PSYCHIATRY, ST. JADWIGA REGIONAL SPECIALIZED HOSPITAL, OPOLE, POLAND
| | - Anna Bieniasiewicz
- DEPARTMENT OF NEUROLOGY, INSTITUTE OF MEDICAL SCIENCES, UNIVERSITY OF OPOLE, OPOLE, POLAND; DEPARTMENT OF NEUROLOGY, ST. JADWIGA REGIONAL SPECIALIZED HOSPITAL, OPOLE, POLAND
| | - Beata Łabuz-Roszak
- DEPARTMENT OF NEUROLOGY, INSTITUTE OF MEDICAL SCIENCES, UNIVERSITY OF OPOLE, OPOLE, POLAND; DEPARTMENT OF NEUROLOGY, ST. JADWIGA REGIONAL SPECIALIZED HOSPITAL, OPOLE, POLAND
| |
Collapse
|
9
|
Dubey H, Sharma RK, Krishnan S, Knickmeyer R. SARS-CoV-2 (COVID-19) as a possible risk factor for neurodevelopmental disorders. Front Neurosci 2022; 16:1021721. [PMID: 36590303 PMCID: PMC9800937 DOI: 10.3389/fnins.2022.1021721] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Pregnant women constitute one of the most vulnerable populations to be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019. SARS-CoV-2 infection during pregnancy could negatively impact fetal brain development via multiple mechanisms. Accumulating evidence indicates that mother to fetus transmission of SARS-CoV-2 does occur, albeit rarely. When it does occur, there is a potential for neuroinvasion via immune cells, retrograde axonal transport, and olfactory bulb and lymphatic pathways. In the absence of maternal to fetal transmission, there is still the potential for negative neurodevelopmental outcomes as a consequence of disrupted placental development and function leading to preeclampsia, preterm birth, and intrauterine growth restriction. In addition, maternal immune activation may lead to hypomyelination, microglial activation, white matter damage, and reduced neurogenesis in the developing fetus. Moreover, maternal immune activation can disrupt the maternal or fetal hypothalamic-pituitary-adrenal (HPA) axis leading to altered neurodevelopment. Finally, pro-inflammatory cytokines can potentially alter epigenetic processes within the developing brain. In this review, we address each of these potential mechanisms. We propose that SARS-CoV-2 could lead to neurodevelopmental disorders in a subset of pregnant women and that long-term studies are warranted.
Collapse
Affiliation(s)
- Harikesh Dubey
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ravindra K. Sharma
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Suraj Krishnan
- Jacobi Medical Center, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Rebecca Knickmeyer
- Division of Neuroengineering, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States,Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, United States,*Correspondence: Rebecca Knickmeyer,
| |
Collapse
|
10
|
Juttukonda LJ, Wachman EM, Boateng J, Jain M, Benarroch Y, Taglauer ES. Decidual immune response following COVID-19 during pregnancy varies by timing of maternal SARS-CoV-2 infection. J Reprod Immunol 2022; 151:103501. [PMID: 35231754 PMCID: PMC8867981 DOI: 10.1016/j.jri.2022.103501] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
While COVID-19 infection during pregnancy is common, fetal transmission is rare, suggesting that intrauterine mechanisms form an effective blockade against SARS-CoV-2. Key among these is the decidual immune environment of the placenta. We hypothesize that decidual leukocytes are altered by maternal SARS-CoV-2 infection in pregnancy and that this decidual immune response is shaped by the timing of infection during gestation. To address this hypothesis, we collected decidua basalis tissues at delivery from women with symptomatic COVID-19 during second (2nd Tri COVID, n = 8) or third trimester (3rd Tri COVID, n = 8) and SARS-CoV-2-negative controls (Control, n = 8). Decidual natural killer (NK) cells, macrophages and T cells were evaluated using quantitative microscopy, and pro- and anti-inflammatory cytokine mRNA expression was evaluated using quantitative reverse transcriptase PCR (qRT-PCR). When compared with the Control group, decidual tissues from 3rd Tri COVID exhibited significantly increased macrophages, NK cells and T cells, whereas 2nd Tri COVID only had significantly increased T cells. In evaluating decidual cytokine expression, we noted that IL-6, IL-8, IL-10 and TNF-α were significantly correlated with macrophage cell abundance. However, in 2nd Tri COVID tissues, there was significant downregulation of IL-6, IL-8, IL-10, and TNF-α. Taken together, these results suggest innate and adaptive immune responses are present at the maternal-fetal interface in maternal SARS-CoV-2 infections late in pregnancy, and that infections earlier in pregnancy show evidence of a resolving immune response. Further studies are warranted to characterize the full scope of intrauterine immune responses in pregnancies affected by maternal COVID-19.
Collapse
Affiliation(s)
- Lillian J Juttukonda
- Boston Combined Residency Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Boston Medical Center, 801 Albany Street, Boston, MA 02119, USA.
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, 801 Albany Street, Boston, MA 02119, USA.
| | - Jeffery Boateng
- Department of Pediatrics, Boston Medical Center, 801 Albany Street, Boston, MA 02119, USA.
| | - Mayuri Jain
- Boston University School of Public Health, 715 Albany Street, Boston, MA 02119, USA.
| | - Yoel Benarroch
- Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | - Elizabeth S Taglauer
- Department of Pediatrics, Boston Medical Center, 801 Albany Street, Boston, MA 02119, USA.
| |
Collapse
|
11
|
Massrali A, Adhya D, Srivastava DP, Baron-Cohen S, Kotter MR. Virus-Induced Maternal Immune Activation as an Environmental Factor in the Etiology of Autism and Schizophrenia. Front Neurosci 2022; 16:834058. [PMID: 35495047 PMCID: PMC9039720 DOI: 10.3389/fnins.2022.834058] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
Maternal immune activation (MIA) is mediated by activation of inflammatory pathways resulting in increased levels of cytokines and chemokines that cross the placental and blood-brain barriers altering fetal neural development. Maternal viral infection is one of the most well-known causes for immune activation in pregnant women. MIA and immune abnormalities are key players in the etiology of developmental conditions such as autism, schizophrenia, ADHD, and depression. Experimental evidence implicating MIA in with different effects in the offspring is complex. For decades, scientists have relied on either MIA models or human epidemiological data or a combination of both. MIA models are generated using infection/pathogenic agents to induce an immunological reaction in rodents and monitor the effects. Human epidemiological studies investigate a link between maternal infection and/or high levels of cytokines in pregnant mothers and the likelihood of developing conditions. In this review, we discuss the importance of understanding the relationship between virus-mediated MIA and neurodevelopmental conditions, focusing on autism and schizophrenia. We further discuss the different methods of studying MIA and their limitations and focus on the different factors contributing to MIA heterogeneity.
Collapse
Affiliation(s)
- Aïcha Massrali
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Shook LL, Sullivan EL, Lo JO, Perlis RH, Edlow AG. COVID-19 in pregnancy: implications for fetal brain development. Trends Mol Med 2022; 28:319-330. [PMID: 35277325 PMCID: PMC8841149 DOI: 10.1016/j.molmed.2022.02.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
Abstract
The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy on the developing fetal brain is poorly understood. Other antenatal infections such as influenza have been associated with adverse neurodevelopmental outcomes in offspring. Although vertical transmission has been rarely observed in SARS-CoV-2 to date, given the potential for profound maternal immune activation (MIA), impact on the developing fetal brain is likely. Here we review evidence that SARS-CoV-2 and other viral infections during pregnancy can result in maternal, placental, and fetal immune activation, and ultimately in offspring neurodevelopmental morbidity. Finally, we highlight the need for cellular models of fetal brain development to better understand potential short- and long-term impacts of maternal SARS-CoV-2 infection on the next generation.
Collapse
Affiliation(s)
- Lydia L Shook
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Elinor L Sullivan
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Division of Neuroscience, Oregon National Primate Center, Beaverton, OR, USA
| | - Jamie O Lo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA; Department of Urology, Oregon Health & Science University, Portland, OR, USA; Division of Reproductive and Developmental Sciences, Oregon National Primate Center, Beaverton, OR, USA
| | - Roy H Perlis
- Center for Quantitative Health, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|