1
|
Zhang H, Qiao Q, Zhao Y, Zhang L, Shi J, Wang N, Li Z, Shan S. Expression and Purification of Recombinant Bowman-Birk Trypsin Inhibitor from Foxtail Millet Bran and Its Anticolorectal Cancer Effect In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10439-10450. [PMID: 38676695 DOI: 10.1021/acs.jafc.3c08711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-β-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.
Collapse
Affiliation(s)
- Huimin Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Qinqin Qiao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yaru Zhao
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Nifei Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Ye F, Yuan Z, Tang Y, Li J, Liu X, Sun X, Chen S, Ye X, Zeng Z, Zhang XK, Zhou H. Endocytic activation and exosomal secretion of matriptase stimulate the second wave of EGF signaling to promote skin and breast cancer invasion. Cell Rep 2024; 43:114002. [PMID: 38547126 DOI: 10.1016/j.celrep.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The dysfunction of matriptase, a membrane-anchored protease, is highly related to the progression of skin and breast cancers. Epidermal growth factor (EGF)-induced matriptase activation and cancer invasion are known but with obscure mechanisms. Here, we demonstrate a vesicular-trafficking-mediated interplay between matriptase and EGF signaling in cancer promotion. We found that EGF induces matriptase to undergo endocytosis together with the EGF receptor, followed by acid-induced activation in endosomes. Activated matriptase is then secreted extracellularly on exosomes to catalyze hepatocyte growth factor precursor (pro-HGF) cleavage, resulting in autocrine HGF/c-Met signaling. Matriptase-induced HGF/c-Met signaling represents the second signal wave of EGF, which promotes cancer cell scattering, migration, and invasion. These findings demonstrate a role of vesicular trafficking in efficient activation and secretion of membrane matriptase and a reciprocal regulation of matriptase and EGF signaling in cancer promotion, providing insights into the physiological functions of vesicular trafficking and the molecular pathological mechanisms of skin and breast cancers.
Collapse
Affiliation(s)
- Fang Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhikang Yuan
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Ying Tang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiamei Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xingxing Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xuedi Sun
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuang Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Ho TNT, Pham SH, Nguyen LTT, Nguyen HT, Nguyen LT, Dang TT. Insights into the synthesis strategies of plant-derived cyclotides. Amino Acids 2023:10.1007/s00726-023-03271-8. [PMID: 37142771 DOI: 10.1007/s00726-023-03271-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Cyclotides are plant peptides characterized with a head-to-tail cyclized backbone and three interlocking disulfide bonds, known as a cyclic cysteine knot. Despite the variations in cyclotides peptide sequences, this core structure is conserved, underlying their most useful feature: stability against thermal and chemical breakdown. Cyclotides are the only natural peptides known to date that are orally bioavailable and able to cross cell membranes. Cyclotides also display bioactivities that have been exploited and expanded to develop as potential therapeutic reagents for a wide range of conditions (e.g., HIV, inflammatory conditions, multiple sclerosis, etc.). As such, in vitro production of cyclotides is of the utmost importance since it could assist further research on this peptide class, specifically the structure-activity relationship and its mechanism of action. The information obtained could be utilized to assist drug development and optimization. Here, we discuss several strategies for the synthesis of cyclotides using both chemical and biological routes.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Linh T T Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam
| | - Ha T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Luan T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
4
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Factor XII/XIIa inhibitors: Their discovery, development, and potential indications. Eur J Med Chem 2020; 208:112753. [DOI: 10.1016/j.ejmech.2020.112753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
|
6
|
Membrane-anchored serine proteases as regulators of epithelial function. Biochem Soc Trans 2020; 48:517-528. [PMID: 32196551 PMCID: PMC9869603 DOI: 10.1042/bst20190675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Cleavage of proteins in the extracellular milieu, including hormones, growth factors and their receptors, ion channels, and various cell adhesion and extracellular matrix molecules, plays a key role in the regulation of cell behavior. Among more than 500 proteolytic enzymes encoded by mammalian genomes, membrane-anchored serine proteases (MASPs), which are expressed on the surface of epithelial cells of all major organs, are excellently suited to mediate signal transduction across the epithelia and are increasingly being recognized as important regulators of epithelial development, function, and disease [ 1-3]. In this minireview, we summarize current knowledge of the in vivo roles of MASPs in acquisition and maintenance of some of the defining functions of epithelial tissues, such as barrier formation, ion transport, and sensory perception.
Collapse
|
7
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
8
|
Zuo K, Qi Y, Yuan C, Jiang L, Xu P, Hu J, Huang M, Li J. Specifically targeting cancer proliferation and metastasis processes: the development of matriptase inhibitors. Cancer Metastasis Rev 2020; 38:507-524. [PMID: 31471691 DOI: 10.1007/s10555-019-09802-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matriptase is a type II transmembrane serine protease, which has been suggested to play critical roles in numerous pathways of biological developments. Matriptase is the activator of several oncogenic proteins, including urokinase-type plasminogen activator (uPA), hepatocyte growth factor (HGF) and protease-activated receptor 2 (PAR-2). The activations of these matriptase substrates subsequently lead to the generation of plasmin, matrix metalloproteases (MMPs), and the triggers for many other signaling pathways related to cancer proliferation and metastasis. Accordingly, matriptase is considered an emerging target for the treatments of cancer. Thus far, inhibitors of matriptase have been developed as potential anti-cancer agents, which include small-molecule inhibitors, peptide-based inhibitors, and monoclonal antibodies. This review covers established literature to summarize the chemical and biochemical aspects, especially the inhibitory mechanisms and structure-activity relationships (SARs) of matriptase inhibitors with the goal of proposing the strategies for their future developments in anti-cancer therapy.
Collapse
Affiliation(s)
- Ke Zuo
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Yingying Qi
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Cai Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Dr, 138673, Singapore, Singapore.
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, People's Republic of China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| |
Collapse
|
9
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
10
|
Hellinger R, Gruber CW. Peptide-based protease inhibitors from plants. Drug Discov Today 2019; 24:1877-1889. [PMID: 31170506 PMCID: PMC6753016 DOI: 10.1016/j.drudis.2019.05.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
Proteases have an important role in homeostasis, and dysregulation of protease function can lead to pathogenesis. Therefore, proteases are promising drug targets in cancer, inflammation, and neurodegenerative disease research. Although there are well-established pharmaceuticals on the market, drug development for proteases is challenging. This is often caused by the limited selectivity of currently available lead compounds. Proteinaceous plant protease inhibitors are a diverse family of (poly)peptides that are important to maintain physiological homeostasis and to serve the innate defense machinery of the plant. In this review, we provide an overview of the diversity of plant peptide- and protein-based protease inhibitors (PIs), provide examples of such compounds that target human proteases, and discuss opportunities for these molecules in protease drug discovery and development.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Pharmacology and Physiology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Christian W Gruber
- Center for Pharmacology and Physiology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria.
| |
Collapse
|
11
|
Lan HY, Zhao B, Shen YL, Li XQ, Wang SJ, Zhang LJ, Zhang H. Phytochemistry, Pharmacological Activities, Toxicity and Clinical Application of Momordica cochinchinensis. Curr Pharm Des 2019; 25:715-728. [PMID: 30931848 DOI: 10.2174/1381612825666190329123436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Momordica cochinchinensis (Lour.) Spreng (M. cochinchinensis) is a deciduous vine that grows in Southeast Asia. It is known as gac in Vietnam and as Red Melon in English. Gac is reputed to be extremely benificial for health and has been widely used as food and folk medicine in Southeast Asia. In China, the seed of M. cochinchinensis (Chinese name: Mu biezi) is used as traditional Chinese medicine (TCM) for the treatment of various diseases. More than 60 chemical constituents have been isolated from M. cochinchinensis. Modern pharmacological studies and clinical practice demonstrate that some chemical constituents of M. cochinchinensis possess wide pharmacological activities, such as anti-tumor, anti-oxidation, anti-inflammatory, etc. This paper reviews the phytochemistry, pharmacological activities, toxicity, and clinical application of M. cochinchinensis, aiming to bring new insights into further research and application of this ancient herb.
Collapse
Affiliation(s)
- Hai-Yue Lan
- Central Laboratory, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Zhao
- Department of General Surgery, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yu-Li Shen
- Central Laboratory, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Qin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su-Juan Wang
- Department of Drug Preparation, Hospital of TCM and Hui Nationality Medicine, Ningxia Medical University, Wuzhong, China
| | - Li-Jun Zhang
- Central Laboratory, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- Central Laboratory, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
12
|
Recent progress on inhibitors of the type II transmembrane serine proteases, hepsin, matriptase and matriptase-2. Future Med Chem 2019; 11:743-769. [DOI: 10.4155/fmc-2018-0446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Members of the type II transmembrane serine proteases (TTSP) family play a vital role in cell growth and development but many are also implicated in disease. Two of the well-studied TTSPs, matriptase and hepsin proteolytically process multiple protein substrates such as the inactive single-chain zymogens pro-HGF and pro-macrophage stimulating protein into the active heterodimeric forms, HGF and macrophage stimulating protein. These two proteases also have many other substrates which are associated with cancer and tumor progression. Another related TTSP, matriptase-2 is expressed in the liver and functions by regulating iron homoeostasis through the cleavage of hemojuvelin and thus is implicated in iron overload diseases. In the present review, we will discuss inhibitor design strategy and Structure activity relationships of TTSP inhibitors, which have been reported in the literature.
Collapse
|
13
|
Tamberg T, Hong Z, De Schepper D, Skovbjerg S, Dupont DM, Vitved L, Schar CR, Skjoedt K, Vogel LK, Jensen JK. Blocking the proteolytic activity of zymogen matriptase with antibody-based inhibitors. J Biol Chem 2018; 294:314-326. [PMID: 30409910 DOI: 10.1074/jbc.ra118.004126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/04/2018] [Indexed: 11/06/2022] Open
Abstract
Matriptase is a member of the type-II transmembrane serine protease (TTSP) family and plays a crucial role in the development and maintenance of epithelial tissues. As all chymotrypsin-like serine proteases, matriptase is synthesized as a zymogen (proform), requiring a cleavage event for full activity. Recent studies suggest that the zymogen of matriptase possesses enough catalytic activity to not only facilitate autoactivation, but also carry out its in vivo functions, which include activating several proteolytic and signaling cascades. Inhibition of zymogen matriptase may therefore be a highly effective approach for limiting matriptase activity. To this end, here we sought to characterize the catalytic activity of human zymogen matriptase and to develop mAb inhibitors against this enzyme form. Using a mutated variant of matriptase in which the serine protease domain is locked in the zymogen conformation, we confirmed that the zymogen form of human matriptase has catalytic activity. Moreover, the crystal structure of the catalytic domain of zymogen matriptase was solved to 2.5 Å resolution to characterize specific antibody-based matriptase inhibitors and to further structure-based studies. Finally, we describe the first antibody-based competitive inhibitors that target both the zymogen and activated forms of matriptase. We propose that these antibodies provide a more efficient way to regulate matriptase activity by targeting the protease both before and after its activation and may be of value for both research and preclinical applications.
Collapse
Affiliation(s)
- Trine Tamberg
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Zebin Hong
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Daphné De Schepper
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Signe Skovbjerg
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 1165, Denmark
| | - Daniel M Dupont
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Lars Vitved
- Department of Cancer and Inflammation, University of Southern Denmark, Odense 5230, Denmark
| | - Christine R Schar
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark
| | - Karsten Skjoedt
- Department of Cancer and Inflammation, University of Southern Denmark, Odense 5230, Denmark
| | - Lotte K Vogel
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 1165, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, Aarhus 8000, Denmark.
| |
Collapse
|
14
|
Xu P, Huang M. Small Peptides as Modulators of Serine Proteases. Curr Med Chem 2018; 27:3686-3705. [PMID: 30332941 DOI: 10.2174/0929867325666181016163630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Serine proteases play critical roles in many physiological and pathological processes, and are proven diagnostic and therapeutic targets in a number of clinical indications. Suppression of the aberrant proteolytic activities of these proteases has been clinically used for the treatments of relevant diseases. Polypeptides with 10-20 residues are of great interests as medicinal modulators of serine proteases, because these peptides demonstrate the characteristics of both small molecule drugs and macromolecular drugs. In this review, we summarized the recent development of peptide-based inhibitors against serine proteases with potent inhibitory and high specificity comparable to monoclonal antibodies. In addition, we also discussed the strategies of enhancing plasma half-life and bioavailability of peptides in vivo, which is the main hurdle that limits the clinical translation of peptide-based drugs. This review advocates new avenue for the development of effective serine protease inhibitors and highlights the prospect of the medicinal use of these inhibitors.
Collapse
Affiliation(s)
- Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
15
|
Gaweł‐Bęben K, Ali N, Ellis V, Velasco G, Poghosyan Z, Ager A, Knäuper V. TMEFF2 shedding is regulated by oxidative stress and mediated by ADAMs and transmembrane serine proteases implicated in prostate cancer. Cell Biol Int 2018; 42:273-280. [PMID: 28762604 PMCID: PMC5836882 DOI: 10.1002/cbin.10832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
TMEFF2 is a type I transmembrane protein with two follistatin (FS) and one EGF-like domain over-expressed in prostate cancer; however its biological role in prostate cancer development and progression remains unclear, which may, at least in part, be explained by its proteolytic processing. The extracellular part of TMEFF2 (TMEFF2-ECD) is cleaved by ADAM17 and the membrane-retained fragment is further processed by the gamma-secretase complex. TMEFF2 shedding is increased with cell crowding, a condition associated with the tumour microenvironment, which was mediated by oxidative stress signalling, requiring jun-kinase (JNK) activation. Moreover, we have identified that TMEFF2 is also a novel substrate for other proteases implicated in prostate cancer, including two ADAMs (ADAM9 and ADAM12) and the type II transmembrane serine proteinases (TTSPs) matriptase-1 and hepsin. Whereas cleavage by ADAM9 and ADAM12 generates previously identified TMEFF2-ECD, proteolytic processing by matriptase-1 and hepsin produced TMEFF2 fragments, composed of TMEFF2-ECD or FS and/or EGF-like domains as well as novel membrane retained fragments. Differential TMEFF2 processing from a single transmembrane protein may be a general mechanism to modulate transmembrane protein levels and domains, dependent on the repertoire of ADAMs or TTSPs expressed by the target cell.
Collapse
Affiliation(s)
- Katarzyna Gaweł‐Bęben
- School of MedicineUniversity of Information Technology and Management in Rzeszow2 Sucharskiego Str.35‐225 RzeszowPoland
- School of DentistryCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
| | - Nazim Ali
- School of DentistryCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
- School of MedicineUniversity of KeeleKeeleST5 5BGUnited Kingdom
| | - Vincent Ellis
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Gloria Velasco
- Departamento de Bioquímica y Biología Molecular Facultad de MedicinaUniversidad de Oviedo33006 OviedoSpain
| | - Zaruhi Poghosyan
- School of MedicineCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
| | - Ann Ager
- School of MedicineCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
| | - Vera Knäuper
- School of DentistryCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
| |
Collapse
|
16
|
Murray AS, Varela FA, List K. Type II transmembrane serine proteases as potential targets for cancer therapy. Biol Chem 2017; 397:815-26. [PMID: 27078673 DOI: 10.1515/hsz-2016-0131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
Abstract
Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor microenvironment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens.
Collapse
|
17
|
Cyclotides as drug design scaffolds. Curr Opin Chem Biol 2017; 38:8-16. [DOI: 10.1016/j.cbpa.2017.01.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/27/2017] [Indexed: 11/21/2022]
|
18
|
Troeira Henriques S, Craik DJ. Cyclotide Structure and Function: The Role of Membrane Binding and Permeation. Biochemistry 2017; 56:669-682. [DOI: 10.1021/acs.biochem.6b01212] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| |
Collapse
|
19
|
Tanabe LM, List K. The role of type II transmembrane serine protease-mediated signaling in cancer. FEBS J 2016; 284:1421-1436. [PMID: 27870503 DOI: 10.1111/febs.13971] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/29/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
Pericellular proteases have long been implicated in carcinogenesis. Previous research focused on these proteins, primarily as extracellular matrix (ECM) protein-degrading enzymes which allowed cancer cells to breach the basement membrane and invade surrounding tissue. However, recently, there has been a shift in the view of cell surface proteases, including serine proteases, as proteolytic modifiers of particular targets, including growth factors and protease-activated receptors, which are critical for the activation of oncogenic signaling pathways. Of the 176 human serine proteases currently identified, a subset of 17, known as type II transmembrane serine proteases (TTSPs). Many have been shown to be relevant to cancer progression since they were first identified as a family around the turn of the century. To this end, altered expression of TTSPs appeared as a trademark of several tumor types. However, the substrates and underlying signaling pathways remained unclear. Localization of these proteins to the cell surface places them in the unique position to mediate signal transduction between the cell and its surrounding environment. Many of the TTSPs have already been shown to play key roles in processes such as postnatal development, tissue homeostasis, and tumor progression, which share overlapping molecular mechanisms. In this review, we summarize the current knowledge regarding the role of the TTSP family in pro-oncogenic signaling.
Collapse
Affiliation(s)
- Lauren M Tanabe
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Karin List
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
20
|
Swedberg JE, Mahatmanto T, Abdul Ghani H, de Veer SJ, Schroeder CI, Harris JM, Craik DJ. Substrate-Guided Design of Selective FXIIa Inhibitors Based on the Plant-Derived Momordica cochinchinensis Trypsin Inhibitor-II (MCoTI-II) Scaffold. J Med Chem 2016; 59:7287-92. [DOI: 10.1021/acs.jmedchem.6b00557] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joakim E. Swedberg
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tunjung Mahatmanto
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hafiza Abdul Ghani
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simon J. de Veer
- Institute
of Health and Biomedical Innovation, Queensland University of Technology, Brisbane Queensland 4059, Australia
| | - Christina I. Schroeder
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jonathan M. Harris
- Institute
of Health and Biomedical Innovation, Queensland University of Technology, Brisbane Queensland 4059, Australia
| | - David J. Craik
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Sun DR, Zheng QC, Zhang HX. Probing the interaction mechanism of small molecule inhibitors with matriptase based on molecular dynamics simulation and free energy calculations. J Biomol Struct Dyn 2016; 35:755-764. [DOI: 10.1080/07391102.2016.1160259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Dong-Ru Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Qing-Chuan Zheng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin 130023, P.R. China
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
| |
Collapse
|
22
|
Wang CK, Stalmans S, De Spiegeleer B, Craik DJ. Biodistribution of the cyclotide MCoTI-II, a cyclic disulfide-rich peptide drug scaffold. J Pept Sci 2016; 22:305-10. [PMID: 26929247 DOI: 10.1002/psc.2862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/28/2022]
Abstract
Disulfide-rich macrocyclic peptides are promising templates for drug design because of their unique topology and remarkable stability. However, little is known about their pharmacokinetics. In this study, we characterize the biodistribution in mice of Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a cyclic three-disulfide-containing peptide that has been used in a number of studies as a drug scaffold. The distribution of MCoTI-II was compared with that of chlorotoxin, which is a four-disulfide-containing peptide that has been used to develop brain tumor imaging agents; dermorphin, which is a disulfide-less peptide; and bovine serum albumin, a large protein. Both MCoTI-II and chlorotoxin distributed predominantly to the serum and kidneys, confirming that they are stable in serum and suggesting that they are eliminated from the blood through renal clearance. Although cell-penetrating peptides have been reported to be able to transport across the blood-brain barrier, MCoTI-II, which is a cell-penetrating peptide, showed no uptake into the brain. The uptake of chlorotoxin was higher than that of MCoTI-II but lower than that of dermorphin, which is considered to have low uptake into the brain. This study provides insight into the behavior of disulfide-rich peptides in vivo. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
23
|
Cyclic thrombospondin-1 mimetics: grafting of a thrombospondin sequence into circular disulfide-rich frameworks to inhibit endothelial cell migration. Biosci Rep 2015; 35:BSR20150210. [PMID: 26464514 PMCID: PMC4660582 DOI: 10.1042/bsr20150210] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
The findings suggest re-engineered cyclic TSP-1 mimetics are non-toxic, highly stable, and possess potent anti-angiogenesis activity without altering the native fold of the cyclic frameworks. This provides an alternative approach for cancer drug development particularly in the thrombospondin field. Tumour formation is dependent on nutrient and oxygen supply from adjacent blood vessels. Angiogenesis inhibitors can play a vital role in controlling blood vessel formation and consequently tumour progression by inhibiting endothelial cell proliferation, sprouting and migration. The primary aim of the present study was to design cyclic thrombospondin-1 (TSP-1) mimetics using disulfide-rich frameworks for anti-angiogenesis therapies and to determine whether these peptides have better potency than the linear parent peptide. A short anti-angiogenic heptapeptide fragment from TSP-1 (GVITRIR) was incorporated into two cyclic disulfide-rich frameworks, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II) and SFTI-1 (sunflower trypsin inhibitor-1). The cyclic peptides were chemically synthesized and folded in oxidation buffers, before being tested in a series of in vitro evaluations. Incorporation of the bioactive heptapeptide fragment into the cyclic frameworks resulted in peptides that inhibited microvascular endothelial cell migration, and had no toxicity against normal primary human endothelial cells or cancer cells. Importantly, all of the designed cyclic TSP-1 mimetics were far more stable than the linear heptapeptide in human serum. The present study has demonstrated a novel approach to stabilize the active region of TSP-1. The anti-angiogenic activity of the native TSP-1 active fragment was maintained in the new TSP-1 mimetics and the results provide a new chemical approach for the design of TSP-1 mimetics.
Collapse
|
24
|
Hellinger R, Koehbach J, Puigpinós A, Clark RJ, Tarragó T, Giralt E, Gruber CW. Inhibition of Human Prolyl Oligopeptidase Activity by the Cyclotide Psysol 2 Isolated from Psychotria solitudinum. JOURNAL OF NATURAL PRODUCTS 2015; 78:1073-82. [PMID: 25894999 PMCID: PMC4444998 DOI: 10.1021/np501061t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 05/21/2023]
Abstract
Cyclotides are head-to-tail cyclized peptides comprising a stabilizing cystine-knot motif. To date, they are well known for their diverse bioactivities such as anti-HIV and immunosuppressive properties. Yet little is known about specific molecular mechanisms, in particular the interaction of cyclotides with cellular protein targets. Native and synthetic cyclotide-like peptides from Momordica plants are potent and selective inhibitors of different serine-type proteinases such as trypsin, chymotrypsin, matriptase, and tryptase-beta. This study describes the bioactivity-guided isolation of a cyclotide from Psychotria solitudinum as an inhibitor of another serine-type protease, namely, the human prolyl oligopeptidase (POP). Analysis of the inhibitory potency of Psychotria extracts and subsequent fractionation by liquid chromatography yielded the isolated peptide psysol 2 (1), which exhibited an IC50 of 25 μM. In addition the prototypical cyclotide kalata B1 inhibited POP activity with an IC50 of 5.6 μM. The inhibitory activity appeared to be selective for POP, since neither psysol 2 nor kalata B1 were able to inhibit the proteolytic activity of trypsin or chymotrypsin. The enzyme POP is well known for its role in memory and learning processes, and it is currently being considered as a promising therapeutic target for the cognitive deficits associated with several psychiatric and neurodegenerative diseases, such as schizophrenia and Parkinson's disease. In the context of discovery and development of POP inhibitors with beneficial ADME properties, cyclotides may be suitable starting points considering their stability in biological fluids and possible oral bioavailability.
Collapse
Affiliation(s)
- Roland Hellinger
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Johannes Koehbach
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Albert Puigpinós
- Institute
for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Richard J. Clark
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Teresa Tarragó
- Institute
for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Ernest Giralt
- Institute
for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona
(UB), 08028 Barcelona, Spain
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Medical
University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| |
Collapse
|
25
|
Li Y, Bi T, Camarero JA. Chemical and biological production of cyclotides. ADVANCES IN BOTANICAL RESEARCH 2015; 76:271-303. [PMID: 27064329 PMCID: PMC4822716 DOI: 10.1016/bs.abr.2015.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cyclotides are fascinating naturally occurring micro-proteins (≈30 residues long) present in several plant families, and display various biological properties such as protease inhibitory, anti-microbial, insecticidal, cytotoxic, anti-HIV and hormone-like activities. Cyclotides share a unique head-to-tail circular knotted topology of three disulfide bridges, with one disulfide penetrating through a macrocycle formed by the two other disulfides and interconnecting peptide backbones, forming what is called a cystine knot topology. This cyclic cystine knot (CCK) framework gives the cyclotides exceptional rigidity, resistance to thermal and chemical denaturation, and enzymatic stability against degradation. Interestingly, cyclotides have been shown to be orally bioavailable, and other cyclotides have been shown to cross the cell membranes. Moreover, recent reports have also shown that engineered cyclotides can be efficiently used to target extracellular and intracellular protein-protein interactions, therefore making cyclotides ideal tools for drug development to selectively target protein-protein interactions. In this work we will review all the available methods for production of these interesting proteins using chemical or biological methods.
Collapse
Affiliation(s)
- Yilong Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Tao Bi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
26
|
Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors. Oncogene 2014; 34:4664-72. [PMID: 25486433 PMCID: PMC4459940 DOI: 10.1038/onc.2014.391] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022]
Abstract
Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor-cMet-Akt-mTor proliferation/survival signaling and PAR-2-Gαi-NFκB inflammatory signaling. Matriptase was congenitally and constitutively deregulated in our prior studies, and therefore it was unclear if aberrant matriptase signaling supports only initiation of tumor formation or if it is also critical for the progression of established tumors. To determine this, we here have generated triple-transgenic mice with constitutive deregulation of matriptase and simultaneous inducible expression of the cognate matriptase inhibitor, hepatocyte growth factor inhibitor (HAI)-2. As expected, constitutive expression of HAI-2 suppressed the formation of matriptase-dependent tumors in 7,12-Dimethylbenz(a)anthracene-treated mouse skin. Interestingly, however, the induction of HAI-2 expression in already established tumors markedly impaired malignant progression and caused regression of individual tumors. Tumor regression correlated with reduced accumulation of tumor-associated inflammatory cells, likely caused by diminished expression of pro-tumorigenic inflammatory cytokines. The data suggest that matriptase-dependent signaling may be a therapeutic target for both squamous cell carcinoma chemoprevention and for the treatment of established tumors.
Collapse
|
27
|
Stanger K, Maurer T, Kaluarachchi H, Coons M, Franke Y, Hannoush RN. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A. FEBS Lett 2014; 588:4487-96. [DOI: 10.1016/j.febslet.2014.10.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 11/15/2022]
|
28
|
Mechanisms of hepatocyte growth factor activation in cancer tissues. Cancers (Basel) 2014; 6:1890-904. [PMID: 25268161 PMCID: PMC4276949 DOI: 10.3390/cancers6041890] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent activators. Increased activities of both proteases have been observed in various cancers. HGFA is synthesized mainly by the liver and secreted as an inactive pro-form. In cancer tissues, pro-HGFA is likely activated by thrombin and/or human kallikrein 1-related peptidase (KLK)-4 and KLK-5. Matriptase is a type II transmembrane serine protease that is expressed by most epithelial cells and is also synthesized as an inactive zymogen. Matriptase activation is likely to be mediated by autoactivation or by other trypsin-like proteases. Recent studies revealed that matriptase autoactivation is promoted by an acidic environment. Given the mildly acidic extracellular environment of solid tumors, matriptase activation may, thus, be accelerated in the tumor microenvironment. HGFA and matriptase activities are regulated by HGFA inhibitor (HAI)-1 (HAI-1) and/or HAI-2 in the pericellular microenvironment. HAIs may have an important role in cancer cell biology by regulating HGF/SF-activating proteases.
Collapse
|