1
|
Kalupahana NS, Moustaid-Moussa N. Beyond blood pressure, fluid and electrolyte homeostasis - Role of the renin angiotensin aldosterone system in the interplay between metabolic diseases and breast cancer. Acta Physiol (Oxf) 2024; 240:e14164. [PMID: 38770946 DOI: 10.1111/apha.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The classical renin angiotensin aldosterone system (RAAS), as well as the recently described counter-regulatory or non-canonical RAAS have been well characterized for their role in cardiovascular homeostasis. Moreover, extensive research has been conducted over the past decades on both paracrine and the endocrine roles of local RAAS in various metabolic regulations and in chronic diseases. Clinical evidence from patients on RAAS blockers as well as pre-clinical studies using rodent models of genetic manipulations of RAAS genes documented that this system may play important roles in the interplay between metabolic diseases and cancer, namely breast cancer. Some of these studies suggest potential therapeutic applications and repurposing of RAAS inhibitors for these diseases. In this review, we discuss the mechanisms by which RAAS is involved in the pathogenesis of metabolic diseases such as obesity and type-2 diabetes as well as the role of this system in the initiation, expansion and/or progression of breast cancer, especially in the context of metabolic diseases.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
2
|
Li Z, Chen J, Huang H, Zhan Q, Wang F, Chen Z, Lu X, Sun G. Post-translational modifications in diabetic cardiomyopathy. J Cell Mol Med 2024; 28:e18158. [PMID: 38494853 PMCID: PMC10945092 DOI: 10.1111/jcmm.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zhi Li
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Jie Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hailong Huang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qianru Zhan
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning ProvincePeople's Hospital of China Medical UniversityShenyangChina
| | - Zihan Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xinwei Lu
- Department of CardiologySiping Central People's HospitalSipingChina
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
3
|
Lin X, Wang X, Feng W, Wan Y, Chai J, Li F, Xu M. The Counteracting Effects of Ang II and Ang-(1-7) on the Function andGrowth of Insulin-secreting NIT-1 Cells. Curr Diabetes Rev 2024; 20:e010124225112. [PMID: 38173074 DOI: 10.2174/0115733998276291231204115314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION China now has the highest number of diabetes in the world. Angiotensin II (Ang II) causes insulin resistance by acting on the insulin signaling pathway of peripheral target tissues. However, its effect on islet β-cells remains unclear. The possible role of Angiotensin-( 1-7) [Ang-(1-7)] as an antagonist to the effects of Ang II and in treating diabetes needs to be elucidated. OBJECTIVES To assess the effects of Ang II and Ang-(1-7) on the function and growth of islet β cell line NIT-1, which is derived from the islets of non-obese diabetic/large T-antigen (NOD/LT) mice with insulinoma. METHODS NIT-1 cells were treated with Ang II, Ang-(1-7) and their respective receptor antagonists. The impact on cell function and growth was then evaluated. RESULTS Ang II significantly reduced insulin-stimulated IR-β-Tyr and Akt-Ser; while Ang-(1-7), saralasin (an Ang II receptor antagonist), and diphenyleneiodonium [DPI, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) antagonist] reversed the inhibiting effect. Conversely, Ang II significantly increased insulin-stimulated intracellular H2O2 and P47 phox, while saralasin and DPI reverted the effect. Furthermore, Ang-(1-7) reduced the elevated concentrations of ROS and MDA while increasing the proliferation rate that was reduced by high glucose, all of which were reversed by A-779, an antagonist of the Mas receptor (MasR). CONCLUSION Angiotensin II poses a negative regulatory effect on insulin signal transduction, increases oxidative stress, and may inhibit the transcription of insulin genes stimulated by insulin in NIT-1 cells. Meanwhile, angiotensin-(1-7) blocked these effects via MasR. These results corroborate the rising potential of the renin-angiotensin system (RAS) in treating diabetes.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyun Wang
- Department of Endocrinology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, People's Republic of China
| | - Weilian Feng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiani Chai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
5
|
Tavares LP, Melo EM, Sousa LP, Teixeira MM. Pro-resolving therapies as potential adjunct treatment for infectious diseases: Evidence from studies with annexin A1 and angiotensin-(1-7). Semin Immunol 2022; 59:101601. [PMID: 35219595 DOI: 10.1016/j.smim.2022.101601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023]
Abstract
Infectious diseases, once believed to be an eradicable public health threat, still represent a leading cause of death worldwide. Environmental and social changes continuously favor the emergence of new pathogens and rapid dissemination around the world. The limited availability of anti-viral therapies and increased antibiotic resistance has made the therapeutic management of infectious disease a major challenge. Inflammation is a primordial defense to protect the host against invading microorganisms. However, dysfunctional inflammatory responses contribute to disease severity and mortality during infections. In recent years, a few studies have examined the relevance of resolution of inflammation in the context of infections. Inflammation resolution is an active integrated process transduced by several pro-resolving mediators, including Annexin A1 and Angiotensin-(1-7). Here, we examine some of the cellular and molecular circuits triggered by pro-resolving molecules and that may be beneficial in the context of infectious diseases.
Collapse
Affiliation(s)
- Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eliza Mathias Melo
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
S-adenosylmethionine upregulates the angiotensin receptor-binding protein ATRAP via the methylation of HuR in NAFLD. Cell Death Dis 2021; 12:306. [PMID: 33753727 PMCID: PMC7985363 DOI: 10.1038/s41419-021-03591-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged globally and is associated with inflammatory signaling. The underlying mechanisms remain poorly delineated, although NAFLD has attracted considerable attention and been extensively investigated. Recent publications have determined that angiotensin II (Ang II) plays an important role in stimulating NAFLD progression by causing lipid metabolism disorder and insulin resistance through its main receptor, Ang II type 1 receptor (AT1R). Herein, we explored the effect of supplementary S-adenosylmethionine (SAM), which is the main biological methyl donor in mammalian cells, in regulating AT1R-associated protein (ATRAP), which is the negative regulator of AT1R. We found that SAM was depleted in NAFLD and that SAM supplementation ameliorated steatosis. In addition, in both high-fat diet-fed C57BL/6 rats and L02 cells treated with oleic acid (OA), ATRAP expression was downregulated at lower SAM concentrations. Mechanistically, we found that the subcellular localization of human antigen R (HuR) was determined by the SAM concentration due to protein methylation modification. Moreover, HuR was demonstrated to directly bind ATRAP mRNA and control its nucleocytoplasmic shuttling. Thus, SAM was suggested to upregulate ATRAP protein expression by maintaining the export of its mRNA from the nucleus. Taken together, our findings suggest that SAM can positively regulate ATRAP in NAFLD and may have various potential benefits for the treatment of NAFLD.
Collapse
|
7
|
Vieira C, Nery L, Martins L, Jabour L, Dias R, Simões E Silva AC. Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology. Curr Drug Targets 2021; 22:254-281. [PMID: 33081670 DOI: 10.2174/1389450121666201020154033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Coronavirus Disease 2019 (COVID-19) is becoming the major health issue in recent human history with thousands of deaths and millions of cases worldwide. Newer research and old experience with other coronaviruses highlighted a probable underlying mechanism of disturbance of the renin-angiotensin system (RAS) that is associated with the intrinsic effects of SARS-CoV-2 infection. OBJECTIVE In this review, we aimed to describe the intimate connections between the RAS components, the immune system and COVID-19 pathophysiology. METHODS This non-systematic review article summarizes recent evidence on the relationship between COVID-19 and the RAS. RESULTS Several studies have indicated that the downregulation of membrane-bound ACE2 may exert a key role for the impairment of immune functions and for COVID-19 patients' outcomes. The downregulation may occur by distinct mechanisms, particularly: (1) the shedding process induced by the SARS-CoV-2 fusion pathway, which reduces the amount of membrane-bound ACE2, stimulating more shedding by the high levels of Angiotensin II; (2) the endocytosis of ACE2 receptor with the virus itself and (3) by the interferon inhibition caused by SARS-CoV-2 effects on the immune system, which leads to a reduction of ACE2 receptor expression. CONCLUSION Recent research provides evidence of a reduction of the components of the alternative RAS axis, including ACE2 and Angiotensin-(1-7). In contrast, increased levels of Angiotensin II can activate the AT1 receptor in several organs. Consequently, increased inflammation, thrombosis and angiogenesis occur in patients infected with SARS-COV-2. Attention should be paid to the interactions of the RAS and COVID-19, mainly in the context of novel vaccines and proposed medications.
Collapse
Affiliation(s)
- Cristina Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Nery
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ludimila Martins
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Jabour
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raphael Dias
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Chen L, Wang X, Qu X, Pan L, Wang Z, Lu Y, Hu H. Activation of the STAT3/microRNA-21 pathway participates in angiotensin II-induced angiogenesis. J Cell Physiol 2019; 234:19640-19654. [PMID: 30950039 PMCID: PMC6767590 DOI: 10.1002/jcp.28564] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/26/2022]
Abstract
Angiotensin II (AngII) facilitates angiogenesis that is associated with the continuous progression of atherosclerotic plaques, but the underlying mechanisms are still not fully understood. Several microRNAs (miRNAs) have been shown to promote angiogenesis; however, whether miRNAs play a crucial role in AngII-induced angiogenesis remains unclear. This study evaluated the functional involvement of miRNA-21 (miR-21) in the AngII-mediated proangiogenic response in human microvascular endothelial cells (HMECs). We found that AngII exerted a proangiogenic role, indicated by the promotion of proliferation, migration, and tube formation in HMECs. Next, miR-21 was found to be upregulated in AngII-treated HMECs, and its specific inhibitor potently blocked the proangiogenic effects of AngII. Subsequently, we focused on the constitutive activation of STAT3 in the AngII-mediated proangiogenic process. Bioinformatic analysis indicated that STAT3 acted as a transcription factor initiating miR-21 expression, which was verified by ChIP-PCR. A reporter assay further identified three functional binding sites of STAT3 in the miR-21 promoter region. Moreover, phosphatase and tensin homolog (PTEN) was recognized as a target of miR-21, and STAT3 inhibition restored AngII-induced reduction in PTEN. Similarly, the STAT3/miR-21 axis was shown to mediate AngII-provoked angiogenesis in vivo, which was demonstrated by using the appropriate inhibitors. Our data suggest that AngII was involved in proangiogenic responses through miR-21 upregulation and reduced PTEN expression, which was, at least in part, linked to STAT3 signaling. The present study provides novel insights into AngII-induced angiogenesis and suggests potential treatment strategies for attenuating the progression of atherosclerotic lesions and preventing atherosclerosis complications.
Collapse
Affiliation(s)
- Li‐Yuan Chen
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| | - Xue Wang
- Department of Occupational HealthThird Military Medical UniversityChongqingChina
| | - Xiao‐Long Qu
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| | - Li‐Na Pan
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| | - Ze‐Yang Wang
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| | - Yong‐Hui Lu
- Department of Occupational HealthThird Military Medical UniversityChongqingChina
| | - Hou‐Yuan Hu
- Department of CardiologySouthwest Hospital, Third Military Medical UniversityChongqingChina
| |
Collapse
|
9
|
Borém LMA, Neto JFR, Brandi IV, Lelis DF, Santos SHS. The role of the angiotensin II type I receptor blocker telmisartan in the treatment of non-alcoholic fatty liver disease: a brief review. Hypertens Res 2018; 41:394-405. [PMID: 29636553 PMCID: PMC7091617 DOI: 10.1038/s41440-018-0040-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 01/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently considered an important component of metabolic syndrome (MetS). The spectrum of NAFLD includes conditions that range from simple hepatic steatosis to non-alcoholic steatohepatitis. NAFLD is correlated with liver-related death and is predicted to be the most frequent indication for liver transplantation by 2030. Insulin resistance is directly correlated to the central mechanisms of hepatic steatosis in NAFLD patients, which is strongly correlated to the imbalance of the renin–angiotensin system, that is involved in lipid and glucose metabolism. Among the emerging treatment approaches for NAFLD is the anti-hypertensive agent telmisartan, which has positive effects on liver, lipid, and glucose metabolism, especially through its action on the renin–angiotensin system, by blocking the ACE/AngII/AT1 axis and increasing ACE2/Ang(1–7)/Mas axis activation. However, treatment with this drug is only recommended for patients with an established indication for anti-hypertensive therapy. Thus, there is an increased need for large randomized controlled trials with the aim of elucidating the effects of telmisartan on liver disease, especially NAFLD. From this perspective, the present review aims to provide a brief examination of the pathogenesis of NAFLD/NASH and the role of telmisartan on preventing liver disorders and thus to improve the discussion on potential therapies.
Collapse
Affiliation(s)
- Luciana M A Borém
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil.,Medicine Department, Faculdades Integradas Pitágoras, Montes Claros, Minas Gerais, Brazil
| | - João F R Neto
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Igor V Brandi
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Deborah F Lelis
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Sergio H S Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil. .,Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 722] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
11
|
Ismail B, deKemp RA, Hadizad T, Mackasey K, Beanlands RS, DaSilva JN. Decreased renal AT1 receptor binding in rats after subtotal nephrectomy: PET study with [(18)F]FPyKYNE-losartan. EJNMMI Res 2016; 6:55. [PMID: 27339045 PMCID: PMC4919198 DOI: 10.1186/s13550-016-0209-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/14/2016] [Indexed: 01/13/2023] Open
Abstract
Background Significant renal mass reduction induced by 5/6 subtotal nephrectomy (Nx) is associated with a chain of events that culminates in hypertension and chronic kidney disease (CKD). Numerous studies have provided evidence for the role of angiotensin (Ang) II type 1 receptor (AT1R) in the promotion and progression of the disease; however, conflicting results were reported on intrarenal AT1R levels in CKD models. Methods Male Sprague-Dawley rats (n = 26) underwent Nx or sham operations. Animals were scanned at 8–10 weeks post-surgery with PET using the novel AT1R radioligand [18F]FPyKYNE-losartan. Radioligand binding was quantified by kidney-to-blood ratio (KBR), standard uptake value (SUV), and distribution volume (DV). After sacrifice, plasma and kidney Ang II levels were measured. Western blot and 125I-[Sar1, Ile8]Ang II autoradiography were performed to assess AT1R expression. Results At 8–10 weeks post-surgery, Nx rats developed hypertension, elevated plasma creatinine levels, left ventricle hypertrophy, increased myocardial blood flow (MBF), and reduced Ang II levels compared to shams. PET measurements displayed significant decrease in KBR (29 %), SUV (24 %), and DV (22 %) induced by Nx (p < 0.05), and these findings were confirmed by in vitro assays. Conclusions Reduced renal AT1Rs in hypertensive rats measured with [18F]FPyKYNE-losartan PET at 8–10 weeks following Nx support further use of this non-invasive approach in longitudinal studies to better understand the AT1R role in CKD progression.
Collapse
Affiliation(s)
- Basma Ismail
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Robert A deKemp
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Tayebeh Hadizad
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Kumiko Mackasey
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Rob S Beanlands
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jean N DaSilva
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada. .,Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, University of Montreal Hospital Research Centre (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.
| |
Collapse
|
12
|
Meng N, Zhang Y, Ma J, Li H, Zhou F, Qu Y. Association of polymorphisms of angiotensin I converting enzyme 2 with retinopathy in type 2 diabetes mellitus among Chinese individuals. Eye (Lond) 2014; 29:266-71. [PMID: 25359286 DOI: 10.1038/eye.2014.254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022] Open
Abstract
AIMS To examine the association of Angiotensin I converting enzyme 2 (ACE2) gene polymorphisms and retinopathy in a Chinese type 2 diabetes mellitus (T2DM) cohort. METHODS A total of 743 T2DM participants were involved in this study including 408 female and 335 male cases. Female cases were divided into two groups: diabetes without retinopathy (DNR group, n=171) and with retinopathy (DR group, n=237), the latter was further subclassified into nonproliferative DR (NPDR group, n=121) and proliferative DR (PDR group, n=116). Male cases were assigned to DNR group (n=153) and DR group (n=182) which was further grouped into NPDR group (n=86) and PDR group (n=96). Two single nucleotide polymorphisms (SNPs; rs2074192 and rs714205) in ACE2 gene were genotyped. RESULTS In female cases, the frequency of genotypes TT in rs2074192 and CC in rs714205 were higher in DR and PDR group than in DNR group (P<0.05). The frequency of alleles T in SNP rs2074192 and C in SNP rs714205 was higher in DR group (P<0.05) and PDR group (P<0.05) than in DNR group. The frequency of allele T in SNP rs2074192 was higher in PDR group (P=0.04) than in NPDR group. The frequency of haplotype TC and CG was higher in DR and PDR groups, respectively (P<0.05). No positive results were found in male cases. CONCLUSIONS Our results revealed that SNPs rs2074192 and rs714205 in ACE2 gene were associated with the susceptibility of DR and PDR.
Collapse
Affiliation(s)
- N Meng
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Y Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - J Ma
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - H Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - F Zhou
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Y Qu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
13
|
Slee AD. Exploring metabolic dysfunction in chronic kidney disease. Nutr Metab (Lond) 2012; 9:36. [PMID: 22537670 PMCID: PMC3407016 DOI: 10.1186/1743-7075-9-36] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/26/2012] [Indexed: 02/07/2023] Open
Abstract
Impaired kidney function and chronic kidney disease (CKD) leading to kidney failure and end-stage renal disease (ESRD) is a serious medical condition associated with increased morbidity, mortality, and in particular cardiovascular disease (CVD) risk. CKD is associated with multiple physiological and metabolic disturbances, including hypertension, dyslipidemia and the anorexia-cachexia syndrome which are linked to poor outcomes. Specific hormonal, inflammatory, and nutritional-metabolic factors may play key roles in CKD development and pathogenesis. These include raised proinflammatory cytokines, such as interleukin-1 and −6, tumor necrosis factor, altered hepatic acute phase proteins, including reduced albumin, increased C-reactive protein, and perturbations in normal anabolic hormone responses with reduced growth hormone-insulin-like growth factor-1 axis activity. Others include hyperactivation of the renin-angiotensin aldosterone system (RAAS), with angiotensin II and aldosterone implicated in hypertension and the promotion of insulin resistance, and subsequent pharmacological blockade shown to improve blood pressure, metabolic control and offer reno-protective effects. Abnormal adipocytokine levels including leptin and adiponectin may further promote the insulin resistant, and proinflammatory state in CKD. Ghrelin may be also implicated and controversial studies suggest activities may be reduced in human CKD, and may provide a rationale for administration of acyl-ghrelin. Poor vitamin D status has also been associated with patient outcome and CVD risk and may indicate a role for supplementation. Glucocorticoid activities traditionally known for their involvement in the pathogenesis of a number of disease states are increased and may be implicated in CKD-associated hypertension, insulin resistance, diabetes risk and cachexia, both directly and indirectly through effects on other systems including activation of the mineralcorticoid receptor. Insight into the multiple factors altered in CKD may provide useful information on disease pathogenesis, clinical assessment and treatment rationale such as potential pharmacological, nutritional and exercise therapies.
Collapse
Affiliation(s)
- Adrian D Slee
- School of Life Sciences, Brayford Pool Campus, University of Lincoln, Lincoln, UK.
| |
Collapse
|
14
|
Kalupahana NS, Moustaid-Moussa N. The renin-angiotensin system: a link between obesity, inflammation and insulin resistance. Obes Rev 2012; 13:136-49. [PMID: 22034852 DOI: 10.1111/j.1467-789x.2011.00942.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is classically known for its role in regulation of blood pressure, fluid and electrolyte balance. Recently, several local RASs in organs such as brain, heart, pancreas and adipose tissue have also been identified. Evidence from clinical trials suggests that in addition to anti-hypertensive effects, pharmacological inhibition of RAS also provides protection against the development of type-2 diabetes. Moreover, animal models with targeted inactivation of RAS genes exhibit improved insulin sensitivity and are protected from high-fat diet-induced obesity and insulin resistance. Because there is evidence for RAS overactivation in obesity, it is possible that RAS is a link between obesity and insulin resistance. This review summarizes the evidence and mechanistic insights on the associations between RAS, obesity and insulin resistance, with special emphasis on the role of adipose tissue RAS in the pathogenesis of metabolic derangements in obesity.
Collapse
Affiliation(s)
- N S Kalupahana
- Obesity Research Center, The University of Tennessee, Knoxville, TN 37996-4588, USA
| | | |
Collapse
|
15
|
Wang GW, Huang BK, Qin LP. The Genus Broussonetia: A Review of its Phytochemistry and Pharmacology. Phytother Res 2011; 26:1-10. [DOI: 10.1002/ptr.3575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 04/16/2011] [Accepted: 04/30/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Guo-Wei Wang
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai; China
| | - Bao-Kang Huang
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai; China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai; China
| |
Collapse
|
16
|
Ketsawatsomkron P, Stepp DW, Fulton DJ, Marrero MB. Molecular mechanism of angiotensin II-induced insulin resistance in aortic vascular smooth muscle cells: roles of Protein Tyrosine Phosphatase-1B. Vascul Pharmacol 2010; 53:160-8. [PMID: 20601126 DOI: 10.1016/j.vph.2010.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 06/02/2010] [Accepted: 06/12/2010] [Indexed: 01/17/2023]
Abstract
Insulin resistance is an underlying mechanism of type 2 diabetes and its vascular complications. Recent evidence suggests that crosstalk between angiotensin II (Ang II) and the insulin signaling in vascular smooth muscle cell (VSMC) may contribute to cellular insulin resistance. We hypothesized that Ang II inhibits the anti-mitogenic pathways while enhancing the mitogenic pathways stimulated by insulin via activation of Protein Tyrosine Phosphatase-1B (PTP-1B) in VSMC. We found that Ang II significantly inhibited insulin-induced phosphorylation of tyrosine 608 of IRS-1 and serine 473 of Akt, a downstream member of anti-mitogenic pathway of insulin. In contrast, Ang II increased the serine phosphorylation of IRS-1 which was not affected by the presence of insulin. Activation of p42/p44 MAPK (a mitogenic pathway) induced by insulin was further enhanced by Ang II. Transfection of VSMC with PTP-1B antisense oligonucleotide markedly reduced the effects of Ang II on insulin signaling. Furthermore, an increase in VSMC growth was attenuated by PTP-1B antisense only in the presence of both Ang II and insulin. Finally, we also showed that Ang II-induced activation of PTP-1B in VSMC was PKA/JAK2 dependent. We conclude that Ang II modulates both anti-mitogenic and mitogenic pathways of insulin via the activation of PTP-1B.
Collapse
|
17
|
Arellano-Plancarte A, Hernandez-Aranda J, Catt KJ, Olivares-Reyes JA. Angiotensin-induced EGF receptor transactivation inhibits insulin signaling in C9 hepatic cells. Biochem Pharmacol 2009; 79:733-45. [PMID: 19879250 DOI: 10.1016/j.bcp.2009.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/17/2009] [Accepted: 10/19/2009] [Indexed: 01/28/2023]
Abstract
To investigate the potential interactions between the angiotensin II (Ang II) and insulin signaling systems, regulation of IRS-1 phosphorylation and insulin-induced Akt activation by Ang II were examined in clone 9 (C9) hepatocytes. In these cells, Ang II specifically inhibited activation of insulin-induced Akt Thr(308) and its immediate downstream substrate GSK-3alpha/beta in a time-dependent fashion, with approximately 70% reduction at 15 min. These inhibitory actions were associated with increased IRS-1 phosphorylation of Ser(636)/Ser(639) that was prevented by selective blockade of EGFR tyrosine kinase activity with AG1478. Previous studies have shown that insulin-induced phosphorylation of IRS-1 on Ser(636)/Ser(639) is mediated mainly by the PI3K/mTOR/S6K-1 sequence. Studies with specific inhibitors of PI3K (wortmannin) and mTOR (rapamycin) revealed that Ang II stimulates IRS-1 phosphorylation of Ser(636)/Ser(639) via the PI3K/mTOR/S6K-1 pathway. Both inhibitors blocked the effect of Ang II on insulin-induced activation of Akt. Studies using the specific MEK inhibitor, PD98059, revealed that ERK1/2 activation also mediates Ang II-induced S6K-1 and IRS-1 phosphorylation, and the impairment of Akt Thr(308) and GSK-3alpha/beta phosphorylation. Further studies with selective inhibitors showed that PI3K activation was upstream of ERK, suggesting a new mechanism for Ang II-induced impairment of insulin signaling. These findings indicate that Ang II has a significant role in the development of insulin resistance by a mechanism that involves EGFR transactivation and the PI3K/ERK1/2/mTOR-S6K-1 pathway.
Collapse
Affiliation(s)
- Araceli Arellano-Plancarte
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-IPN, A.P. 14-740, Mexico, 07360 D.F., Mexico
| | | | | | | |
Collapse
|
18
|
Manea A, Tanase LI, Raicu M, Simionescu M. Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2009; 30:105-12. [PMID: 19834108 DOI: 10.1161/atvbaha.109.193896] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxidative stress mediated by Nox1- and Nox4-based NADPH oxidase (Nox) plays a key role in vascular diseases. The molecular mechanisms involved in the regulation of Nox are not entirely elucidated. Because JAK/STAT regulates many genes linked to inflammation, cell proliferation, and differentiation, we questioned whether this pathway is involved in the regulation of Nox1 and Nox4 in human aortic smooth muscle cells (SMCs). METHODS AND RESULTS Cultured SMCs were exposed to interferon gamma (IFNgamma) for 24 hours. Using lucigenin-enhanced chemiluminescence and dihydroethidium assays, real-time polymerase chain reaction, and Western blot analysis, we found that JAK/STAT inhibitors significantly diminished the IFNgamma-dependent upregulation of Nox activity, Nox1 and Nox4 expression. In silico analysis revealed the presence of highly conserved GAS elements within human Nox1, Nox4, p22phox, p47phox, and p67phox promoters. Transient overexpression of STAT1/STAT3 augmented the promoter activities of each subunit. JAK/STAT blockade reduced the Nox subunits transcription. Chromatin immunoprecipitation demonstrated the physical interaction of STAT1/STAT3 proteins with the predicted GAS elements from Nox1 and Nox4 promoters. CONCLUSIONS JAK/STAT is a key regulator of Nox1 and Nox4 in human vascular SMCs. Inhibition of JAK/STAT pathway and the consequent Nox-dependent oxidative stress may be an efficient therapeutic strategy to reduce atherogenesis.
Collapse
Affiliation(s)
- Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 8, BP Hasdeu St, Bucharest, PO Box 35-14, Romania
| | | | | | | |
Collapse
|
19
|
Elevated expression of urotensin II and its receptor in skeletal muscle of diabetic mouse. ACTA ACUST UNITED AC 2009; 154:85-90. [PMID: 19323985 DOI: 10.1016/j.regpep.2009.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/11/2008] [Accepted: 01/13/2009] [Indexed: 01/25/2023]
Abstract
Urotensin II (UII) is a somatostatin-like peptide recently identified to be involved in metabolic regulation and to play a significant role in diabetes and its complications. In the present study, we investigated the expression of UII and its receptor UT in the soleus muscle of male diabetic KK/upj-AY/J mice (2DM group) and the effects of UII on glucose uptake by the skeletal muscle to explore the role of skeletal muscle-derived UII in the pathogenesis of insulin resistance and diabetes. Radioimmunoassay, RT-PCR, immunohistochemistry and radio-ligand binding assay were used in this study. Compared with C57BL/6J mice (control group), 2DM mice showed increased UII content, by 34.0% in plasma, 15.4% in skeletal muscle tissue and 30.6% in medium containing UII from muscle (all P<0.05 or P<0.01). UII protein and UT mRNA expression were significantly enhanced in the skeletal muscle of 2DM mice. On [(125)I]UII binding to muscle sarcolemma, UT binding exhibited a saturable single-component characteristic in a specific and time-dependent manner. Scatchard plot analysis showed higher maximal number of specific binding sites (Bmax) in skeletal muscle, by 42.9% (P<0.01), and a lower dissociation constant (Kd), by 26.4% (P<0.01), in the 2DM group than in controls. On in vitro tissue pre-incubation with UII (10(-9), 10(-8) and 10(-7) mol/L), the insulin-stimulated [(3)H]-2-DG uptake by split soleus muscle was lower, by 9.5%, 33.4% and 39.7% (all P<0.01), respectively, than without UII incubation. UII/UT upregulated in skeletal muscle of 2DM mice suggests that UII derived from skeletal muscle might induce the pathogenesis of skeletal muscle insulin resistance as an autocrine factor.
Collapse
|
20
|
Tabbi-Anneni I, Buchanan J, Cooksey RC, Abel ED. Captopril normalizes insulin signaling and insulin-regulated substrate metabolism in obese (ob/ob) mouse hearts. Endocrinology 2008; 149:4043-50. [PMID: 18450963 PMCID: PMC2488224 DOI: 10.1210/en.2007-1646] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The goal of this study was to determine whether inhibiting the renin-angiotensin system would restore insulin signaling and normalize substrate use in hearts from obese ob/ob mice. Mice were treated for 4 wk with Captopril (4 mg/kg x d). Circulating levels of free fatty acids, triglycerides, and insulin were measured and glucose tolerance tests performed. Rates of palmitate oxidation and glycolysis, oxygen consumption, and cardiac power were determined in isolated working hearts in the presence and absence of insulin, along with levels of phosphorylation of Akt and AMP-activated protein kinase (AMPK). Captopril treatment did not correct the hyperinsulinemia or impaired glucose tolerance in ob/ob mice. Rates of fatty acid oxidation were increased and glycolysis decreased in ob/ob hearts, and insulin did not modulate substrate use in hearts of ob/ob mice and did not increase Akt phosphorylation. Captopril restored the ability of insulin to regulate fatty acid oxidation and glycolysis in hearts of ob/ob mice, possibly by increasing Akt phosphorylation. Moreover, AMPK phosphorylation, which was increased in hearts of ob/ob mice, was normalized by Captopril treatment, suggesting that in addition to restoring insulin sensitivity, Captopril treatment improved myocardial energetics. Thus, angiotensin-converting enzyme inhibitors restore the responsiveness of ob/ob mouse hearts to insulin and normalizes AMPK activity independently of effects on systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Imene Tabbi-Anneni
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
21
|
Ruiz M, Singh P, Thomson SC, Munger K, Blantz RC, Gabbai FB. L-arginine-induced glomerular hyperfiltration response: the roles of insulin and ANG II. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1744-51. [PMID: 18353876 DOI: 10.1152/ajpregu.00871.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infusion of L-arginine produces an increase in glomerular filtration via kidney vasodilation, correlating with increased kidney excretion of nitric oxide (NO) metabolites, but the specific underlying mechanisms are unknown. We utilized clearance and micropuncture techniques to examine the whole kidney glomerular filtration rate (GFR) and single nephron GFR (SNGFR) responses to 1) L-arginine (ARG), 2) ARG+octreotide (OCT) to block insulin release, 3) ARG+OCT+insulin (INS) infusion to duplicate ARG-induced insulin levels, and 4) losartan (LOS), an angiotensin AT-1 receptor blocker, +ARG+OCT. ARG infusion increased GFR, while increasing insulin levels. OCT coinfusion prevented this increase in GFR, but with insulin infusion to duplicate ARG induced rise in insulin, the GFR response was restored. Identical insulin levels in the absence of ARG had no effect on GFR. In contrast to ARG infusion alone, coinfusion of OCT with ARG reduced proximal tubular fractional and absolute reabsorption potentially activating tubuloglomerular feedback. Losartan infusion, in addition to ARG and OCT (LOS+ARG+OCT), restored the increase in both SNGFR and proximal tubular reabsorption, without increasing insulin levels. In conclusion, 1) hyperfiltration responses to ARG require the concurrent, modest, permissive increase in insulin; 2) inhibition of insulin release after ARG reduces proximal reabsorption and prevents the hyperfiltration response; and 3) inhibition of ANG II activity restores the hyperfiltration response, maintains parallel increases in proximal reabsorption, and overrides the arginine/octreotide actions.
Collapse
Affiliation(s)
- Mario Ruiz
- Division of Nephrology-Hypertension, VA San Diego Healthcare System and the University of California, San Diego School of Medicine, La Jolla, CA 92161, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zhong JC, Yu XY, Lin QX, Li XH, Huang XZ, Xiao DZ, Lin SG. Enhanced angiotensin converting enzyme 2 regulates the insulin/Akt signalling pathway by blockade of macrophage migration inhibitory factor expression. Br J Pharmacol 2007; 153:66-74. [PMID: 17906677 PMCID: PMC2199394 DOI: 10.1038/sj.bjp.0707482] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Macrophage migration inhibitory factor (MIF) is now known to be a pro-inflammatory cytokine associated with insulin resistance. Our aim was to investigate whether angiotensin converting enzyme 2 (ACE2) could modulate the expression of MIF and the insulin/Akt-endothelial nitric oxide (NO) synthase (eNOS) signalling in a human endothelial cell line (EAhy926). EXPERIMENTAL APPROACH A recombinant plasmid encompassing human ACE2 gene was constructed and transfected into the EAhy926 cells. The mRNA, phosphorylation and protein levels of p22phox, MIF, Akt and eNOS in endothelial cells were determined by real-time PCR and Western blot analysis, respectively. KEY RESULTS Gene transfer of ACE2 suppressed the expression of p22phox and MIF induced by angiotensin (Ang) II and Ang IV, accompanied by a decreased level of malondialdehyde in cells. In addition, Ang II diminished insulin-stimulated phosphorylation of Akt (at Ser(473)) and eNOS (at Ser(1177)) and NO generation, effects which were reversed by ACE2 gene transfer and anti-MIF treatment in endothelial cells. CONCLUSIONS AND IMPLICATIONS The results reveal that gene transfer of ACE2 regulated Ang II-mediated impairment of insulin signalling and involved the Akt-eNOS phosphorylation pathway. These beneficial effects of ACE2 overexpression appear to result mainly from blocking MIF expression in endothelial cells, suggesting that the ACE2 gene may be a novel therapeutic target for diseases related to inflammation and insulin resistance.
Collapse
Affiliation(s)
- J-C Zhong
- Department of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Provincial Cardiovascular Institute, Guangzhou, Guangdong, China. [corrected]
| | | | | | | | | | | | | |
Collapse
|
23
|
Henriksen EJ. Improvement of insulin sensitivity by antagonism of the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2007; 293:R974-80. [PMID: 17581838 DOI: 10.1152/ajpregu.00147.2007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reduced capacity of insulin to stimulate glucose transport into skeletal muscle, termed insulin resistance, is a primary defect leading to the development of prediabetes and overt type 2 diabetes. Although the etiology of this skeletal muscle insulin resistance is multifactorial, there is accumulating evidence that one contributor is overactivity of the renin-angiotensin system (RAS). Angiotensin II (ANG II) produced from this system can act on ANG II type 1 receptors both in the vascular endothelium and in myocytes, with an enhancement of the intracellular production of reactive oxygen species (ROS). Evidence from animal model and cultured skeletal muscle cell line studies indicates ANG II can induce insulin resistance. Chronic ANG II infusion into an insulin-sensitive rat produces a markedly insulin-resistant state that is associated with a negative impact of ROS on the skeletal muscle glucose transport system. ANG II treatment of L6 myocytes causes impaired insulin receptor substrate (IRS)-1-dependent insulin signaling that is accompanied by augmentation of NADPH oxidase-mediated ROS production. Further critical evidence has been obtained from the TG(mREN2)27 rat, a model of RAS overactivity and insulin resistance. The TG(mREN2)27 rat displays whole body and skeletal muscle insulin resistance that is associated with local oxidative stress and a significant reduction in the functionality of the insulin receptor (IR)/IRS-1-dependent insulin signaling. Treatment with a selective ANG II type 1 receptor antagonist leads to improvements in whole body insulin sensitivity, enhanced insulin-stimulated glucose transport in muscle, and reduced local oxidative stress. In addition, exercise training of TG(mREN2)27 rats enhances whole body and skeletal muscle insulin action. However, these metabolic improvements elicited by antagonism of ANG II action or exercise training are independent of upregulation of IR/IRS-1-dependent signaling. Collectively, these findings support targeting the RAS in the design of interventions to improve metabolic and cardiovascular function in conditions of insulin resistance associated with prediabetes and type 2 diabetes.
Collapse
Affiliation(s)
- Erik J Henriksen
- Department of Physiology, Ina E. Gittings Bldg. #93, University of Arizona, Tucson, AZ 85721-0093, USA.
| |
Collapse
|
24
|
Aronson D, Hammerman H, Kapeliovich MR, Suleiman A, Agmon Y, Beyar R, Markiewicz W, Suleiman M. Fasting glucose in acute myocardial infarction: incremental value for long-term mortality and relationship with left ventricular systolic function. Diabetes Care 2007; 30:960-6. [PMID: 17392556 DOI: 10.2337/dc06-1735] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Elevation of blood glucose is a common metabolic disorder among patients with acute myocardial infarction (AMI) and is associated with adverse prognosis. However, few data are available concerning the long-term prognostic value of elevated fasting glucose during the acute phase of infarction. RESEARCH DESIGN AND METHODS We prospectively studied the relationship between fasting glucose and long-term mortality in patients with AMI. Fasting glucose was determined after an >/=8 h fast within 24 h of admission. The median duration of follow-up was 24 months (range 6-48). All multivariable Cox models were adjusted for the Global Registry of Acute Coronary Events (GRACE) risk score. RESULTS In nondiabetic patients (n = 1,101), compared with patients with normal fasting glucose (<100 mg/dl), the adjusted hazard ratio for mortality progressively increased with higher tertiles of elevated fasting glucose (first tertile 1.5 [95% CI 0.8-2.9], P = 0.19; second tertile 3.2 [1.9-5.5], P < 0.0001; third tertile 5.7 [3.5-9.3], P < 0.0001). The c statistic of the model containing the GRACE risk score increased when fasting glucose data were added (0.8 +/- 0.02-0.85 +/- 0.02, P = 0.004). Fasting glucose remained an independent predictor of mortality after further adjustment for ejection fraction. Elevated fasting glucose did not predict mortality in patients with diabetes (n = 462). CONCLUSIONS Fasting glucose is a simple robust tool for predicting long-term mortality in nondiabetic patients with AMI. Fasting glucose provides incremental prognostic information when added to the GRACE risk score and left ventricular ejection fraction. Fasting glucose is not a useful prognostic marker in patients with diabetes.
Collapse
Affiliation(s)
- Doron Aronson
- Department of Cardiology, Rambam Medical Center, Haifa, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Vinson GP. Angiotensin II, corticosteroids, type II diabetes and the metabolic syndrome. Med Hypotheses 2006; 68:1200-7. [PMID: 17134848 DOI: 10.1016/j.mehy.2006.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/04/2006] [Indexed: 11/23/2022]
Abstract
Syndrome X, the Metabolic Syndrome, and type II diabetes are closely related diseases that share risk factors and symptoms, notably insulin resistance. Several factors have been proposed either to mediate the disease(s) or to be their causes, and most converge on the endocrine/paracrine functions of the adipocyte. A common feature of such systems is their relative autonomy from systemic negative feedback regulation, for example by the HPA axis. We draw particular attention to two such mechanisms, both of which are associated with, and can cause, insulin resistance: the extra-adrenal production of corticosteroids, and the tissue renin angiotensin system of the adipocyte. These show another feature: the inter-regulation of glucocorticoid action and the RAS by positive feedback. Cortisol enhances the expression of 11 beta-HSD 1, and also of angiotensinogen and angiotensin type 1 receptors. In turn, angiotensin can stimulate further corticosteroid production, from the adrenal and perhaps from extra-adrenal sources. The instability inherent in such positive loops could account for the progressive nature of the disease(s), suggesting ways to break the circle.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
26
|
Benndorf RA, Rudolph T, Appel D, Schwedhelm E, Maas R, Schulze F, Silberhorn E, Böger RH. Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension. Metabolism 2006; 55:1159-64. [PMID: 16919533 DOI: 10.1016/j.metabol.2006.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Hypertension is a cardiovascular risk factor commonly associated with insulin resistance, the metabolic syndrome, and type 2 diabetes mellitus. Recent in vitro data indicate that certain angiotensin receptor antagonists, for example, telmisartan, activate peroxisome proliferator-activated receptor gamma (PPAR-gamma) and increase adiponectin protein content in adipocytes. By this means, they may improve insulin sensitivity in vivo. To investigate the effect of antihypertensive treatment on insulin sensitivity and fasting adiponectin serum levels, 37 nondiabetic patients with essential hypertension were randomized to receive telmisartan, the calcium channel blocker nisoldipine, or their combination for 6 weeks in a prospective, parallel group study. Fasting serum glucose, insulin, and adiponectin were evaluated before, 3 weeks (low dose), and 6 weeks (high dose) after initiation of treatment. Furthermore, the effect of telmisartan on PPAR-gamma receptor activity was investigated in vitro using a PPAR-gamma reporter gene assay. As reported previously, telmisartan significantly enhanced PPAR-gamma receptor activity in vitro. At baseline, a positive correlation between insulin serum levels and body mass index of investigated subjects was observed, whereas body mass index and serum adiponectin levels were negatively associated. High-dose treatment with telmisartan but not with nisoldipine reduced serum insulin levels as well as the homeostasis model assessment of insulin resistance, but did not affect serum adiponectin levels. In conclusion, in our study cohort of nondiabetic patients with essential hypertension, telmisartan improved insulin sensitivity by mechanisms apparently not involving adiponectin induction. Future studies will demonstrate whether these telmisartan-induced effects may contribute to a blood pressure-independent reduction in cardiovascular morbidity.
Collapse
Affiliation(s)
- Ralf A Benndorf
- Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2006; 292:C82-97. [PMID: 16870827 DOI: 10.1152/ajpcell.00287.2006] [Citation(s) in RCA: 1422] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system is a central component of the physiological and pathological responses of cardiovascular system. Its primary effector hormone, angiotensin II (ANG II), not only mediates immediate physiological effects of vasoconstriction and blood pressure regulation, but is also implicated in inflammation, endothelial dysfunction, atherosclerosis, hypertension, and congestive heart failure. The myriad effects of ANG II depend on time (acute vs. chronic) and on the cells/tissues upon which it acts. In addition to inducing G protein- and non-G protein-related signaling pathways, ANG II, via AT(1) receptors, carries out its functions via MAP kinases (ERK 1/2, JNK, p38MAPK), receptor tyrosine kinases [PDGF, EGFR, insulin receptor], and nonreceptor tyrosine kinases [Src, JAK/STAT, focal adhesion kinase (FAK)]. AT(1)R-mediated NAD(P)H oxidase activation leads to generation of reactive oxygen species, widely implicated in vascular inflammation and fibrosis. ANG II also promotes the association of scaffolding proteins, such as paxillin, talin, and p130Cas, leading to focal adhesion and extracellular matrix formation. These signaling cascades lead to contraction, smooth muscle cell growth, hypertrophy, and cell migration, events that contribute to normal vascular function, and to disease progression. This review focuses on the structure and function of AT(1) receptors and the major signaling mechanisms by which angiotensin influences cardiovascular physiology and pathology.
Collapse
Affiliation(s)
- Puja K Mehta
- Division of Cardiology, 319 WMB, Emory University, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
28
|
Molavi B, Chen J, Mehta JL. Cardioprotective effects of rosiglitazone are associated with selective overexpression of type 2 angiotensin receptors and inhibition of p42/44 MAPK. Am J Physiol Heart Circ Physiol 2006; 291:H687-93. [PMID: 16582019 DOI: 10.1152/ajpheart.00926.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Current evidence points to renin-angiotensin system as a key mediator in ischemia-reperfusion injury. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligand, has recently been shown to confer cardioprotection against ischemia-reperfusion in animal models. We sought to examine the expression of ANG II receptors during PPAR-gamma-mediated cardioprotection. Male Sprague-Dawley rats (nondiabetic) were fed either regular rat chow (control diet group, n = 9) or rosiglitazone-rich diet (rosiglitazone-rich diet group, n = 9) and were subjected to 1 h of myocardial ischemia followed by 1 h of reperfusion. A third group of rats had only thoracotomy and pericardiotomy and served as a sham control group (n = 9). Hemodynamics, infarct size, and expression of ANG II type 1 and type 2 receptors (AT1 and AT2) were measured in all groups. There was a 58% reduction of infarct size in the rosiglitazone-rich diet group (P < 0.01 vs. control diet group). Increased myocardial expression of AT(1) receptors in the ischemic-reperfused myocardium was attenuated in the rosiglitazone-rich diet group (P < 0.05 vs. control diet group). Importantly, myocardial AT2 mRNA and protein expression were significantly increased (by >100-fold) in the rosiglitazone-rich diet group (P < 0.05). These changes were accompanied by inhibition of p42/44 MAPK in the rosiglitazone-rich diet group, while the Akt1 expression, believed to mediate insulin sensitization, remained similar in all three groups. The cardioprotective effects of rosiglitazone against myocardial ischemia-reperfusion injury are independent of its insulin-sensitizing properties and are associated with significant overexpression of AT2 receptors along with inhibition of p42/44 MAPK.
Collapse
Affiliation(s)
- Behzad Molavi
- Dept. of Internal Medicine, Div. of Cardiovascular Medicine, Univ. of Arkansas for Medical Sciences, 4301 W. Markham St., #532, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
29
|
Marrero MB. Introduction to JAK/STAT signaling and the vasculature. Vascul Pharmacol 2005; 43:307-9. [PMID: 16263337 DOI: 10.1016/j.vph.2005.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/05/2005] [Indexed: 01/31/2023]
|