1
|
Mavridis T, Choratta T, Papadopoulou A, Sawafta A, Archontakis-Barakakis P, Laou E, Sakellakis M, Chalkias A. Protease-Activated Receptors (PARs): Biology and Therapeutic Potential in Perioperative Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01233-0. [PMID: 38326662 DOI: 10.1007/s12975-024-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Perioperative stroke is a devastating complication that occurs during surgery or within 30 days following the surgical procedure. Its prevalence ranges from 0.08 to 10% although it is most likely an underestimation, as sedatives and narcotics can substantially mask symptomatology and clinical presentation. Understanding the underlying pathophysiology and identifying potential therapeutic targets are of paramount importance. Protease-activated receptors (PARs), a unique family of G-protein-coupled receptors, are widely expressed throughout the human body and play essential roles in various physiological and pathological processes. This review elucidates the biology and significance of PARs, outlining their diverse functions in health and disease, and their intricate involvement in cerebrovascular (patho)physiology and neuroprotection. PARs exhibit a dual role in cerebral ischemia, which underscores their potential as therapeutic targets to mitigate the devastating effects of stroke in surgical patients.
Collapse
Affiliation(s)
- Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, D24 NR0A, Ireland
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Theodora Choratta
- Department of General Surgery, Metaxa Hospital, 18537, Piraeus, Greece
| | - Androniki Papadopoulou
- Department of Anesthesiology, G. Gennimatas General Hospital, 54635, Thessaloniki, Greece
| | - Assaf Sawafta
- Department of Cardiology, University Hospital of Larisa, 41110, Larisa, Greece
| | | | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, 15773, Athens, Greece
| | - Minas Sakellakis
- Department of Medicine, Jacobi Medical Center-North Central Bronx Hospital, Bronx, NY, 10467, USA
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-5158, USA.
- Outcomes Research Consortium, Cleveland, OH, 44195, USA.
| |
Collapse
|
2
|
Sohma R, Sakuma M, Obi S, Nishino S, Inoue KI, Kishimoto S, Lu T, Toyoda S, Inoue T. Effects of the factor Xa inhibitor rivaroxaban on the differentiation of endothelial progenitor cells. BMC Cardiovasc Disord 2023; 23:282. [PMID: 37268884 DOI: 10.1186/s12872-023-03318-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND We evaluated the efficacy of the factor Xa inhibitor rivaroxaban on the differentiation ability of vascular endothelial progenitor cells (EPCs), which play roles in vascular injury repair and atherogenesis. Antithrombotic treatment in patients with atrial fibrillation undergoing percutaneous coronary intervention (PCI) is challenging, and current guidelines recommend oral anticoagulant monotherapy 1 year or more after PCI. However, biological evidence of the pharmacological effects of anticoagulants is insufficient. METHODS EPC colony-forming assays were performed using peripheral blood-derived CD34-positive cells from healthy volunteers. Adhesion and tube formation of cultured EPCs were assessed in human umbilical cord-derived CD34-positive cells. Endothelial cell surface markers were assessed using flow cytometry, and Akt and endothelial nitric oxide synthase (eNOS) phosphorylation were examined using western blot analysis of EPCs. Adhesion, tube formation and endothelial cell surface marker expression was observed in EPCs transfected with small interfering RNA (siRNA) against protease-activated receptor (PAR)-2. Finally, EPC behaviors were assessed in patients with atrial fibrillation undergoing PCI in whom warfarin was changed to rivaroxaban. RESULTS Rivaroxaban increased the number of large EPC colonies and increased the bioactivities of EPCs, including adhesion and tube formation. Rivaroxaban also increased vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, Tie-2, and E-selectin expression as well as Akt and eNOS phosphorylation. PAR-2 knockdown increased the bioactivities of EPCs and endothelial cell surface marker expression. Patients in whom the number of large colonies increased after switching to rivaroxaban showed better vascular repair. CONCLUSIONS Rivaroxaban increased the differentiation ability of EPCs, leading to potential advantages in the treatment of coronary artery disease.
Collapse
Affiliation(s)
- Ryoichi Sohma
- Center for Advanced Medical Science Research, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Syotaro Obi
- Center for Advanced Medical Science Research, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Setsu Nishino
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Ken-Ichi Inoue
- Center for Advanced Medical Science Research, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Satoko Kishimoto
- Center for Advanced Medical Science Research, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Tianyang Lu
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Teruo Inoue
- Japan Red Cross Society, Nasu Red Cross Hospital, 1081-4 Nakadawara, Tochigi, 324-8686, Otawara, Japan
- Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
3
|
Hara T, Sata M, Fukuda D. Emerging roles of protease-activated receptors in cardiometabolic disorders. J Cardiol 2023; 81:337-346. [PMID: 36195252 DOI: 10.1016/j.jjcc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Cardiometabolic disorders, including obesity-related insulin resistance and atherosclerosis, share sterile chronic inflammation as a major cause; however, the precise underlying mechanisms of chronic inflammation in cardiometabolic disorders are not fully understood. Accumulating evidence suggests that several coagulation proteases, including thrombin and activated factor X (FXa), play an important role not only in the coagulation cascade but also in the proinflammatory responses through protease-activated receptors (PARs) in many cell types. Four members of the PAR family have been cloned (PAR 1-4). For instance, thrombin activates PAR-1, PAR-3, and PAR-4. FXa activates both PAR-1 and PAR-2, while it has no effect on PAR-3 or PAR-4. Previous studies demonstrated that PAR-1 and PAR-2 activated by thrombin or FXa promote gene expression of inflammatory molecules mainly via the NF-κB and ERK1/2 pathways. In obese adipose tissue and atherosclerotic vascular tissue, various stresses increase the expression of tissue factor and procoagulant activity. Recent studies indicated that the activation of PARs in adipocytes and vascular cells by coagulation proteases promotes inflammation in these tissues, which leads to the development of cardiometabolic diseases. This review briefly summarizes the role of PARs and coagulation proteases in the pathogenesis of inflammatory diseases and describes recent findings (including ours) on the potential participation of this system in the development of cardiometabolic disorders. New insights into PARs may ensure a better understanding of cardiometabolic disorders and suggest new therapeutic options for these major health threats.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
4
|
Kaikita K, Tsujita K. Inhibitory Effect of Rivaroxaban on Atrial Arrhythmogenesis via Protease-Activated Receptor 2 Pathway. Circ J 2021; 85:1392-1393. [PMID: 33814527 DOI: 10.1253/circj.cj-21-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
5
|
Curran CS, Rivera DR, Kopp JB. COVID-19 Usurps Host Regulatory Networks. Front Pharmacol 2020; 11:1278. [PMID: 32922297 PMCID: PMC7456869 DOI: 10.3389/fphar.2020.01278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the cell surface and this complex is internalized. ACE2 serves as an endogenous inhibitor of inflammatory signals associated with four major regulator systems: the renin-angiotensin-aldosterone system (RAAS), the complement system, the coagulation cascade, and the kallikrein-kinin system (KKS). Understanding the pathophysiological effects of SARS-CoV-2 on these pathways is needed, particularly given the current lack of proven, effective treatments. The vasoconstrictive, prothrombotic and pro-inflammatory conditions induced by SARS-CoV-2 can be ascribed, at least in part, to the activation of these intersecting physiological networks. Moreover, patients with immune deficiencies, hypertension, diabetes, coronary heart disease, and kidney disease often have altered activation of these pathways, either due to underlying disease or to medications, and may be more susceptible to SARS-CoV-2 infection. Certain characteristic COVID-associated skin, sensory, and central nervous system manifestations may also be linked to viral activation of the RAAS, complement, coagulation, and KKS pathways. Pharmacological interventions that target molecules along these pathways may be useful in mitigating symptoms and preventing organ or tissue damage. While effective anti-viral therapies are critically needed, further study of these pathways may identify effective adjunctive treatments and patients most likely to benefit.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Donna R Rivera
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Spartalis M, Spartalis E, Athanasiou A, Paschou SA, Kontogiannis C, Georgiopoulos G, Iliopoulos DC, Voudris V. The Role of the Endothelium in Premature Atherosclerosis: Molecular Mechanisms. Curr Med Chem 2020; 27:1041-1051. [PMID: 31544711 DOI: 10.2174/0929867326666190911141951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/29/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.
Collapse
Affiliation(s)
- Michael Spartalis
- Division of Cardiology, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Eleftherios Spartalis
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Antonios Athanasiou
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Stavroula A Paschou
- Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Kontogiannis
- Department of Clinical Therapeutics, "Alexandra" Hospital, University of Athens, 11528 Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, "Alexandra" Hospital, University of Athens, 11528 Athens, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Vassilis Voudris
- Division of Cardiology, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| |
Collapse
|
7
|
Nakanishi N, Kaikita K, Ishii M, Oimatsu Y, Mitsuse T, Ito M, Yamanaga K, Fujisue K, Kanazawa H, Sueta D, Takashio S, Arima Y, Araki S, Nakamura T, Sakamoto K, Suzuki S, Yamamoto E, Soejima H, Tsujita K. Cardioprotective Effects of Rivaroxaban on Cardiac Remodeling After Experimental Myocardial Infarction in Mice. Circ Rep 2020; 2:158-166. [PMID: 33693223 PMCID: PMC7921351 DOI: 10.1253/circrep.cr-19-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background:
Direct-activated factor X (FXa) plays an important role in thrombosis and is also involved in inflammation via the protease-activated receptor (PAR)-1 and PAR-2 pathway. We hypothesized that rivaroxaban protects against cardiac remodeling after myocardial infarction (MI). Methods and Results:
MI was induced in wild-type mice by permanent ligation of the left anterior descending coronary artery. At day 1 after MI, mice were randomly assigned to the rivaroxaban and vehicle groups. Mice in the rivaroxaban group were provided with a regular chow diet plus rivaroxaban. We evaluated cardiac function by echocardiography, pathology, expression of mRNA and protein at day 7 after MI. Rivaroxaban significantly improved cardiac systolic function, decreased infarct size and cardiac mass compared with the vehicle. Rivaroxaban also downregulated the mRNA expression levels of tumor necrosis factor-α, transforming growth factor-β, PAR-1 and PAR-2 in the infarcted area, and both A-type and B-type natriuretic peptides in the non-infarcted area compared with the vehicle. Furthermore, rivaroxaban attenuated cardiomyocyte hypertrophy and the phosphorylation of extracellular signal-regulated kinase in the non-infarcted area compared with the vehicle. Conclusions:
Rivaroxaban protected against cardiac dysfunction in MI model mice. Reduction of PAR-1, PAR-2 and proinflammatory cytokines in the infarcted area may be involved in its cardioprotective effects.
Collapse
Affiliation(s)
- Nobuhiro Nakanishi
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Masanobu Ishii
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Yu Oimatsu
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Tatsuro Mitsuse
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Miwa Ito
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Kenshi Yamanaga
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Hisanori Kanazawa
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Taishi Nakamura
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Satoru Suzuki
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Hirofumi Soejima
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| |
Collapse
|
8
|
Hara T, Phuong PT, Fukuda D, Yamaguchi K, Murata C, Nishimoto S, Yagi S, Kusunose K, Yamada H, Soeki T, Wakatsuki T, Imoto I, Shimabukuro M, Sata M. Protease-Activated Receptor-2 Plays a Critical Role in Vascular Inflammation and Atherosclerosis in Apolipoprotein E-Deficient Mice. Circulation 2019; 138:1706-1719. [PMID: 29700120 DOI: 10.1161/circulationaha.118.033544] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The coagulation system is closely linked with vascular inflammation, although the underlying mechanisms are still obscure. Recent studies show that protease-activated receptor (PAR)-2, a major receptor of activated factor X, is expressed in both vascular cells and leukocytes, suggesting that PAR-2 may contribute to the pathogenesis of inflammatory diseases. Here we investigated the role of PAR-2 in vascular inflammation and atherogenesis. METHODS We generated apolipoprotein E-deficient ( ApoE-/-) mice lacking systemic PAR-2 expression ( PAR-2-/- ApoE-/-). ApoE-/- mice, which lack or express PAR-2 only in bone marrow (BM) cells, were also generated by BM transplantation. Atherosclerotic lesions were investigated after 20 weeks on a Western-type diet by histological analyses, quantitative reverse transcription polymerase chain reaction, and Western blotting. In vitro experiments using BM-derived macrophages were performed to confirm the proinflammatory roles of PAR-2. The association between plasma activated factor X level and the severity of coronary atherosclerosis was also examined in humans who underwent coronary intervention. RESULTS PAR-2-/- ApoE-/- mice showed reduced atherosclerotic lesions in the aortic arch ( P<0.05) along with features of stabilized atherosclerotic plaques, such as less lipid deposition ( P<0.05), collagen loss ( P<0.01), macrophage accumulation ( P<0.05), and inflammatory molecule expression ( P<0.05) compared with ApoE-/- mice. Systemic PAR2 deletion in ApoE-/-mice significantly decreased the expression of inflammatory molecules in the aorta. The results of BM transplantation experiments demonstrated that PAR-2 in hematopoietic cells contributed to atherogenesis in ApoE-/- mice. PAR-2 deletion did not alter metabolic parameters. In vitro experiments demonstrated that activated factor X or a specific peptide agonist of PAR-2 significantly increased the expression of inflammatory molecules and lipid uptake in BM-derived macrophages from wild-type mice compared with those from PAR-2-deficient mice. Activation of nuclear factor-κB signaling was involved in PAR-2-associated vascular inflammation and macrophage activation. In humans who underwent coronary intervention, plasma activated factor X level independently correlated with the severity of coronary atherosclerosis as determined by Gensini score ( P<0.05) and plaque volume ( P<0.01). CONCLUSIONS PAR-2 signaling activates macrophages and promotes vascular inflammation, increasing atherosclerosis in ApoE-/- mice. This signaling pathway may also participate in atherogenesis in humans.
Collapse
Affiliation(s)
- Tomoya Hara
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Pham Tran Phuong
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Daiju Fukuda
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan.,Cardio-Diabetes Medicine (D.F., M.Shimabukuro), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Koji Yamaguchi
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Chie Murata
- Human Genetics (C.M., I.I.), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Sachiko Nishimoto
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | | | - Kenya Kusunose
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Hirotsugu Yamada
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Takeshi Soeki
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Tetsuzo Wakatsuki
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Issei Imoto
- Human Genetics (C.M., I.I.), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Michio Shimabukuro
- Cardio-Diabetes Medicine (D.F., M.Shimabukuro), Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Masataka Sata
- Departments of Cardiovascular Medicine (T.H., P.T.P., D.F., K.Y., S.N., S.Y., K.K., H.Y., T.S., T.W., M.Sata), Tokushima University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
9
|
Rivaroxaban, a specific FXa inhibitor, improved endothelium-dependent relaxation of aortic segments in diabetic mice. Sci Rep 2019; 9:11206. [PMID: 31371788 PMCID: PMC6672013 DOI: 10.1038/s41598-019-47474-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Activated factor X (FXa) plays a central role in the coagulation cascade, while it also mediates vascular function through activation of protease-activated receptors (PARs). Here, we examined whether inhibition of FXa by rivaroxaban, a direct FXa inhibitor, attenuates endothelial dysfunction in streptozotocin (STZ)-induced diabetic mice. Induction of diabetes increased the expression of a major FXa receptor, PAR2, in the aorta (P < 0.05). Administration of rivaroxaban (10 mg/kg/day) to diabetic wild-type (WT) mice for 3 weeks attenuated endothelial dysfunction as determined by acetylcholine-dependent vasodilation compared with the control (P < 0.001), without alteration of blood glucose level. Rivaroxaban promoted eNOSSer1177 phosphorylation in the aorta (P < 0.001). Induction of diabetes to PAR2-deficient (PAR2−/−) mice did not affect endothelial function and eNOSSer1177 phosphorylation in the aorta compared with non-diabetic PAR2−/− mice. FXa or a PAR2 agonist significantly impaired endothelial function in aortic rings obtained from WT mice, but not in those from PAR2−/− mice. FXa promoted JNK phosphorylation (P < 0.01) and reduced eNOSSer1177 phosphorylation (P < 0.05) in human coronary artery endothelial cells (HCAEC). FXa-induced endothelial dysfunction in aortic rings (P < 0.001) and eNOSSer1177 phosphorylation (P < 0.05) in HCAEC were partially ameliorated by a JNK inhibitor. Rivaroxaban ameliorated diabetes-induced endothelial dysfunction. Our results suggest that FXa or PAR2 is a potential therapeutic target.
Collapse
|
10
|
Takahashi K, Omae T, Ono S, Kamiya T, Tanner A, Yoshida A. Thrombin-Induced Responses via Protease-Activated Receptor 1 Blocked by the Endothelium on Isolated Porcine Retinal Arterioles. Curr Eye Res 2018; 43:1374-1382. [PMID: 29966442 DOI: 10.1080/02713683.2018.1496266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE Thrombin, a serine protease, causes organ-specific responses to vessels. However, the mechanism by which thrombin affects the retinal microcirculation remains unclear. We examined the effects of thrombin on the retinal microvasculature and signaling mechanisms. METHODS Porcine retinal arterioles were isolated, cannulated, and pressurized (55 cmH2O) without flow in this in vitro study. Videomicroscopy techniques recorded changes in diameter in the retinal arterioles in response to thrombin at concentrations ranging from 0.001 to 20 mU/ml. RESULTS Extraluminal administration of thrombin induced concentration-dependent vascular responses, that is, vasoconstriction at low concentrations less than 5 mU/ml and vasorelaxation with high concentrations greater than 5 mU/ml. However, intraluminal administration of thrombin (5 mU/m) did not constrict the retinal arterioles; in denuded vessels, intraluminal administration constricted the retinal arterioles. Thrombin-induced vasoconstriction was significantly (p < 0.01) suppressed by pretreatment with a protein kinase C (PKC) inhibitor and a protease-activated receptor (PAR)-1 inhibitor but not by PAR-2 and PAR-4 inhibitors or denudation. A rho kinase (ROCK) inhibitor also suppressed thrombin-induced vasoconstriction (5 mU/ml) compared with sodium nitroprusside. Endothelial denudation and pretreatment with an endothelial nitric oxide (NO) synthase inhibitor suppressed vasorelaxation caused by a high concentration of thrombin. CONCLUSIONS A low concentration of thrombin causes vasoconstriction of smooth muscles via PAR-1, PKC, and ROCK, and a high concentration of thrombin possibly causes vasorelaxation of the retinal arterioles via nitric oxide synthase activation in the endothelium. The vascular endothelium might block signaling of thrombin-induced vasoconstriction in the retinal arterioles when administered intraluminally.
Collapse
Affiliation(s)
- Kengo Takahashi
- a Department of Ophthalmology , Asahikawa Medical University , Asahikawa , Japan
| | - Tsuneaki Omae
- a Department of Ophthalmology , Asahikawa Medical University , Asahikawa , Japan
| | - Shinji Ono
- a Department of Ophthalmology , Asahikawa Medical University , Asahikawa , Japan
| | | | - Akira Tanner
- a Department of Ophthalmology , Asahikawa Medical University , Asahikawa , Japan
| | - Akitoshi Yoshida
- a Department of Ophthalmology , Asahikawa Medical University , Asahikawa , Japan
| |
Collapse
|
11
|
Bode MF, Auriemma AC, Grover SP, Hisada Y, Rennie A, Bode WD, Vora R, Subramaniam S, Cooley B, Andrade-Gordon P, Antoniak S, Mackman N. The factor Xa inhibitor rivaroxaban reduces cardiac dysfunction in a mouse model of myocardial infarction. Thromb Res 2018; 167:128-134. [PMID: 29843086 DOI: 10.1016/j.thromres.2018.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Rivaroxaban selectively inhibits factor Xa (FXa), which plays a central role in blood coagulation. In addition, FXa activates protease-activated receptor-2 (PAR-2). We have shown that PAR-2-/- mice exhibit less cardiac dysfunction after cardiac injury. MATERIAL AND METHODS Wild-type (WT) and PAR-2-/- mice were subjected to left anterior descending artery (LAD) ligation to induce cardiac injury and heart failure. Mice received either placebo or rivaroxaban chow either starting at the time of surgery or 3 days after surgery and continued up to 28 days. Cardiac function was measured by echocardiography pre-surgery and 3, 7 and 28 days after LAD ligation. We also measured anticoagulation, intravascular thrombi, infarct size, cardiac hypertrophy and inflammation at various times. RESULTS Rivaroxaban increased the prothrombin time and inhibited the formation of intravascular thrombi in mice subjected to LAD ligation. WT mice receiving rivaroxaban immediately after surgery had similar infarct sizes at day 1 as controls but exhibited significantly less impairment of cardiac function at day 3 and beyond compared to the placebo group. Rivaroxaban also inhibited the expansion of the infarct at day 28. Rivaroxaban did not significantly affect the expression of inflammatory mediators or a neutrophil marker at day 2 after LAD ligation. Delaying the start of rivaroxaban administration until 3 days after surgery failed to preserve cardiac function. In addition, rivaroxaban did not reduce cardiac dysfunction in PAR-2-/- mice. CONCLUSIONS Early administration of rivaroxaban preserves cardiac function in mice after LAD ligation.
Collapse
Affiliation(s)
- Michael F Bode
- Division of Cardiology, Department of Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alyson C Auriemma
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven P Grover
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yohei Hisada
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex Rennie
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weeranun D Bode
- Division of Cardiology, Department of Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rashi Vora
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saravanan Subramaniam
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian Cooley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Morishima Y, Honda Y. A direct oral factor Xa inhibitor edoxaban ameliorates neointimal hyperplasia following vascular injury and thrombosis in apolipoprotein E-deficient mice. J Thromb Thrombolysis 2018; 46:95-101. [PMID: 29704172 DOI: 10.1007/s11239-018-1673-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vascular injury activates the coagulation cascade. Some studies report that coagulation factor Xa and thrombin are implicated in proliferation of vascular smooth muscle cells and neointimal hyperplasia after vascular injury. The aim of this study was to determine the effect of an oral direct factor Xa inhibitor, edoxaban, on neointimal hyperplasia following the carotid artery injury in apolipoprotein E (ApoE)-deficient mice. Vascular injury was induced by the application of 10% ferric chloride to the carotid artery for 3 min in ApoE-deficient mice. After vascular injury, all animals were fed with high-cholesterol chow for 6 weeks. Edoxaban at 15 mg/kg was orally administered to the mice 1 h before (n = 10) or 1 h after (n = 9) ferric chloride injury, and thereafter 10 mg/kg edoxaban was orally administered b.i.d. for 6 weeks. Thrombus formation and neointimal hyperplasia were evaluated. Treatment with 15 mg/kg edoxaban before vascular injury almost completely inhibited thrombus formation, and following chronic administration of edoxaban significantly suppressed neointimal hyperplasia. In the mice treated with edoxaban after vascular injury, there was wide interindividual variability. In some mice (four out of nine) the neointimal hyperplasia was inhibited like in edoxaban-pretreated mice, but there was no statistical difference compared with control. This study demonstrated that inhibition of the coagulation and thrombosis by edoxaban ameliorated neointimal hyperplasia caused by vascular injury and high-cholesterol diets in ApoE-deficient mice. This suggests that factor Xa has a crucial role in the formation of neointima following vascular injury.The abstract should be followed by 3-4 bullet points that highlight major findings. The final bullet point should emphasize future directions for research.
Collapse
Affiliation(s)
- Yoshiyuki Morishima
- Medical Science Department, Daiichi Sankyo Co., Ltd., 3-5-1 Nihonbashi Honcho, Chuo-ku, Tokyo, 103-8426, Japan.
| | - Yuko Honda
- Rare Disease and LCM Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
13
|
Morikawa Y, Kato H, Kashiwagi H, Nishiura N, Akuta K, Honda S, Kanakura Y, Tomiyama Y. Protease-activated receptor-4 (PAR4) variant influences on platelet reactivity induced by PAR4-activating peptide through altered Ca 2+ mobilization and ERK phosphorylation in healthy Japanese subjects. Thromb Res 2018; 162:44-52. [DOI: 10.1016/j.thromres.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
|
14
|
Kassassir H, Siewiera K, Talar M, Przygodzki T, Watala C. Flow cytometry analysis reveals different activation profiles of thrombin- or TRAP-stimulated platelets in db/db mice. The regulatory role of PAR-3. Blood Cells Mol Dis 2017; 65:16-22. [PMID: 28460264 DOI: 10.1016/j.bcmd.2017.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. RESULTS We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. CONCLUSIONS The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice.
Collapse
Affiliation(s)
- Hassan Kassassir
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland.
| | - Karolina Siewiera
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| | - Marcin Talar
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, 6/8 Mazowiecka str., 92-215 Lodz, Poland
| |
Collapse
|
15
|
Anti-inflammatory effect of factor-Xa inhibitors in Japanese patients with atrial fibrillation. Heart Vessels 2017; 32:1130-1136. [DOI: 10.1007/s00380-017-0962-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
16
|
Antoniak S, Cardenas JC, Buczek LJ, Church FC, Mackman N, Pawlinski R. Protease-Activated Receptor 1 Contributes to Angiotensin II-Induced Cardiovascular Remodeling and Inflammation. Cardiology 2016; 136:258-268. [PMID: 27880950 DOI: 10.1159/000452269] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) plays an important role in cardiovascular disease. It also leads to the activation of coagulation. The coagulation protease thrombin induces cellular responses by activating protease-activated receptor 1 (PAR-1). We investigated whether PAR-1 contributes to Ang II-induced cardiovascular remodeling and inflammation. METHODS AND RESULTS PAR-1+/+ (wild-type; WT) and PAR-1-/- mice were infused with Ang II (600 ng/kg/min) for up to 4 weeks. In WT mice, this dose of Ang II did not cause a significant increase in blood pressure but it did cause pathological changes in both the aorta and the heart. Ang II infusion resulted in vascular remodeling of the aorta, demonstrated by a significant increase in medial wall thickening and perivascular fibrosis. Importantly, both parameters were significantly attenuated by PAR-1 deficiency. Furthermore, perivascular fibrosis around coronary vessels was reduced in Ang II-treated PAR-1-/- mice compared to WT mice. In addition, PAR-1 deficiency significantly attenuated Ang II induction of inflammatory cytokines and profibrotic genes in the aortas compared to WT mice. Finally, PAR-1 deficiency had no effect on Ang II-induced heart hypertrophy. However, the heart function measured by fractional shortening was less impaired in PAR-1-/- mice than in WT mice. CONCLUSION Our data indicate that PAR-1 plays a significant role in cardiovascular remodeling mediated by a blood pressure-independent action of Ang II.
Collapse
Affiliation(s)
- Silvio Antoniak
- UNC McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
17
|
Alfredsson J, Roe MT. Risks and benefits of triple oral anti-thrombotic therapies after acute coronary syndromes and percutaneous coronary intervention. Drug Saf 2016; 38:481-91. [PMID: 25829216 DOI: 10.1007/s40264-015-0286-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The key pathophysiological process underlying symptomatic coronary artery disease, including acute coronary syndromes (ACS), is usually a rupture or an erosion of an atherosclerotic plaque, followed by platelet activation and subsequent thrombus formation. Early clinical trials showed benefit with long-term aspirin treatment, and later-based on large clinical trials-dual anti-platelet therapy (DAPT), initially with clopidogrel, and more recently with prasugrel or ticagrelor, has become the established treatment in the post-ACS setting and after percutaneous coronary intervention (PCI). Treatment with DAPT is recommended for both ST-elevation myocardial infarction and non-ST-elevation ACS, as well as after PCI with stenting, in American and European clinical guidelines. Notwithstanding the benefits observed with DAPT, including third-generation P2Y12 receptor inhibitors plus aspirin, ACS patients remain at high risk for a recurrent cardiovascular event, suggesting that other treatment strategies, including the addition of a third oral anti-platelet agent or a novel oral anticoagulant (NOAC) to standard DAPT regimens, may provide additional benefit for post-ACS patients and for patients undergoing PCI. Adding a third anti-thrombotic agent to DAPT after an ACS event or a PCI procedure has been shown to have modest benefit in terms of ischemic event reduction, but has consistently been associated with increased bleeding complications. Therefore, the quest to optimize anti-thrombotic therapies post-ACS and post-PCI continues unabated but is tempered by the historical experiences to date that indicate that careful patient and dose selection will be critical features of future randomized trials.
Collapse
Affiliation(s)
- Joakim Alfredsson
- Department of Cardiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden,
| | | |
Collapse
|
18
|
Hara T, Fukuda D, Tanaka K, Higashikuni Y, Hirata Y, Nishimoto S, Yagi S, Yamada H, Soeki T, Wakatsuki T, Shimabukuro M, Sata M. Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice. Atherosclerosis 2015; 242:639-46. [PMID: 25817329 DOI: 10.1016/j.atherosclerosis.2015.03.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/18/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Activated factor X (FXa) plays a key role in the coagulation cascade, whereas accumulating evidence suggests that it also contributes to the pathophysiology of chronic inflammation on the vasculature. In this study, we assessed the hypothesis that rivaroxaban (Riv), a direct FXa inhibitor, inhibits atherogenesis by reducing macrophage activation. METHODS AND RESULTS Expression levels of PAR-1 and PAR-2, receptors for FXa, increased in the aorta of apolipoprotein E-deficient (ApoE(-/-)) mice compared with wild-type mice (P < 0.01, P < 0.05, respectively). Administration of Riv (5 mg/kg/day) for 20 weeks to 8-week-old ApoE(-/-) mice reduced atherosclerotic lesion progression in the aortic arch as determined by en-face Sudan IV staining compared with the non-treated group (P < 0.05) without alteration of plasma lipid levels and blood pressure. Histological analyses demonstrated that Riv significantly decreased lipid deposition, collagen loss, macrophage accumulation and matrix metallopeptidase-9 (MMP-9) expression in atherosclerotic plaques in the aortic root. Quantitative RT-PCR analyses using abdominal aorta revealed that Riv significantly reduced mRNA expression of inflammatory molecules, such as MMP-9, tumor necrosis factor-α (TNF-α). In vitro experiments using mouse peritoneal macrophages or murine macrophage cell line RAW264.7 demonstrated that FXa increased mRNA expression of inflammatory molecules (e.g., interleukin (IL)-1β and TNF-α), which was blocked in the presence of Riv. CONCLUSIONS Riv attenuates atherosclerotic plaque progression and destabilization in ApoE(-/-) mice, at least in part by inhibiting pro-inflammatory activation of macrophages. These results indicate that Riv may be particularly beneficial for the management of atherosclerotic diseases, in addition to its antithrombotic activity.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | - Kimie Tanaka
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | | | - Yoichiro Hirata
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Sachiko Nishimoto
- Department of Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hirotsugu Yamada
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Michio Shimabukuro
- Department of Cardio-Diabetes Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| |
Collapse
|
19
|
von Hundelshausen P, Schmitt MMN. Platelets and their chemokines in atherosclerosis-clinical applications. Front Physiol 2014; 5:294. [PMID: 25152735 PMCID: PMC4126210 DOI: 10.3389/fphys.2014.00294] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/22/2014] [Indexed: 12/22/2022] Open
Abstract
The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis, i.e., stroke and myocardial infarction are definable but not the plaque burden. Platelet indices including platelet count and mean platelet volume (MPV) and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities, e.g., altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich Munich, Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance Munich, Germany
| | - Martin M N Schmitt
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
20
|
Qiao H, Liu Y, Veach RA, Wylezinski L, Hawiger J. The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli. J Biol Chem 2014; 289:21973-83. [PMID: 24958727 DOI: 10.1074/jbc.m114.588723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists.
Collapse
Affiliation(s)
- Huan Qiao
- From the Departments of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine and
| | - Yan Liu
- From the Departments of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine and
| | - Ruth A Veach
- From the Departments of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine and
| | - Lukasz Wylezinski
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jacek Hawiger
- From the Departments of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
21
|
Goto S, Tomita A. New antithrombotics for secondary prevention of acute coronary syndrome. Clin Cardiol 2014; 37:178-87. [PMID: 24452610 PMCID: PMC6649494 DOI: 10.1002/clc.22233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/27/2013] [Indexed: 01/23/2023] Open
Abstract
Patients with acute coronary syndrome (ACS) usually receive acetylsalicylic acid plus an adenosine diphosphate (ADP) receptor inhibitor to reduce the long-term risk of recurrent events. However, patients receiving standard antiplatelet prophylaxis still face a substantial risk of recurrent events. Strategies involving 3 antithrombotic agents with different modes of action have now been tested. In Thrombin Receptor Antagonists for Clinical Event Reduction (TRA-CER), compared with standard care alone, bleeding complications including intracranial hemorrhage (ICH) were increased with the addition of vorapaxar, without efficacy benefit. In Trial to Assess the Effects of SCH 530348 in Preventing Heart Attack and Stroke in Patients With Atherosclerosis (TRA 2°P-TIMI 50), the addition of vorapaxar reduced recurrent events compared with standard care in stable patients with prior myocardial infarction. This study was terminated early in patients with prior stroke owing to excess ICH, though an increased risk of ICH or fatal bleeding was not detected in patients with prior myocardial infarction. The Apixaban for Prevention of Acute Ischemic and Safety Events 2 (APPRAISE-2) trial of standard-dose apixaban added to standard care in patients with ACS was also stopped early owing to excess serious bleeding. However, in Rivaroxaban in Combination With Aspirin Alone or With Aspirin and a Thienopyridine in Patients With Acute Coronary Syndromes (ATLAS ACS 2 TIMI 51), fatal bleeding or fatal ICH did not increase with low-dose rivaroxaban added to low-dose acetylsalicylic acid-based standard care compared with standard care alone. In that trial, a significant reduction of recurrent vascular events was shown with 3 antithrombotic regimens compared with standard care. Therefore, depending on drug dose and patient population, further reductions in recurrent vascular events after ACS may be possible in future clinical practice, with a favorable benefit-risk profile.
Collapse
Affiliation(s)
- Shinya Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Aiko Tomita
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
22
|
|
23
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
24
|
Biere-Rafi S, Tuinenburg A, Haak BW, Peters M, Huijgen R, De Groot E, Verhamme P, Peerlinck K, Visseren FLJ, Kruip MJHA, Laros-Van Gorkom BAP, Gerdes VEA, Buller HR, Schutgens REG, Kamphuisen PW. Factor VIII deficiency does not protect against atherosclerosis. J Thromb Haemost 2012; 10:30-7. [PMID: 21972848 DOI: 10.1111/j.1538-7836.2011.04499.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hemophilia A patients have a lower cardiovascular mortality rate than the general population. Whether this protection is caused by hypocoagulability or decreased atherogenesis is unclear. OBJECTIVES To evaluate atherosclerosis and endothelial function in hemophilia A patients with and without obesity as well as in matched, unaffected controls. METHODS Fifty-one obese (body mass index [BMI] ≥ 30 kg m(-2)) and 47 non-obese (BMI ≤ 25 kg m(-2)) hemophilia A patients, and 42 obese and 50 matched non-obese male controls were included. Carotid and femoral intima–media thickness [IMT] and brachial flow-mediated dilatation (FMD) were measured as markers of atherogenesis and endothelial function. RESULTS The overall population age was 50 ± 13 years. Carotid IMT was increased in obese subjects (0.77 ± 0.22 mm) as compared with non-obese subjects (0.69 ± 0.16 mm) [mean difference 0.07 mm (95% confidence interval [CI] 0.02–0.13, P = 0.008)]. No differences in mean carotid and femoral IMT between obese hemophilic patients and obese controls were found (mean difference of 0.02 mm [95% CI ) 0.07–0.11, P = 0.67], and mean difference of 0.06 mm [95% CI ) 0.13–0.25, P = 0.55], respectively). Thirty-five per cent of the obese hemophilic patients and 29% of the obese controls had an atherosclerotic plaque (P = 0.49), irrespective of the severity of hemophilia. Brachial FMD was comparable between obese hemophilic patients and obese controls (4.84% ± 3.24% and 5.32% ± 2.37%, P = 0.45). CONCLUSION Hemophilia A patients with obesity develop atherosclerosis to a similar extent as the general male population. Detection and treatment of cardiovascular risk factors in hemophilic patients is equally necessary.
Collapse
Affiliation(s)
- Sara Biere-Rafi
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sevigny LM, Austin KM, Zhang P, Kasuda S, Koukos G, Sharifi S, Covic L, Kuliopulos A. Protease-activated receptor-2 modulates protease-activated receptor-1-driven neointimal hyperplasia. Arterioscler Thromb Vasc Biol 2011; 31:e100-6. [PMID: 21940952 DOI: 10.1161/atvbaha.111.238261] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Emerging evidence suggests that protease-activated receptors-1 and -2 (PAR1 and PAR2) can signal together in response to proteases found in the rapidly changing microenvironment of damaged blood vessels. However, it is unknown whether PAR1 and PAR2 promote or mitigate the hyperplastic response to arterial injury. Using cell-penetrating PAR1 pepducins and mice deficient in PAR1 or PAR2, we set out to determine the respective contributions of the receptors to hyperplasia and phenotypic modulation of smooth muscle cells (SMCs) in response to arterial injury. METHODS AND RESULTS SMCs were strongly activated by PAR1 stimulation, as evidenced by increased mitogenesis, mitochondrial activity, and calcium mobilization. The effects of chronic PAR1 stimulation following vascular injury were studied by performing carotid artery ligations in mice treated with the PAR1 agonist pepducin, P1pal-13. Histological analysis revealed that PAR1 stimulation caused striking hyperplasia, which was ablated in PAR1(-/-) and, surprisingly, PAR2(-/-) mice. P1pal-13 treatment yielded an expression pattern consistent with a dedifferentiated phenotype in carotid artery SMCs. Detection of PAR1-PAR2 complexes provided an explanation for the hyperplastic effects of the PAR1 agonist requiring the presence of both receptors. CONCLUSIONS We conclude that PAR2 regulates the PAR1 hyperplastic response to arterial injury leading to stenosis.
Collapse
Affiliation(s)
- Leila M Sevigny
- Hemostasis and Thrombosis Laboratory, Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland St, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ulrych T, Böhm A, Polzin A, Daum G, Nüsing RM, Geisslinger G, Hohlfeld T, Schrör K, Rauch BH. Release of sphingosine-1-phosphate from human platelets is dependent on thromboxane formation. J Thromb Haemost 2011; 9:790-8. [PMID: 21251196 DOI: 10.1111/j.1538-7836.2011.04194.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelets release the immune-modulating lipid sphingosine-1-phosphate (S1P). However, the mechanisms of platelet S1P secretion are not fully understood. OBJECTIVES The present study investigates the function of thromboxane (TX) for platelet S1P secretion during platelet activation and the consequences for monocyte chemotaxis. METHODS S1P was detected using thin-layer chromatography in [(3)H]sphingosine-labeled platelets and by mass spectrometry. Monocyte migration was measured in modified Boyden chamber chemotaxis assays. RESULTS Release of S1P from platelets was stimulated with protease-activated receptor-1-activating peptide (PAR-1-AP, 100 μM). Acetylsalicylic acid (ASA) and two structurally unrelated reversible cyclooxygenase inhibitors diclofenac and ibuprofen suppressed S1P release. Oral ASA (500-mg single dose or 100 mg over 3 days) attenuated S1P release from platelets in healthy human volunteers ex vivo. This was paralleled by inhibition of TX formation. S1P release was increased by the TX receptor (TP) agonist U-46619, and inhibited by the TP antagonist ramatroban and by inhibitors of ABC-transport. Furthermore, thrombin-induced release of S1P was attenuated in platelets from TP-deficient mice. Supernatants from PAR-1-AP-stimulated human platelets increased the chemotactic capacity of human peripheral monocytes in a S1P-dependent manner via S1P receptors-1 and -3. These effects were inhibited by ASA-pretreatment of platelets. CONCLUSIONS TX synthesis and TP activation mediate S1P release after thrombin receptor activation. Inhibition of this pathway may contribute to the anti-inflammatory actions of ASA, for example by affecting activity of monocytes at sites of vascular injury.
Collapse
Affiliation(s)
- T Ulrych
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen SS, Jiang H, Yang J, Chen J, He B, Xu SK. cAMP-Response-element-binding-protein-binding protein silencing inhibits thrombin-induced endothelial progenitor cell migration via downregulation of CXCR4 expression. Biol Pharm Bull 2010; 33:792-5. [PMID: 20460756 DOI: 10.1248/bpb.33.792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated that activation of thrombin receptor could promote endothelial progenitor cell (EPC) migration. As cAMP-response-element-binding-protein-binding protein (CBP) is involved in many cellular biological processes, we hypothesized that CBP mediates thrombin-induced EPC migration. In this study, we examined whether CBP silencing would affect EPC migration induced by thrombin using small interference RNA approach. EPC isolated from the bone marrow of femurs and tibias of Sprague-Dawley rats were cultured and identified, and then were treated by thrombin alone or combined with CBP-shRNA lentivirus. Transwell chamber assay was performed to measure EPC migration. Quantitative real-time polymerase chain reaction and Western blot were carried out to detect the expression of CBP and CXCR4. Thrombin induced CBP expression in a time- and dose-dependent manner. Small interference RNA for CBP downregulated thrombin-induced CBP expression. Thrombin-induced EPC migration was also attenuated by CBP downregulation. Western blot indicated that CXCR4 expression on EPC is upregulated by thrombin and this effect was blocked by CBP silencing. In conclusion, thrombin-induced EPC migration was inhibited by CBP silencing via downregulation of CXCR4 expression, indicating that CBP plays an important role in thrombin-induced EPC migration.
Collapse
Affiliation(s)
- Si-Si Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | | | | | | | | | | |
Collapse
|
29
|
Delekta PC, Apel IJ, Gu S, Siu K, Hattori Y, McAllister-Lucas LM, Lucas PC. Thrombin-dependent NF-{kappa}B activation and monocyte/endothelial adhesion are mediated by the CARMA3·Bcl10·MALT1 signalosome. J Biol Chem 2010; 285:41432-42. [PMID: 21041303 DOI: 10.1074/jbc.m110.158949] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thrombin is a potent modulator of endothelial function and, through stimulation of NF-κB, induces endothelial expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These cell surface adhesion molecules recruit inflammatory cells to the vessel wall and thereby participate in the development of atherosclerosis, which is increasingly recognized as an inflammatory condition. The principal receptor for thrombin on endothelial cells is protease-activated receptor-1 (PAR-1), a member of the G protein-coupled receptor superfamily. Although it is known that PAR-1 signaling to NF-κB depends on initial PKC activation, the subsequent steps leading to stimulation of the canonical NF-κB machinery have remained unclear. Here, we demonstrate that a complex of proteins containing CARMA3, Bcl10, and MALT1 links PAR-1 activation to stimulation of the IκB kinase complex. IκB kinase in turn phosphorylates IκB, leading to its degradation and the release of active NF-κB. Further, we find that although this CARMA3·Bcl10·MALT1 signalosome shares features with a CARMA1-containing signalosome found in lymphocytes, there are significant differences in how the signalosomes communicate with their cognate receptors. Specifically, whereas the CARMA1-containing lymphocyte complex relies on 3-phosphoinositide-dependent protein kinase 1 for assembly and activation, the CARMA3-containing endothelial signalosome functions completely independent of 3-phosphoinositide-dependent protein kinase 1 and instead relies on β-arrestin 2 for assembly. Finally, we show that thrombin-dependent adhesion of monocytes to endothelial cells requires an intact endothelial CARMA3·Bcl10·MALT1 signalosome, underscoring the importance of the signalosome in mediating one of the most significant pro-atherogenic effects of thrombin.
Collapse
Affiliation(s)
- Phillip C Delekta
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Chandrasekharan UM, Waitkus M, Kinney CM, Walters-Stewart A, DiCorleto PE. Synergistic induction of mitogen-activated protein kinase phosphatase-1 by thrombin and epidermal growth factor requires vascular endothelial growth factor receptor-2. Arterioscler Thromb Vasc Biol 2010; 30:1983-9. [PMID: 20671228 DOI: 10.1161/atvbaha.110.212399] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine the molecular mechanism underlying the synergistic response of mitogen-activated protein kinase phosphatase-1 (MKP-1), which is induced by thrombin and epidermal growth factor (EGF). METHODS AND RESULTS MKP-1 induction by thrombin (approximately 6-fold) was synergistically increased (approximately 18-fold) by cotreatment with EGF in cultured endothelial cells. EGF alone did not induce MKP-1 substantially (<2-fold). The synergistic induction of MKP-1 was not mediated by matrix metalloproteinases. The EGF receptor kinase inhibitor AG1478 blocked approximately 70% of MKP-1 induction by thrombin plus EGF (from 18- to 6-fold) but not the response to thrombin alone. An extracellular signal-regulated kinase (ERK)-dependent protease-activated receptor-1 (PAR-1) signal was required for the thrombin alone effect; an ERK-independent PAR-1 signal was necessary for the approximately 12-fold MKP-1 induction by thrombin plus EGF. VEGF induction of MKP-1 was also approximately 12-fold and c-Jun N-terminal kinase (JNK) dependent. Inhibitors of extracellular signal-regulated kinase and JNK activation blocked thrombin plus EGF-induced MKP-1 completely. Furthermore, VEGF receptor 2 depletion blocked the synergistic response without affecting the induction of MKP-1 by thrombin alone. CONCLUSIONS We have identified a novel signaling interaction between protease-activated receptor-1 and EGF receptor that is mediated by VEGF receptor 2 and results in synergistic MKP-1 induction.
Collapse
Affiliation(s)
- Unni M Chandrasekharan
- Department of Cell Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
31
|
Sumitomo-Ueda Y, Aihara KI, Ise T, Yoshida S, Ikeda Y, Uemoto R, Yagi S, Iwase T, Ishikawa K, Hirata Y, Akaike M, Sata M, Kato S, Matsumoto T. Heparin cofactor II protects against angiotensin II-induced cardiac remodeling via attenuation of oxidative stress in mice. Hypertension 2010; 56:430-6. [PMID: 20660821 DOI: 10.1161/hypertensionaha.110.152207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heparin cofactor II (HCII), a serine protease inhibitor, inhibits tissue thrombin action after binding with dermatan sulfate proteoglycans in the extracellular matrix of the vascular system. We previously reported that heterozygous HCII-deficient (HCII(+/-)) humans and mice demonstrate acceleration of vascular remodeling, including atherosclerosis. However, the action of HCII on cardiac remodeling never has been determined. HCII(+/+) and HCII(+/-) mice at age 25 weeks were infused with angiotensin II (Ang II; 2.0 mg/kg/d) for 2 weeks by an osmotic mini-pump. Echocardiography revealed acceleration of cardiac concentric remodeling in HCII(+/-) mice and larger left atrial volume in HCII(+/-) mice than in HCII(+/+) mice. Histopathologic studies showed more prominent interstitial fibrosis in both the left atrium and left ventricle in HCII(+/-) mice than in HCII(+/+) mice. Daily urinary excretion of 8-hydroxy-2'-deoxyguanosine, a parameter of oxidative stress, and dihydroethidium-positive spots, indicating superoxide production in the myocardium, were markedly increased in Ang II-treated HCII(+/-) mice compared to those in HCII(+/+) mice. Cardiac gene expression levels of atrial natriuretic peptides and brain natriuretic peptides, members of the natriuretic peptide family, Nox 4, Rac-1, and p67(phox) as components of NAD(P)H oxidase, and transforming growth factor-beta1 and procollagen III were more augmented in HCII(+/-) mice than in HCII(+/+) mice. However, administration of human HCII protein attenuated all of those abnormalities in Ang II-treated HCII(+/-) mice. Moreover, human HCII protein supplementation almost abolished cardiac fibrosis in Ang II-treated HCII(+/+) mice. The results indicate that HCII has a protective role against Ang II-induced cardiac remodeling through suppression of the NAD(P)H oxidase-transforming growth factor-beta1 pathway.
Collapse
Affiliation(s)
- Yuka Sumitomo-Ueda
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Heparin cofactor II (HCII), a serine protease inhibitor (serpin), inactivates thrombin action in the subendothelial layer of the vascular wall. Because a congenitally HCII-deficient patient has been shown to have multiple atherosclerotic lesions, it is hypothesized that HCII plays a pivotal role in the development of vascular remodeling, including atherosclerosis. To clarify this issue, 3 clinical studies concerning plasma HCII activity and atherosclerosis were carried out, and results demonstrated that a higher incidence of in-stent restenosis after percutaneous coronary intervention, maximum carotid arterial plaque thickness, and prevalence of peripheral arterial disease occurred in subjects with low plasma HCII activity. Furthermore, HCII-deficient mice were generated by a gene targeting method to determine the mechanism of the vascular protective action of HCII. Because HCII(-/-) mice were embryonically lethal, we used HCII(+/-) mice and found that they manifested augmentation of intimal hyperplasia and increased thrombosis after cuff or wire injury to the femoral arteries. HCII(+/-) mice with vascular injury showed augmentation of inflammatory cytokines and chemokines and oxidative stress. These abnormal phenotypes of vascular remodeling observed in HCII(+/-) mice were almost restored by human HCII protein supplementation. HCII protects against vascular remodeling, including atherosclerosis, in both humans and mice, and plasma HCII activity might be a predictive biomarker and novel therapeutic target for the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Ken-ichi Aihara
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima, Graduate School of Health Biosciences, Tokushima, Japan.
| |
Collapse
|
33
|
Sobti RC, Maithil N, Thakur H, Sharma Y, Talwar KK. Association of ACE and FACTOR VII gene variability with the risk of coronary heart disease in north Indian population. Mol Cell Biochem 2010; 341:87-98. [PMID: 20364300 DOI: 10.1007/s11010-010-0440-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
34
|
Abstract
Wound healing involves a number of physiologic mechanisms including coagulation, inflammation, formation of granulation tissue, and tissue remodeling. Coagulation with robust thrombin generation leading to fibrin formation is necessary for wound healing. It is less clear if there is a requirement for ongoing coagulation to support tissue remodeling. We have studied wound healing in mice with defects in both the initiation (low tissue factor) and propagation (hemophilia B) phases. In hemophilia B mice, dermal wound healing is delayed; this delay is associated with bleeding into the granulation tissue. Mice can be treated with replacement therapy (factor IX) or bypassing agents (factor VIIa) to restore thrombin generation. If treated just prior to wound placement, mice will have normal hemostasis in the first day of wound healing. As the therapeutic agents clear, the mice will revert to hemophilic state. If the primary role of coagulation in wound healing is to provide a stable platelet/fibrin plug that is loaded with thrombin, then treating hemophilic animals just prior to wound placement should restore normal wound healing. The results from this study did not support that hypothesis. Instead the results show that restoring thrombin generation only at the time of wound placement did not improve the delayed wound healing. In preliminary studies on low tissue factor mice, there also appears to be a delay in wound healing with evidence of bleeding into the granulation tissue. The current data suggests that ongoing coagulation function needs to be maintained to support a normal wound healing process.
Collapse
Affiliation(s)
- Dougald M Monroe
- School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
35
|
Pagano RL, Sampaio SC, Juliano MA, Juliano L, Giorgi R. Involvement of proteinase-activated receptors 1 and 2 in spreading and phagocytosis by murine adherent peritoneal cells: modulation by the C-terminal of S100A9 protein. Eur J Pharmacol 2009; 628:240-6. [PMID: 19941849 DOI: 10.1016/j.ejphar.2009.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 11/02/2009] [Accepted: 11/16/2009] [Indexed: 11/17/2022]
Abstract
Proteinase-activated receptors (PAR) are widely recognized for their modulatory properties in inflammatory and immune responses; however, their direct role on phagocyte effector functions remains unknown. S100A9, a protein secreted during inflammatory responses, deactivates activated peritoneal macrophages, and its C-terminal portion inhibits spreading and phagocytosis of adherent peritoneal cells. Herein, the effect of PAR1 and PAR2 agonists was investigated on spreading and phagocytosis by adherent peritoneal cells, as well as the ability of murine C-terminal of S100A9 peptide (mS100A9p) to modulate this effect. Adherent peritoneal cells obtained from mouse abdominal cavity were incubated with PAR1 and PAR2 agonists and spreading and phagocytosis of Candida albicans particles were evaluated. PAR1 agonists increased both the spreading and the phagocytic activity, but PAR2 agonists only increased the spreading index. mS100A9p reverted both the increased spreading and phagocytosis induced by PAR1 agonists, but no interference in the increased spreading induced by PAR2 agonists was noticed. The shorter homologue peptide to the C-terminal of mS100A9p, corresponding to the H(92)-E(97) region, also reverted the increased spreading and phagocytosis induced by PAR1 agonists. These findings show that proteinase-activated receptors have an important role for spreading and phagocytosis of adherent peritoneal cells, and that the peptide corresponding to the C-terminal of S100A9 protein is a remarkable candidate for use as a novel compound to modulate PAR1 function.
Collapse
Affiliation(s)
- Rosana L Pagano
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av Prof Lineu Prestes, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
36
|
Erez O, Romero R, Vaisbuch E, Chaiworapongsa T, Kusanovic JP, Mazaki-Tovi S, Gotsch F, Gomez R, Maymon E, Pacora P, Edwin SS, Kim CJ, Than NG, Mittal P, Yeo L, Dong Z, Yoon BH, Hassan SS, Mazor M. Changes in amniotic fluid concentration of thrombin-antithrombin III complexes in patients with preterm labor: evidence of an increased thrombin generation. J Matern Fetal Neonatal Med 2009; 22:971-82. [PMID: 19900035 PMCID: PMC3529912 DOI: 10.3109/14767050902994762] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Preterm labor is associated with excessive maternal thrombin generation, as evidenced by increased circulating thrombin-antithrombin (TAT) III complexes concentration. In addition to its hemostatic functions, thrombin has uterotonic properties that may participate in the mechanism leading to preterm birth in cases of intrauterine bleeding. Thrombin also has a proinflammatory role, and inflammation is associated with increased thrombin generation. The aim of this study was to determine whether intra-amniotic infection/inflammation (IAI) is associated with increased amniotic fluid (AF) thrombin generation in women with preterm and term deliveries. STUDY DESIGN This cross-sectional study included the following groups: (1) mid-trimester (n = 74); (2) term not in labor (n = 39); (3) term in labor (n = 25); (4) term in labor with IAI (n = 22); (5) spontaneous preterm labor (PTL) who delivered at term (n = 62); (6) PTL without IAI who delivered preterm (n = 59); (7) PTL with IAI (n = 71). The AF TAT III complexes concentration was measured by enzyme linked immunosorbent assay (ELISA). Non-parametric statistics were used for analysis. RESULTS (1) TAT III complexes were identified in all AF samples; (2) patients with PTL who delivered preterm, with and without IAI, had a higher median AF TAT III complexes concentration than those with an episode of PTL who delivered at term (p < 0.001, p = 0.03, respectively); (3) among patients with PTL without IAI, elevated AF TAT III complexes concentration were independently associated with a shorter amniocentesis-to-delivery interval (hazard ratio, 1.5; 95% CI, 1.07-2.1); (4) among patients at term, those with IAI had a higher median AF TAT III complexes concentration than those without IAI, whether in labor or not in labor (p = 0.02); (5) there was no significant difference between the median AF TAT III complexes concentration of patients at term with and without labor; (6) patients who had a mid-trimester amniocentesis had a lower median AF TAT III complexes concentration than that of patients at term not in labor (p < 0.001). CONCLUSIONS We present herein a distinct difference in the pattern of intra-amniotic thrombin generation between term and preterm parturition. PTL leading to preterm delivery is associated with an increased intra-amniotic thrombin generation regardless of the presence of IAI. In contrast, term delivery is associated with an increased intra-amniotic thrombin generation only in patients with IAI.
Collapse
Affiliation(s)
- Offer Erez
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
- Wayne State University School of Medicine, Center for Molecular Medicine & Genetics, Detroit, Michigan, USA
| | - Edi Vaisbuch
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Ricardo Gomez
- Center for Perinatal Diagnosis and Research (CEDIP), Hospital Dr. Sótero del Río, P. Universidad Católica de Chile, Puente Alto, Chile
| | - Eli Maymon
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Percy Pacora
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Samuel S. Edwin
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Pathology, Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Pooja Mittal
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Bo Hyun Yoon
- Seoul National University College of Medicine, Department of Obstetrics and Gynecology, Seoul, South Korea
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Moshe Mazor
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
37
|
Seehaus S, Shahzad K, Kashif M, Vinnikov IA, Schiller M, Wang H, Madhusudhan T, Eckstein V, Bierhaus A, Bea F, Blessing E, Weiler H, Frommhold D, Nawroth PP, Isermann B. Hypercoagulability inhibits monocyte transendothelial migration through protease-activated receptor-1-, phospholipase-Cbeta-, phosphoinositide 3-kinase-, and nitric oxide-dependent signaling in monocytes and promotes plaque stability. Circulation 2009; 120:774-84. [PMID: 19687358 DOI: 10.1161/circulationaha.109.849539] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Clinical studies failed to provide clear evidence for a proatherogenic role of hypercoagulability. This is in contrast to the well-established detrimental role of hypercoagulability and thrombin during acute atherosclerotic complications. These seemingly opposing data suggest that hypercoagulability might exert both proatherogenic and antiatherogenic effects. We therefore investigated whether hypercoagulability mediates a beneficial effect during de novo atherogenesis. METHODS AND RESULTS De novo atherogenesis was evaluated in 2 mouse models with hyperlipidemia and genetically imposed hypercoagulability (TM(Pro/Pro)ApoE(-/-) and FVL(Q/Q)ApoE(-/-) mice). In both mouse models, hypercoagulability resulted in larger plaques, but vascular stenosis was not enhanced secondary to positive vascular remodeling. Importantly, plaque stability was increased in hypercoagulable mice with less necrotic cores, more extracellular matrix, more smooth muscle cells, and fewer macrophages. Long-term anticoagulation reversed these changes. The reduced frequency of intraplaque macrophages in hypercoagulable mice is explained by an inhibitory role of thrombin and protease-activated receptor-1 on monocyte transendothelial migration in vitro. This is dependent on phospholipase-Cbeta, phosphoinositide 3-kinase, and nitric oxide signaling in monocytes but not in endothelial cells. CONCLUSIONS Here, we show a new function of the coagulation system, averting stenosis and plaque destabilization during de novo atherogenesis. The in vivo and in vitro data establish that thrombin-induced signaling via protease-activated receptor-1, phospholipase-Cbeta, phosphoinositide 3-kinase, and nitric oxide in monocytes impairs monocyte transendothelial migration. This likely accounts for the reduced macrophage accumulation in plaques of hypercoagulable mice. Thus, in contrast to their role in unstable plaques or after vascular injury, hypercoagulability and thrombin convey a protective effect during de novo atherogenesis.
Collapse
Affiliation(s)
- Stefanie Seehaus
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Aihara KI, Azuma H, Akaike M, Sata M, Matsumoto T. Heparin Cofactor II as a Novel Vascular Protective Factor Against Atherosclerosis. J Atheroscler Thromb 2009; 16:523-31. [DOI: 10.5551/jat.1552] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
39
|
Acute internalization of gap junctions in vascular endothelial cells in response to inflammatory mediator-induced G-protein coupled receptor activation. FEBS Lett 2008; 582:4039-46. [PMID: 18992245 DOI: 10.1016/j.febslet.2008.10.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 11/21/2022]
Abstract
During the inflammatory response, activation of G-protein coupled receptors (GPCRs) by inflammatory mediators rapidly leads to inhibition of gap junction intercellular communication (GJIC); however, the steps that lead to this inhibition are not known. Combining high-resolution fluorescence microscopy and functional assays, we found that activation of the GPCRs PAR-1 and ET(A/B) by their natural inflammatory mediator agonists, thrombin and endothelin-1, resulted in rapid and acute internalization of gap junctions (GJs) that coincided with the inhibition of GJIC followed by increased vascular permeability. The endocytosis protein clathrin and the scaffold protein ZO-1 appeared to be involved in GJ internalization, and ZO-1 was partially displaced from GJs during the internalization process. These findings demonstrate that GJ internalization is an efficient mechanism for modulating GJIC in inflammatory response.
Collapse
|
40
|
Wilson BJ, Harada R, LeDuy L, Hollenberg MD, Nepveu A. CUX1 transcription factor is a downstream effector of the proteinase-activated receptor 2 (PAR2). J Biol Chem 2008; 284:36-45. [PMID: 18952606 DOI: 10.1074/jbc.m803808200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Proteinase-activated receptors (PARs) are G-protein-coupled receptors that have been linked to an array of cellular processes, including inflammation, migration, and proliferation. Although signal transduction downstream of PARs has been actively investigated, little is known about the mechanisms that lead to changes in transcriptional programs. Here we show that the CUX1 homeodomain protein is a downstream effector of PAR2. Treatment of epithelial and fibroblastic cells with trypsin or the PAR2-activating peptide (PAR2-AP) caused a rapid increase in CUX1 DNA binding activity. The stimulation of CUX1 was specific to PAR2 because no effect was observed with thrombin or the PAR1-AP. Using a panel of recombinant CUX1 proteins, the regulation was found to involve the cut repeat 3 (CR3) and the cut homeodomain, two DNA binding domains that are present in all CUX1 isoforms. Expression analysis in cux1(-/-) mouse embryo fibroblasts led to the identification of three genes that are regulated downstream of both PAR2 and CUX1 as follows: interleukin-1alpha, matrix metalloproteinase-10, and cyclo-oxygenase-2. p110 CUX1 was able to activate each of these genes, both in reporter assays and following the infection of cells. Moreover, the treatment of Hs578T breast tumor cells with trypsin led to a rapid recruitment of p110 CUX1 to the promoter of these genes and to a concomitant increase in their mRNA steady-state levels. Altogether, these results suggest a model whereby activation of PAR2 triggers a signaling cascade that culminates with the stimulation of p110 CUX1 DNA binding and the transcriptional activation of target genes.
Collapse
Affiliation(s)
- Brian J Wilson
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Ryoko Harada
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Lam LeDuy
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Morley D Hollenberg
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Alain Nepveu
- Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada; Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada; Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada; Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, the Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, and the Departments of Biochemistry, Medicine, and Oncology, McGill University, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
41
|
Erez O, Romero R, Kim SS, Kim JS, Kim YM, Wildman DE, Than NG, Mazaki-Tovi S, Gotsch F, Pineles B, Kusanovic JP, Espinoza J, Mittal P, Mazor M, Hassan SS, Kim CJ. Over-expression of the thrombin receptor (PAR-1) in the placenta in preeclampsia: a mechanism for the intersection of coagulation and inflammation. J Matern Fetal Neonatal Med 2008; 21:345-55. [PMID: 18570113 DOI: 10.1080/14767050802034859] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Preeclampsia (PE) is characterized by excessive thrombin generation, which has been implicated in the multiple organ damage associated with the disease. The biological effects of thrombin on coagulation and inflammation are mediated by protease-activated receptor-1 (PAR-1), a G protein-coupled receptor. The aim of this study was to determine whether preterm PE is associated with changes in placental expression of PAR-1. STUDY DESIGN This cross-sectional study included two groups matched for gestational age at delivery: (1) patients with preterm PE (<37 weeks of gestation; n = 26) and (2) a control group of patients with preterm labor without intra-amniotic infection (n = 26). Placental tissue microarrays were immunostained for PAR-1. Immunoreactivity of PAR-1 in the villous trophoblasts was graded as negative, weak-positive, or strong-positive. RESULTS (1) The proportion of cases with strong PAR-1 immunoreactivity was significantly higher in placentas of patients with PE than in placentas from the control group (37.5% (9/24) vs. 8.7% (2/23); p = 0.036, respectively). (2) PAR-1 immunoreactivity was found in the cellular compartments of the placental villous tree, mainly in villous trophoblasts and stromal endothelial cells. (3) PAR-1 was detected in 92.3% (24/26) of the placentas of women with PE and in 88.5% (23/26) of the placentas from the control group. CONCLUSION Placentas from pregnancies complicated by preterm PE had a significantly higher frequency of strong PAR-1 expression than placentas from women with spontaneous preterm labor. This observation is consistent with a role for PAR-1 as a mediator of the effect of thrombin on coagulation and inflammation in PE. We propose that the effects of thrombin in PE are due to increased thrombin generation and higher expression of PAR-1, the major receptor for this enzyme.
Collapse
Affiliation(s)
- Offer Erez
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Smadja DM, Basire A, Amelot A, Conte A, Bièche I, Le Bonniec BF, Aiach M, Gaussem P. Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. J Cell Mol Med 2008; 12:975-86. [PMID: 18494938 PMCID: PMC4401136 DOI: 10.1111/j.1582-4934.2008.00161.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent data suggest that endothelial progenitor cells (EPCs) are involved in recanalizing venous thrombi. We examined the impact of a fibrin network, and particularly of adsorbed thrombin, on EPCs derived from cord blood CD34(+) cells. Fibrin networks generated in microplates by adding CaCl(2) to platelet-depleted plasma retained adsorbed thrombin at the average concentration of 4.2 nM per well. EPCs expressed high levels of endothelial cell protein C receptor and thrombomodulin, allowing the generation of activated protein C on the fibrin matrix in the presence of exogenous human protein C. The fibrin matrix induced significant EPC proliferation and, when placed in the lower chamber of a Boyden device, strongly enhanced EPC migration. These effects were partly inhibited by hirudin by 41% and 66%, respectively), which suggests that fibrin-adsorbed thrombin interacts with EPCs via the thrombin receptor PAR-1. Finally, spontaneous lysis of the fibrin network, studied by measuring D-dimer release into the supernatant, was inhibited by EPCs but not by control mononuclear cells. Such an effect was associated with a 10-fold increase in plasminogen activator inhibitor-1 (PAI-1) secretion by EPCs cultivated in fibrin matrix. Overall, our data show that EPCs, in addition to their angiogenic potential, have both anticoagulant and antifibrinolytic properties. Thrombin may modulate these properties and contribute to thrombus recanalization by EPCs.
Collapse
Affiliation(s)
- David M Smadja
- AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique A, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Smadja DM, Bièche I, Susen S, Mauge L, Laurendeau I, d'Audigier C, Grelac F, Emmerich J, Aiach M, Gaussem P. Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells. J Cell Mol Med 2008; 13:2534-2546. [PMID: 18657231 DOI: 10.1111/j.1582-4934.2008.00429.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The proinflammatory chemokine interleukin 8 exerts potent angiogenic effects on endothelial cells by interacting with its receptors CXCR1 and CXCR2. As thrombin is also a potent inflammatory factor, and as endothelial progenitor cells (EPC) express functional PAR-1 thrombin receptor, we examined whether PAR-1 stimulation interferes with the IL-8 pathway in EPC. EPC were obtained from adult blood (AB) and cord blood (CB). The effect of PAR-1 stimulation by the peptide SFLLRN on IL-8, CXCR1 and CXCR2 expression was examined by RTQ-PCR and at the protein level in AB and CB late EPC and in AB early EPC. Specific siRNA was used to knock down PAR-1 expression. The IL-8 gene was expressed strongly in AB early EPC and moderately in late EPC. In contrast, CXCR1 and CXCR2 gene expression was restricted to AB early EPC. The IL-8 level in AB early EPC conditioned medium was high in basal conditions and did not change after PAR-1 activation. By contrast, IL-8 secretion by late EPC was low in basal conditions and strongly up-regulated upon PAR-1 activation. PAR-1 activation induced a number of genes involved in activating protein-1 (AP-1) and nuclear factor (NF)-kappaB pathways. Conditioned medium of PAR-1-activated late EPC enhanced the migratory potential of early EPC, and this effect was abrogated by blocking IL-8. Target-specific siRNA-induced PAR-1 knockdown, and fully inhibited PAR-1-induced IL-8 synthesis. In conclusion, PAR-1 activation induces IL-8 synthesis by late EPC. This could potentially enhance cooperation between late and early EPC during neovascularization, through a paracrine effect.
Collapse
Affiliation(s)
- David M Smadja
- Université Paris Descartes, Faculté de Pharmacie, Paris, France.,Inserm U765, Paris, France.,AP-HP, Hòpital Européen Georges Pompidou, Paris, France
| | - Ivan Bièche
- Université Paris Descartes, Faculté de Pharmacie, Paris, France.,Inserm U745, Paris, France
| | | | - Laetitia Mauge
- Inserm U765, Paris, France.,AP-HP, Hòpital Européen Georges Pompidou, Paris, France
| | - Ingrid Laurendeau
- Université Paris Descartes, Faculté de Pharmacie, Paris, France.,Inserm U745, Paris, France
| | | | | | - Joseph Emmerich
- Université Paris Descartes, Faculté de Pharmacie, Paris, France.,Inserm U765, Paris, France.,AP-HP, Hòpital Européen Georges Pompidou, Paris, France
| | - Martine Aiach
- Université Paris Descartes, Faculté de Pharmacie, Paris, France.,Inserm U765, Paris, France.,AP-HP, Hòpital Européen Georges Pompidou, Paris, France
| | - Pascale Gaussem
- Université Paris Descartes, Faculté de Pharmacie, Paris, France.,Inserm U765, Paris, France.,AP-HP, Hòpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
44
|
Kamphuisen PW. Thrombogenicity in patients with percutaneous coronary artery intervention and dual antiplatelet treatment. Eur Heart J 2008; 29:1699-700. [DOI: 10.1093/eurheartj/ehn257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Deng X, Mercer PF, Scotton CJ, Gilchrist A, Chambers RC. Thrombin induces fibroblast CCL2/JE production and release via coupling of PAR1 to Galphaq and cooperation between ERK1/2 and Rho kinase signaling pathways. Mol Biol Cell 2008; 19:2520-33. [PMID: 18353977 DOI: 10.1091/mbc.e07-07-0720] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Uncontrolled activation of the coagulation cascade after tissue injury has been implicated in both inflammation and tissue fibrosis. Thrombin exerts pluripotent cellular effects via its high-affinity receptor, proteinase-activated receptor-1 (PAR(1)) and signaling via Galpha(i/o), Galpha(q), or Galpha(12/13). Activation of PAR(1) on fibroblasts, a key effector cell in fibrosis, results in the induction of several mediators, including the potent monocyte and fibrocyte chemoattractant CCL2. The aim of this study was to identify the G protein and signaling pathway involved in PAR(1)-mediated CCL2 production and release. Using a novel PAR(1) antagonist that blocks the interaction between PAR(1) and Galpha(q), we report for the first time that PAR(1) coupling to Galpha(q) is essential for thrombin-induced CCL2 gene expression and protein release in murine lung fibroblasts. We further demonstrate that these effects are mediated via the cooperation between ERK1/2 and Rho kinase signaling pathways: a calcium-independent protein kinase C (PKC), c-Raf, and ERK1/2 pathway was found to mediate PAR(1)-induced CCL2 gene transcription, whereas a phospholipase C, calcium-dependent PKC, and Rho kinase pathway influences CCL2 protein release. We propose that targeting the interaction between PAR(1) and Galpha(q) may allow us to selectively interfere with PAR(1) proinflammatory and profibrotic signaling, while preserving the essential role of other PAR(1)-mediated cellular responses.
Collapse
Affiliation(s)
- Xiaoling Deng
- Centre for Respiratory Research, University College London, London WC1E 6JJ, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Ribatti D, Levi-Schaffer F, Kovanen PT. Inflammatory angiogenesis in atherogenesis--a double-edged sword. Ann Med 2008; 40:606-21. [PMID: 18608127 DOI: 10.1080/07853890802186913] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The adventitia and the outer layers of media of an atherosclerosis-prone arterial wall are vascularized by vasa vasorum. Upon growth of an atherosclerotic lesion in the intima, neovascular sprouts originating from the adventitial vasa vasorum enter the lesion, the local proangiogenic micromilieu in the lesion being created by intramural hypoxia, by increased intramural oxidant stress, and by inflammatory cell infiltration (macrophages, T cells and mast cells). The angiogenic factors present in the lesions include various growth factors, chemokines, cytokines, proteinases, and several other factors possessing direct or indirect angiogenic activities, while the current list of antiangiogenic factors is smaller. An imbalance between endogenous inducers and inhibitors of angiogenesis, with a predominance of the former ones, is essential for the development of neovessels during the progression of the lesion. By providing oxygen and nutrients to the cells of atherosclerotic lesions, neovascularization initially tends to prevent cellular death and so contributes to plaque growth and stabilization. However, the inflammatory cells may induce rupture of the fragile neovessels, and so cause intraplaque hemorrhage and ensuing plaque destabilization. Pharmacological inhibition of angiogenesis in atherosclerotic plaques with ensuing inhibition of lesion progression has been achieved in animal models, but clinical studies aiming at regulation of angiogenesis in the atherosclerotic arterial wall can be designed only after we have reached a firm conclusion about the role of angiogenesis at various stages of lesion development--good or bad.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | | | | |
Collapse
|
47
|
Matsushita T, Rama A, Charolidi N, Dupont E, Severs NJ. Relationship of connexin43 expression to phenotypic modulation in cultured human aortic smooth muscle cells. Eur J Cell Biol 2007; 86:617-28. [PMID: 17651863 DOI: 10.1016/j.ejcb.2007.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 01/12/2023] Open
Abstract
Transition of arterial smooth muscle cells from the contractile to the synthetic phenotype in vivo is associated with up-regulation of the gap-junctional protein, connexin43 (Cx43). However, the role of increased Cx43 expression in relation to the characteristic features of the synthetic phenotype - altered growth, differentiation or synthetic activity - has not previously been defined. In the present study, growth was induced in cultured human aortic smooth muscle cells by treatment with thrombin and with PDGF-bb; growth arrest was induced by serum deprivation and contact inhibition. Alterations in Cx43 expression and gap-junctional communication were analyzed in relation to expression of markers for contractile differentiation and extracellular matrix synthesis. Treatment with thrombin, but not PDGF-bb, led to up-regulation of Cx43 gap junctions, increased synthetic activity yet also enhanced contractile differentiation. Inhibition of growth by deprivation of serum growth factors in sub-confluent cultures had no effect on Cx43 expression or contractile differentiation. Growth arrest by contact inhibition led to progressive reduction in Cx43 expression, in parallel with progressive increase in expression of differentiation markers but no alteration in synthetic activity. Of a range of stimuli examined, only thrombin had the combined effect of increasing Cx43 gap-junction communication, growth and synthesis, yet it also enhanced contractile differentiation. Down-regulation of Cx43 and improved contractile differentiation occurred only when growth arrest was induced through the contact-inhibition pathway, though, in this instance, synthesis remained undiminished. We conclude that Cx43 levels, though having common correlates, are not exclusively linked to the cell phenotype or the state of growth.
Collapse
Affiliation(s)
- Tsutomu Matsushita
- Cardiac Medicine, National Heart and Lung Institute (Imperial College London), Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| | | | | | | | | |
Collapse
|
48
|
Abstract
Thrombin is clearly a key trigger of thrombosis, the proximal cause of most morbidity and mortality in atherosclerotic cardiovascular disease. Might thrombin also contribute to longer-term, structural changes in the arterial wall that promote narrowing and clotting? A study in this issue of the JCI argues that it can. Aihara et al. report that haploinsufficiency of heparin cofactor II, a glycosaminoglycan-dependent thrombin inhibitor, exacerbates injury- or hyperlipidemia-induced arterial lesion formation in mice, possibly by excessive thrombin signaling through protease-activated receptors (see the related article beginning on page 1514).
Collapse
Affiliation(s)
- Eric Camerer
- Cardiovascular Research Institute, UCSF, San Francisco, California 94158-2517, USA.
| |
Collapse
|
49
|
Aihara KI, Azuma H, Akaike M, Ikeda Y, Sata M, Takamori N, Yagi S, Iwase T, Sumitomo Y, Kawano H, Yamada T, Fukuda T, Matsumoto T, Sekine K, Sato T, Nakamichi Y, Yamamoto Y, Yoshimura K, Watanabe T, Nakamura T, Oomizu A, Tsukada M, Hayashi H, Sudo T, Kato S, Matsumoto T. Strain-dependent embryonic lethality and exaggerated vascular remodeling in heparin cofactor II-deficient mice. J Clin Invest 2007; 117:1514-26. [PMID: 17549254 PMCID: PMC1878511 DOI: 10.1172/jci27095] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 03/27/2007] [Indexed: 01/04/2023] Open
Abstract
Heparin cofactor II (HCII) specifically inhibits thrombin action at sites of injured arterial wall, and patients with HCII deficiency exhibit advanced atherosclerosis. However, the in vivo effects and the molecular mechanism underlying the action of HCII during vascular remodeling remain elusive. To clarify the role of HCII in vascular remodeling, we generated HCII-deficient mice by gene targeting. In contrast to a previous report, HCII(-/-) mice were embryonically lethal. In HCII(+/-) mice, prominent intimal hyperplasia with increased cellular proliferation was observed after tube cuff and wire vascular injury. The number of protease-activated receptor-1-positive (PAR-1-positive) cells was increased in the thickened vascular wall of HCII(+/-) mice, suggesting enhanced thrombin action in this region. Cuff injury also increased the expression levels of inflammatory cytokines and chemokines in the vascular wall of HCII(+/-) mice. The intimal hyperplasia in HCII(+/-) mice with vascular injury was abrogated by human HCII supplementation. Furthermore, HCII deficiency caused acceleration of aortic plaque formation with increased PAR-1 expression and oxidative stress in apoE-KO mice. These results demonstrate that HCII protects against thrombin-induced remodeling of an injured vascular wall by inhibiting thrombin action and suggest that HCII is potentially therapeutic against atherosclerosis without causing coagulatory disturbance.
Collapse
Affiliation(s)
- Ken-ichi Aihara
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Hiroyuki Azuma
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Masashi Akaike
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Masataka Sata
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Nobuyuki Takamori
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Shusuke Yagi
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Takashi Iwase
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Yuka Sumitomo
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Hirotaka Kawano
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Takashi Yamada
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Toru Fukuda
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Takahiro Matsumoto
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Keisuke Sekine
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Takashi Sato
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Yuko Nakamichi
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Yoko Yamamoto
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Kimihiro Yoshimura
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Tomoyuki Watanabe
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Takashi Nakamura
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Akimasa Oomizu
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Minoru Tsukada
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Hideki Hayashi
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Toshiki Sudo
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Shigeaki Kato
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| | - Toshio Matsumoto
- Department of Medicine and Bioregulatory Sciences and
21st Century Center of Excellence Program, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan.
Institute of Molecular and Cellular Biosciences and
Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
ERATO, Japan Science and Technology Agency, Saitama, Japan.
Benesis Corp., Osaka, Japan.
First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Tokushima, Japan
| |
Collapse
|
50
|
Anthoni C, Russell J, Wood KC, Stokes KY, Vowinkel T, Kirchhofer D, Granger DN. Tissue factor: a mediator of inflammatory cell recruitment, tissue injury, and thrombus formation in experimental colitis. ACTA ACUST UNITED AC 2007; 204:1595-601. [PMID: 17562818 PMCID: PMC2118639 DOI: 10.1084/jem.20062354] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is growing evidence for an interplay between inflammatory and coagulation pathways in acute and chronic inflammatory diseases. However, it remains unclear whether components of the coagulation pathway, such as tissue factor (TF), contribute to intestinal inflammation, and whether targeting TF will blunt the inflammatory cell recruitment, tissue injury, and enhanced thrombus formation that occur in experimental colitis. Mice were fed 3% dextran sodium sulfate (DSS) to induce colonic inflammation, with some mice receiving a mouse TF-blocking antibody (muTF-Ab). The adhesion of leukocytes and platelets in colonic venules, light/dye-induced thrombus formation in cremaster muscle microvessels, as well as disease activity index, thrombin-antithrombin (TAT) complexes in plasma, and histopathologic changes in the colonic mucosa were monitored in untreated and muTF-Ab-treated colitic mice. In untreated mice, DSS elicited the recruitment of adherent leukocytes and platelets in colonic venules, caused gross and histologic injury, increased plasma TAT complexes, and enhanced thrombus formation in muscle arterioles. muTF-Ab prevented elevation in TAT complexes, reduced blood cell recruitment and tissue injury, and blunted thrombus formation in DSS colitic mice. These findings implicate TF in intestinal inflammation and support an interaction between inflammation and coagulation in experimental colitis.
Collapse
Affiliation(s)
- Christoph Anthoni
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|