1
|
Shamanaev A, Litvak M, Ivanov I, Srivastava P, Sun MF, Dickeson SK, Kumar S, He TZ, Gailani D. Factor XII Structure-Function Relationships. Semin Thromb Hemost 2024; 50:937-952. [PMID: 37276883 PMCID: PMC10696136 DOI: 10.1055/s-0043-1769509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a "closed" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ivan Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Priyanka Srivastava
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracey Z. He
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
2
|
Lou J, Zhang J, Deng Q, Chen X. Neutrophil extracellular traps mediate neuro-immunothrombosis. Neural Regen Res 2024; 19:1734-1740. [PMID: 38103239 PMCID: PMC10960287 DOI: 10.4103/1673-5374.389625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammatory reactions. Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms. Histones, von Willebrand factor, fibrin, and many other factors participate in the interplay between inflammation and thrombosis. Neuro-immunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases, providing cutting-edge insights into post-neurotrauma thrombotic events. The blood-brain barrier defends the brain and spinal cord against external assaults, and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases. Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis, but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis, and identified modulators of neuro-immunothrombosis. However, these neurological diseases occur in blood vessels, and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury. This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.
Collapse
Affiliation(s)
- Jianbo Lou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
3
|
Chooklin S, Chuklin S. The role of neutrophil extracellular traps in thrombosis. EMERGENCY MEDICINE 2023; 19:448-457. [DOI: 10.22141/2224-0586.19.7.2023.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
According to the cellular model of hemostasis, the process of blood coagulation is presented in the form of three phases: initiation, amplification and propagation, each of them includes several consecutive stages. At the same time, thrombus formation is often explained by Virchow’s triad: blood stasis, damage to the blood vessel walls, and hypercoagulation. Classically, the appearance of one of the three mentioned parameters can lead to thrombus formation. Over the past decade, our knowledge of the cross-talk between coagulation, inflammation, and innate immune activation and the involvement of neutrophil extracellular traps in these processes has expanded. This brief review shows their role in thrombosis through the mechanisms of activation of platelets, complement, interaction with blood coagulation factors and damage to the vascular endothelium. We searched the literature in the MEDLINE database on the PubMed platform.
Collapse
|
4
|
Kumar R, Patil G, Dayal S. NLRP3-Induced NETosis: A Potential Therapeutic Target for Ischemic Thrombotic Diseases? Cells 2023; 12:2709. [PMID: 38067137 PMCID: PMC10706381 DOI: 10.3390/cells12232709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic thrombotic disease, characterized by the formation of obstructive blood clots within arteries or veins, is a condition associated with life-threatening events, such as stroke, myocardial infarction, deep vein thrombosis, and pulmonary embolism. The conventional therapeutic strategy relies on treatments with anticoagulants that unfortunately pose an inherent risk of bleeding complications. These anticoagulants primarily target clotting factors, often overlooking upstream events, including the release of neutrophil extracellular traps (NETs). Neutrophils are integral components of the innate immune system, traditionally known for their role in combating pathogens through NET formation. Emerging evidence has now revealed that NETs contribute to a prothrombotic milieu by promoting platelet activation, increasing thrombin generation, and providing a scaffold for clot formation. Additionally, NET components enhance clot stability and resistance to fibrinolysis. Clinical and preclinical studies have underscored the mechanistic involvement of NETs in the pathogenesis of thrombotic complications, since the clots obtained from patients and experimental models consistently exhibit the presence of NETs. Given these insights, the inhibition of NETs or NET formation is emerging as a promising therapeutic approach for ischemic thrombotic diseases. Recent investigations also implicate a role for the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome as a mediator of NETosis and thrombosis, suggesting that NLRP3 inhibition may also hold potential for mitigating thrombotic events. Therefore, future preclinical and clinical studies aimed at identifying and validating NLRP3 inhibition as a novel therapeutic intervention for thrombotic disorders are imperative.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Visakhapatnam 530045, India
| | - Gokul Patil
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
5
|
Bekendam RH, Ravid K. Mechanisms of platelet activation in cancer-associated thrombosis: a focus on myeloproliferative neoplasms. Front Cell Dev Biol 2023; 11:1207395. [PMID: 37457287 PMCID: PMC10342211 DOI: 10.3389/fcell.2023.1207395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Platelets are anucleate blood cells that play key roles in thrombosis and hemostasis. Platelets are also effector cells in malignancy and are known to home into the microenvironment of cancers. As such, these cells provide central links between the hemostatic system, inflammation and cancer progression. Activation of platelets by cancers has been postulated to contribute to metastasis and progression of local tumor invasion. Similarly, cancer-activated platelets can increase the risk of development of both arterial and venous thrombosis; a major contributor to cancer-associated morbidity. Platelet granules secretion within the tumor environment or the plasma provide a rich source of potential biomarkers for prediction of thrombotic risk or tumor progression. In the case of myeloproliferative neoplasms (MPNs), which are characterized by clonal expansion of myeloid precursors and abnormal function and number of erythrocytes, leukocytes and platelets, patients suffer from thrombotic and hemorrhagic complications. The mechanisms driving this are likely multifactorial but remain poorly understood. Several mouse models developed to recapitulate MPN phenotype with one of the driving mutations, in JAK2 (JAK2V617F) or in calreticulin (CALR) or myeloproliferative leukemia virus oncogene receptor (MPL), have been studied for their thrombotic phenotype. Variability and discrepancies were identified within different disease models of MPN, emphasizing the complexity of increased risk of clotting and bleeding in these pathologies. Here, we review recent literature on the role of platelets in cancer-associated arterial and venous thrombosis and use MPN as case study to illustrate recent advances in experimental models of thrombosis in a malignant phenotype. We address major mechanisms of tumor-platelet communication leading to thrombosis and focus on the role of altered platelets in promoting thrombosis in MPN experimental models and patients with MPN. Recent identification of platelet-derived biomarkers of MPN-associated thrombosis is also reviewed, with potential therapeutic implications.
Collapse
Affiliation(s)
- Roelof H. Bekendam
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Katya Ravid
- Department of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Yokoyama APH, Kutner JM, de Moraes Mazetto Fonseca B, Mesquita GLTV, Sakashita AM, Dos Santos APR, Nakazawa CY, de Almeida MD, de Andrade Orsi FL. Neutrophil extracellular traps (NETs), transfusion requirements and clinical outcomes in orthotopic liver transplantation. J Thromb Thrombolysis 2023:10.1007/s11239-023-02825-7. [PMID: 37227652 DOI: 10.1007/s11239-023-02825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Inflammatory phenomena have a direct impact on the prognosis of orthotopic liver transplantation (OLT). Neutrophil extracellular traps (NETs) contribute to OLT inflammation and hemostasis imbalance in OLT. The association between NETosis, clinical outcomes and transfusion requirements is not determined. To evaluate NETs release during OLT and the effect of NETosis ontransfusion requirements and adverse outcomes in a prospective cohort of patients submitted to OLT. We quantified citrullinated histones (cit-H3) and circulating-free-DNA (cf-DNA) in ninety-three patients submitted to OLT in three periods: pre-transplant, after graft reperfusion and before discharge. NETs markers were compared between these periods using ANOVA test. The association of NETosis and adverse outcomes was evaluated using regression models adjusted for age, sex and corrected MELD. We observed a peak of circulating NETs following reperfusion, evidenced by a 2.4-fold increase in cit-H3 levels in the post-graft reperfusion period (median levels of cit-H3 pre transplant: 0.5 ng/mL, after reperfusion: 1.2 ng/mL and at discharge 0.5 ng/mL, p < 0.0001). We observed an association between increased levels of cit-H3 and in-hospital death (OR = 1.168, 95% CI 1.021-1.336, p = 0.024). No association was found between NETs markers and transfusion requirements. There is a prompt release of NETs after reperfusion that is associated with poorer outcomes and death. Intraoperative NETs release seems to be independent of transfusion requirements. These findings highlight the relevance of inflammation promoted by NETS and its impact on OLT adverse clinical outcomes.
Collapse
Affiliation(s)
- Ana Paula Hitomi Yokoyama
- Hemotherapy and Cell Therapy Department, Hospital Israelita Albert Einstein, Av Albert Einstein, 627-3o Andar, São Paulo, SP, 05652-000, Brazil.
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil.
| | - Jose Mauro Kutner
- Hemotherapy and Cell Therapy Department, Hospital Israelita Albert Einstein, Av Albert Einstein, 627-3o Andar, São Paulo, SP, 05652-000, Brazil
| | | | | | - Araci Massami Sakashita
- Hemotherapy and Cell Therapy Department, Hospital Israelita Albert Einstein, Av Albert Einstein, 627-3o Andar, São Paulo, SP, 05652-000, Brazil
| | | | | | | | | |
Collapse
|
7
|
Allosteric modulation of exosite 1 attenuates polyphosphate-catalyzed activation of factor XI by thrombin. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:83-93. [PMID: 36695400 DOI: 10.1016/j.jtha.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Polyphosphate (polyP) promotes feedback activation of factor (F) XI by thrombin by serving as a template. The contribution of thrombin's exosites to these interactions is unclear. OBJECTIVES To determine the contribution of thrombin exosites 1 and 2 to polyP-induced potentiation of FXI activation by thrombin. METHODS The affinities of α-thrombin; K109E/110E-thrombin, an exosite 1 variant, or R93E-thrombin, an exosite 2 variant; FXI; and FXIa for polyP-70 were quantified using surface plasmon resonance in the absence or presence of exosite ligands. FXI was activated with α-thrombin or thrombin variants in the absence or presence of polyP-70 and exosite ligands. RESULTS α-Thrombin, K109/110E-thrombin, FXI, and FXIa bound polyP-70, whereas R93E-thrombin exhibited minimal binding. Exosite 1 and exosite 2 ligands attenuated thrombin binding to polyP-70. PolyP-70 accelerated the rate of FXI activation by α-thrombin and K109E/110E-thrombin but not R93E-thrombin up to 1500-fold in a bell-shaped, concentration-responsive manner. Exosite 1 and exosite 2 ligands had no impact on FXI activation by thrombin in the absence of polyP-70; however, in its presence, they attenuated activation by 40% to 65%. CONCLUSION PolyP-70 binds FXI and thrombin and promotes their interaction. Exosite 2 ligands attenuate activation because thrombin binds polyP-70 via exosite 2. Attenuation of FXI activation by exosite 1 ligands likely reflects allosteric modulation of exosite 2 and/or the active site of thrombin because exosite 1 is not directly involved in FXI activation. Therefore, allosteric modulation of thrombin's exosites may represent a novel strategy for downregulating FXI activation.
Collapse
|
8
|
Zhou Y, Xu Z, Liu Z. Impact of Neutrophil Extracellular Traps on Thrombosis Formation: New Findings and Future Perspective. Front Cell Infect Microbiol 2022; 12:910908. [PMID: 35711663 PMCID: PMC9195303 DOI: 10.3389/fcimb.2022.910908] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Thrombotic diseases seriously endanger human health, neutrophils and neutrophil extracellular traps (NETs) play an important role in abnormal thrombus formation. NETs are extracellular structures released by neutrophils upon stimulation by pathogens. NETs include neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G and other active substances. The network structure provided by NETs can prevent the spread of pathogens and effectively kill and eliminate pathogens. However, the components of NETs can also abnormally activate the coagulation pathway and participate in the formation of pathological thrombi. This review aims to summarize the mechanisms of NETs formation in detail; the research progress of NETs in venous thrombosis, arterial thrombosis, acquired disease-associated thrombosis, sepsis coagulation disorder; as well as the strategies to target NETs in thrombosis prevention and treatment.
Collapse
Affiliation(s)
| | - Zhendong Xu
- *Correspondence: Zhiqiang Liu, ; Zhendong Xu,
| | | |
Collapse
|
9
|
Truong TK, Malik RA, Yao X, Fredenburgh JC, Stafford AR, Madarati HM, Kretz CA, Weitz JI. Identification of the histidine-rich glycoprotein domains responsible for contact pathway inhibition. J Thromb Haemost 2022; 20:821-832. [PMID: 34967109 DOI: 10.1111/jth.15631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Previously, we showed that histidine-rich glycoprotein (HRG) binds factor (F) XIIa with high affinity, inhibits FXII autoactivation and FXIIa-mediated activation of FXI, and attenuates ferric chloride-induced arterial thrombosis in mice. Therefore, HRG downregulates the contact pathway in vitro and in vivo. OBJECTIVE To identify the domains on HRG responsible for contact pathway inhibition. METHODS Recombinant HRG domain constructs (N-terminal [N1, N2, and N1N2], proline-rich regions, histidine-rich region [HRR], and C-terminal) were expressed and purified. The affinities of plasma-derived HRG, HRG domain constructs, and synthetic HRR peptides for FXII, FXIIa, β-FXIIa, and polyphosphate (polyP) were determined using surface plasmon resonance, and their effects on polyP-induced FXII autoactivation, FXIIa-mediated activation of FXI and prekallikrein, the activated partial thromboplastin time (APTT), and thrombin generation were examined. RESULTS HRG and HRG domain constructs bind FXIIa, but not FXII or β-FXII. HRR, N1, and N1N2 bind FXIIa with affinities comparable with that of HRG, whereas the remaining domains bind with lower affinity. Synthetic HRR peptides bind FXIIa and polyP with high affinity. HRG and HRR significantly inhibit FXII autoactivation and prolong the APTT. Like HRG, synthetic HRR peptides inhibit FXII autoactivation, attenuate FXIIa-mediated activation of prekallikrein and FXI, prolong the APTT, and attenuate thrombin generation. CONCLUSION The interaction of HRG with FXIIa and polyP is predominantly mediated by the HRR domain. Like intact HRG, HRR downregulates the contact pathway and contributes to HRG-mediated down regulation of coagulation.
Collapse
Affiliation(s)
- Tammy K Truong
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rida A Malik
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Xintong Yao
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - James C Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alan R Stafford
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hasam M Madarati
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Kretz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Wygrecka M, Birnhuber A, Seeliger B, Michalick L, Pak O, Schultz AS, Schramm F, Zacharias M, Gorkiewicz G, David S, Welte T, Schmidt JJ, Weissmann N, Schermuly RT, Barreto G, Schaefer L, Markart P, Brack MC, Hippenstiel S, Kurth F, Sander LE, Witzenrath M, Kuebler WM, Kwapiszewska G, Preissner KT. Altered fibrin clot structure and dysregulated fibrinolysis contribute to thrombosis risk in severe COVID-19. Blood Adv 2022; 6:1074-1087. [PMID: 34861681 PMCID: PMC8648369 DOI: 10.1182/bloodadvances.2021004816] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. In this study, we determined the altered levels of factor XII (FXII) and its activation products in critically ill patients with COVID-19 in comparison with patients with severe acute respiratory distress syndrome related to the influenza virus (acute respiratory distress syndrome [ARDS]-influenza). Compatible with those data, we found rapid consumption of FXII in COVID-19 but not in ARDS-influenza plasma. Interestingly, the lag phase in fibrin formation, triggered by the FXII activator kaolin, was not prolonged in COVID-19, as opposed to that in ARDS-influenza. Confocal and electron microscopy showed that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggered formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, clot lysis was markedly impaired in COVID-19 as opposed to that in ARDS-influenza. Dysregulated fibrinolytic system, as evidenced by elevated levels of thrombin-activatable fibrinolysis inhibitor, tissue-plasminogen activator, and plasminogen activator inhibitor-1 in COVID-19 potentiated this effect. Analysis of lung tissue sections revealed widespread extra- and intravascular compact fibrin deposits in patients with COVID-19. A compact fibrin network structure and dysregulated fibrinolysis may collectively contribute to a high incidence of thrombotic events in COVID-19.
Collapse
Affiliation(s)
- Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Benjamin Seeliger
- Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Laura Michalick
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary Institute, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Astrid-Solveig Schultz
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Fabian Schramm
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Sascha David
- Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Tobias Welte
- Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Julius J. Schmidt
- Department of Nephrology and Hypertension, Hanover Medical School, Hanover, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary Institute, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardiopulmonary Institute, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Guillermo Barreto
- Paris-Est Creteil University, Gly-Croissance, Réparation et Régénération Tissulaires (CRRET), Creteil, France
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoP), Unité Mixte de Recherche (UMR) 7365, Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Faculté de Médecine, Vandœuvre-lès-Nancy Cedex, France
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Philipp Markart
- Department of Pulmonary Medicine, Fulda Hospital, University Medicine Marburg, Campus Fulda, Fulda, Germany
| | - Markus C. Brack
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| | - Leif E. Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Klaus T. Preissner
- Department of Cardiology, Kerckhoff Heart Research Institute, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
11
|
Yaqinuddin A. Neutrophil extracellular traps and thrombogenesis in COVID-19 patients. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:96. [PMID: 34899934 PMCID: PMC8607181 DOI: 10.4103/jrms.jrms_750_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/30/2020] [Accepted: 02/16/2021] [Indexed: 06/14/2023]
Abstract
COVID-19 has caused significant morbidity and mortality around the world. Recent reports point toward the "cytokine storm" as core of pathogenesis in SAR-CoV-2-induced acute lung injury, acute respiratory distress syndrome (ARDS), coagulopathy, and multiorgan failure. We have presented clinical data here wherein cytokine levels in COVID-19 patients do not match typical cytokine storm seen in ARDS. Interestingly, COVID-19 patients in early disease present with hypoxemia with no significant respiratory dysfunction. In addition, it is reported that hospitalized COVID-19 patients have a high incidence of thrombotic complications, especially involving the pulmonary vasculature. We hypothesized that core to pathogenesis of COVID-19 is the dysregulation of neutrophils, which culminates in excessive release of neutrophil extracellular traps (NETs). Recently, an increasing amount of NETs have been seen in sera of severe COVID-19 patients. We have discussed here mechanisms involved which lead to thrombogenesis and vasculitis because of excessive release of NETs.
Collapse
Affiliation(s)
- Ahmed Yaqinuddin
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Polyphosphate-induced thrombosis in mice is factor XII dependent and is attenuated by histidine-rich glycoprotein. Blood Adv 2021; 5:3540-3551. [PMID: 34474475 DOI: 10.1182/bloodadvances.2021004567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Histidine-rich glycoprotein (HRG) is an abundant plasma protein that binds factor XIIa (FXIIa) and inhibits factor XII (FXII) autoactivation and FXIIa-mediated activation of FXI. Polyphosphate (polyP), a potent procoagulant released from activated platelets, may serve as a physiological activator of the contact system. Previously, we showed that HRG binds DNA and neutralizes its procoagulant activity. Consequently, our goal was to determine whether the capacity of HRG to bind polyanions enables it to regulate polyP-induced thrombosis. In a plate-based assay, immobilized polyP bound HRG, FXII, and FXIIa in a zinc-dependent manner. Basal and polyP-induced thrombin generation was greater in plasma from HRG-deficient mice than in plasma from wild-type mice. Intraperitoneal injection of polyP shortened the activated partial thromboplastin time, enhanced thrombin generation, increased thrombin-antithrombin levels, reduced lung perfusion, and promoted pulmonary fibrin deposition to a greater extent in HRG-deficient mice than in wild-type mice, effects that were abrogated with FXII knockdown. HRG thus attenuates the procoagulant and prothrombotic effects of polyP in an FXII-dependent manner by modulating the contact system.
Collapse
|
13
|
Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JK, Tretyakova MV, Makatsariya NA, Akinshina SV, Shkoda AS, Pankratyeva LL, Di Renzo GC, Rizzo G, Grigorieva KN, Tsibizova VI, Gris JC, Elalamy I. Neutrophil extracellular traps: a role in inflammation and dysregulated hemostasis as well as in patients with COVID-19 and severe obstetric pathology. OBSTETRICS, GYNECOLOGY AND REPRODUCTION 2021. [DOI: 10.17749/2313-7347/ob.gyn.rep.2021.238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Numerous studies have proven a close relationship between inflammatory diseases and the state of hypercoagulability. In fact, thromboembolic complications represent one of the main causes of disability and mortality in acute and chronic inflammatory diseases, cancer and obstetric complications. Despite this, the processes of hemostasis and immune responses have long been considered separately; currently, work is underway to identify the molecular basis for a relationship between such systems. It has been identified that various pro-inflammatory stimuli are capable of triggering a coagulation cascade, which in turn modulates inflammatory responses. Neutrophil extracellular traps (NETs) are the networks of histones of extracellular DNA generated by neutrophils in response to inflammatory stimuli. The hemostasis is activated against infection in order to minimize the spread of infection and, if possible, inactivate the infectious agent. Another molecular network is based on fibrin. Over the last 10 years, there has been accumulated a whole body of evidence that NETs and fibrin are able to form a united network within a thrombus, stabilizing each other. Similarities and molecular cross-reactions are also present in the processes of fibrinolysis and lysis of NETs. Both NETs and von Willebrand factor (vWF) are involved in thrombosis as well as inflammation. During the development of these conditions, a series of events occurs in the microvascular network, including endothelial activation, NETs formation, vWF secretion, adhesion, aggregation, and activation of blood cells. The activity of vWF multimers is regulated by the specific metalloproteinase ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). Studies have shown that interactions between NETs and vWF can lead to arterial and venous thrombosis and inflammation. In addition, the contents released from activated neutrophils or NETs result in decreased ADAMTS-13 activity, which can occur in both thrombotic microangiopathies and acute ischemic stroke. Recently, NETs have been envisioned as a cause of endothelial damage and immunothrombosis in COVID-19. In addition, vWF and ADAMTS-13 levels predict COVID-19 mortality. In this review, we summarize the biological characteristics and interactions of NETs, vWF, and ADAMTS-13, the effect of NETs on hemostasis regulation and discuss their role in thrombotic conditions, sepsis, COVID-19, and obstetric complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A. S. Shkoda
- Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department
| | - L. L. Pankratyeva
- Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Health Ministry of Russian Federation
| | - G. C. Di Renzo
- Sechenov University; Center for Prenatal and Reproductive Medicine, University of Perugia
| | - G. Rizzo
- Sechenov University; University of Rome Tor Vergata
| | | | - V. I. Tsibizova
- Almazov National Medical Research Centre, Health Ministry of Russian Federation
| | - J.-C. Gris
- Sechenov University; University of Montpellier
| | - I. Elalamy
- Sechenov University; Medicine Sorbonne University; Hospital Tenon
| |
Collapse
|
14
|
Blanch-Ruiz MA, Ortega-Luna R, Martínez-Cuesta MÁ, Álvarez Á. The Neutrophil Secretome as a Crucial Link between Inflammation and Thrombosis. Int J Mol Sci 2021; 22:4170. [PMID: 33920656 PMCID: PMC8073391 DOI: 10.3390/ijms22084170] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases are a leading cause of death. Blood-cell interactions and endothelial dysfunction are fundamental in thrombus formation, and so further knowledge of the pathways involved in such cellular crosstalk could lead to new therapeutical approaches. Neutrophils are secretory cells that release well-known soluble inflammatory signaling mediators and other complex cellular structures whose role is not fully understood. Studies have reported that neutrophil extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) contribute to thrombosis. The objective of this review is to study the role of EVs and NETs as key factors in the transition from inflammation to thrombosis. The neutrophil secretome can promote thrombosis due to the presence of different factors in the EVs bilayer that can trigger blood clotting, and to the release of soluble mediators that induce platelet activation or aggregation. On the other hand, one of the main pathways by which NETs induce thrombosis is through the creation of a scaffold to which platelets and other blood cells adhere. In this context, platelet activation has been associated with the induction of NETs release. Hence, the structure and composition of EVs and NETs, as well as the feedback mechanism between the two processes that causes pathological thrombus formation, require exhaustive analysis to clarify their role in thrombosis.
Collapse
Affiliation(s)
- María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - María Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
15
|
Yaqinuddin A, Almakadma AH, Kashir J. Kawasaki like disease in SARS-CoV-2 infected children – a key role for neutrophil and macrophage extracellular traps. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
16
|
Abstract
Thrombosis is the most feared complication of cardiovascular diseases and a main cause of death worldwide, making it a major health-care challenge. Platelets and the coagulation cascade are effectively targeted by antithrombotic approaches, which carry an inherent risk of bleeding. Moreover, antithrombotics cannot completely prevent thrombotic events, implicating a therapeutic gap due to a third, not yet adequately addressed mechanism, namely inflammation. In this Review, we discuss how the synergy between inflammation and thrombosis drives thrombotic diseases. We focus on the huge potential of anti-inflammatory strategies to target cardiovascular pathologies. Findings in the past decade have uncovered a sophisticated connection between innate immunity, platelet activation and coagulation, termed immunothrombosis. Immunothrombosis is an important host defence mechanism to limit systemic spreading of pathogens through the bloodstream. However, the aberrant activation of immunothrombosis in cardiovascular diseases causes myocardial infarction, stroke and venous thromboembolism. The clinical relevance of aberrant immunothrombosis, referred to as thromboinflammation, is supported by the increased risk of cardiovascular events in patients with inflammatory diseases but also during infections, including in COVID-19. Clinical trials in the past 4 years have confirmed the anti-ischaemic effects of anti-inflammatory strategies, backing the concept of a prothrombotic function of inflammation. Targeting inflammation to prevent thrombosis leaves haemostasis mainly unaffected, circumventing the risk of bleeding associated with current approaches. Considering the growing number of anti-inflammatory therapies, it is crucial to appreciate their potential in covering therapeutic gaps in cardiovascular diseases.
Collapse
|
17
|
Grover SP, Olson TM, Cooley BC, Mackman N. Model-dependent contributions of FXII and FXI to venous thrombosis in mice. J Thromb Haemost 2020; 18:2899-2909. [PMID: 33094904 PMCID: PMC7693194 DOI: 10.1111/jth.15037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The intrinsic pathway factors (F) XII and FXI have been shown to contribute to thrombosis in animal models. We assessed the role of FXII and FXI in venous thrombosis in three distinct mouse models. METHODS Venous thrombosis was assessed in mice genetically deficient for either FXII or FXI. Three models were used: the inferior vena cava (IVC) stasis, IVC stenosis, and femoral vein electrolytic injury models. RESULTS In the IVC stasis model, FXII and FXI deficiency did not affect the size of thrombi but their absence was associated with decreased levels of fibrin(ogen) and an increased level of the neutrophil extracellular trap marker citrullinated histone H3. In contrast, a deficiency of either FXII or FXI resulted in a significant and equivalent reduction in thrombus weight and incidence of thrombus formation in the IVC stenosis model. Thrombi formed in the IVC stenosis model contained significantly higher levels of citrullinated histone H3 compared with the thrombi formed in the IVC stasis model. Deletion of either FXII or FXI also resulted in a significant and equivalent reduction in both fibrin and platelet accumulation in the femoral vein electrolytic injury model. CONCLUSIONS Collectively, these data indicate that FXII and FXI contribute to the size of venous thrombosis in models with blood flow and thrombus composition in a stasis model. This study also demonstrates the importance of using multiple mouse models to assess the role of a given protein in venous thrombosis.
Collapse
Affiliation(s)
- Steven P. Grover
- Division of Hematology and OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Tatianna M. Olson
- Division of Hematology and OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Brian C. Cooley
- Department of Pathology and Laboratory MedicineMcAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Nigel Mackman
- Division of Hematology and OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
18
|
Abstract
Recent advances in our understanding of the contribution of thrombin generation to arterial thrombosis and the role of platelets in venous thrombosis have prompted new treatment paradigms. Nonetheless, bleeding remains the major side effect of such treatments spurring the quest for new antithrombotic regimens with better benefit-risk profiles and for safer anticoagulants for existing and new indications. The aims of this article are to review the results of recent trials aimed at enhancing the benefit-risk profile of antithrombotic therapy and explain how these findings are changing our approach to the management of arterial and venous thrombosis. Focusing on these 2 aspects of thrombosis management, this article discusses 4 advances: (1) the observation that in some indications, lowering the dose of some direct oral anticoagulants reduces the risk of bleeding without compromising efficacy, (2) the recognition that aspirin is not only effective for secondary prevention of atherothrombosis but also for prevention of venous thromboembolism, (3) the finding that dual pathway inhibition with the combination of low-dose rivaroxaban to attenuate thrombin generation plus aspirin to reduce thromboxane A2-mediated platelet activation is superior to aspirin or rivaroxaban alone for prevention of atherothrombosis in patients with coronary or peripheral artery disease, and (4) the development of inhibitors of factor XI or XII as potentially safer anticoagulants.
Collapse
Affiliation(s)
- Noel C Chan
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- From the Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Networks that stop the flow: A fresh look at fibrin and neutrophil extracellular traps. Thromb Res 2019; 182:1-11. [DOI: 10.1016/j.thromres.2019.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
|
20
|
Ząbczyk M, Stachowicz A, Natorska J, Olszanecki R, Wiśniewski JR, Undas A. Plasma fibrin clot proteomics in healthy subjects: Relation to clot permeability and lysis time. J Proteomics 2019; 208:103487. [PMID: 31425886 DOI: 10.1016/j.jprot.2019.103487] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Little is known about fibrin clot composition in relation to its structure and lysability. We investigated plasma clots protein composition and its associations with clot properties. METHODS We studied 20 healthy subjects aged 31-49 years in whom plasma fibrin clot permeability (Ks) and clot lysis time (CLT) were determined. A proteomic analysis of plasma fibrin clots was based on quantitative liquid chromatography-mass spectrometry. RESULTS Among 494 clot-bound proteins identified in all clots, the highest concentrations were for fibrinogen chains (about 64% of the clot mass) and fibronectin (13%). α2-antiplasmin (2.7%), factor XIIIA (1.2%), complement component C3 (1.2%), and histidine-rich glycoprotein (HRG, 0.61%) were present at relatively high concentrations. Proteins present in concentrations <0.5% included (pro)thrombin, plasminogen, apolipoproteins, or platelet factor 4 (PF4). Fibrinogen-α and -γ chains were associated with age, while body-mass index with clot-bound apolipoproteins (all p < .05). Ks correlated with fibrinogen-γ and PF4 amounts within plasma clots. CLT was associated with fibrinogen-α and -γ, PF4, and HRG (all p < .05). CONCLUSIONS This study is the first to show associations of two key measures of clot properties with protein content within plasma clots, suggesting that looser fibrin clots with enhanced lysability contain less fibrinogen-γ chain, platelet-derived PF4, and HRG. SIGNIFICANCE Our study for the first time suggests that more permeable fibrin clots with enhanced lysability contain less fibrinogen-γ chain, platelet-derived factor 4, and histidine-rich glycoprotein, which is related to accelerated clot lysis. The current findings might have functional consequences regarding clot structure, stability, and propagation of thrombin generation, and detailed proteomic analysis of clots in various disorders opens new perspective for coagulation and fibrin research.
Collapse
Affiliation(s)
- Michał Ząbczyk
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
21
|
Thålin C, Hisada Y, Lundström S, Mackman N, Wallén H. Neutrophil Extracellular Traps: Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:1724-1738. [PMID: 31315434 DOI: 10.1161/atvbaha.119.312463] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated a role of neutrophils in both venous and arterial thrombosis. A key prothrombotic feature of neutrophils is their ability to release web-like structures composed of DNA filaments coated with histones and granule proteins referred to as neutrophil extracellular traps (NETs). NETs were discovered over a decade ago as part of our first line of host defense against invading microorganisms. Although NETs have a protective role against pathogens, recent data suggest that an uncontrolled and excessive NET formation within the vasculature may contribute to pathological thrombotic disorders. In vitro studies suggest that NETs promote vessel occlusion by providing a scaffold for platelets, red blood cells, extracellular vesicles, and procoagulant molecules, such as von Willebrand factor and tissue factor. In addition, NET components enhance coagulation by both activating the intrinsic pathway and degrading an inhibitor of the extrinsic pathway (tissue factor pathway inhibitor). NET formation has, therefore, been proposed to contribute to thrombus formation and propagation in arterial, venous, and cancer-associated thrombosis. This review will describe animal and human studies suggesting a role of NETs in the pathogenesis of various thrombotic disorders. Targeting NETs may be a novel approach to reduce thrombosis without affecting hemostasis.
Collapse
Affiliation(s)
- Charlotte Thålin
- From the Division of Internal Medicine, Department of Clinical Sciences, Danderyd Hospital (C.T.), Karolinska Institutet, Stockholm, Sweden
| | - Yohei Hisada
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., N.M.)
| | - Staffan Lundström
- Department of Oncology-Pathology (S.L.), Karolinska Institutet, Stockholm, Sweden.,Palliative Care Services and R&D-Unit, Stockholms Sjukhem Foundation, Sweden (S.L.)
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill (Y.H., N.M.)
| | - Håkan Wallén
- Division of Cardiovascular Medicine (H.W.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Neutrophils: back in the thrombosis spotlight. Blood 2019; 133:2186-2197. [PMID: 30898858 DOI: 10.1182/blood-2018-10-862243] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Reactive and clonal neutrophil expansion has been associated with thrombosis, suggesting that neutrophils play a role in this process. However, although there is no doubt that activated monocytes trigger coagulation in a tissue factor-dependent manner, it remains uncertain whether stimulated neutrophils can also directly activate coagulation. After more than a decade of debate, it is now largely accepted that normal human neutrophils do not synthetize tissue factor, the initiator of the extrinsic pathway of coagulation. However, neutrophils may passively acquire tissue factor from monocytes. Recently, the contact system, which initiates coagulation via the intrinsic pathway, has been implicated in the pathogenesis of thrombosis. After the recent description of neutrophil extracellular trap (NET) release by activated neutrophils, some animal models of thrombosis have demonstrated that coagulation may be enhanced by direct NET-dependent activation of the contact system. However, there is currently no consensus on how to assess or quantify NETosis in vivo, and other experimental animal models have failed to demonstrate a role for neutrophils in thrombogenesis. Nevertheless, it is likely that NETs can serve to localize other circulating coagulation components and can also promote vessel occlusion independent of fibrin formation. This article provides a critical appraisal of the possible roles of neutrophils in thrombosis and highlights some existing knowledge gaps regarding the procoagulant activities of neutrophil-derived extracellular chromatin and its molecular components. A better understanding of these mechanisms could guide future approaches to prevent and/or treat thrombosis.
Collapse
|
23
|
Identification and characterization of a factor Va-binding site on human prothrombin fragment 2. Sci Rep 2019; 9:2436. [PMID: 30792421 PMCID: PMC6385242 DOI: 10.1038/s41598-019-38857-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/11/2019] [Indexed: 11/18/2022] Open
Abstract
The fragment 2 domain (F2) of prothrombin and its interaction with factor (F) Va is known to contribute significantly to prothrombinase-catalyzed activation of prothrombin. The extent to which the F2-FVa interaction affects the overall thrombin generation, however, is uncertain. To study this interaction, nuclear magnetic resonance spectroscopy of recombinant F2 was used to identify seven residues within F2 that are significantly responsive to FVa binding. The functional role of this region in interacting with FVa during prothrombin activation was verified by the FVa-dependent inhibition of thrombin generation using peptides that mimic the same region of F2. Because six of the seven residues were within a 9-residue span, these were mutated to generate a prothrombin derivative (PT6). These mutations led to a decreased affinity for FVa as determined by surface plasmon resonance. When thrombin generation by an array of FXa containing prothrombinase components was monitored, a 54% decrease in thrombin generation was observed with PT6 compared with the wild-type, only when FVa was present. The functional significance of the specific low-affinity binding between F2 and FVa is discussed within the context of a dynamic model of molecular interactions between prothrombin and FVa engaging multiple contact sites.
Collapse
|
24
|
von Meijenfeldt FA, Burlage LC, Bos S, Adelmeijer J, Porte RJ, Lisman T. Elevated Plasma Levels of Cell-Free DNA During Liver Transplantation Are Associated With Activation of Coagulation. Liver Transpl 2018; 24:1716-1725. [PMID: 30168653 PMCID: PMC6718008 DOI: 10.1002/lt.25329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Patients undergoing liver transplantation have complex changes in their hemostatic system, and the net effect of these changes appears to be a "rebalanced" hemostatic profile. Recently, a process called NETosis in which a neutrophil expels DNA and proteins that form a weblike structure, has been described as a mechanism of pathogen entrapment. Increasing evidence suggests a pivotal role for neutrophil extracellular traps (NETs) and their main component, cell-free DNA (cfDNA), in activation of coagulation. Because liver transplantation is associated with substantial (hepatocyte) cell death and intrahepatic neutrophil accumulation, NETs might play an important role in the hemostatic balance during liver transplantation. Here, we determined markers for NETs in the plasma of patients undergoing a liver transplantation and examined their association with activation of coagulation. Markers for NETs and markers for activation of coagulation were determined in serial plasma samples taken from patients undergoing a liver transplantation (n = 21) and compared with plasma levels in healthy controls. We found perioperative increases of markers for NETs with levels of cfDNA and nucleosomes that peaked after reperfusion and myeloperoxidase (MPO)-DNA complexes that peaked during the anhepatic phase. CfDNA and nucleosome levels, but not MPO-DNA levels, correlated with prothrombin fragment 1+2 and thrombin-antithrombin complex levels, which are established markers for activation of coagulation. Neutrophils undergoing NETosis were observed by immunostainings in postreperfusion biopsies. In conclusion, although NETosis occurs during liver transplantation, the majority of circulating DNA appears to be derived from cell death within the graft. The perioperative increases in cfDNA and nucleosomes might contribute to the complex hemostatic rebalance during liver transplantation.
Collapse
Affiliation(s)
- Fien A. von Meijenfeldt
- Surgical Research LaboratoryUniversity of GroningenGroningenthe Netherlands,Section of Hepatobiliary Surgery and Liver Transplantation, Departments of SurgeryUniversity of GroningenGroningenthe Netherlands
| | - Laura C. Burlage
- Surgical Research LaboratoryUniversity of GroningenGroningenthe Netherlands,Section of Hepatobiliary Surgery and Liver Transplantation, Departments of SurgeryUniversity of GroningenGroningenthe Netherlands
| | - Sarah Bos
- Surgical Research LaboratoryUniversity of GroningenGroningenthe Netherlands,Internal Medicine, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Jelle Adelmeijer
- Surgical Research LaboratoryUniversity of GroningenGroningenthe Netherlands
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Departments of SurgeryUniversity of GroningenGroningenthe Netherlands
| | - Ton Lisman
- Surgical Research LaboratoryUniversity of GroningenGroningenthe Netherlands,Section of Hepatobiliary Surgery and Liver Transplantation, Departments of SurgeryUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
25
|
Stachowicz A, Zabczyk M, Natorska J, Suski M, Olszanecki R, Korbut R, Wiśniewski JR, Undas A. Differences in plasma fibrin clot composition in patients with thrombotic antiphospholipid syndrome compared with venous thromboembolism. Sci Rep 2018; 8:17301. [PMID: 30470809 PMCID: PMC6251889 DOI: 10.1038/s41598-018-35034-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
The prothrombotic fibrin clot phenotype has been reported in patients with thrombotic antiphospholipid syndrome (APS) and venous thromboembolism (VTE). Protein composition of plasma fibrin clots in APS has not been studied. We evaluated 23 patients with thrombotic APS, 19 with VTE alone, and 20 well-matched controls. A proteomic analysis of fibrin clots generated from citrated plasma was based on liquid chromatography-mass spectrometry. Plasma levels of thrombospondin-1 (TSP1), apolipoprotein(a), A-I, and B-100, complement components (C)3a, C5b-C9, histidine-rich glycoprotein (HRG), and prothrombin were evaluated using immunoenzymatic tests. In plasma fibrin clots of APS patients, compared with VTE subjects and controls, we identified decreased amounts of (pro)thrombin, antithrombin-III, apolipoprotein A-I, and HRG with no differences in plasma levels of antithrombin, prothrombin, along with lower plasma HRG and apolipoprotein A-I. In APS patients, plasma HRG positively correlated with amounts of clot-bound HRG, while apolipoprotein A-I was inversely associated with clot-bound levels of this protein. The most predominant proteins within the clots of APS patients were bone marrow proteoglycan, C5-C9, immunoglobulins, apolipoprotein B-100, platelet-derived proteins, and TSP1. Our study is the first to demonstrate differences in the protein composition of fibrin clots generated from plasma of thrombotic APS patients versus those with VTE alone.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.,Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michal Zabczyk
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland.,Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Ryszard Korbut
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland. .,Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
26
|
Tillman BF, Gruber A, McCarty OJT, Gailani D. Plasma contact factors as therapeutic targets. Blood Rev 2018; 32:433-448. [PMID: 30075986 PMCID: PMC6185818 DOI: 10.1016/j.blre.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Direct oral anticoagulants (DOACs) are small molecule inhibitors of the coagulation proteases thrombin and factor Xa that demonstrate comparable efficacy to warfarin for several common indications, while causing less serious bleeding. However, because their targets are required for the normal host-response to bleeding (hemostasis), DOACs are associated with therapy-induced bleeding that limits their use in certain patient populations and clinical situations. The plasma contact factors (factor XII, factor XI, and prekallikrein) initiate blood coagulation in the activated partial thromboplastin time assay. While serving limited roles in hemostasis, pre-clinical and epidemiologic data indicate that these proteins contribute to pathologic coagulation. It is anticipated that drugs targeting the contact factors will reduce risk of thrombosis with minimal impact on hemostasis. Here, we discuss the biochemistry of contact activation, the contributions of contact factors in thrombosis, and novel antithrombotic agents targeting contact factors that are undergoing pre-clinical and early clinical testing.
Collapse
Affiliation(s)
- Benjamin F Tillman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andras Gruber
- Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, OR, USA; Division of Hematology and Medical Oncology School of Medicine, Oregon Health & Sciences University, Portland, OR, USA; Aronora, Inc., Portland, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, OR, USA; Division of Hematology and Medical Oncology School of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - David Gailani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
27
|
Ziliotto N, Baroni M, Straudi S, Manfredini F, Mari R, Menegatti E, Voltan R, Secchiero P, Zamboni P, Basaglia N, Marchetti G, Bernardi F. Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Front Neurol 2018; 9:245. [PMID: 29731736 PMCID: PMC5919941 DOI: 10.3389/fneur.2018.00245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
Background Factor XII (FXII) activation initiates the intrinsic (contact) coagulation pathway. It has been recently suggested that FXII could act as an autoimmunity mediator in multiple sclerosis (MS). FXII depositions nearby dentritic cells were detected in the central nervous system of MS patients and increased FXII activity has been reported in plasma of relapsing remitting and secondary progressive MS patients. FXII inhibition has been proposed to treat MS. Objective To investigate in MS patients multiple FXII-related variables, including the circulating amount of protein, its pro-coagulant function, and their variation over time. To explore kinetic activation features of FXII in thrombin generation (TG). Methods In plasma from 74 MS patients and 49 healthy subjects (HS), FXII procoagulant activity (FXII:c) and FXII protein (FXII:Ag) levels were assessed. Their ratio (FXII:ratio) values were derived. Intrinsic TG was evaluated by different triggers. Results Higher FXII:Ag levels (p = 0.003) and lower FXII:ratio (p < 0.001) were detected in MS patients compared with HS. FXII variables were highly correlated over four time points, which supports investigation of FXII contribution to disease phenotype and progression. A significant difference over time was detected for FXII:c (p = 0.031). In patients selected for the lowest FXII:ratio, TG triggered by ellagic acid showed a trend in lower endogenous thrombin potential (ETP) in MS patients compared with HS (p = 0.042). Intrinsic triggering of TG by nucleic acid addition produced longer time parameters in patients than in HS and substantially increased ETP in MS patients (p = 0.004) and TG peak height in HS (p = 0.008). Coherently, lower FXII:ratio and longer lag time (p = 0.02) and time to peak (p = 0.007) point out a reduced response of FXII to activation in part of MS patients. Conclusion In MS patients, factor-specific and modified global assays suggest the presence of increased FXII protein level and reduced function within the intrinsic coagulation pathway. These novel findings support further investigation by multiple approaches of FXII contribution to disease phenotype and progression.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| | - Fabio Manfredini
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy.,Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Rosella Mari
- Hematology Section, Department of Medical Sciences, Centre for Hemostasis and Thrombosis, University of Ferrara, Ferrara, Italy
| | - Erica Menegatti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| | - Giovanna Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
Smith SA, Gajsiewicz JM, Morrissey JH. Ability of Polyphosphate and Nucleic Acids to Trigger Blood Clotting: Some Observations and Caveats. Front Med (Lausanne) 2018; 5:107. [PMID: 29719836 PMCID: PMC5913279 DOI: 10.3389/fmed.2018.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023] Open
Abstract
Polyphosphate plays several roles in coagulation and inflammation, while extracellular DNA and RNA are implicated in thrombosis and as disease biomarkers. We sought to compare the procoagulant activities of polyphosphate versus DNA or RNA isolated from mammalian cells. In a recent study, we found that much of the procoagulant activity of DNA isolated from mammalian cells using Qiagen kits resisted digestion with nuclease or polyphosphatase, and even resisted boiling in acid. These kits employ spin columns packed with silica, which is highly procoagulant. Indeed, much of the apparent procoagulant activity of cellular DNA isolated with such kits was attributable to silica particles shed by the spin columns. Therefore, silica-based methods for isolating nucleic acids or polyphosphate from mammalian cells are not suitable for studying their procoagulant activities. We now report that polyphosphate readily co-purified with DNA and RNA using several popular isolation methods, including phenol/chloroform extraction. Thus, cell-derived nucleic acids are also subject to contamination with traces of cellular polyphosphate, which can be eliminated by alkaline phosphatase digestion. We further report that long-chain polyphosphate was orders of magnitude more potent than cell-derived DNA (purified via phenol/chloroform extraction) or RNA at triggering clotting. Additional experiments using RNA homopolymers found that polyG and polyI have procoagulant activity similar to polyphosphate, while polyA and polyC are not procoagulant. Thus, the procoagulant activity of RNA is rather highly dependent on base composition.
Collapse
Affiliation(s)
- Stephanie A Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Pathak M, Kaira BG, Slater A, Emsley J. Cell Receptor and Cofactor Interactions of the Contact Activation System and Factor XI. Front Med (Lausanne) 2018; 5:66. [PMID: 29619369 PMCID: PMC5871670 DOI: 10.3389/fmed.2018.00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/26/2018] [Indexed: 01/02/2023] Open
Abstract
The contact activation system (CAS) or contact pathway is central to the crosstalk between coagulation and inflammation and contributes to diverse disorders affecting the cardiovascular system. CAS initiation contributes to thrombosis but is not required for hemostasis and can trigger plasma coagulation via the intrinsic pathway [through factor XI (FXI)] and inflammation via bradykinin release. Activation of factor XII (FXII) is the principal starting point for the cascade of proteolytic cleavages involving FXI, prekallikrein (PK), and cofactor high molecular weight kininogen (HK) but the precise location and cell receptor interactions controlling these reactions remains unclear. FXII, PK, FXI, and HK utilize key protein domains to mediate binding interactions to cognate cell receptors and diverse ligands, which regulates protease activation. The assembly of contact factors has been demonstrated on the cell membranes of a variety of cell types and microorganisms. The cooperation between the contact factors and endothelial cells, platelets, and leukocytes contributes to pathways driving thrombosis yet the basis of these interactions and the relationship with activation of the contact factors remains undefined. This review focuses on cell receptor interactions of contact proteins and FXI to develop a cell-based model for the regulation of contact activation.
Collapse
Affiliation(s)
- Monika Pathak
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Bubacarr Gibril Kaira
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Alexandre Slater
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
30
|
Mohammed BM, Matafonov A, Ivanov I, Sun MF, Cheng Q, Dickeson SK, Li C, Sun D, Verhamme IM, Emsley J, Gailani D. An update on factor XI structure and function. Thromb Res 2018; 161:94-105. [PMID: 29223926 PMCID: PMC5776729 DOI: 10.1016/j.thromres.2017.10.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Factor XI (FXI) is the zymogen of a plasma protease, factor XIa (FXIa), that contributes to thrombin generation during blood coagulation by proteolytic activation of several coagulation factors, most notably factor IX (FIX). FXI is a homolog of prekallikrein (PK), a component of the plasma kallikrein-kinin system. While sharing structural and functional features with PK, FXI has undergone adaptive changes that allow it to contribute to blood coagulation. Here we review current understanding of the biology and enzymology of FXI, with an emphasis on structural features of the protein as they relate to protease function.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; School of Pharmacy, Department of Clinical Pharmacy, Cairo University, Cairo, Egypt
| | - Anton Matafonov
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivan Ivanov
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mao-Fu Sun
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiufang Cheng
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Kent Dickeson
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chan Li
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - David Sun
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ingrid M Verhamme
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonas Emsley
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - David Gailani
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
31
|
Luo J, Zhang W, Zeng Q, Zhou W, Cao Q, Zhou W. Familial early-onset deep venous thrombosis associated with a novel HRG mutation. Eur J Med Genet 2017; 61:68-71. [PMID: 29108964 DOI: 10.1016/j.ejmg.2017.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/29/2017] [Accepted: 10/29/2017] [Indexed: 11/28/2022]
Abstract
Deep venous thrombosis (DVT) remains a serious clinical problem that affects millions of people worldwide. Some DVT cases are caused by inherited thrombophilia derived from genetic aberrations and several disease-causing genes have been identified so far. Among them, HRG is an uncommon one with limited related reports. Here, we reported on a family with early-onset DVT where acquired risky conditions were excluded. Whole exome sequencing revealed a novel heterozygous single base pair substitution in exon 2 of HRG gene resulting in a conserved residue replacement of the protein (c. C271T, p. P73S). Sanger sequencing confirmed the co-segregation of the mutation and plasma quantification determined circulating protein deficiency. The mutation might therefore impair hemostatic balance by causing reduced circulating HRG level. Our study broadens the mutation spectrum of the HRG gene and underscores the importance of its function in regulating coagulation pathway.
Collapse
Affiliation(s)
- Junfu Luo
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenwen Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Key Laboratory of Molecular Medicine of Jiangxi Province, Nanchang, Jiangxi, China
| | - Qingfu Zeng
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Cao
- Key Laboratory of Molecular Medicine of Jiangxi Province, Nanchang, Jiangxi, China
| | - Wei Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
32
|
Shupp JW, Prior SM, Jo DY, Moffatt LT, Mann KG, Butenas S. Analysis of factor XIa, factor IXa and tissue factor activity in burn patients. Burns 2017; 44:436-444. [PMID: 29032977 DOI: 10.1016/j.burns.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/15/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION An elevated procoagulant activity observed in trauma patients is, in part, related to tissue factor (TF) located on blood cells and microparticles. However, analysis of trauma patient plasma indicates that there are other contributor(s) to the procoagulant activity. We hypothesize that factor (F)XIa and FIXa are responsible for an additional procoagulant activity in burn patients. METHODS Multiple time-point plasma samples from 56 burn patients (total number of samples was 471; up to 20 time-points/patient collected in 3 weeks following admission) were evaluated in a thrombin generation assay using inhibitory antibodies to TF, FIXa and FXIa. RESULTS Due to the limited volume of some samples, not all were analyzed for all three proteins. At admission, 10 of 53 patients (19%) had active TF, 53 of 55 (96%) had FXIa and 48 of 55 (87%) had FIXa in their plasma. 34 patients of 56 enrolled (61%) showed TF activity at one or more time-points. All patients had FXIa and 96% had FIXa at one or more time-points. Overall, TF was observed in 99 of 455 samples analyzed (22%), FXIa in 424 of 471 (90%) and FIXa in 244 of 471 (52%). The concentration of TF was relatively low and varied between 0 and 2.1pM, whereas that of FXIa was higher, exceeding 100pM in some samples. The majority of samples with FIXa had it at sub-nanomolar concentrations. No TF, FXIa and FIXa activity was detected in plasma from healthy individuals. CONCLUSIONS For the first time reported, the majority of plasma samples from burn patients have active FXIa and FIXa, with a significant fraction of them having active TF. The concentration of all three proteins varies in a wide range.
Collapse
Affiliation(s)
- Jeffrey W Shupp
- Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States.
| | - Shannon M Prior
- University of Vermont, Department of Biochemistry, Burlington, VT, United States.
| | - Daniel Y Jo
- Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States.
| | - Lauren T Moffatt
- Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States.
| | - Kenneth G Mann
- Haematologic Technologies, Inc., Essex Junction, VT, United States.
| | - Saulius Butenas
- University of Vermont, Department of Biochemistry, Burlington, VT, United States.
| |
Collapse
|
33
|
Silica particles contribute to the procoagulant activity of DNA and polyphosphate isolated using commercial kits. Blood 2017; 130:88-91. [PMID: 28533308 DOI: 10.1182/blood-2017-03-772848] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Abstract
Although the non-vitamin antagonist oral anticoagulants produce less intracranial bleeding than warfarin, serious bleeding still occurs. Therefore, the search for safer anticoagulants continues. Factor XII and factor XI have emerged as promising targets whose inhibition has the potential to prevent thrombosis with little or no disruption of hemostasis. Thus, thrombosis is attenuated in mice deficient in factor XII or factor XI and patients with congenital factor XII deficiency do not bleed and those with factor XI deficiency rarely have spontaneous bleeding. Strategies targeting factor XII and XI include antisense oligonucleotides to decrease their synthesis, inhibitory antibodies or aptamers, and small molecule inhibitors. These strategies attenuate thrombosis in various animal models and factor XI knockdown with an antisense oligonucleotide in patients undergoing knee replacement surgery reduced postoperative venous thromboembolism to a greater extent than enoxaparin without increasing bleeding. Therefore, current efforts are focused on evaluating the efficacy and safety of factor XII and factor XI directed anticoagulant strategies.
Collapse
Affiliation(s)
- Jeffrey I Weitz
- Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton, Canada.
| |
Collapse
|
35
|
Functional Regulation of the Plasma Protein Histidine-Rich Glycoprotein by Zn 2+ in Settings of Tissue Injury. Biomolecules 2017; 7:biom7010022. [PMID: 28257077 PMCID: PMC5372734 DOI: 10.3390/biom7010022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/05/2023] Open
Abstract
Divalent metal ions are essential nutrients for all living organisms and are commonly protein-bound where they perform important roles in protein structure and function. This regulatory control from metals is observed in the relatively abundant plasma protein histidine-rich glycoprotein (HRG), which displays preferential binding to the second most abundant transition element in human systems, Zinc (Zn2+). HRG has been proposed to interact with a large number of protein ligands and has been implicated in the regulation of various physiological and pathological processes including the formation of immune complexes, apoptotic/necrotic and pathogen clearance, cell adhesion, antimicrobial activity, angiogenesis, coagulation and fibrinolysis. Interestingly, these processes are often associated with sites of tissue injury or tumour growth, where the concentration and distribution of Zn2+ is known to vary. Changes in Zn2+ levels have been shown to modify HRG function by altering its affinity for certain ligands and/or providing protection against proteolytic disassembly by serine proteases. This review focuses on the molecular interplay between HRG and Zn2+, and how Zn2+ binding modifies HRG-ligand interactions to regulate function in different settings of tissue injury.
Collapse
|
36
|
Ivanov I, Shakhawat R, Sun MF, Dickeson SK, Puy C, McCarty OJT, Gruber A, Matafonov A, Gailani D. Nucleic acids as cofactors for factor XI and prekallikrein activation: Different roles for high-molecular-weight kininogen. Thromb Haemost 2017; 117:671-681. [PMID: 28124063 DOI: 10.1160/th16-09-0691] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/26/2016] [Indexed: 01/12/2023]
Abstract
The plasma zymogens factor XI (fXI) and prekallikrein (PK) are activated by factor XIIa (fXIIa) during contact activation. Polyanions such as DNA and RNA may contribute to thrombosis and inflammation partly by enhancing PK and fXI activation. We examined PK and fXI activation in the presence of nucleic acids, and determine the effects of the cofactor high molecular weight kininogen (HK) on the reactions. In the absence of HK, DNA and RNA induced fXI autoactivation. Proteases known to activate fXI (fXIIa and thrombin) did not enhance this process appreciably. Nucleic acids had little effect on PK activation by fXIIa in the absence of HK. HK had significant but opposite effects on PK and fXI activation. HK enhanced fXIIa activation of PK in the presence of nucleic acids, but blocked fXI autoactivation. Thrombin and fXIIa could overcome the HK inhibitory effect on autoactivation, indicating these proteases are necessary for nucleic acid-induced fXI activation in an HK-rich environment such as plasma. In contrast to PK, which requires HK for optimal activation, fXI activation in the presence of nucleic acids depends on anion binding sites on the fXI molecule. The corresponding sites on PK are not necessary for PK activation. Our results indicate that HK functions as a cofactor for PK activation in the presence of nucleic acids in a manner consistent with classic models of contact activation. However, HK has, on balance, an inhibitory effect on nucleic acid-supported fXI activation and may function as a negative regulator of fXI activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Gailani
- David Gailani, Hematology/Oncology Division, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Ave., Nashville, TN, USA, Tel.: +1 615 936 1505, E-mail:
| |
Collapse
|
37
|
In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2016; 129:1021-1029. [PMID: 27919911 DOI: 10.1182/blood-2016-06-722298] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
NETosis is a physiologic process in which neutrophils release their nuclear material in the form of neutrophil extracellular traps (NETs). NETs have been reported to directly promote thrombosis in animal models. Although the effects of purified NET components including DNA, histone proteins, and neutrophil enzymes on coagulation have been characterized, the mechanism by which intact NETs promote thrombosis is largely unknown. In this study, human neutrophils were stimulated to produce NETs in platelet-free plasma (PFP) or in buffer using phorbol myristate actetate or calcium ionophore. DNA and histone proteins were also separately purified from normal human neutrophils and used to reconstitute chromatin using a salt-gradient dialysis method. Neutrophil stimulation resulted in robust NET release. In recalcified PFP, purified DNA triggered contact-dependent thrombin generation (TG) and amplified TG initiated by low concentrations of tissue factor. Similarly, in a buffer milieu, DNA initiated the contact pathway and amplified thrombin-dependent factor XI activation. Recombinant human histones H3 and H4 triggered TG in recalcified human plasma in a platelet-dependent manner. In contrast, neither intact NETs, reconstituted chromatin, individual nucleosome particles, nor octameric core histones reproduced any of these procoagulant effects. We conclude that unlike DNA or individual histone proteins, human intact NETs do not directly initiate or amplify coagulation in vitro. This difference is likely explained by the complex histone-histone and histone-DNA interactions within the nucleosome unit and higher-order supercoiled chromatin leading to neutralization of the negative charges on polyanionic DNA and modification of the binding properties of individual histone proteins.
Collapse
|
38
|
Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity. Blood 2016; 128:2834-2845. [PMID: 27694320 DOI: 10.1182/blood-2015-10-673285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 09/25/2016] [Indexed: 12/21/2022] Open
Abstract
Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP70, of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP70 Indeed, complex formation between polyP70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP70, highlighting the importance of the anion binding site. PolyP70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP.
Collapse
|