1
|
Sanati M, Pieterman I, Levy N, Akbari T, Tavakoli M, Hassani Najafabadi A, Amin Yavari S. Osteoimmunomodulation by bone implant materials: harnessing physicochemical properties and chemical composition. Biomater Sci 2025; 13:2836-2870. [PMID: 40289736 DOI: 10.1039/d5bm00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chronic inflammation at bone defect sites can impede regenerative processes, but local immune responses can be adjusted to promote healing. Regulating the osteoimmune microenvironment, particularly through macrophage polarization, has become a key focus in bone regeneration research. While bone implants are crucial for addressing significant bone defects, they are often recognized by the immune system as foreign, triggering inflammation that leads to bone resorption and implant issues like fibrous encapsulation and aseptic loosening. Developing osteoimmunomodulatory implants offers a promising approach to transforming destructive inflammation into healing processes, enhancing implant integration and bone regeneration. This review explores strategies based on tuning the physicochemical attributes and chemical composition of materials in engineering osteoimmunomodulatory and pro-regenerative bone implants.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ines Pieterman
- Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Natacha Levy
- Metabolic Diseases Pediatrics Division, University Medical Centre Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Fan WL, Yeh JK, Hsieh LC, Tsai ML, Ho MY, Huang YC, Hsieh IC, Wen MS, Wang CY. Prognostic significance of clonal hematopoiesis in STEMI: a 10-year follow-up reveals high-risk gene mutations. Hum Genomics 2025; 19:51. [PMID: 40355940 PMCID: PMC12067743 DOI: 10.1186/s40246-025-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND To elucidate the extent and clinical implications of clonal hematopoiesis of indeterminate potential (CHIP) prevalence in patients with ST-segment elevation myocardial infarction (STEMI), and to evaluate its utility as a contributory factor for risk stratification in long-term outcomes. METHODS Whole-exome sequencing was performed in a cohort of 101 patients presenting with STEMI who underwent emergency percutaneous coronary intervention. These patients were longitudinally followed for over 120 months. Their genomic data were compared with those from a control group of 706 individuals without cardiovascular events. Comparative analyses were conducted to identify patterns of CHIP between the STEMI and control cohorts. RESULTS In our cohort, 37.6% (n = 38) of STEMI patients exhibited somatic mutations associated with CHIP at a variant allele frequency of 1% or greater, compared to 22.8% (n = 161) in the control group. The most frequently detected mutations in STEMI patients were in the ASXL1 and CREBBP genes, each present in 5.0% of this cohort. Long-term follow-up revealed that STEMI patients with CHIP had a higher incidence of major adverse cardiovascular events (MACEs), with an adjusted hazard ratio of 2.23 (95% confidence interval (CI) 1.16-4.28, p = 0.015). CONCLUSION CHIP is prevalent in the STEMI patient cohort and is significantly correlated with adverse clinical outcomes. Incorporating CHIP status could enhance the risk stratification process, thus informing more tailored clinical management strategies for STEMI patients.
Collapse
Affiliation(s)
- Wen-Lang Fan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Kai Yeh
- Division of Cardiology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Li-Ching Hsieh
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Lung Tsai
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Cardiology, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
| | - Ming-Yun Ho
- Division of Cardiology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yi-Chun Huang
- Division of Cardiology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - I-Chang Hsieh
- Division of Cardiology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chao-Yung Wang
- Division of Cardiology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Li M, Yang L, Wang Y, Zhang L. Comprehensive analysis of diagnostic biomarkers related to histone acetylation in acute myocardial infarction. BMC Med Genomics 2025; 18:75. [PMID: 40251588 DOI: 10.1186/s12920-025-02135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/27/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) has become a serious disease that endangers human health, with high morbidity and mortality. Numerous studies have reported histone acetylation can result in the occurrence of cardiovascular diseases. This article aims to explore the potential biomarkers of histone acetylation regulatory genes (ARGs) in AMI patients. METHODS Five AMI datasets were downloaded from the Gene Expression Omnibus (GEO) database. Next, ARG-related genes were gathered by gene set variation analysis (GSVA) and Spearman's correlation analysis. Subsequently, weighted gene co-expression network analysis (WGCNA) was performed to identify the module genes related to histone acetylation regulation. In the GSE60993 and GSE48060 datasets, the common differentially expressed genes (DEGs) between AMI and control samples were screened. Importantly, the intersecting genes were obtained by overlapping ARGs-related genes, common DEGs, and module genes. Then, the biomarkers in AMI were determined by machine learning, receiver operating characteristic (ROC) curves, and quantitative PCR (qPCR). In addition, immune analysis, drug prediction, molecular docking, and the lncRNA-miRNA-mRNA regulatory network targeting the biomarkers were analyzed, respectively. RESULTS Here, a total of 18 intersecting genes were identified by overlapping 7,349 ARGs-related genes, 5,565 module genes, and 25 common DEGs. Further, five biomarkers (AQP9, HLA-DQA1, MCEMP1, NKG7, and S100A12) were obtained, and a nomogram was constructed and verified based on these biomarkers. Notably, the biomarkers were significantly associated with CD8 T cells and neutrophils. In addition, the drugs related to biomarkers were predicted, and ATOGEPANT with the molecular target (S100A12) had a high binding affinity (docking score = -10 kcal/mol). CONCLUSION AQP9, HLA-DQA1, MCEMP1, NKG7, and S100A12 were identified as biomarkers related to ARGs in AMI, which provides a new perspective to study the relationship between ARGs and AMI.
Collapse
Affiliation(s)
- Man Li
- Department of Cardiology, Shanxi Bethune Hospital, Taiyuan, China
- Tongji Shanxi Hospital, Taiyuan, China
- Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lifeng Yang
- Department of Cardiology, Shanxi Bethune Hospital, Taiyuan, China
- Tongji Shanxi Hospital, Taiyuan, China
- Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Wang
- Department of Cardiology, Shanxi Bethune Hospital, Taiyuan, China
- Tongji Shanxi Hospital, Taiyuan, China
- Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Zhang
- Department of Cardiology, Shanxi Bethune Hospital, Taiyuan, China.
- Tongji Shanxi Hospital, Taiyuan, China.
- Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Sadler M, Cannata A, Mackie S, Mondi Anandhakrishna R, Argunhan F, Ferone E, Mohammad AA, Salim J, Tantichirasakul N, Lam MT, Ambon J, Shamsi A, Piper S, Napolitani G, Shah AM, McDonagh T, Scott PA, Quek L, Bromage DI. Ethnic variations in neutrophil count as predictors of prognosis following acute myocardial infarction. Atherosclerosis 2025; 403:119169. [PMID: 40157178 DOI: 10.1016/j.atherosclerosis.2025.119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/03/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
AIMS Elevated neutrophils are associated with a poor prognosis after acute myocardial infarction (AMI) but it is not known if ethnicity influences the association between neutrophil count and outcome. We aimed to describe the temporal dynamics of neutrophils after AMI, and assess the interaction between ethnicity, neutrophil count, and outcomes after AMI. METHODS Consecutive patients presenting with AMI between 2016 and 2023 were divided into two groups according to their median neutrophil count. Ethnicity was dichotomised as white and other ethnic groups combined (referred to as 'ethnic minorities'). The primary outcome was in-hospital mortality, with a secondary outcome of 60-day mortality. RESULTS In our study of 3062 AMI patients (76 % white, 24 % from ethnic minority groups), we found that neutrophil counts rose early post AMI, which coincided with a nadir of the other cell groups. We identified a relative baseline neutropenia in ethnic minority individuals, compared to white individuals (6.85 vs 8.42 × 109/L). We observed a significant, independent association between elevated neutrophils at baseline and the primary outcome of in-hospital mortality (OR 2.06, p < 0.001) and secondary outcome of 60-day all-cause mortality (HR 1.08, p = 0.002). Sub-group analysis revealed a significant interaction between ethnicity and elevated neutrophils (p = 0.004), indicating that a comparable neutrophil count conferred an increased risk for ethnic minority patients for both outcomes. CONCLUSIONS We report ethnicity-specific leucocyte dynamics after AMI. Furthermore, neutrophil count is associated with a disproportionate risk in ethnic minority compared with white individuals. Understanding post-AMI inflammation and its interaction with ethnicity is essential in providing personalised prognostication and patient management.
Collapse
Affiliation(s)
- Matthew Sadler
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; Department of Cardiology, King's College Hospital, Denmark Hill, Brixton, London, SE5 9RS, UK
| | - Antonio Cannata
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; Department of Cardiology, King's College Hospital, Denmark Hill, Brixton, London, SE5 9RS, UK
| | - Sarah Mackie
- Myeloid Leukaemia Genomics and Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE5 8AF, UK
| | - Rupavidhya Mondi Anandhakrishna
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Fulye Argunhan
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Emma Ferone
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Al-Agil Mohammad
- Department of Cardiology, King's College Hospital, Denmark Hill, Brixton, London, SE5 9RS, UK
| | - Jamila Salim
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Narun Tantichirasakul
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Mei Tung Lam
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Josel Ambon
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Aamir Shamsi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; Department of Cardiology, King's College Hospital, Denmark Hill, Brixton, London, SE5 9RS, UK
| | - Susan Piper
- Department of Cardiology, King's College Hospital, Denmark Hill, Brixton, London, SE5 9RS, UK
| | - Giorgio Napolitani
- Myeloid Leukaemia Genomics and Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE5 8AF, UK
| | - Ajay M Shah
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; Department of Cardiology, King's College Hospital, Denmark Hill, Brixton, London, SE5 9RS, UK
| | - Theresa McDonagh
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; Department of Cardiology, King's College Hospital, Denmark Hill, Brixton, London, SE5 9RS, UK
| | - Paul A Scott
- Department of Cardiology, King's College Hospital, Denmark Hill, Brixton, London, SE5 9RS, UK
| | - Lynn Quek
- Myeloid Leukaemia Genomics and Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE5 8AF, UK; Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Daniel I Bromage
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK; Department of Cardiology, King's College Hospital, Denmark Hill, Brixton, London, SE5 9RS, UK.
| |
Collapse
|
5
|
Zhao J, Chen Y, Qin Y, Li Y, Lu X, Xie C. Adhesive and Conductive Hydrogels for the Treatment of Myocardial Infarction. Macromol Rapid Commun 2025; 46:e2400835. [PMID: 39803789 DOI: 10.1002/marc.202400835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Indexed: 05/02/2025]
Abstract
Myocardial infarction (MI) is a leading cause of mortality among cardiovascular diseases. Following MI, the damaged myocardium is progressively being replaced by fibrous scar tissue, which exhibits poor electrical conductivity, ultimately resulting in arrhythmias and adverse cardiac remodeling. Due to their extracellular matrix-like structure and excellent biocompatibility, hydrogels are emerging as a focal point in cardiac tissue engineering. However, traditional hydrogels lack the necessary conductivity to restore electrical signal transmission in the infarcted regions. Imparting conductivity to hydrogels while also enhancing their adhesive properties enables them to adhere closely to myocardial tissue, establish stable electrical connections, and facilitate synchronized contraction and myocardial tissue repair within the infarcted area. This paper reviews the strategies for constructing conductive and adhesive hydrogels, focusing on their application in MI repair. Furthermore, the challenges and future directions in developing adhesive and conductive hydrogels for MI repair are discussed.
Collapse
Affiliation(s)
- Jialiang Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ying Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuanyuan Qin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yongqi Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
6
|
Muhs T, Ljubojevic-Holzer S, Sattler S. Anti-inflammatory Therapies for Ischemic Heart Disease. Curr Cardiol Rep 2025; 27:57. [PMID: 39969632 PMCID: PMC11839821 DOI: 10.1007/s11886-025-02211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
PURPOSE OF REVIEW The inclusion of immunomodulatory strategies as supportive therapies in ischemic heart disease (IHD) has garnered significant support over recent years. Several such approaches appear to be unified through their ultimate target, the NLRP3 inflammasome. This review presents a brief update on immunomodulatory strategies in the continuum of conditions constituting ischemic heart disease and emphasising on the seemingly unifying mechanism of NLRP3 activation as well as modulation across these conditions. RECENT FINDINGS The NLRP3 inflammasome is a multiprotein complex assembled upon inflammatory stimulation, causing the release of pro-inflammatory cytokines and initiating pyroptosis. The NLRP3 pathway is relevant in inflammatory signalling of cardiac immune cells as well as non-immune cells in the myocardium, including cardiomyocytes, fibroblasts and endothelial cells. In addition to a focus on clinical outcome and efficacy trials of targeting NLRP3-related pathways, the potential connection between immunomodulation in cardiology and the NLRP3 pathway is currently being explored in preclinical trials. Colchicine, cytokine-based approaches and SGLT2 inhibitors have emerged as promising agents. However, the conditions comprising IHD including atherosclerosis, coronary artery disease (CAD), myocardial infarction (MI) and ischemic cardiomyopathy/heart failure (iCMP/HF) are not equally amenable to immunomodulation with the respective drugs. Atherosclerosis, coronary artery disease and ischemic cardiomyopathy are affected by chronic inflammation, but the immunomodulatory approach to acute inflammation in the post-MI setting remains a pharmacological challenge, as detrimental and regenerative effects of myocardial inflammation are initiated in unison. The NLRP3 inflammasome lies at the center of cell mediated inflammation in IHD. Recent trial evidence has highlighted anti-inflammatory effects of colchicine, interleukin-based therapy as well as SGLT2i in IHD and that the respective drugs modulate the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tillmann Muhs
- Department of Pharmacology, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Senka Ljubojevic-Holzer
- Department of Cardiology, LKH Univ. Klinikum Graz, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Susanne Sattler
- Department of Pharmacology, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
- Department of Cardiology, LKH Univ. Klinikum Graz, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
7
|
Yang Y, Song C, Jia L, Dong Q, Song W, Yin D, Dou K. Prognostic Value of Multiple Complete Blood Count-Derived Indices in Intermediate Coronary Lesions. Angiology 2025; 76:141-153. [PMID: 37646226 DOI: 10.1177/00033197231198678] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Complete blood count (CBC)-derived indices have been proposed as reliable inflammatory biomarkers to predict outcomes in the context of coronary artery disease. These indices have yet to be thoroughly validated in patients with intermediate coronary stenosis. Our study included 1527 patients only with intermediate coronary stenosis. The examined variables were neutrophil-lymphocyte ratio (NLR), derived NLR, monocyte-lymphocyte ratio (MLR), platelet-lymphocyte ratio (PLR), systemic immune inflammation index (SII), system inflammation response index (SIRI), and aggregate index of systemic inflammation (AISI). The primary endpoint was the composite of major adverse cardiovascular events (MACEs), including all-cause death, non-fatal myocardial infarction, and unplanned revascularization. Over a follow-up of 6.11 (5.73-6.55) years, MACEs occurred in 189 patients. Receiver operator characteristic curve analysis showed that SIRI outperformed other indices with the most significant area under the curve. In the multivariable analysis, SIRI (hazard ratio [HR] 1.588, 95% confidence interval [CI] 1.138-2.212) and AISI (HR 1.673, 95% CI 1.217-2.300) were the most important prognostic factors among all the indices. The discrimination ability of each index was strengthened in patients with less burden of modifiable cardiovascular risk factors. SIRI also exhibited the best incremental value beyond the traditional cardiovascular risk model.
Collapse
Affiliation(s)
- Yuxiu Yang
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chenxi Song
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Jia
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiuting Dong
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weihua Song
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dong Yin
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kefei Dou
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Zheng J, Li T, Hu F, Chen B, Xu M, Yan S, Lu C. Predictive value of peripheral neutrophil count on admission for young patients with acute coronary syndrome. Am J Med Sci 2025; 369:44-52. [PMID: 39084522 DOI: 10.1016/j.amjms.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The present study aimed to explore the relationship between neutrophil count on admission and major adverse cardiovascular and cerebrovascular events (MACCE) and left ventricular ejection fraction (LVEF) during hospitalization in young ACS patients, which have rarely been investigated in previous studies. METHODS This study included 400 young ACS patients (<45 years old) who underwent coronary angiography. According to the median neutrophil count at admission, the patients were divided into two groups. The relationship between neutrophil count and MACCE and LVEF during hospitalization was analyzed by regression analysis. The receiver operating characteristic (ROC) curve and the Youden index was used to determine the optimal cut-off value of neutrophil count. RESULTS Neutrophil count at admission was an independent risk factor of in-hospital MACCE (OR: 1.33, 95% CI: 1.13-1.56, P<0.001) and LVEF <50% (OR: 1.28, 95% CI: 1.12-1.47, P<0.001) in young ACS patients.The cutoff value of neutrophil count for predicting the occurrence of in-hospital MACCE was 6.935 × 10^9/L with a sensitivity of 92.1%, specificity of 59.4%, and AUC is 0.820 (95% CI: 0.7587-0.8804, P<0.001), and for identifying the LVEF <50% was 8.660 × 10^9/L with a sensitivity of 69.8%, specificity of 76.8%, and AUC is 0.775 (95% CI: 0.6997-0.8505, P<0.001). CONCLUSION The neutrophil count upon admission is an independent predictor of in-hospital MACCE and LVEF in young ACS patients, giving important information for predicting the poor prognosis of young ACS patients.
Collapse
Affiliation(s)
- Jia Zheng
- The First Central Clinical School, Tianjin Medical University, Tianjin, China; Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Tingting Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fang Hu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Bingwei Chen
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Mengping Xu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Shuangbing Yan
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.
| |
Collapse
|
9
|
Jiang H, Sun X, Wu Y, Xu J, Xiao C, Liu Q, Fang L, Liang Y, Zhou J, Wu Y, Lin Z. Contribution of Tregs to the promotion of constructive remodeling after decellularized extracellular matrix material implantation. Mater Today Bio 2024; 27:101151. [PMID: 39104900 PMCID: PMC11298607 DOI: 10.1016/j.mtbio.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Host remodeling of decellularized extracellular matrix (dECM) material through the appropriate involvement of immune cells is essential for achieving functional organ/tissue regeneration. As many studies have focused on the role of macrophages, only few have evaluated the role of regulatory T cells (Tregs) in dECM remodeling. In this study, we used a mouse model of traumatic muscle injury to determine the role of Tregs in the constructive remodeling of vascular-derived dECM. According to the results, a certain number of Tregs could be recruited after dECM implantation. Notably, using anti-CD25 to reduce the number of Tregs recruited by the dECM was significantly detrimental to material remodeling based on a significant reduction in the number of M2 macrophages. In addition, collagen and elastic fibers, which maintain the integrity and mechanical properties of the material, rapidly degraded during the early stages of implantation. In contrast, the use of CD28-SA antibodies to increase the number of Tregs recruited by dECM promoted constructive remodeling, resulting in a decreased inflammatory response at the material edge, thinning of the surrounding fibrous connective tissue, uniform infiltration of host cells, and significantly improved tissue remodeling scores. The number of M2 macrophages increased whereas that of M1 macrophages decreased. Moreover, Treg-conditioned medium further enhanced material-induced M2 macrophage polarization in vitro. Overall, Treg is an important cell type that influences constructive remodeling of the dECM. Such findings contribute to the design of next-generation biomaterials to optimize the remodeling and regeneration of dECM materials.
Collapse
Affiliation(s)
- Hongjing Jiang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Xuheng Sun
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yindi Wu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Jianyi Xu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Cong Xiao
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Qing Liu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Lijun Fang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yuanfeng Liang
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510006, Guangzhou, Guangdong, China
| | - Jiahui Zhou
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Yueheng Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| | - Zhanyi Lin
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| |
Collapse
|
10
|
Huang J, Kuang W, Zhou Z. IL-1 signaling pathway, an important target for inflammation surrounding in myocardial infarction. Inflammopharmacology 2024; 32:2235-2252. [PMID: 38676853 DOI: 10.1007/s10787-024-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Acute myocardial infarction is an important cardiovascular disease worldwide. Although the mortality rate of myocardial infarction (MI) has improved dramatically in recent years due to timely treatment, adverse remodeling of the left ventricle continues to affect cardiac function. Various immune cells are involved in this process to induce inflammation and amplification. The infiltration of inflammatory cells in the infarcted myocardium is induced by various cytokines and chemokines, and the recruitment of leukocytes further amplifies the inflammatory response. As an increasing number of clinical anti-inflammatory therapies have achieved significant success in recent years, treating myocardial infarction by targeting inflammation may become a novel therapeutic option. In particular, successful clinical trials of canakinumab have demonstrated the important role of the inflammatory factor interleukin-1 (IL-1) in atherosclerosis. Targeted IL-1 therapy may decrease inflammation levels and improve cardiac function in patients after myocardial infarction. This article reviews the complex series of responses after myocardial infarction, including the involvement of inflammatory cells and the role of cytokines and chemokines, focusing on the progression of the IL-1 family in myocardial infarction as well as the performance of current targeted therapy drugs in experiments.
Collapse
Affiliation(s)
- Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Zhu Y, Chen Y, Zu Y. Leveraging a neutrophil-derived PCD signature to predict and stratify patients with acute myocardial infarction: from AI prediction to biological interpretation. J Transl Med 2024; 22:612. [PMID: 38956669 PMCID: PMC11221097 DOI: 10.1186/s12967-024-05415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Programmed cell death (PCD) has recently been implicated in modulating the removal of neutrophils recruited in acute myocardial infarction (AMI). Nonetheless, the clinical significance and biological mechanism of neutrophil-related PCD remain unexplored. METHODS We employed an integrative machine learning-based computational framework to generate a predictive neutrophil-derived PCD signature (NPCDS) within five independent microarray cohorts from the peripheral blood of AMI patients. Non-negative matrix factorization was leveraged to develop an NPCDS-based AMI subtype. To elucidate the biological mechanism underlying NPCDS, we implemented single-cell transcriptomics on Cd45+ cells isolated from the murine heart of experimental AMI. We finally conducted a Mendelian randomization (MR) study and molecular docking to investigate the therapeutic value of NPCDS on AMI. RESULTS We reported the robust and superior performance of NPCDS in AMI prediction, which contributed to an optimal combination of random forest and stepwise regression fitted on nine neutrophil-related PCD genes (MDM2, PTK2B, MYH9, IVNS1ABP, MAPK14, GNS, MYD88, TLR2, CFLAR). Two divergent NPCDS-based subtypes of AMI were revealed, in which subtype 1 was characterized as inflammation-activated with more vibrant neutrophil activities, whereas subtype 2 demonstrated the opposite. Mechanically, we unveiled the expression dynamics of NPCDS to regulate neutrophil transformation from a pro-inflammatory phase to an anti-inflammatory phase in AMI. We uncovered a significant causal association between genetic predisposition towards MDM2 expression and the risk of AMI. We also found that lidoflazine, isotetrandrine, and cepharanthine could stably target MDM2. CONCLUSION Altogether, NPCDS offers significant implications for prediction, stratification, and therapeutic management for AMI.
Collapse
Affiliation(s)
- Yihao Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Yuxi Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
12
|
Bulnes JF, González L, Velásquez L, Orellana MP, Venturelli PM, Martínez G. Role of inflammation and evidence for the use of colchicine in patients with acute coronary syndrome. Front Cardiovasc Med 2024; 11:1356023. [PMID: 38993522 PMCID: PMC11236697 DOI: 10.3389/fcvm.2024.1356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Acute Coronary Syndrome (ACS) significantly contributes to cardiovascular death worldwide. ACS may arise from the disruption of an atherosclerotic plaque, ultimately leading to acute ischemia and myocardial infarction. In the pathogenesis of atherosclerosis, inflammation assumes a pivotal role, not solely in the initiation and complications of atherosclerotic plaque formation, but also in the myocardial response to ischemic insult. Acute inflammatory processes, coupled with time to reperfusion, orchestrate ischemic and reperfusion injuries, dictating infarct magnitude and acute left ventricular (LV) remodeling. Conversely, chronic inflammation, alongside neurohumoral activation, governs persistent LV remodeling. The interplay between chronic LV remodeling and recurrent ischemic episodes delineates the progression of the disease toward heart failure and cardiovascular death. Colchicine exerts anti-inflammatory properties affecting both the myocardium and atherosclerotic plaque by modulating the activity of monocyte/macrophages, neutrophils, and platelets. This modulation can potentially result in a more favorable LV remodeling and forestalls the recurrence of ACS. This narrative review aims to delineate the role of inflammation across the different phases of ACS pathophysiology and describe the mechanistic underpinnings of colchicine, exploring its purported role in modulating each of these stages.
Collapse
Affiliation(s)
- Juan Francisco Bulnes
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leticia González
- Centro de Imágenes Biomédicas, Departamento de Radiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo Velásquez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Orellana
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Gonzalo Martínez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
- Heart Research Institute, Sydney, NSW, Australia
| |
Collapse
|
13
|
Wang C, Li B, Zhu Q, Zhang Q, Xie Z, Xie H, Li X. Dietary vitamin B6 intake and stroke are negatively associated in adults: A cross-sectional study from the NHANES. Heliyon 2024; 10:e31125. [PMID: 38778939 PMCID: PMC11109891 DOI: 10.1016/j.heliyon.2024.e31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background The relationship between dietary vitamin B6 and stroke risk is controversial; thus, we analyzed their correlation using data from the National Health and Nutrition Examination Survey (NHANES). Method Data from 2005 to 2018 were collected from the NHANES database. Two 24-h dietary recalls and a standard questionnaire were used to evaluate vitamin B6 intake and stroke prevalence. We used logistic regression models to estimate the association between dietary vitamin B6 intake and stroke risk and investigated the nonlinear relationship between them using a restricted cubic spline (RCS). Sensitivity analysis was conducted using propensity score matching (PSM). Results Among 24,214 participants, 921 were patients diagnosed with stroke, while 23,293 were without stroke. The multivariate logistic regression model revealed that individuals in the highest quartile of vitamin B6 consumption had a significantly lower stroke risk than those in the lowest quartile under the fully adjusted model (OR: 0.48, 95 % CI: 0.35-0.66, P < 0.001). Subgroup analyses showed that dietary intake of vitamin B6 was a significant protective factor against stroke risk in different populations, with the most pronounced effect in the population engaging in moderate-intensity physical activity (OR: 0.34, 95%CI: 0.20-0.57). The RCS models revealed a non-linear L-shaped relationship (P for nonlinearity = 0.006) between stroke and dietary intake of vitamin B6. Conclusions Our study shows that an increased intake of vitamin B6 could be an effective strategy in reducing the risk of stroke.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Bo Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Qian Zhu
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Qikeng Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Zhenyan Xie
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Huixi Xie
- Department of Neurosurgery, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Xuesong Li
- Department of Neurosurgery, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| |
Collapse
|
14
|
Luo J, Zhou Y, Song Y, Wang D, Li M, Du X, Kang J, Ye P, Xia J. Association between the neutrophil-to-lymphocyte ratio and in-hospital mortality in patients with chronic kidney disease and coronary artery disease in the intensive care unit. Eur J Med Res 2024; 29:260. [PMID: 38689359 PMCID: PMC11059689 DOI: 10.1186/s40001-024-01850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The objective of this study was to investigate the correlation between neutrophil-to-lymphocyte ratios (NLR) and the risk of in-hospital death in patients admitted to the intensive care unit (ICU) with both chronic kidney disease (CKD) and coronary artery disease (CAD). METHODS Data from the MIMIC-IV database, which includes a vast collection of more than 50,000 ICU admissions occurring between 2008 and 2019, was utilized in the study and eICU-CRD was conducted for external verification. The Boruta algorithm was employed for feature selection. Univariable and multivariable logistic regression analyses and multivariate restricted cubic spline regression were employed to scrutinize the association between NLR and in-hospital mortality. The receiver operating characteristic (ROC) curves were conducted to estimate the predictive ability of NLR. RESULTS After carefully applying criteria to include and exclude participants, a total of 2254 patients with CKD and CAD were included in the research. The findings showed a median NLR of 7.3 (4.4, 12.1). The outcomes of multivariable logistic regression demonstrated that NLR significantly elevated the risk of in-hospital mortality (OR 2.122, 95% confidence interval [CI] 1.542-2.921, P < 0.001) after accounting for all relevant factors. Further insights from subgroup analyses unveiled that age and Sequential Organ Failure Assessment (SOFA) scores displayed an interactive effect in the correlation between NLR and in-hospital deaths. The NLR combined with traditional cardiovascular risk factors showed relatively great predictive value for in-hospital mortality (AUC 0.750). CONCLUSION The findings of this research indicate that the NLR can be used as an indicator for predicting the likelihood of death during a patient's stay in the intensive care unit, particularly for individuals with both CAD and CKD. The results indicate that NLR may serve as a valuable tool for assessing and managing risks in this group at high risk. Further investigation is required to authenticate these findings and investigate the mechanisms that underlie the correlation between NLR and mortality in individuals with CAD and CKD.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yufan Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dashuai Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, 450052, China
| | - Meihong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100038, China
| | - Xinling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jihong Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100038, China.
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
16
|
Wu Y, Lu K, Lu Y, Liao J, Zhang S, Yang S, Zhao N, Dong Q, Chen L, Wu Q, Du Y. Transient receptor potential vanilloid 4 (TRPV4) in neutrophils enhances myocardial ischemia/reperfusion injury. J Leukoc Biol 2023; 114:266-279. [PMID: 37232941 DOI: 10.1093/jleuko/qiad063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
The Ca2+-permeable TRPV4 cation channel is expressed in neutrophils and contributes to myocardial ischemia/reperfusion injury. Here we tested the hypotheses that TRPV4 promotes neutrophil activation and subsequently aggregates myocardial ischemia/reperfusion injury. TRPV4 protein was confirmed in neutrophils, and its function was assessed by the current and intracellular Ca2+ concentration elevations evoked by TRPV4 agonists. Furthermore, TRPV4 agonists dose-dependently promoted migration toward fMLP, reactive oxygen species production, and myeloperoxidase release, which were prevented by pretreatment with a selective TRPV4 antagonist, in neutrophils from TRPV4 knockout mice, Ca2+-free medium, or BAPTA-AM + Ca2+-free medium. Blockade of TRPV4 also inhibited the effects of commonly used neutrophil activators fMLP and PMA. Mechanically, TRPV4 regulated neutrophil activation, particularly reactive oxygen species production, by affecting PKCα, P38, and AKT via Ca2+ signaling. In addition, isolated hearts infused with neutrophils from wild-type mice showed additional myocardial ischemia/reperfusion injuries but not those infused with TRPV4 knockout. Our study reveals that TRPV4-mediated neutrophil activation enhances myocardial ischemia/reperfusion injury, and it might be a novel therapeutic target for myocardial ischemia/reperfusion injury and other neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yuwei Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Kai Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, 183 Yiling Avenue, Yichang 443003, China
| | - Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jie Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shaoshao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shuaitao Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ning Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Qiongfeng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yimei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
17
|
Tian C, Ziegler JN, Zucker IH. Extracellular Vesicle MicroRNAs in Heart Failure: Pathophysiological Mediators and Therapeutic Targets. Cells 2023; 12:2145. [PMID: 37681877 PMCID: PMC10486980 DOI: 10.3390/cells12172145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging mediators of intracellular and inter-organ communications in cardiovascular diseases (CVDs), especially in the pathogenesis of heart failure through the transference of EV-containing bioactive substances. microRNAs (miRNAs) are contained in EV cargo and are involved in the progression of heart failure. Over the past several years, a growing body of evidence has suggested that the biogenesis of miRNAs and EVs is tightly regulated, and the sorting of miRNAs into EVs is highly selective and tightly controlled. Extracellular miRNAs, particularly circulating EV-miRNAs, have shown promising potential as prognostic and diagnostic biomarkers for heart failure and as therapeutic targets. In this review, we summarize the latest progress concerning the role of EV-miRNAs in HF and their application in a therapeutic strategy development for heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Jessica N. Ziegler
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
18
|
Wang S, Tan S, Chen F, An Y. Identification of immune-related biomarkers co-occurring in acute ischemic stroke and acute myocardial infarction. Front Neurol 2023; 14:1207795. [PMID: 37662030 PMCID: PMC10469875 DOI: 10.3389/fneur.2023.1207795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Background Acute ischemic stroke (AIS) and acute myocardial infarction (AMI) share several features on multiple levels. These two events may occur in conjunction or in rapid succession, and the occurrence of one event may increase the risk of the other. Owing to their similar pathophysiologies, we aimed to identify immune-related biomarkers common to AIS and AMI as potential therapeutic targets. Methods We identified differentially expressed genes (DEGs) between the AIS and control groups, as well as AMI and control groups using microarray data (GSE16561 and GSE123342). A weighted gene co-expression network analysis (WGCNA) approach was used to identify hub genes associated with AIS and/or AMI progression. The intersection of the four gene sets identified key genes, which were subjected to functional enrichment and protein-protein interaction (PPI) network analyses. We confirmed the expression levels of hub genes using two sets of gene expression profiles (GSE58294 and GSE66360), and the ability of the genes to distinguish patients with AIS and/or AMI from control patients was assessed by calculating the receiver operating characteristic values. Finally, the investigation of transcription factor (TF)-, miRNA-, and drug-gene interactions led to the discovery of therapeutic candidates. Results We identified 477 and 440 DEGs between the AIS and control groups and between the AMI and control groups, respectively. Using WGCNA, 2,776 and 2,811 genes in the key modules were identified for AIS and AMI, respectively. Sixty key genes were obtained from the intersection of the four gene sets, which were used to identify the 10 hub genes with the highest connection scores through PPI network analysis. Functional enrichment analysis revealed that the key genes were primarily involved in immunity-related processes. Finally, the upregulation of five hub genes was confirmed using two other datasets, and immune infiltration analysis revealed their correlation with certain immune cells. Regulatory network analyses indicated that GATA2 and hsa-mir-27a-3p might be important regulators of these genes. Conclusion Using comprehensive bioinformatics analyses, we identified five immune-related biomarkers that significantly contributed to the pathophysiological mechanisms of both AIS and AMI. These biomarkers can be used to monitor and prevent AIS after AMI, or vice versa.
Collapse
Affiliation(s)
- Shan Wang
- Emergency Station, Dougezhuang Community Health Service Center, Beijing, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangni Chen
- Department of Nuclear Medicine, The Fifth Medical Center of the General Hospital of the People's Liberation Army, Beijing, China
| | - Yihua An
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Wang Y, Chen H. A nonlinear relationship between systemic inflammation response index and short-term mortality in patients with acute myocardial infarction: a retrospective study from MIMIC-IV. Front Cardiovasc Med 2023; 10:1208171. [PMID: 37554368 PMCID: PMC10406293 DOI: 10.3389/fcvm.2023.1208171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Background This investigation aimed to evaluate the efficacy of the Systemic Inflammatory Response Index (SIRI) in prognosticating short-term all-cause mortality among patients diagnosed with acute myocardial infarction (AMI) in the intensive care unit (ICU). Methods and Results Clinical data were obtained from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. A total of 4,291 patients were included in the cohort. Results from multivariate regression analyses showed that the quartile of the natural logarithm of SIRI (ln-SIRI) was independently associated with mortality. Compared to patients in the first quartile (Q1), patients in the second quartile (Q2) and fourth quartile (Q4) were significantly associated with an increased risk of 30-day (HR = 2.031, 95% CI: 1.604-2.571, p < 0.001 and HR = 1.703, 95% CI: 1.32-2.195, p < 0.001) and 90-day all-cause mortality (HR = 2.063, 95% CI: 1.68-2.532, p < 0.001 and HR = 1.788, 95% CI: 1.435-2.227, p < 0.001), which is consistent with the results of the Kaplan-Meier analysis and the results of multivariate regression analyses by classifying into 12 groups based on dodeciles of SIRI. Curve fitting showed a curvilinear relationship and further threshold saturation effects showed that, for 90-day mortality, each unit increased in ln-SIRI, when the ln-SIRI level is less than 2.9, the patient's mortality increases by 23.2% (OR: 1.232; 95% CI: 1.111-1.367; p < 0.001); when the ln-SIRI is greater than 2.9 and less than 4.6, the patient's mortality decreases by 44.4% (OR: 0.554; 95% CI: 0.392-0.789; p = 0.001); when ln SIR > 4.6, the patient's mortality increases by 24.7% (OR: 1.247; 95% CI: 1.108-1.404; p < 0.001). Moreover, the length of stay in the hospital was lower in patients in the third quartile (Q3) (coefficient: -1.999; 95% CI: -2.834 - -1.165, p < 0.001). The length of stay in the ICU was higher in patients in Q2 and Q4 (coefficient: 0.685;95% CI: 0.243-1.128; p = 0.0024 and coefficient: 0.989;95% CI: 0.528-1.451; p < 0.001). Furthermore, SIRI may outperform NLR in predicting short-term mortality. Conclusion SIRI is an independent risk factor for 30- and 90-day mortality, and length of stay in ICU for critical AMI patients.
Collapse
Affiliation(s)
- Yufei Wang
- Graduate School, Inner Mongolia Medical University, Hohhot City, China
- Department of Cardiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot City, China
| | - Hua Chen
- Graduate School, Inner Mongolia Medical University, Hohhot City, China
- Department of Cardiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot City, China
| |
Collapse
|
20
|
Shirure VS, Yechikov S, Shergill BS, Dehghani T, Block AV, Sodhi H, Panitch A, George SC. Mitigating neutrophil trafficking and cardiotoxicity with DS-IkL in a microphysiological system of a cytokine storm. LAB ON A CHIP 2023; 23:3050-3061. [PMID: 37278194 PMCID: PMC10330849 DOI: 10.1039/d2lc01070d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A feature of severe COVID-19 is the onset of an acute and intense systemic inflammatory response referred to as the "cytokine storm". The cytokine storm is characterized by high serum levels of inflammatory cytokines and the subsequent transport of inflammatory cells to damaging levels in vital organs (e.g., myocarditis). Immune trafficking and its effect on underlying tissues (e.g., myocardium) are challenging to observe at a high spatial and temporal resolution in mouse models. In this study, we created a vascularized organ-on-a-chip system to mimic cytokine storm-like conditions and tested the effectiveness of a novel multivalent selectin-targeting carbohydrate conjugate (composed of DS - dermatan sulfate and IkL - a selectin-binding peptide, termed DS-IkL) in blocking infiltration of polymorphonuclear leukocytes (PMN). Our data shows that cytokine storm-like conditions induce endothelial cells to produce additional inflammatory cytokines and facilitate infiltration of PMNs into tissue. Treatment of tissues with DS-IkL (60 μM) reduced PMN accumulation in the tissue by >50%. We then created cytokine storm-like conditions in a vascularized cardiac tissue-chip and found that PMN infiltration increases the spontaneous beating rate of the cardiac tissue, and this effect is eliminated by treatment with DS-IkL (60 μM). In summary, we demonstrate the utility of an organ-on-a-chip platform to mimic COVID-19 related cytokine storm and that blocking leukocyte infiltration with DS-IkL could be a viable strategy to mitigate associated cardiac complications.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Sergey Yechikov
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Bhupinder S Shergill
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Tima Dehghani
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Anton V Block
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Harkanwalpreet Sodhi
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Drive, Room 2315, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Xie L, Chen J, Wang Y, Jin C, Xie Y, Ma H, Xiang M. Emerging roles of macrophages in heart failure and associated treatment approaches. Ther Adv Chronic Dis 2023; 14:20406223231168755. [PMID: 37152348 PMCID: PMC10155014 DOI: 10.1177/20406223231168755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Heart failure is typically caused by different cardiovascular conditions and has a poor prognosis. Despite the advances in treatment in recent decades, heart failure has remained a major cause of morbidity and mortality worldwide. As revealed by in vivo and in vitro experiments, inflammation plays a crucial role in adverse cardiac remodeling, ultimately leading to heart failure. Macrophages are central to the innate immune system, and they are the most indispensable cell type for all cardiac injuries and remodeling stages. The immediate microenvironment regulates their polarization and secretion. In this review, we summarize the phenotypic heterogeneity and governing roles of macrophages in the infarcted, inflamed, and aging heart and assess their significance as potential therapeutic targets in heart failure. We also highlight the current missing links and major challenges in the field that remain to be addressed before macrophages can be exploited for therapeutic applications.
Collapse
Affiliation(s)
- Lan Xie
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyong Chen
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yidong Wang
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjiang Jin
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009,
China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009,
China
| |
Collapse
|
22
|
Panda R, Kubes P. Extracellular vesicles selectively mobilize splenic neutrophils. Cardiovasc Res 2023; 119:1-2. [PMID: 36691968 DOI: 10.1093/cvr/cvad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Rachita Panda
- Department of Physiology and Pharmacology, Health Science Centre, Room 1817, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Health Science Centre, Room 1817, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
23
|
Kang L, Zhao Q, Jiang K, Yu X, Chao H, Yin L, Wang Y. Uncovering potential diagnostic biomarkers of acute myocardial infarction based on machine learning and analyzing its relationship with immune cells. BMC Cardiovasc Disord 2023; 23:2. [PMID: 36600215 DOI: 10.1186/s12872-022-02999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a common cardiovascular disease. This study aimed to mine biomarkers associated with AMI to aid in clinical diagnosis and management. METHODS All mRNA and miRNA data were downloaded from public database. Differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs) were identified using the metaMA and limma packages, respectively. Functional analysis of the DEmRNAs was performed. In order to explore the relationship between miRNA and mRNA, we construct miRNA-mRNA negative regulatory network. Potential biomarkers were identified based on machine learning. Subsequently, ROC and immune correlation analysis were performed on the identified key DEmRNA biomarkers. RESULTS According to the false discovery rate < 0.05, 92 DEmRNAs and 272 DEmiRNAs were identified. GSEA analysis found that kegg_peroxisome was up-regulated in AMI and kegg_steroid_hormone_biosynthesis was down-regulated in AMI compared to normal controls. 5 key DEmRNA biomarkers were identified based on machine learning, and classification diagnostic models were constructed. The random forests (RF) model has the highest accuracy. This indicates that RF model has high diagnostic value and may contribute to the early diagnosis of AMI. ROC analysis found that the area under curve of 5 key DEmRNA biomarkers were all greater than 0.7. Pearson correlation analysis showed that 5 key DEmRNA biomarkers were correlated with most of the differential infiltrating immune cells. CONCLUSION The identification of new molecular biomarkers provides potential research directions for exploring the molecular mechanism of AMI. Furthermore, it is important to explore new diagnostic genetic biomarkers for the diagnosis and treatment of AMI.
Collapse
Affiliation(s)
- Ling Kang
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Qiang Zhao
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Ke Jiang
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China.
| | - Xiaoyan Yu
- Coronary Care Unit, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Hui Chao
- Coronary Care Unit, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Lijuan Yin
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Yueqing Wang
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China.
| |
Collapse
|
24
|
de Souza Ferreira JN, Vasconcelos VVV, Figueiredo BS, Alves DP, de Abreu ALLV, de Souza PP, Costa DLN, da Silva AR. PLGA nanoparticles for treatment of cardiovascular diseases. POLY(LACTIC-CO-GLYCOLIC ACID) (PLGA) NANOPARTICLES FOR DRUG DELIVERY 2023:267-302. [DOI: 10.1016/b978-0-323-91215-0.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Rawat K, Shrivastava A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm Res 2022; 71:1477-1488. [PMID: 36289077 PMCID: PMC9607713 DOI: 10.1007/s00011-022-01627-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Neutrophils are the key cells of our innate immune system with a primary role in host defense. They rapidly arrive at the site of infection and display a range of effector functions including phagocytosis, degranulation, and NETosis to eliminate the invading pathogens. However, in recent years, studies focusing on neutrophil biology have revealed the highly adaptable nature and versatile functions of these cells which extend beyond host defense. Neutrophils are now referred to as powerful mediators of chronic inflammation. In several chronic inflammatory diseases, their untoward actions, such as immense infiltration, hyper-activation, dysregulation of effector functions, and extended survival, eventually contribute to disease pathogenesis. Therefore, a better understanding of neutrophils and their effector functions in prevalent chronic diseases will not only shed light on their role in disease pathogenesis but will also reveal them as novel therapeutic targets. METHODS We performed a computer-based online search using the databases, PubMed.gov and Clinical trials.gov for published research and review articles. RESULTS AND CONCLUSIONS This review provides an assessment of neutrophils and their crucial involvement in various chronic inflammatory disorders ranging from respiratory, neurodegenerative, autoimmune, and cardiovascular diseases. In addition, we also discuss the therapeutic approach for targeting neutrophils in disease settings that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
26
|
Gohbara M, Iwahashi N, Okada K, Ogino Y, Hanajima Y, Kirigaya J, Minamimoto Y, Matsuzawa Y, Nitta M, Konishi M, Hibi K, Kosuge M, Ebina T, Sugano T, Ishikawa T, Tamura K, Kimura K. A Simple Risk Score to Differentiate Between Coronary Artery Obstruction and Coronary Artery Spasm of Patients With Acute Coronary Syndrome Without Persistent ST-Segment Elevation. Circ J 2022; 86:1509-1518. [PMID: 35599005 DOI: 10.1253/circj.cj-22-0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND The aim of this study was to create a risk scoring model to differentiate obstructive coronary artery (CA) from CA spasm in the etioology of acute coronary syndrome (ACS). METHODS AND RESULTS We included 753 consecutive patients with ACS without persistent ST-segment elevation (p-STE). The exclusion criteria were: (1) out-of-hospital cardiac arrest; (2) cardiogenic shock; (3) hemodialysis; (4) atrial fibrillation/flutter; (5) severe valvular disease; (6) no coronary angiography; (7) non-obstructive coronary artery without "definite" vasospastic angina definition; and/or (8) missing data. From the multivariate logistic regression analysis for prediction of obstructive CA, an integer score of 2 to each 0.5 increment in odds ratio was given, and values were divided into quartiles according to the total score. The scores were as follows: age >70 years (6 points), non-STE myocardial infarction (9 points), diabetes mellitus (5 points), B-type natriuretic peptide >90 pg/mL (7 points), neutrophil to lymphocyte ratio >2 (5 points), and high-density lipoprotein cholesterol <50 mg/dL (5 points). CA spasm-induced ACS occurred in 50.0% in Quartile 1 (total score: 0-13), 20.5% in Quartile 2 (total score: 14-19), 4.9% in Quartile 3 (total score: 20-26), and 2.2% in Quartile 4 (total score: 27-37) (P<0.001), indicating that a total score of <20 was a potential clinical indicator of CA spasm-induced ACS. CONCLUSIONS CA spasm-induced ACS should be suspected if a total score of <20, and a spasm provocation test was being considered.
Collapse
Affiliation(s)
- Masaomi Gohbara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
- Division of Cardiology, Yokohama City University Medical Center
| | | | - Kozo Okada
- Division of Cardiology, Yokohama City University Medical Center
| | - Yutaka Ogino
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
- Division of Cardiology, Yokohama City University Medical Center
| | - Yohei Hanajima
- Division of Cardiology, Yokohama City University Medical Center
| | - Jin Kirigaya
- Division of Cardiology, Yokohama City University Medical Center
| | - Yugo Minamimoto
- Division of Cardiology, Yokohama City University Medical Center
| | | | - Manabu Nitta
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
| | - Masaaki Konishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
- Division of Cardiology, Yokohama City University Medical Center
| | - Kiyoshi Hibi
- Division of Cardiology, Yokohama City University Medical Center
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center
| | - Toshiaki Ebina
- Division of Cardiology, Yokohama City University Medical Center
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center
| | - Teruyasu Sugano
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
| | - Toshiyuki Ishikawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
| | - Kazuo Kimura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
- Division of Cardiology, Yokohama City University Medical Center
| |
Collapse
|
27
|
Zhao J, Lv H, Yin D, Zhou X, Zhu H, Guo L, Wang J. Systemic Immune-Inflammation Index Predicts Long-Term Outcomes in Patients with Three-Vessel Coronary Disease After Revascularization: Results from a Large Cohort of 3561 Patients. J Inflamm Res 2022; 15:5283-5292. [PMID: 36120186 PMCID: PMC9480584 DOI: 10.2147/jir.s385990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Objective This study aimed to investigate the prognostic value of systemic immune inflammation index (SII) concerning long-term outcomes in patients with the three-vessel disease (TVD) after revascularization in a large cohort. Methods In total, 3561 TVD patients who had undergone revascularization between 2013 and 2018 were included in the study. Patients were divided into the low SII (<694.3 × 109/L) (n = 2556, 71.8%) and the high SII (≥694.3 × 109/L) group (n = 1005, 28.2%). The C-index, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were calculated to assess whether the addition of SII to a baseline model with traditional risk factors improved the accuracy of cardiac event prediction. The primary outcome was the frequency of major adverse and cerebrovascular events (MACCE). The secondary outcome was the incidence of all-cause death. Results After 2.4 years of follow-up, the Cox proportional hazard regression model analysis displayed that high SII was independently associated with an increased risk of developing future MACCE (hazard ratio [HR] 1.65, 95% confidence interval [CI] 1.23–2.21, p = 0.001) and all-cause death (HR: 2.96; 95% CI: 1.19–7.32, p = 0.019). The addition of SII significantly improved the reclassification beyond the baseline model with traditional risk factors (MACCE: NRI, 0.115; p = 0.0001; all-cause death: NRI, 0.369; p = 0.0001). Reclassification with the addition of SII also demonstrated an IDI of 0.0022 (p = 0.006) in MACCE and 0.0033 (p = 0.014) in all-cause death. Conclusion In TVD patients after revascularization, increased SII is an independent prognostic factor for long-term outcomes of MACCE and death. Compared to traditional risk factors, SII improved the risk prediction of major cardiovascular events in TVD patients who underwent revascularization.
Collapse
Affiliation(s)
- Ji Zhao
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian City, People's Republic of China
| | - Haichen Lv
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian City, People's Republic of China
| | - Da Yin
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian City, People's Republic of China
| | - Xuchen Zhou
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian City, People's Republic of China
| | - Hao Zhu
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian City, People's Republic of China
| | - Lei Guo
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian City, People's Republic of China
| | - Junjie Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian City, People's Republic of China
| |
Collapse
|
28
|
Zhang Q, Guo Y, Zhang B, Liu H, Peng Y, Wang D, Zhang D. Identification of hub biomarkers of myocardial infarction by single-cell sequencing, bioinformatics, and machine learning. Front Cardiovasc Med 2022; 9:939972. [PMID: 35958412 PMCID: PMC9357907 DOI: 10.3389/fcvm.2022.939972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background Myocardial infarction (MI) is one of the first cardiovascular diseases endangering human health. Inflammatory response plays a significant role in the pathophysiological process of MI. Messenger RNA (mRNA) has been proven to play a key role in cardiovascular diseases. Single-cell sequencing (SCS) technology is a new technology for high-throughput sequencing analysis of genome, transcriptome, and epigenome at the single-cell level, and it also plays an important role in the diagnosis and treatment of cardiovascular diseases. Machine learning algorithms have a wide scope of utilization in biomedicine and have demonstrated superior efficiency in clinical trials. However, few studies integrate these three methods to investigate the role of mRNA in MI. The aim of this study was to screen the expression of mRNA, investigate the function of mRNA, and provide an underlying scientific basis for the diagnosis of MI. Methods In total, four RNA microarray datasets of MI, namely, GSE66360, GSE97320, GSE60993, and GSE48060, were downloaded from the Gene Expression Omnibus database. The function analysis was carried out by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) enrichment analysis. At the same time, inflammation-related genes (IRGs) were acquired from the GeneCards database. Then, 52 co-DEGs were acquired from differentially expressed genes (DEGs) in differential analysis, IRGs, and genes from SCS, and they were used to construct a protein-protein interaction (PPI) network. Two machine learning algorithms, namely, (1) least absolute shrinkage and selection operator and (2) support vector machine recursive feature elimination, were used to filter the co-DEGs. Gene set enrichment analysis (GSEA) was performed to screen the hub-modulating signaling pathways associated with the hub genes. The results were validated in GSE97320, GSE60993, and GSE48060 datasets. The CIBERSORT algorithm was used to analyze 22 infiltrating immune cells in the MI and healthy control (CON) groups and to analyze the correlation between these immune cells. The Pymol software was used for molecular docking of hub DEGs and for potential treatment of MI drugs acquired from the COREMINE. Results A total of 126 DEGs were in the MI and CON groups. After screening two machine learning algorithms and key co-DEGs from a PPI network, two hub DEGs (i.e., IL1B and TLR2) were obtained. The diagnostic efficiency of IL1B, TLR2, and IL1B + TLR2 showed good discrimination in the four cohorts. GSEA showed that KEGG enriched by DEGs were mainly related to inflammation-mediated signaling pathways, and GO biological processes enriched by DEGs were linked to biological effects of various inflammatory cells. Immune analysis indicated that IL1B and TLR2 were correlated with various immune cells. Dan shen, san qi, feng mi, yuan can e, can sha, san qi ye, san qi hua, and cha shu gen were identified as the potential traditional Chinese medicine (TCM) for the treatment of MI. 7-hydroxyflavone (HF) had stable combinations with IL1B and TLR2, respectively. Conclusion This study identified two hub DEGs (IL1B and TLR2) and illustrated its potential role in the diagnosis of MI to enhance our knowledge of the underlying molecular mechanism. Infiltrating immune cells played an important role in MI. TCM, especially HF, was a potential drug for the treatment of MI.
Collapse
Affiliation(s)
- Qunhui Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.,College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yang Guo
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.,College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Hairui Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yanfeng Peng
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Di Wang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Dejun Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.,College of Eco-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
29
|
Chen S, Cheng J, Ye Q, Ye Z, Zhang Y, Liu Y, Huang G, Chen F, Yang M, Wang C, Duan T, Liu X, Zhang Z. Day 1 neutrophil-to-lymphocyte ratio (NLR) predicts stroke outcome after intravenous thrombolysis and mechanical thrombectomy. Front Neurol 2022; 13:941251. [PMID: 36016545 PMCID: PMC9396211 DOI: 10.3389/fneur.2022.941251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background The neutrophil-to-lymphocyte ratio (NLR) is a biomarker reflecting the balance between inflammation (as indicated by the neutrophil count) and adaptive immunity (as indicated by the lymphocyte count). We aimed to estimate ability of NLR at admission and at day 1 for predicting stroke outcome after two reperfusion therapies: intravenous thrombolysis (IVT) and mechanical thrombectomy (MT). Methods A retrospective analysis was performed on patients who received recombinant human tissue plasminogen activator (IVT) and/or underwent MT for acute ischemic stroke (AIS) at the First Affiliated Hospital of Wenzhou Medical University (Wenzhou, China) from January 2018 to December 2020. Blood samples were taken on admission to hospital and on day 1 after stroke onset. Binary logistic regression models were applied to investigate potential associations between NLR at admission or day 1 and the following outcomes: symptomatic intracerebral hemorrhage (sICH), dependence, and mortality at 90 days. The ability of NLR to predict AIS outcome was analyzed using receiver operating characteristic (ROC) curves. Results Data for 927 patients (576 IVT and 351 MT) were reviewed. High admission NLR was associated with dependence in IVT treatment [adjusted odds ratio (OR) 1.21, 95% confidence interval (CI) 1.14–1.23] and 90-day mortality in MT patients (OR 1.09, 95% CI 1.04–1.13). In IVT patients, high NLR at day 1 predicted dependence (OR 1.09, 95% CI 1.02–1.11), sICH (OR = 1.07, 95% CI 1.01–1.12), and 90-day mortality (OR 1.06, 95% CI 1.01–1.15). In MT patients, high NLR at day 1 also predicted dependence (OR 1.08, 95% CI 1.02–1.11) and sICH (OR 1.03, 95% CI 1.01–1.09). ROC analysis confirmed that NLR at day 1 could predict dependence (cut-off 4.2; sensitivity 68.7%; specificity 79.6%), sICH (cut-off 5.1; sensitivity 57.9%, specificity 73.5%), and death (cut-off 5.4; sensitivity 78.8%; specificity 76.4%) in IVT patients. Z values of area under the curves were compared between admissioin and day 1 NLR in IVT patients and showed day 1 NLR can better predict dependence (Z = 2.8, p = 0.004) and 90-day death (Z = 2.8, p = 0.005). Conclusions NLR is a readily available biomarker that can predict AIS outcome after reperfusion treatment and day 1 NLR is even better than admission NLR.
Collapse
Affiliation(s)
- Siyan Chen
- Department of Neurology, Wenzhou Medical University Affiliated the First Hospital, Wenzhou, China
| | - Jianhua Cheng
- Department of Neurology, Wenzhou Medical University Affiliated the First Hospital, Wenzhou, China
| | - Qiang Ye
- Department of Neurology, Wenzhou Medical University Affiliated the First Hospital, Wenzhou, China
| | - Zusen Ye
- Department of Neurology, Wenzhou Medical University Affiliated the First Hospital, Wenzhou, China
| | - Yanlei Zhang
- Department of Neurology, Wenzhou Medical University Affiliated the First Hospital, Wenzhou, China
| | - Yuntao Liu
- Department of Neurology, Wenzhou Medical University Affiliated the First Hospital, Wenzhou, China
| | - Guiqian Huang
- Department of Neurology, Wenzhou Medical University Affiliated the First Hospital, Wenzhou, China
| | - Feichi Chen
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Ming Yang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Chuanliu Wang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Tingting Duan
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiang Liu
- Department of Neurology, Wencheng County People Hospital, Wenzhou, China
| | - Zheng Zhang
- Department of Neurology, Wenzhou Medical University Affiliated the First Hospital, Wenzhou, China
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- *Correspondence: Zheng Zhang
| |
Collapse
|
30
|
miR-133a-A Potential Target for Improving Cardiac Mitochondrial Health and Regeneration After Injury. J Cardiovasc Pharmacol 2022; 80:187-193. [PMID: 35500168 DOI: 10.1097/fjc.0000000000001279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The various roles of muscle secretory factors and myokines have been well studied, but in recent decades, the role of myocyte-specific microRNAs (myomiRs) has gained momentum. These myomiRs are known to play regulatory roles in muscle health in general, both skeletal muscle and cardiac muscle. In this review, we have focused on the significance of a myomiR termed miR-133a in cardiovascular health. The available literature supports the claim that miR-133a could be helpful in the healing process of muscle tissue after injury. The protective function could be due to its regulatory effect on muscle or stem cell mitochondrial function. In this review, we have shed light on the protective mechanisms offered by miR-133a. Most of the beneficial effects are due to the presence of miR-133a in circulation or tissue-specific expression. We have also reviewed the potential mechanisms by which miR-133a could interact with cell surface receptors and also transcriptional mechanisms by which they offer cardioprotection and regeneration. Understanding these mechanisms will help in finding an ideal strategy to repair cardiac tissue after injury.
Collapse
|
31
|
Nederlof R, Reidel S, Spychala A, Gödecke S, Heinen A, Lautwein T, Petzsch P, Köhrer K, Gödecke A. Insulin-Like Growth Factor 1 Attenuates the Pro-Inflammatory Phenotype of Neutrophils in Myocardial Infarction. Front Immunol 2022; 13:908023. [PMID: 35911749 PMCID: PMC9334797 DOI: 10.3389/fimmu.2022.908023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myocardial infarction (MI) induces an extensive sterile inflammation, which is dominated in the early phase by invading neutrophils and monocytes/macrophages. The inflammatory response after MI critically affects infarct healing and cardiac remodeling. Therefore, modulation of cardiac inflammation may improve outcome post MI. Insulin-like growth factor 1 (IGF1) treatment reduces infarct size and improves cardiac function after MI via IGF1 receptor mediated signaling in myeloid cells. Our study aimed to investigate the effect of IGF1 on neutrophil phenotype both in vitro and in vivo after MI. We show that IGF1 induces an anti-inflammatory phenotype in bone marrow derived neutrophils. On the molecular and functional level IGF1 treated neutrophils were indistinguishable from those induced by IL4. Surprisingly, insulin, even though it is highly similar to IGF1 did not create anti-inflammatory neutrophils. Notably, the IGF1 effect was independent of the canonical Ras/Raf/ERK or PI3K/AKT pathway, but depended on activation of the JAK2/STAT6 pathway, which was not activated by insulin treatment. Single cell sequencing analysis 3 days after MI also showed that 3 day IGF1 treatment caused a downregulation of pro-inflammatory genes and upstream regulators in most neutrophil and many macrophage cell clusters whereas anti-inflammatory genes and upstream regulators were upregulated. Thus, IGF1 acts like an anti-inflammatory cytokine on myeloid cells in vitro and attenuates the pro-inflammatory phenotype of neutrophils and macrophages in vivo after MI. IGF1 treatment might therefore represent an effective immune modulatory therapy to improve the outcome after MI.
Collapse
Affiliation(s)
- Rianne Nederlof
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sophia Reidel
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - André Spychala
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Stefanie Gödecke
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - André Heinen
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tobias Lautwein
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics and Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics and Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics and Transcriptomics Labor, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- *Correspondence: Axel Gödecke,
| |
Collapse
|
32
|
Targeted trapping of endogenous endothelial progenitor cells for myocardial ischemic injury repair through neutrophil-mediated SPIO nanoparticle-conjugated CD34 antibody delivery and imaging. Acta Biomater 2022; 146:421-433. [PMID: 35545187 DOI: 10.1016/j.actbio.2022.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022]
Abstract
Endothelia progenitor cell (EPC)-based revascularization therapies have shown promise for the treatment of myocardial ischemic injury. However, applications and efficacy are limited by the relatively inefficient recruitment of endogenous EPCs to the ischemic area, while implantation of exogenous EPCs carries the risk of tumorigenicity. In this study, we developed a therapeutic protocol that relies on the capacity of neutrophils (NEs) to target lesions and release preloaded EPC-binding molecules for high efficiency capture. Neutrophils were loaded with superparamagnetic iron oxide nanoparticles conjugated to an antibody against the EPC surface marker CD34 (SPIO-antiCD34/NEs), and the therapeutic efficacy in ischemic mouse heart following SPIO-antiCD34/NEs injection was monitored by SPIO-enhanced magnetic resonance imaging (MRI). These SPIO-antiCD34/NEs exhibited unimpaired cell viability, superoxide generation, and chemotaxis in vitro as well as satisfactory biocompatibility in vivo. In a mouse model of acute myocardial infarction (MI), SPIO-antiCD34 accumulation could be observed 0.5 h after intravenous injection of SPIO-antiCD34/NEs. Moreover, the degree of CD133+ EPC accumulation at MI sites was three-fold higher than in control MI model mice, while ensuing microvessel density was roughly two-fold higher than controls and left ventricular ejection fraction was > 50%. Therapeutic cell biodistribution, MI site targeting, and treatment effects were confirmed by SPIO-enhanced MRI. This study offers a new strategy to improve the endogenous EPC-based myocardial ischemic injury repair through NEs mediated SPIO nanoparticle conjugated CD34 antibody delivery and imaging. STATEMENT OF SIGNIFICANCE: The efficacy of endogenous endothelial progenitor cell (EPC)-based cardiovascular repair therapy for ischemic heart damage is limited by relatively low EPC accumulation at the target site. We have developed a method to improve EPC capture by exploiting the strong targeting ability of neutrophils (NEs) to ischemic inflammatory foci and the capacity of these treated cells to release of preloaded cargo with EPC-binding affinity. Briefly, NEs were loaded with superparamagnetic iron oxide nanoparticles conjugated to an antibody against the EPC surface protein CD34 (SPIO-antiCD34). Thus, we explored sites targeting with nanocomposites cargo for non-invasive EPCs interception and therapy tracking. We demonstrate that SPIO-antiCD34 released from NEs can effectively capture endogenous EPCs and thereby promote heart revascularization and functional recovery in mice. Moreover, the entire process can be monitored by SPIO-enhanced magnetic resonance imaging including therapeutic cell biodistribution, myocardial infarction site targeting, and tissue repair.
Collapse
|
33
|
Identification of potential biomarkers and immune-related pathways related to immune infiltration in patients with acute myocardial infarction. Transpl Immunol 2022; 74:101652. [PMID: 35764238 DOI: 10.1016/j.trim.2022.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI), a medical condition caused by the ischemic necrosis of cardiac tissues, is due to sudden occlusion of the coronary arteries in patients including transplant recipients. It is the leading reason for death and disability worldwide. This study aimed to search potential biomarkers related to the progression of AMI and identify the related immune-related pathways, as also examine their association with the immune cell infiltration and diagnostic value for AMI. METHODS Datasets of gene microarray were extracted from (www.ncbi.nlm.nih.gov/geo) the Gene Expression Omnibus (GEO) database and AMI-related biomarkers were obtained by differential expression analysis and weighted correlation network analysis (WGCNA). Subsequently, the support vector machine-recursive feature elimination (SVM-RFE) and the least absolute shrinkage and selection operator (LASSO) regression analyses were used to mine AIM-related hub markers. For the assessment of the diagnostic value of these markers for AMI, the receiver operator characteristic (ROC) curves were plotted. Additionally, the single-sample gene set enrichment analysis (ssGSEA) was performed to determine the immune cell infiltration. RESULTS A total of 1273 differentially expressed genes (DEGs) were obtained. Nine co-expression modules were obtained after WGCNA. Among them, the brown-colored module was identified as the hub for AMI (correlation [cor] = 0.73, P = 1.1e-87), and intersected with the DEGs yielded a total of 88 shared genes. Subsequently, five hub genes were obtained from the analysis of the LASSO regression and SVM-RFE algorithm. Ultimately, using the ROC curves, the diagnostic values of these genes for AMI were confirmed. The five hub genes were also found to be significantly associated with the infiltration levels of multiple immune cells. Moreover, the DEGs were mainly enriched in the inflammatory and immune-related gene sets evidenced by the functional enrichment analysis. CONCLUSION The five hub genes may serve as potential markers for AMI diagnosis and the findings have implications for further investigations on the molecular mechanisms underlying AMI.
Collapse
|
34
|
Transcriptomic Analysis Uncovers Immunogenic Characteristics of Ferroptosis for Myocardial Infarction and Potential Therapeutic Prediction of Chinese Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4918343. [PMID: 35664944 PMCID: PMC9159883 DOI: 10.1155/2022/4918343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022]
Abstract
Background Inflammation and immune response play a key role in myocardial injury and repair after myocardial infarction (MI), while the relevant regulatory mechanisms of immune infiltration in MI have been fully explored. Ferroptosis is an iron-dependent form of regulated cell death characterized by an excessive accumulation of iron and lipid peroxides and involves in the pathogenesis of myocardial infarction. In the present study, by integrating intelligent data acquisition, data mining, network pharmacology, and computer-assisted target fishing, we developed a highly efficient system for screening immunity- and ferroptosis-related biomarkers and immunomodulatory ability of herbal ingredients. Results Immune infiltration analysis of GSE97320 showed significant neutrophil infiltration in the myocardial infarction group compared to the healthy group, and 807 differentially expressed genes (DEGs) were obtained (526 up-regulated and 281 downregulated). Among these DEGs, 73 immune-related and 8 ferroptosis-related DEGs were obtained. Further protein-protein interaction network analysis revealed 30 hub genes. The DEGs were enriched in a total of 107 biological processes, of which neutrophil-related biological processes were the most significant, enriched in 31 cellular components such as bead-binding hemoglobin complex, hemoglobin complex, and enriched in 36 functions such as bead-binding hemoglobin complex and hemoglobin complex. The DEGs were also enriched in 21 KEGG pathways such as lipid-atherosclerosis and formation of neutrophil extracellular traps. Further analysis identified Toll-like receptor-4 (TLR4) as the key gene, and based on TLR4, 17 herbal ingredients and 6 herbal medicines were predicted by using HERB and Coremine databases. Further molecular docking analysis showed that TLR4 could bind to salvianolic acid b and stigmasterol. The molecular dynamics analysis revealed that TLR4 could bind to salvianolic acid b, stigmasterol, and resveratrol in the stable phase with the binding between TLR4 and salvianolic acid b being the most stable. Conclusions TLR4 is a key gene that is related to ferroptosis and immune cell infiltration. Further analysis revealed that 17 herbal ingredients and 6 herbal medicines were predicted to have potential interactions with TLR4. These predicted herbal ingredients/medicines may act synergistically to protect against myocardial injury after MI through suppressing neutrophil extracellular traps. The protective effects may be associated with immune cell infiltration and ferroptosis.
Collapse
|
35
|
Zhu X, Yin T, Zhang T, Zhu Q, Lu X, Wang L, Liao S, Yao W, Zhou Y, Zhang H, Li X. Identification of Immune-Related Genes in Patients with Acute Myocardial Infarction Using Machine Learning Methods. J Inflamm Res 2022; 15:3305-3321. [PMID: 35692951 PMCID: PMC9174022 DOI: 10.2147/jir.s360498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Ting Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Xinyi Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Luyang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, People’s Republic of China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
- Correspondence: Xinli Li, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China, Email
| |
Collapse
|
36
|
Adachi A, Honda T, Egawa G, Kanameishi S, Takimoto R, Miyake T, Hossain MR, Komine M, Ohtsuki M, Gunzer M, Ikuta K, Kabashima K. Estradiol suppresses psoriatic inflammation in mice by regulating neutrophil and macrophage functions. J Allergy Clin Immunol 2022; 150:909-919.e8. [PMID: 35589416 DOI: 10.1016/j.jaci.2022.03.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Psoriasis is a common inflammatory skin disease resulting from dysregulation of the IL-23/TH17 immune axis. The prevalence and severity of psoriasis is higher in men than in women, although the underlying reasons for this are unclear. OBJECTIVE We studied whether estradiol, a female hormone, plays protective roles in imiquimod-induced psoriatic inflammation in mice by regulating neutrophil and macrophage functions. METHODS Wild-type mice and conditional knockout mice were ovariectomized, supplemented with placebo or estradiol pellets, and an imiquimod-containing cream applied. RESULTS Mice without endogenous ovarian hormones exhibited exacerbated psoriatic inflammation including increased production of IL-17A and IL-1β, which was reversed by exogenously added estradiol. The suppressive effect of estradiol on the production of IL-1β and IL-17A was abolished in mice lacking estrogen receptors in neutrophils and macrophages (Esr1f/fEsr2f/fLysM-Cre+ mice). IL-1β, which is required for production of IL-17A in the psoriasis model, was mainly produced by neutrophils and inflammatory macrophages. Estradiol suppressed IL-1β production from neutrophils and macrophages in mice both in vivo and in vitro and from human neutrophils in vitro. CONCLUSION Our results suggest a novel mechanism for sex-dependent differences in psoriasis clinical phenotypes that may shed new light on the pathology of psoriasis.
Collapse
Affiliation(s)
- Akimasa Adachi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuto Kanameishi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Riko Takimoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Miyake
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Md Razib Hossain
- Department of Dermatology, Jichi Medical University Graduate School of Medicine, Shimotsuke, Japan
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University Graduate School of Medicine, Shimotsuke, Japan
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University Graduate School of Medicine, Shimotsuke, Japan
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany; Leibniz-Institut für Analytische Wissenschaften ISAS-e.V, Dortmund, Germany
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Technology and Research (A∗STAR), Singapore.
| |
Collapse
|
37
|
Zhang X, Liu W. Engineering Injectable Anti‐Inflammatory Hydrogels to Treat Acute Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoping Zhang
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
38
|
Zhou J, He S, Wang B, Yang W, Zheng Y, Jiang S, Li D, Lin J. Construction and Bioinformatics Analysis of circRNA-miRNA-mRNA Network in Acute Myocardial Infarction. Front Genet 2022; 13:854993. [PMID: 35422846 PMCID: PMC9002054 DOI: 10.3389/fgene.2022.854993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Acute myocardial infarction (AMI) is one of the main fatal diseases of cardiovascular diseases. Circular RNA (circRNA) is a non-coding RNA (ncRNA), which plays a role in cardiovascular disease as a competitive endogenous RNA (ceRNA). However, their role in AMI has not been fully clarified. This study aims to explore the mechanism of circRNA-related ceRNA network in AMI, and to identify the corresponding immune infiltration characteristics. Materials and Methods: The circRNA (GSE160717), miRNA (GSE24548), and mRNA (GSE60993) microarray datasets of AMI were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified by the “limma” package. After integrating the circRNA, miRNA and mRNA interaction, we constructed a circRNA-miRNA-mRNA network. The “clusterProfiler” package and String database were used for functional enrichment analysis and protein-protein interaction (PPI) analysis, respectively. After that, we constructed a circRNA-miRNA-hub gene network and validated the circRNAs and mRNAs using an independent dataset (GSE61144) as well as qRT-PCR. Finally, we used CIBERSORTx database to analyze the immune infiltration characteristics of AMI and the correlation between hub genes and immune cells. Results: Using the “limma” package of the R, 83 DEcircRNAs, 54 DEmiRNAs, and 754 DEmRNAs were identified in the microarray datasets of AMI. Among 83 DEcircRNAs, there are 55 exonic DEcircRNAs. Then, a circRNA-miRNA-mRNA network consists of 21 DEcircRNAs, 11 DEmiRNAs, and 106 DEmRNAs were predicted by the database. After that, 10 hub genes from the PPI network were identified. Then, a new circRNA-miRNA-hub gene network consists of 14 DEcircRNAs, 7 DEmiRNAs, and 9 DEmRNAs was constructed. After that, three key circRNAs (hsa_circ_0009018, hsa_circ_0030569 and hsa_circ_0031017) and three hub genes (BCL6, PTGS2 and PTEN) were identified from the network by qRT-PCR. Finally, immune infiltration analysis showed that hub genes were significantly positively correlated with up-regulated immune cells (neutrophils, macrophages and plasma cells) in AMI. Conclusion: Our study constructed a circRNA-related ceRNA networks in AMI, consists of hsa_circ_0031017/hsa-miR-142-5p/PTEN axis, hsa_circ_0030569/hsa-miR-545/PTGS2 axis and hsa_circ_0009018/hsa-miR-139-3p/BCL6 axis. These three hub genes were significantly positively correlated with up-regulated immune cells (neutrophils, macrophages and plasma cells) in AMI. It helps improve understanding of AMI mechanism and provides future potential therapeutic targets.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Wu Y, Jiang T, Hua J, Xiong Z, Chen H, Li L, Peng J, Xiong W. Integrated Bioinformatics-Based Analysis of Hub Genes and the Mechanism of Immune Infiltration Associated With Acute Myocardial Infarction. Front Cardiovasc Med 2022; 9:831605. [PMID: 35463752 PMCID: PMC9019083 DOI: 10.3389/fcvm.2022.831605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is a fatal disease that causes high morbidity and mortality. It has been reported that AMI is associated with immune cell infiltration. Now, we aimed to identify the potential diagnostic biomarkers of AMI and uncover the immune cell infiltration profile of AMI. Methods From the Gene Expression Omnibus (GEO) data set, three data sets (GSE48060, GSE60993, and GSE66360) were downloaded. Differentially expressed genes (DEGs) from AMI and healthy control samples were screened. Furthermore, DEGs were performed via gene ontology (GO) functional and kyoto encyclopedia of genes and genome (KEGG) pathway analyses. The Gene set enrichment analysis (GSEA) was used to analyze GO terms and KEGG pathways. Utilizing the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) database, a protein–protein interaction (PPI) network was constructed, and the hub genes were identified. Then, the receiver operating characteristic (ROC) curves were constructed to analyze the diagnostic value of hub genes. And, the diagnostic value of hub genes was further validated in an independent data set GSE61144. Finally, CIBERSORT was used to represent the compositional patterns of the 22 types of immune cell fractions in AMI. Results A total of 71 DEGs were identified. These DEGs were mainly enriched in immune response and immune-related pathways. Toll-like receptor 2 (TLR2), interleukin-1B (IL1B), leukocyte immunoglobulin-like receptor subfamily B2 (LILRB2), Fc fragment of IgE receptor Ig (FCER1G), formyl peptide receptor 1 (FPR1), and matrix metalloproteinase 9 (MMP9) were identified as diagnostic markers with the value of p < 0.05. Also, the immune cell infiltration analysis indicated that TLR2, IL1B, LILRB2, FCER1G, FPR1, and MMP9 were correlated with neutrophils, monocytes, resting natural killer (NK) cells, gamma delta T cells, and CD4 memory resting T cells. The fractions of monocytes and neutrophils were significantly higher in AMI tissues than in control tissues. Conclusion TLR2, IL1B, LILRB2, FCER1G, FPR1, and MMP9 are involved in the process of AMI, which can be used as molecular biomarkers for the screening and diagnosis of AMI. In addition, the immune system plays a vital role in the occurrence and progression of AMI.
Collapse
Affiliation(s)
- Yanze Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ting Jiang
- Department Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinghai Hua
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiping Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjun Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Wenjun Xiong,
| |
Collapse
|
40
|
Dahdah A, Johnson J, Gopalkrishna S, Jaggers RM, Webb D, Murphy AJ, Hanssen NMJ, Hanaoka BY, Nagareddy PR. Neutrophil Migratory Patterns: Implications for Cardiovascular Disease. Front Cell Dev Biol 2022; 10:795784. [PMID: 35309915 PMCID: PMC8924299 DOI: 10.3389/fcell.2022.795784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
The body's inflammatory response involves a series of processes that are necessary for the immune system to mitigate threats from invading pathogens. Leukocyte migration is a crucial process in both homeostatic and inflammatory states. The mechanisms involved in immune cell recruitment to the site of inflammation are numerous and require several cascades and cues of activation. Immune cells have multiple origins and can be recruited from primary and secondary lymphoid, as well as reservoir organs within the body to generate an immune response to certain stimuli. However, no matter the origin, an important aspect of any inflammatory response is the web of networks that facilitates immune cell trafficking. The vasculature is an important organ for this trafficking, especially during an inflammatory response, mainly because it allows cells to migrate towards the source of insult/injury and serves as a reservoir for leukocytes and granulocytes under steady state conditions. One of the most active and vital leukocytes in the immune system's arsenal are neutrophils. Neutrophils exist under two forms in the vasculature: a marginated pool that is attached to the vessel walls, and a demarginated pool that freely circulates within the blood stream. In this review, we seek to present the current consensus on the mechanisms involved in leukocyte margination and demargination, with a focus on the role of neutrophil migration patterns during physio-pathological conditions, in particular diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Albert Dahdah
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jillian Johnson
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sreejit Gopalkrishna
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Robert M. Jaggers
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Darren Webb
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nordin M. J. Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Beatriz Y. Hanaoka
- Department of Internal Medicine, Division of Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Prabhakara R. Nagareddy
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
41
|
Association between Platelet to Neutrophil Ratio (PNR) and Clinical Outcomes in STEMI Patients after Successful pPCI: A Secondary Analysis Based on a Cohort Study. Cardiovasc Ther 2022; 2022:2022657. [PMID: 35284004 PMCID: PMC8894017 DOI: 10.1155/2022/2022657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose This study was aimed at investigating whether the platelet-to-neutrophil ratio (PNR) is independently related to the prognosis of patients with ST-elevation myocardial infarction (STEMI) after successful primary percutaneous coronary intervention (pPCI). Methods This was a secondary analysis of data retrieved from the DATADRYAD database, which was a prospective cohort study. A total of 464 STEMI patients who underwent successful pPCI were recruited between January 2010 and October 2014. The target-independent variable, PNR, was measured at the baseline. The dependent variable in the current study was the occurrence of major adverse cardiovascular events (MACEs) during the 30-month follow-up. Results Two patients were excluded from the final analysis because their platelet counts were unavailable. The average age of the 462 participants was 63 ± 11.92 years, and approximately 76.6% were male. After adjusting for age, sex, anterior wall myocardial infarction (MI), history of MI, apelin-12, apelin-12 change rate, left ventricular end-diastolic diameter, peak cardiac troponin I, pathological Q wave, Killip classification grade, fasting blood glucose, albumin, GENSINI score, and estimated glomerular filtration rate, a nonlinear relationship was found between the PNR and MACEs in the included cohort. The threshold value of the PNR for MACEs was 23.1. Over this cutoff value, the incidence rate of MACEs increased by 43% per 10-unit change in PNR (95% CI: 1.16–1.75, p = 0.0006). Conclusion There was a threshold relationship between PNR and MACEs in patients with STEMI who underwent successful pPCI. The incidence of MACEs was positively associated with the PNR when the PNR exceeded 23.1.
Collapse
|
42
|
Dölling M, Eckstein M, Singh J, Schauer C, Schoen J, Shan X, Bozec A, Knopf J, Schett G, Muñoz LE, Herrmann M. Hypoxia Promotes Neutrophil Survival After Acute Myocardial Infarction. Front Immunol 2022; 13:726153. [PMID: 35222361 PMCID: PMC8873092 DOI: 10.3389/fimmu.2022.726153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation build the armory of neutrophils for the first line of defense against invading pathogens. All these processes are modulated by the microenvironment including tonicity, pH and oxygen levels. Here we investigated the neutrophil infiltration in cardiac tissue autopsy samples of patients with acute myocardial infarction (AMI) and compared these with tissues from patients with sepsis, endocarditis, dermal inflammation, abscesses and diseases with prominent neutrophil infiltration. We observed many neutrophils infiltrating the heart muscle after myocardial infarction. Most of these had viable morphology and only few showed signs of nuclear de-condensation, a hallmark of early NET formation. The abundance of NETs was the lowest in acute myocardial infarction when compared to other examined diseases. Since cardiac oxygen supply is abruptly abrogated in acute myocardial infarction, we hypothesized that the resulting tissue hypoxia increased the longevity of the neutrophils. Indeed, the viable cells showed increased nuclear hypoxia inducible factor-1α (HIF-1α) content, and only neutrophils with low HIF-1α started the process of NET formation (chromatin de-condensation and nuclear swelling). Prolonged neutrophil survival, increased oxidative burst and reduced NETs formation were reproduced under low oxygen tensions and by HIF-1α stabilization in vitro. We conclude that nuclear HIF-1α is associated with prolonged neutrophil survival and enhanced oxidative stress in hypoxic areas of AMI.
Collapse
Affiliation(s)
- Maximilian Dölling
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Markus Eckstein
- Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jeeshan Singh
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiaomei Shan
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- *Correspondence: Luis E. Muñoz,
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
43
|
Jain S. Role of interleukin-17 signaling pathway in the interaction between multiple sclerosis and acute myocardial infarction. Mult Scler Relat Disord 2022; 58:103515. [DOI: 10.1016/j.msard.2022.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 11/25/2022]
|
44
|
Chalise U, Becirovic-Agic M, Lindsey ML. Neutrophil crosstalk during cardiac wound healing after myocardial infarction. CURRENT OPINION IN PHYSIOLOGY 2021; 24:100485. [PMID: 35664861 PMCID: PMC9159545 DOI: 10.1016/j.cophys.2022.100485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Myocardial infarction (MI) initiates an intense inflammatory response that induces neutrophil infiltration into the infarct region. Neutrophils commence the pro-inflammatory response that includes upregulation of cytokines and chemokines (e.g., interleukin-1 beta) and degranulation of pre-formed proteases (e.g., matrix metalloproteinases -8 and -9) that degrade existing extracellular matrix to clear necrotic tissue. An increase or complete depletion of neutrophils both paradoxically impair MI resolution, indicating a complex role of neutrophils in cardiac wound healing. Following pro-inflammation, the neutrophil shifts to a reparative phenotype that promotes inflammation resolution and aids in scar formation. Across the shifts in phenotype, the neutrophil communicates with other cells to coordinate repair and scar formation. This review summarizes our current understanding of neutrophil crosstalk with cardiomyocytes and macrophages during MI wound healing.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| |
Collapse
|
45
|
Lee KO, Kwon I, Nam HS, Park Y, Kim J, Shim Y, Erdenebileg Z, Cha MJ, Choi HJ, Choi HY, Song JW, Heo JH. Effect of leukopenia induced by cyclophosphamide on the initial stage of arterial thrombosis in mice. Thromb Res 2021; 206:111-119. [PMID: 34455128 DOI: 10.1016/j.thromres.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/24/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Leukocytes are found in organizing thrombi and are associated with thrombus growth. However, their role in the initial stage of thrombus formation is not well known. We investigated the role of leukocytes in the early stage of arterial thrombosis by inducing leukopenia. METHODS In this double-blind, randomized, placebo-controlled study, 72 Institute of Cancer Research mice were randomly treated with intraperitoneal 100 mg/kg cyclophosphamide or normal saline. The primary outcome was time to occlusion after FeCl3 treatment. We also compared thrombus size, histological composition, and association with peripheral blood cell counts between cyclophosphamide and control groups. RESULTS Cyclophosphamide treatment significantly decreased leukocyte counts by 82.8% compared to placebo (P < 0.001). The time to occlusion was significantly longer in the cyclophosphamide group (3.31 ± 1.59 min) than in the control group (2.30 ± 1.14 min; P = 0.003). The immunoreactivity for Ly6G-positive cells, intracellular histone H3, and released histone H3 in thrombi was significantly reduced in the cyclophosphamide group by 92.8%, 50.2%, and 34.3%, respectively. Time to occlusion had a moderate negative correlation with leukocyte count in peripheral blood (r = -0.326, P = 0.022) in the entire group. CONCLUSIONS Cyclophosphamide-induced leukopenia attenuated thrombus formation during the early stage of arterial thrombosis. Our findings suggest the potential role of leukocytes in the initial stage of arterial thrombosis.
Collapse
Affiliation(s)
- Kee Ook Lee
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Il Kwon
- Integrative Research Center for Cerebrovascular and Cardiovascular diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Integrative Research Center for Cerebrovascular and Cardiovascular diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngseon Park
- Integrative Research Center for Cerebrovascular and Cardiovascular diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Jayoung Kim
- Integrative Research Center for Cerebrovascular and Cardiovascular diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeseul Shim
- Integrative Research Center for Cerebrovascular and Cardiovascular diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Zolzaya Erdenebileg
- Integrative Research Center for Cerebrovascular and Cardiovascular diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Jin Cha
- Department of Neurology, National Police Hospital, Seoul, Republic of Korea
| | - Hyun-Jung Choi
- Integrative Research Center for Cerebrovascular and Cardiovascular diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Yeon Choi
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jae-Woo Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Republic of Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Integrative Research Center for Cerebrovascular and Cardiovascular diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea.
| |
Collapse
|
46
|
Romanenko AV, Amelina IP, Solovyeva EY. [Vascular inflammation underlies the development of atherothrombotic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:22-29. [PMID: 34553577 DOI: 10.17116/jnevro202112108222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Atherothrombotic stroke is the one of the most common subtypes of ischemic cerebral circulatory disorders, the cause of which is atherosclerosis of the major arteries of the brain or their branches. The results of recent studies have shown that the atherosclerotic process is based on an inflammatory process in the vascular wall that leads to the initiation of atherosclerosis, endothelial dysfunction, oxidative stress, and the redistribution of various protein components in the blood-brain barrier. As a result, the progression of the described conditions leads to the manifestation of clinical symptoms and the formation of an acute vascular event. Understanding of the molecular components underlying functional disorders and damages of the cerebral vessels gives the key to modern therapy strategies. It is forming the foundation for the adequate, pathogenetically reasonable drug correction. For such patients, it should be aimed at the normalization of cerebral and central hemodynamics and incorporate the mechanisms of neuroplasticity. The drug 2-ethyl-6-methyl-3-oxypyridine-succinate (mexidol) can be considered as one of the pathogenetically justified agents in complex drug therapy of brain ischemia.
Collapse
Affiliation(s)
- A V Romanenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I P Amelina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E Yu Solovyeva
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
47
|
Qi X, Lin H, Hou Y, Su X, Gao Y. Comprehensive Analysis of Potential miRNA-Target mRNA-Immunocyte Subtype Network in Cerebral Infarction. Eur Neurol 2021; 85:148-161. [PMID: 34544080 DOI: 10.1159/000518893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cerebral infarction (CI) is one of the leading causes of serious long-term disability and mortality. OBJECTIVE We aimed to identify potential miRNAs and target mRNAs and assess the involvement of immunocyte infiltration in the process of CI. METHODS First, miRNA and mRNA data were downloaded from the Gene Expression Omnibus database, followed by differential expression analysis. Second, correlation analysis between differentially expressed mRNAs and differential immunocyte subtypes was performed through the CIBERSORT algorithm. Third, the regulatory network between miRNAs and immunocyte subtype-related mRNAs was constructed followed by the functional analysis of these target mRNAs. Fourth, correlation validation between differentially expressed mRNAs and differential immunocyte subtypes was performed in the GSE37587 dataset. Finally, the diagnostic ability of immunocyte subtype-related mRNAs was tested. RESULTS Up to 17 differentially expressed miRNAs and 3,267 differentially expressed mRNAs were identified, among which 310 differentially expressed mRNAs were significantly associated with immunocyte subtypes. Several miRNA-target mRNA-immunocyte subtype networks including hsa-miR-671-3p-ZC3HC1-neutrophils, hsa-miR-625-CD5-monocytes, hsa-miR-122-ACOX1/DUSP1/NEDD9-neutrophils, hsa-miR-455-5p-SLC24A4-monocytes, and hsa-miR-455-5p-SORL1-neutrophils were identified. LAT, ACOX1, DUSP1, NEDD9, ZC3HC1, BIN1, AKT1, DNMT1, SLC24A4, and SORL1 had a potential diagnostic value for CI. CONCLUSIONS The network including miRNA, target mRNA, and immunocyte subtype may be novel regulators and diagnostic and therapeutic targets in CI.
Collapse
Affiliation(s)
- Xiuyan Qi
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Huiqian Lin
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yongge Hou
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaohui Su
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yanfang Gao
- Clinical Laboratory, Hebei Red Cross Boai Hospital, Shijiazhuang, China
| |
Collapse
|
48
|
Identification of Potential Biomarkers Associated with Acute Myocardial Infarction by Weighted Gene Coexpression Network Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5553811. [PMID: 34490057 PMCID: PMC8418549 DOI: 10.1155/2021/5553811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 01/17/2023]
Abstract
Background In the general population, acute myocardial infarction (AMI) represents a significant cause of mortality. This study is aimed at identifying novel diagnostic biomarkers to aid in treating and diagnosing AMI. Methods The Gene Expression Omnibus (GEO) database was explored to extract two microarray datasets, GSE66360 and GSE48060, which were subsequently merged into a single cohort. Both AMI and control samples were analyzed for differentially expressed genes (DEGs), which were subsequently subjected to weighed gene coexpression network analysis (WGCNA) to identify the most significant module. Gene Ontology (GO) and pathway analyses subsequently carried out the most significant gene modules along with construction of a protein-protein interaction network (PPI). Cytoscape plugin cytoHubba allowed for the prediction of the top 4 key genes according to the network maximal clique centrality (MCC) algorithm. The expression levels and diagnostic value of the four key genes were additionally verified in the GSE62646 dataset. Results A WCGNA analysis revealed 878 DEGs which were clustered into 6 modules. The module with the most significance in AMI was colored blue. Subsequent GO and KEGG pathway enrichment analysis on blue module genes revealed that they were primarily enriched in the inflammation-related pathways. These findings, in combination with PPI and coexpression networks, resulted in the identification of the top four genes by cytoHubba, which included leukocyte immunoglobulin-like receptor B2 (LILRB2), toll-like receptor 2 (TLR2), neutrophil cytosolic factor 2 (NCF2), and S100A9. Among them, LILRB2, NCF2, and S100A9 were validated in the GSE62646 dataset. Conclusions The results suggested that LILRB2, NCF2, and S100A9 could be potential gene biomarkers for AMI.
Collapse
|
49
|
Acute Coronary Syndromes (ACS)-Unravelling Biology to Identify New Therapies-The Microcirculation as a Frontier for New Therapies in ACS. Cells 2021; 10:cells10092188. [PMID: 34571836 PMCID: PMC8468909 DOI: 10.3390/cells10092188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
In acute coronary syndrome (ACS) patients, restoring epicardial culprit vessel patency and flow with percutaneous coronary intervention or coronary artery bypass grafting has been the mainstay of treatment for decades. However, there is an emerging understanding of the crucial role of coronary microcirculation in predicting infarct burden and subsequent left ventricular remodelling, and the prognostic significance of coronary microvascular obstruction (MVO) in mortality and morbidity. This review will elucidate the multifaceted and interconnected pathophysiological processes which underpin MVO in ACS, and the various diagnostic modalities as well as challenges, with a particular focus on the invasive but specific and reproducible index of microcirculatory resistance (IMR). Unfortunately, a multitude of purported therapeutic strategies to address this unmet need in cardiovascular care, outlined in this review, have so far been disappointing with conflicting results and a lack of hard clinical end-point benefit. There are however a number of exciting and novel future prospects in this field that will be evaluated over the coming years in large adequately powered clinical trials, and this review will briefly appraise these.
Collapse
|
50
|
Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100446. [PMID: 34117732 PMCID: PMC8373114 DOI: 10.1002/advs.202100446] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/06/2023]
Abstract
Tissue repair/regeneration, after implantation or injury, involves comprehensive physiological processes wherein immune responses play a crucial role to enable tissue restoration, amidst the immune cells early-stage response to tissue damages. These cells break down extracellular matrix, clear debris, and secret cytokines to orchestrate regeneration. However, the immune response can also lead to abnormal tissue healing or scar formation if not well directed. This review first introduces the general immune response post injury, with focus on the major immune cells including neutrophils, macrophages, and T cells. Next, a variety of implant-mediated immunomodulation strategies to regulate immune response through physical, chemical, and biological cues are discussed. At last, various scaffold-facilitated regenerations of different tissue types, such as, bone, cartilage, blood vessel, and nerve system, by harnessing the immunomodulation are presented. Therefore, the most recent data in biomaterials and immunomodulation is presented here in a bid to shape expert perspectives, inspire researchers to go in new directions, and drive development of future strategies focusing on targeted, sequential, and dynamic immunomodulation elicited by implants.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yingchao Su
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Juncen Zhou
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yufeng Zheng
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Donghui Zhu
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| |
Collapse
|