1
|
Fang Y, Zheng Y, Gao Q, Pang M, Wu Y, Feng X, Tao X, Hu Y, Lin Z, Lin W. Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats. Redox Rep 2024; 29:2394714. [PMID: 39284589 PMCID: PMC11407389 DOI: 10.1080/13510002.2024.2394714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo. We established an in vitro model using glucose deprivation and hypoxia/reperfusion (OGD/R) in PC12 cells, alongside an in vivo model via the modified Rice-Vannucci method. Results indicated that POH acted as an indirect antioxidant, reducing inducible nitric oxide synthase and malondialdehyde production, maintaining content of antioxidant molecules and enzymes in OGD/R-induced PC12 cells. In vivo, POH remarkably lessened infarct volume, reduced cerebral edema, accelerated tissue regeneration, and blocked reactive astrogliosis after hypoxic-ischemic brain injury. POH exerted antiapoptotic activities through both the intrinsic and extrinsic apoptotic pathways. Mechanistically, POH activated Nrf2 and inactivated its negative regulator Keap1. The use of ML385, a Nrf2 inhibitor, reversed these effects. Overall, POH mitigates neuronal damage in HIE by combating oxidative stress, reducing inflammation, and inhibiting apoptosis via the Nrf2/Keap1 pathway, suggesting its potential for HIE treatment.
Collapse
Affiliation(s)
- Yu Fang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yihui Zheng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Mengdan Pang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yiqing Wu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoli Feng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Maleki MH, Vakili O, Tavakoli R, Nadimi E, Noori Z, Taghizadeh M, Dehghanian A, Tayebi L, Shafiee SM. Protective and curative effects of unconjugated bilirubin on gene expression of LOX-1 and iNOS in the heart of rats receiving high-fat diet and low dose streptozotocin: a histomorphometric approach. J Inflamm (Lond) 2024; 21:26. [PMID: 38982470 PMCID: PMC11234610 DOI: 10.1186/s12950-024-00397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory condition affecting the large arteries and is a major cause of cardiovascular diseases (CVDs) globally. Increased levels of adhesion molecules in cardiac tissue serve as prognostic markers for coronary artery occlusion risk. Given the antioxidant properties of bilirubin and its inverse correlation with atherosclerosis, this study aimed to assess the beneficial effects of bilirubin on atherosclerotic indices and heart structure in high-fat diet-fed diabetic rats with atherosclerosis. METHODS Atherosclerosis was induced in three out of five groups of adult male Sprague Dawley rats through a 14-week period of high-fat diet (HFD) consumption and a single low dose of streptozotocin (STZ) (35 mg/kg). The atherosclerotic rats were then treated with intraperitoneal administration of 10 mg/kg/day bilirubin for either 6 or 14 weeks (treated and protected groups, respectively), or the vehicle. Two additional groups served as the control and bilirubin-treated rats. Subsequently, the mRNA expression levels of vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), lectin-like LDL receptor 1 (LOX-1), and the inducible nitric oxide synthase (iNOS) were analyzed using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Histopathological and stereological analyses were performed to assess changes in the heart structure. RESULTS Bilirubin significantly decreased the expression of VCAM-1, ICAM-1, LOX-1, and iNOS genes in the treated group. Moreover, bilirubin mitigated pathological damage in the left ventricle of the heart. Stereological analysis revealed a decrease in the left ventricle and myocardium volume, accompanied by an increase in vessel volume in rats treated with bilirubin. CONCLUSION These findings demonstrate that mild hyperbilirubinemia can protect against the progression of atherosclerosis and heart failure by improving lipid profile, modulating adhesion molecules, LOX-1, and iNOS gene expression levels.
Collapse
Affiliation(s)
- Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Tavakoli
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Noori
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Pathology and Cytogenetics Division, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
He Y, Huang H, Dai L, Wang X. The Association between Serum Total Bilirubin and Severe Headaches or Migraine in American Adults. Curr Neurovasc Res 2024; 20:519-527. [PMID: 38099531 DOI: 10.2174/0115672026284009231120065521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 07/16/2024]
Abstract
BACKGROUND Studies about the association between bilirubin and migraine were few. Therefore, the purpose of this study was to investigate the association between serum total bilirubin and the prevalence of severe headaches or migraine. METHODS A multivariable logistic regression was used to assess the association between serum total bilirubin concentration and severe headaches or migraine. We also performed stratified analyses, interaction analyses and multiple interpolations in the sensitivity analysis. RESULTS This cross-sectional study included 12,552 adults from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004. The overall incidence of migraine was 19.99% (2,509/12,552). With every 1 mg/dl increase in bilirubin, the prevalence of migraine decreased by 23% (95% CI: 0.64, 0.93) after adjustment of all related covariates. Similarly, the risk of migraine was reduced by 17% (95% CI: 0.72, 0.97) in the Q4 group (the fourth quartile, highest serum total bilirubin level) compared with the Q1 group (the lowest level). Furthermore, interaction effects by age groups were significant in this relationship (P for interaction = 0.0004). In the Q4 group compared with Q1, inverse associations were observed in those aged ≥40 years (OR: 0.71,95% CI: 0.59, 0.85) in the stratified analysis. CONCLUSION These findings support an association between serum total bilirubin and severe headaches or migraine, revealing an inverse association between serum total bilirubin quartiles and severe headaches or migraine in American adults. Age could play an important role in this association.
Collapse
Affiliation(s)
- Yuting He
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hao Huang
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Lingao Dai
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
4
|
Jin Y, Xu Z, Zhang Y, Zhang Y, Wang D, Cheng Y, Zhou Y, Fawad M, Xu X. Serum/plasma biomarkers and the progression of cardiometabolic multimorbidity: a systematic review and meta-analysis. Front Public Health 2023; 11:1280185. [PMID: 38074721 PMCID: PMC10701686 DOI: 10.3389/fpubh.2023.1280185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Background The role of certain biomarkers in the development of single cardiometabolic disease (CMD) has been intensively investigated. Less is known about the association of biomarkers with multiple CMDs (cardiometabolic multimorbidity, CMM), which is essential for the exploration of molecular targets for the prevention and treatment of CMM. We aimed to systematically synthesize the current evidence on CMM-related biomarkers. Methods We searched PubMed, Embase, Web of Science, and Ebsco for relevant studies from inception until August 31st, 2022. Studies reported the association of serum/plasma biomarkers with CMM, and relevant effect sizes were included. The outcomes were five progression patterns of CMM: (1) no CMD to CMM; (2) type 2 diabetes mellitus (T2DM) followed by stroke; (3) T2DM followed by coronary heart disease (CHD); (4) T2DM followed by stroke or CHD; and (5) CHD followed by T2DM. Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the quality of the included studies. A meta-analysis was conducted to quantify the association of biomarkers and CMM. Results A total of 68 biomarkers were identified from 42 studies, which could be categorized into five groups: lipid metabolism, glycometabolism, liver function, immunity, and others. Lipid metabolism biomarkers were most reported to associate with CMM, including TC, TGs, HDL-C, LDL-C, and Lp(a). Fasting plasma glucose was also reported by several studies, and it was particularly associated with coexisting T2DM with vascular diseases. According to the quantitative meta-analysis, HDL-C was negatively associated with CHD risk among patients with T2DM (pooled OR for per 1 mmol/L increase = 0.79, 95% CI = 0.77-0.82), whereas a higher TGs level (pooled OR for higher than 150 mg/dL = 1.39, 95% CI = 1.10-1.75) was positively associated with CHD risk among female patients with T2DM. Conclusion Certain serum/plasma biomarkers were associated with the progression of CMM, in particular for those related to lipid metabolism, but heterogeneity and inconsistent findings still existed among included studies. There is a need for future research to explore more relevant biomarkers associated with the occurrence and progression of CMM, targeted at which is important for the early identification and prevention of CMM.
Collapse
Affiliation(s)
- Yichen Jin
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ziyuan Xu
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuting Zhang
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yue Zhang
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Danyang Wang
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yangyang Cheng
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yaguan Zhou
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Muhammad Fawad
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaolin Xu
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Chen Y, Xue J, Yan X, Fang DG, Li F, Tian X, Yan P, Feng Z. Identification of crucial genes related to heart failure based on GEO database. BMC Cardiovasc Disord 2023; 23:376. [PMID: 37507655 PMCID: PMC10385922 DOI: 10.1186/s12872-023-03400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The molecular biological mechanisms underlying heart failure (HF) remain poorly understood. Therefore, it is imperative to use innovative approaches, such as high-throughput sequencing and artificial intelligence, to investigate the pathogenesis, diagnosis, and potential treatment of HF. METHODS First, we initially screened Two data sets (GSE3586 and GSE5406) from the GEO database containing HF and control samples from the GEO database to establish the Train group, and selected another dataset (GSE57345) to construct the Test group for verification. Next, we identified the genes with significantly different expression levels in patients with or without HF and performed functional and pathway enrichment analyses. HF-specific genes were identified, and an artificial neural network was constructed by Random Forest. The ROC curve was used to evaluate the accuracy and reliability of the constructed model in the Train and Test groups. Finally, immune cell infiltration was analyzed to determine the role of the inflammatory response and the immunological microenvironment in the pathogenesis of HF. RESULTS In the Train group, 153 significant differentially expressed genes (DEGs) associated with HF were found to be abnormal, including 81 down-regulated genes and 72 up-regulated genes. GO and KEGG enrichment analyses revealed that the down-regulated genes were primarily enriched in organic anion transport, neutrophil activation, and the PI3K-Akt signaling pathway. The upregulated genes were mainly enriched in neutrophil activation and the calcium signaling. DEGs were identified using Random Forest, and finally, 16 HF-specific genes were obtained. In the ROC validation and evaluation, the area under the curve (AUC) of the Train and Test groups were 0.996 and 0.863, respectively. CONCLUSIONS Our research revealed the potential functions and pathways implicated in the progression of HF, and designed an RNA diagnostic model for HF tissues using machine learning and artificial neural networks. Sensitivity, specificity, and stability were confirmed by ROC curves in the two different cohorts.
Collapse
Affiliation(s)
- Yongliang Chen
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, 36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Jing Xue
- Experimental Center of Morphology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Xiaoli Yan
- Experimental Center of Morphology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Da-Guang Fang
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, 36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Fangliang Li
- Experimental Center of Morphology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Xuefei Tian
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, 36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Peng Yan
- Experimental Center of Morphology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Zengbin Feng
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, 36 Nanyingzi Street, Chengde, Hebei, 067000, China.
| |
Collapse
|
6
|
Flack KD, Vítek L, Fry CS, Stec DE, Hinds TD. Cutting edge concepts: Does bilirubin enhance exercise performance? Front Sports Act Living 2023; 4:1040687. [PMID: 36713945 PMCID: PMC9874874 DOI: 10.3389/fspor.2022.1040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Exercise performance is dependent on many factors, such as muscular strength and endurance, cardiovascular capacity, liver health, and metabolic flexibility. Recent studies show that plasma levels of bilirubin, which has classically been viewed as a liver dysfunction biomarker, are elevated by exercise training and that elite athletes may have significantly higher levels. Other studies have shown higher plasma bilirubin levels in athletes and active individuals compared to general, sedentary populations. The reason for these adaptions is unclear, but it could be related to bilirubin's antioxidant properties in response to a large number of reactive oxygen species (ROS) that originates from mitochondria during exercise. However, the mechanisms of these are unknown. Current research has re-defined bilirubin as a metabolic hormone that interacts with nuclear receptors to drive gene transcription, which reduces body weight. Bilirubin has been shown to reduce adiposity and improve the cardiovascular system, which might be related to the adaption of bilirubin increasing during exercise. No studies have directly tested if elevating bilirubin levels can influence athletic performance. However, based on the mechanisms proposed in the present review, this seems plausible and an area to consider for future studies. Here, we discuss the importance of bilirubin and exercise and how the combination might improve metabolic health outcomes and possibly athletic performance.
Collapse
Affiliation(s)
- Kyle D. Flack
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY, United States,Correspondence: Kyle D. Flack Terry D. Hinds
| | - Libor Vítek
- 4th Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Christopher S. Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky College of Medicine, Lexington, KY, United States,Center for Muscle Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States,Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky, Lexington, KY, United States,Correspondence: Kyle D. Flack Terry D. Hinds
| |
Collapse
|
7
|
Canagliflozin Inhibits Human Endothelial Cell Inflammation through the Induction of Heme Oxygenase-1. Int J Mol Sci 2022; 23:ijms23158777. [PMID: 35955910 PMCID: PMC9369341 DOI: 10.3390/ijms23158777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in patients with type 2 diabetes mellitus (T2DM). Studies have also shown that canagliflozin directly acts on endothelial cells (ECs). Since heme oxygenase-1 (HO-1) is an established modulator of EC function, we investigated if canagliflozin regulates the endothelial expression of HO-1, and if this enzyme influences the biological actions of canagliflozin in these cells. Treatment of human ECs with canagliflozin stimulated a concentration- and time-dependent increase in HO-1 that was associated with a significant increase in HO activity. Canagliflozin also evoked a concentration-dependent blockade of EC proliferation, DNA synthesis, and migration that was unaffected by inhibition of HO-1 activity and/or expression. Exposure of ECs to a diabetic environment increased the adhesion of monocytes to ECs, and this was attenuated by canagliflozin. Knockdown of HO-1 reduced the anti-inflammatory effect of canagliflozin which was restored by bilirubin but not carbon monoxide. In conclusion, this study identified canagliflozin as a novel inducer of HO-1 in human ECs. It also found that HO-1-derived bilirubin contributed to the anti-inflammatory action of canagliflozin, but not the anti-proliferative and antimigratory effects of the drug. The ability of canagliflozin to regulate HO-1 expression and EC function may contribute to the clinical profile of the drug.
Collapse
|
8
|
Wu J, Su J, Wang Y, Chen J, Shang Y, Li J. Association between total bilirubin and bone mineral density level in adolescents. BMC Musculoskelet Disord 2022; 23:639. [PMID: 35788217 PMCID: PMC9254407 DOI: 10.1186/s12891-022-05592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Increasing bone mass accumulation in adolescence and obtaining greater peak bone mass is one of the effective methods to prevent osteoporosis in the future. We aimed to examine the association between total bilirubin and bone mineral density (BMD) level in adolescents. Methods We used the data from 2005–2010 and 2013–2014 cycles of National Health and Nutrition Examination Survey (NHANES). The BMD levels in the region of lumbar spine and femoral regions, including total femur, femoral neck, trochanter, and intertrochanter were measured. Univariable and multivariable linear regression model were used to assess the relationship between total bilirubin concentration and BMD. Results A total of 3741 participants aged 12–19 years were ultimately included in the study. There were 1997 (53.38%) males and 1744 (46.62%) females. Univariate analysis results showed that age, sex, race, education, income, body mass index, dietary calcium intake, and diabetes were correlated with BMD levels. Compared with the lowest quartile of total bilirubin concentration, the highest quartile of total bilirubin concentration was positively associated with BMD levels in the regions of total femur (β = 0.036, 95% CI = 0.021 to 0.050, P < 0.001), femur neck (β = 0.030, 95% CI = 0.016 to 0.044, P < 0.001), trochanter (β = 0.033, 95% CI = 0.019 to 0.046, P < 0.001), intertrochanter (β = 0.040, 95% CI = 0.023 to 0.056, P < 0.001), and lumbar spine (β = 0.032, 95% CI = 0.018 to 0.045, P < 0.001). We also observe the same trend in sensitivity analysis (P for trend < 0.001). Conclusion Our study demonstrated that total bilirubin concentration was positively associated with BMD levels in adolescents in United States. Total bilirubin concentration might be a protective marker against bone loss in adolescents.
Collapse
Affiliation(s)
- Jing Wu
- Department of Cadre Ward 2, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Jiali Su
- Department of Cadre Ward 3, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yangyang Wang
- Department of Cadre Ward 2, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jianfeng Chen
- Department of Experimental Animal Center, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yuanyuan Shang
- Department of Neurosurgical Ward, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jing Li
- Department of Cadre Ward 2, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.,Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
9
|
Lang E, Abdou H, Edwards J, Patel N, Morrison JJ. State-of-the-Art Review: Sex Hormone Therapy in Trauma-Hemorrhage. Shock 2022; 57:317-326. [PMID: 34618728 DOI: 10.1097/shk.0000000000001871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Trauma-hemorrhage is the leading cause of prehospital and early in-hospital deaths, while also significantly contributing to the later development of multisystem organ dysfunction/failure and sepsis. Common and advanced resuscitative methods would potentially demonstrate benefits in the prehospital setting; however, they face a variety of barriers to application and implementation. Thus, a dialogue around a novel adjunct has arisen, sex hormone therapy. Proposed candidates include estradiol and its derivatives, metoclopramide hydrochloride/prolactin, dehydroepiandrosterone, and flutamide; with each having demonstrated a range of salutary effects in several animal model studies. Several retrospective analyses have observed a gender-based dimorphism in mortality following trauma-hemorrhage, thus suggesting that estrogens contribute to this pattern. Trauma-hemorrhage animal models have shown estrogens offer protective effects to the cardiovascular, pulmonary, hepatic, gastrointestinal, and immune systems. Additionally, a series of survival studies utilizing 17α-ethinylestradiol-3-sulfate, a potent, water-soluble synthetic estrogen, have demonstrated a significant survival benefit and beneficial effects on cardiovascular function. This review presents the findings of retrospective clinical studies, preclinical animal studies, and discusses how and why 17α-ethinylestradiol-3-sulfate should be considered for investigation within a prospective clinical trial.
Collapse
Affiliation(s)
- Eric Lang
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
10
|
Zanussi JT, Zhao J, Dorn CA, Liu G, Feng Q, Wei W, Mosley JD, Stein CM, Kawai VK. Identifying Potential Therapeutic Applications and Diagnostic Harms of Increased Bilirubin Concentrations: A Clinical and Genetic Approach. Clin Pharmacol Ther 2022; 111:435-443. [PMID: 34625956 PMCID: PMC8748314 DOI: 10.1002/cpt.2441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023]
Abstract
Bilirubin has antioxidant and anti-inflammatory properties in vitro and in animal studies and protects against inflammatory, cardiovascular, and other diseases in observational studies; therefore, bilirubin has potential as a therapeutic agent. However, observational studies could be confounded by many factors. We used a genetic (n = 61,281) and clinical (n = 234,670) approach to define the association between bilirubin and 19 conditions with a putative protective signal in observational studies. We also tested if individuals with genetically higher bilirubin levels underwent more diagnostic tests. We used a common variant in UGT1A1 (rs6742078) associated with an 26% increase in bilirubin levels in the genetic studies. Carriers of the variant had higher bilirubin levels (P = 2.2 × 10-16 ) but there was no significant association with any of the 19 conditions. In a phenome-wide association study (pheWAS) to seek undiscovered genetic associations, the only significant finding was increased risk of "jaundice-not of newborn." Carriers of the variant allele were more likely to undergo an abdominal ultrasound (odds ratio = 1.04, [1.00-1.08], P = 0.03). In contrast, clinically measured bilirubin levels were significantly associated with 15 of the 19 conditions (P < 0.003) and with 431 clinical diagnoses in the pheWAS (P < 1 × 10-5 adjusted for sex, age, and follow-up). With additional adjustment for smoking and body mass index, 7 of 19 conditions and 260 pheWAS diagnoses remained significantly associated with bilirubin levels. In conclusion, bilirubin does not protect against inflammatory or other diseases using a genetic approach; the many putative beneficial associations reported clinically are likely due to confounding.
Collapse
Affiliation(s)
- Jacy T. Zanussi
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chad A. Dorn
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ge Liu
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - WeiQi Wei
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan D. Mosley
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C. Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian K. Kawai
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
Jin CH, Wang JW, Ke JF, Li JB, Li MF, Li LX. Low-normal serum unconjugated bilirubin levels are associated with late but not early carotid atherosclerotic lesions in T2DM subjects. Front Endocrinol (Lausanne) 2022; 13:948338. [PMID: 36407305 PMCID: PMC9667095 DOI: 10.3389/fendo.2022.948338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS We aimed to examine the association of serum unconjugated bilirubin (UCB) within normal limits with carotid atherosclerosis in Chinese patients with type 2 diabetes mellitus (T2DM). METHODS This cross-sectional, real-world study was performed in 8,006 hospitalized T2DM patients including 4,153 men and 3,853 women with normal UCB. The subjects were stratified into quintiles based on serum UCB levels (<6.2, 6.2-7.9, 8.0-8.9, 9.0-10.9, and >10.9 μmol/l, respectively). Carotid atherosclerotic lesions detected by ultrasonography, including carotid intima-media thickness (CIMT), carotid plaque, and stenosis, were compared among the five groups. The associations of serum UCB levels and quintiles with carotid atherosclerotic lesions were also determined by multiple logistic regression. RESULTS The prevalence of carotid plaque (55.3%, 49.5%, 47.4%, 43.8%, and 37.5%, respectively; p < 0.001 for trend) and stenosis (15.2%, 12.2%, 9.1%, 7.7%, and 5.4%, respectively; p < 0.001 for trend) was progressively lower across the UCB quintiles even after adjusting for age, sex, and duration of diabetes. Results of a fully adjusted multiple logistic regression analysis revealed that serum UCB levels and quintiles were significantly associated with carotid plaque and stenosis. Compared with the subjects in the lowest UCB quintile, the risk of carotid plaque decreased by 25.5%, 28.7%, 33.5%, and 42.8%, and that of carotid stenosis by 24.6%, 37.4%, 44.9%, and 47.3%, respectively, in those from the second to highest UCB quintiles. High serum UCB within the normal range was a protective factor against carotid plaque [odds ratio (OR) 0.810, 95% confidence interval (CI) 0.747-0.878; p < 0.001] and stenosis [OR 0.722, 95% CI 0.647-0.805; p < 0.001]. However, no significant association was observed between serum UCB and CIMT in T2DM patients. Furthermore, C-reactive protein (CRP) levels were significantly higher in the subjects with carotid atherosclerosis than in those without carotid atherosclerosis and clearly decreased across the UCB quintiles. CONCLUSIONS Serum UCB within normal limits is inversely associated with late carotid atherosclerotic lesions including carotid plaque and stenosis but not CIMT, an early carotid atherosclerotic lesion in T2DM patients. High-normal UCB may be protective against carotid atherosclerosis by its anti-inflammation effect, which was indicated by significantly decreased CRP levels from the lowest to highest UCB quintiles.
Collapse
Affiliation(s)
- Chun-Hua Jin
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai Key Laboratory of Diabetes, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai Key Laboratory of Diabetes, Shanghai, China
| | - Jiang-Feng Ke
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai Key Laboratory of Diabetes, Shanghai, China
| | - Jing-Bo Li
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei-Fang Li
- Department of Emergency, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Mei-Fang Li, ; Lian-Xi Li,
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai Key Laboratory of Diabetes, Shanghai, China
- *Correspondence: Mei-Fang Li, ; Lian-Xi Li,
| |
Collapse
|
12
|
Patients with Gilbert syndrome and type 2 diabetes have lower prevalence of microvascular complications. Metabol Open 2021; 11:100114. [PMID: 34386764 PMCID: PMC8346683 DOI: 10.1016/j.metop.2021.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Accumulating clinical evidence indicates an inverse relationship between oxidative stress and unconjugated hyperbilirubinemia. This study aimed to compare the prevalence of diabetes microvascular complications in patients with Gilbert syndrome and type 2 diabetes mellitus (T2D). Methods A total of 1200 electronic records with T2D were reviewed. From them, 50 patients with Gilbert syndrome (cases [indirect bilirubin ≥1.2 mg/dl without evidence of hemolysis or liver disease]) and 50 controls (T2D without hyperbilirubinemia) were included. Linear and logistic regression models were performed to evaluate the independent association between indirect hyperbilirubinemia with microvascular complications related with T2D. Results Both case and control group had the same proportion of gender (female = 20 [40 %]) and diabetes duration (14.0 ± 6.5 years) and similar mean of age (60 ± 9.6 and 60 ± 9.2 years, respectively, p = 0.91). The median of unconjugated bilirubin of case and control group was 1.4 (1.2–1.6) vs. 0.4 (0.2–0.6) mg/dl (p < 0.001), respectively. Patients with elevated unconjugated bilirubin had less urine albumin-creatinine ratio compared with control group (8.5 [4.3–23] vs. 80 [8–408] mg/g, p < 0.001), and lower rate of diabetes microvascular complications and metabolic syndrome. After adjustment for BMI, age, HbA1c, blood pressure, triglycerides, and the metabolic syndrome, the lineal regression analysis showed that unconjugated bilirubin protects against microalbuminuria in T2D patients (β = −414.11, 95 % CI [-747.9, −80.3], p = 0.006. Also, unconjugated hyperbilirubinemia was independently associated with a better glomerular filtration rate (GFR) (β = 9.87, 95 % CI [1.5, 18.3], P = 0.02). Conclusions Patients with Gilbert syndrome and T2D had a lower prevalence of diabetes microvascular complications.
Collapse
|
13
|
Pethő D, Hendrik Z, Nagy A, Beke L, Patsalos A, Nagy L, Póliska S, Méhes G, Tóth C, Potor L, Eaton JW, Jacob HS, Balla G, Balla J, Gáll T. Heme cytotoxicity is the consequence of endoplasmic reticulum stress in atherosclerotic plaque progression. Sci Rep 2021; 11:10435. [PMID: 34001932 PMCID: PMC8129109 DOI: 10.1038/s41598-021-89713-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.
Collapse
|
14
|
An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020; 25:molecules25225474. [PMID: 33238435 PMCID: PMC7700122 DOI: 10.3390/molecules25225474] [Citation(s) in RCA: 646] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a key driver in many pathological conditions such as allergy, cancer, Alzheimer’s disease, and many others, and the current state of available drugs prompted researchers to explore new therapeutic targets. In this context, accumulating evidence indicates that the transcription factor Nrf2 plays a pivotal role controlling the expression of antioxidant genes that ultimately exert anti-inflammatory functions. Nrf2 and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH- associated protein 1 (Keap1), play a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Interestingly, Nrf2 is proved to contribute to the regulation of the heme oxygenase-1 (HO-1) axis, which is a potent anti-inflammatory target. Recent studies showed a connection between the Nrf2/antioxidant response element (ARE) system and the expression of inflammatory mediators, NF-κB pathway and macrophage metabolism. This suggests a new strategy for designing chemical agents as modulators of Nrf2 dependent pathways to target the immune response. Therefore, the present review will examine the relationship between Nrf2 signaling and the inflammation as well as possible approaches for the therapeutic modulation of this pathway.
Collapse
|
15
|
Chadha S, Behl T, Kumar A, Khullar G, Arora S. Role of Nrf2 in rheumatoid arthritis. Curr Res Transl Med 2020; 68:171-181. [DOI: 10.1016/j.retram.2020.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022]
|
16
|
Tao X, Wu J, Wang A, Xu C, Wang Z, Zhao X. Lower Serum Indirect Bilirubin Levels are Inversely Related to Carotid Intima-Media Thickness Progression. Curr Neurovasc Res 2020; 16:148-155. [PMID: 30977446 DOI: 10.2174/1567202616666190412153735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bilirubin has been recognized as a potential endogenous inhibitor of atherosclerosis, being inversely associated with carotid intima-media thickness (CIMT). However, little information is available concerning the correlation between serum indirect bilirubin (IBIL), especially long-term IBIL level, and early atherosclerosis progression. This study was designed to evaluate the relationship between serum IBIL level and CIMT progression. METHODS A total of 2205 participants were enrolled in this Asymptomatic Polyvascular Abnormalities Community study (APAC study). CIMT was measured at baseline and 2-year follow-up. The participants were divided into four groups based on their serum IBIL levels at baseline. Both baseline and average serum IBIL values during the 2-year follow up were used in the analysis. Multivariable logistic regression and linear regression were used to assess the associations between serum IBIL and CIMT progression. RESULTS The results showed that 51.93% (1145/2205) of participants were diagnosed with CIMT progression during the 2-year follow-up. Baseline serum IBIL level was significantly associated with the incidence of CIMT progression after adjusting for other potential confounding factors. Compared with the first quartile, adjusted odds ratios (OR) of the second, third, and fourth quartiles of IBIL were 0.70 [95% confidence interval (CI), 0.55-0.90], 0.68 (95% CI, 0.52-0.87), and 0.63 (95% CI, 0.49-0.82) (P = 0.0006), respectively. Serum IBIL level during the follow-up was also associated with CIMT progression in the univariate analysis (P = 0.0022), although no longer significant after adjusting for potential confounders in the multiple linear regression. CONCLUSION The study demonstrated the inverse relationship between serum IBIL and CIMT progression. Lower serum IBIL level is an independent predictor of subclinical atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxiao Tao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Department of Neurology, Taizhou First People's Hospital, Taizhou, China
| | - Jianwei Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Chenghua Xu
- Department of Neurology, Taizhou First People's Hospital, Taizhou, China
| | - Zhimin Wang
- Department of Neurology, Taizhou First People's Hospital, Taizhou, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
17
|
Yao Q, Sun R, Bao S, Chen R, Kou L. Bilirubin Protects Transplanted Islets by Targeting Ferroptosis. Front Pharmacol 2020; 11:907. [PMID: 32612533 PMCID: PMC7308534 DOI: 10.3389/fphar.2020.00907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Islet transplantation is an attractive treatment for type 1 diabetic patients. However, transplanted islets suffered from considerable cell death due to inflammatory reactions and oxidative stress. Ferroptosis is a programmed death characterized by iron-dependent lipid peroxidation, which has been implicated in the islet loss and dysfunction. Our previous studies showed that bilirubin displayed protection effect for islets by inhibiting early inflammation and oxidative stress. However, whether bilirubin protects islets by targeting ferroptosis has not yet been elucidated. Here, the isolated islet was exposed to ferroptosis-inducing agents with or without bilirubin. Islet viability, insulin secretion, and oxidative stress levels were assessed. Subsequently, the pretreated islets were transplanted into the subrenal site of streptozotocin-induced diabetic mice. Bilirubin could significantly attenuate ferroptosis in isolated islets, along with reduced oxidative stress, elevated GPX4 expression and upregulation of Nrf2/HO-1. Experimental data also confirmed that bilirubin could chelate iron. In vivo graft study demonstrated that euglycemia was achieved in diabetic mice receiving bilirubin-pretreated islets within 24 hours, while the control islets required at least 7 days. Bilirubin could improve islet viability and function through inhibiting ferroptosis, which could be of clinic interest to apply bilirubin into the islet transplantation system.
Collapse
Affiliation(s)
- Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Bellner L, Lebovics NB, Rubinstein R, Buchen YD, Sinatra E, Sinatra G, Abraham NG, McClung JA, Thompson EA. Heme Oxygenase-1 Upregulation: A Novel Approach in the Treatment of Cardiovascular Disease. Antioxid Redox Signal 2020; 32:1045-1060. [PMID: 31891663 PMCID: PMC7153645 DOI: 10.1089/ars.2019.7970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Heme oxygenase (HO) plays a pivotal role in both vascular and metabolic functions and is involved in many physiological and pathophysiological processes in vascular endothelial cells (ECs) and adipocytes. Recent Advances: From the regulation of adipogenesis in adipose tissue to the adaptive response of vascular tissue in the ECs, HO plays a critical role in the capability of the vascular system to respond and adjust to insults in homeostasis. Recent studies show that HO-1 through regulation of adipocyte and adipose tissue functions ultimately aid not only in local but also in systemic maintenance of homeostasis. Critical Issues: Recent advances have revealed the existence of a cross talk between vascular ECs and adipocytes in adipose tissue. In the pathological state of obesity, this cross talk contributes to the condition's adverse chronic effects, and we propose that specific targeting of the HO-1 gene can restore signaling pathways and improve both vascular and adipose functions. Future Directions: A complete understanding of the role of HO-1 in regulation of cardiovascular homeostasis is important to comprehend the homeostatic regulation as well as in cardiovascular disease. Efforts are required to highlight the effects and the ability to target the HO-1 gene in models of obesity with an emphasis on the role of pericardial fat on cardiovascular health.
Collapse
Affiliation(s)
- Lars Bellner
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Nachum B Lebovics
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | | | - Yosef D Buchen
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Emilia Sinatra
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Giuseppe Sinatra
- Department of Pharmacology and New York Medical College, Valhalla, New York
| | - Nader G Abraham
- Department of Pharmacology and New York Medical College, Valhalla, New York.,Department of Medicine, New York Medical College, Valhalla, New York
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, New York
| | - Ellen A Thompson
- Department of Medicine, Marshall University, Joan C. Edwards School of Medicine, Huntington, West Virginia
| |
Collapse
|
19
|
Activation of the Nrf2/HO-1 Pathway by Amomum villosum Extract Suppresses LPS-Induced Oxidative Stress In Vitro and Ex Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2837853. [PMID: 32454852 PMCID: PMC7218974 DOI: 10.1155/2020/2837853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
Despite its deleterious effects on living cells, oxidative stress plays essential roles in normal physiological processes and provides signaling molecules for cell growth, differentiation, and inflammation. Macrophages are equipped with antioxidant mechanisms to cope with intracellular ROS produced during immune response, and Nrf2 (NF-E2-related factor 2)/HO-1 (heme oxygenase-1) pathway is an attractive target due to its protective effect against ROS-induced cell damage in inflamed macrophages. We investigated the effects of ethanol extract of A. villosum (AVEE) on lipopolysaccharide- (LPS-) stimulated inflammatory responses generated via the Nrf2/HO-1 signaling pathway in murine peritoneal macrophages and RAW 264.7 cells. AVEE was found to suppress the NF-κB signaling pathway, thus, to reduce proinflammatory cytokine, nitric oxide, and prostaglandin levels in peritoneal macrophages and Raw 264.7 cells treated with LPS, and to enhance HO-1 expression by activating Nrf2 signaling. Furthermore, these anti-inflammatory effects of AVEE were diminished when cells were pretreated with SnPP (a HO-1 inhibitor). HPLC analysis revealed AVEE contained quercetin, a possible activator of the Nrf2/HO-1 pathway. These results show A. villosum ethanol extract exerts anti-inflammatory effects by activating the Nrf2/HO-1 pathway in LPS-stimulated macrophages.
Collapse
|
20
|
Wang W, Yang Q, Xie K, Wang P, Luo R, Yan Z, Gao X, Zhang B, Huang X, Gun S. Transcriptional Regulation of HMOX1 Gene in Hezuo Tibetan Pigs: Roles of WT1, Sp1, and C/EBPα. Genes (Basel) 2020; 11:genes11040352. [PMID: 32224871 PMCID: PMC7231170 DOI: 10.3390/genes11040352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Heme oxygenase 1 (HMOX1) is a stress-inducing enzyme with multiple cardiovascular protective functions, especially in hypoxia stress. However, transcriptional regulation of swine HMOX1 gene remains unclear. In the present study, we first detected tissue expression profiles of HMOX1 gene in adult Hezuo Tibetan pig and analyzed the gene structure. We found that the expression level of HMOX1 gene was highest in the spleen of the Hezuo Tibetan pig, followed by liver, lung, and kidney. A series of 5’ deletion promoter plasmids in pGL3-basic vector were used to identify the core promoter region and confirmed that the minimum core promoter region of swine HMOX1 gene was located at −387 bp to −158 bp region. Then we used bioinformatics analysis to predict transcription factors in this region. Combined with site-directed mutagenesis and RNA interference assays, it was demonstrated that the three transcription factors WT1, Sp1 and C/EBPα were important transcription regulators of HMOX1 gene. In summary, our study may lay the groundwork for further functional study of HMOX1 gene.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1804
| |
Collapse
|
21
|
Börzsei D, Szabó R, Hoffmann A, Veszelka M, Pávó I, Turcsán Z, Viczián C, Kupai K, Varga C, Pósa A. Distinct Approaches of Raloxifene: Its Far-Reaching Beneficial Effects Implicating the HO-System. Biomolecules 2020; 10:biom10030375. [PMID: 32121307 PMCID: PMC7175347 DOI: 10.3390/biom10030375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs) were discovered in the mid-1900s in connection with estrogen-related pathological conditions. They were developed to antagonize the adverse effects of estrogen and have been shown to be effective against postmenopausal disorders manifested by estrogen deficiency. Raloxifene (RAL), one of the most widely used SERMs, expresses estrogen-like effects on bones, while it is found to be an antagonist on breast and uterus. RAL has multiple beneficial effects throughout the body, including antioxidant and anti-inflammatory properties, because of which it gains particular attention. Additionally, previous studies have revealed that RAL is an efficient modulator of heme-oxygenase (HO) expression. HO, through its general activity, participates in comprehensive cell defense processes, thus the induction of HO by RAL administration indicates a major role in its therapeutic efficacy. In this review, we compile the current knowledge about the overall metabolic, neurocognitive, and cardiovascular effects of RAL involving the cytoprotective HO-system.
Collapse
Affiliation(s)
- Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
- Interdisciplinary Excellence Centre, Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6720 Szeged, Hungary
| | - Alexandra Hoffmann
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Imre Pávó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Zsolt Turcsán
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Csaba Viczián
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary; (D.B.); (R.S.); (A.H.); (M.V.); (I.P.); (Z.T.); (C.V.); (K.K.); (C.V.)
- Interdisciplinary Excellence Centre, Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-544884; Fax: +36-62-544291
| |
Collapse
|
22
|
Leem AY, Kim YS, Lee JH, Kim TH, Kim HY, Oh YM, Lee SD, Jung JY. Serum bilirubin level is associated with exercise capacity and quality of life in chronic obstructive pulmonary disease. Respir Res 2019; 20:279. [PMID: 31818285 PMCID: PMC6902503 DOI: 10.1186/s12931-019-1241-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bilirubin has antioxidant properties against chronic respiratory diseases. However, previous studies are limited by acquisition of serum bilirubin level at one time point and its analysis with clinical parameters. We evaluated the association of serum bilirubin levels with various clinical outcomes of chronic obstructive pulmonary disease (COPD) in Korean Obstructive Lung Disease (KOLD) cohort. METHODS We included 535 patients with COPD from the KOLD cohort. Serum bilirubin levels and various clinical parameters, such as lung function, 6-min walking (6 MW) distance, quality of life (QoL), and exacerbation, were evaluated annually; their association was analyzed using generalized estimating equations and the linear mixed model. RESULTS Among 535 patients, 345 (64.5%) and 190 (35.5%) were categorized into Global Initiative for Chronic Obstructive Lung Disease (GOLD) I-II and GOLD III-IV groups, respectively. 6 MW distance was positively associated with serum bilirubin levels, especially in the GOLD I-II group (estimated mean = 41.5). Among QoL indexes, the COPD assessment test score was negatively associated with serum bilirubin levels only in the GOLD I-II group (estimated mean = - 2.8). Higher serum bilirubin levels were independently associated with a higher number of acute exacerbation in the GOLD III-IV group (estimated mean = 0.45, P = 0.001). Multivariate analysis revealed that lung function and mortality were not associated with serum bilirubin levels. CONCLUSIONS Higher serum bilirubin levels were associated with a longer 6 MW distance and better QoL, especially in the GOLD I-II group, whereas they were related to a higher risk of acute exacerbation, especially in the GOLD III-IV group. Bilirubin levels may represent various conditions in COPD.
Collapse
Affiliation(s)
- Ah Young Leem
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Hyun Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Tae-Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Ha Yan Kim
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeon Mok Oh
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Do Lee
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Ye Jung
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Disease, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
23
|
Hammad ASA, Ahmed ASF, Heeba GH, Taye A. Heme oxygenase-1 contributes to the protective effect of resveratrol against endothelial dysfunction in STZ-induced diabetes in rats. Life Sci 2019; 239:117065. [PMID: 31751579 DOI: 10.1016/j.lfs.2019.117065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022]
Abstract
Endothelial dysfunction is a common complication of diabetes that mainly stems from increased reactive oxygen species, which makes antioxidants of great benefit. Resveratrol (RSV) is an antioxidant that shows protective effects in a variety of disease models where the ameliorative effect appears to be mediated, in part, via heme oxygenase-1 (HO-1) induction. However, the pathophysiological relevance of HO-1 in the ameliorative response of RSV in endothelial dysfunction is not clearly defined. The present study was conducted to investigate whether HO-1 plays a role in diabetes-induced vascular dysfunction. Streptozotocin-diabetic rats were treated with RSV (10 mg/kg) in presence or absence of an HO-1 blocker, Zinc protoporphyrin (ZnPP) to assess vascular function and indicators of disease status. We found that RSV treatment significantly abrogated diabetes induced vascular dysfunction. This improvement was associated with the ability of RSV to decrease oxidative stress markers alongside a reduction in the aortic TGF-β expression, elevation of NOS3 expression and aortic nitrite concentration as well as HO activity. These ameliorative effects were diminished when ZnPP was administered prior to RSV. Our results clearly demonstrate the protective effects of RSV in diabetes-associated endothelial dysfunction and verified a causal role of HO-1 in this setting.
Collapse
Affiliation(s)
- Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt.
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Egypt
| |
Collapse
|
24
|
Singh SP, McClung JA, Thompson E, Glick Y, Greenberg M, Acosta‐Baez G, Edris B, Shapiro JI, Abraham NG. Cardioprotective Heme Oxygenase-1-PGC1α Signaling in Epicardial Fat Attenuates Cardiovascular Risk in Humans as in Obese Mice. Obesity (Silver Spring) 2019; 27:1634-1643. [PMID: 31441604 PMCID: PMC6756945 DOI: 10.1002/oby.22608] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study investigated whether levels of signaling pathways and inflammatory adipokines in epicardial fat regulate cardiovascular risks in humans and mice. METHODS Epicardial fat was obtained from the hearts of patients with heart failure requiring coronary artery bypass surgery, and signaling pathways were compared with visceral fat. The genetic profile of epicardial and visceral fat from humans was also compared with genetic profiles of epicardial and visceral fat in obese mice. Left ventricular (LV) fractional shortening was measured in obese mice before and after treatment with inducers of mitochondrial signaling heme oxygenase 1 (HO-1)-peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). An RNA array/heat map on 88 genes that regulate adipose tissue function was used to identify a target gene network. RESULTS Human epicardial fat gene profiling showed decreased levels of mitochondrial signaling of HO-1-PGC1α and increased levels of the inflammatory adipokine CCN family member 3. Similar observations were seen in epicardial and visceral fat of obese mice. Improvement in LV function was linked to the increase in mitochondrial signaling in epicardial fat of obese mice. CONCLUSIONS There is a link between cardiac ectopic fat deposition and cardiac function in humans that is similar to that which is described in obese mice. An increase of mitochondrial signaling pathway gene expression in epicardial fat attenuates cardiometabolic dysfunction and LV fractional shortening in obese mice.
Collapse
Affiliation(s)
| | - John A. McClung
- Department of MedicineNew York Medical CollegeValhallaNew YorkUSA
| | - Ellen Thompson
- Department of CardiologyJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Yosef Glick
- Department of PharmacologyNew York Medical CollegeValhallaNew YorkUSA
| | | | - Giancarlo Acosta‐Baez
- Department of CardiologyJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Basel Edris
- Department of CardiologyJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Joseph I. Shapiro
- Department of Internal MedicineJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| | - Nader G. Abraham
- Department of PharmacologyNew York Medical CollegeValhallaNew YorkUSA
- Department of MedicineNew York Medical CollegeValhallaNew YorkUSA
- Department of Internal MedicineJoan C. Edwards School of Medicine, Marshall UniversityHuntingtonWest VirginiaUSA
| |
Collapse
|
25
|
Zhong P, Sun D, Wu D, Liu X. Total bilirubin is negatively related to diabetes mellitus in Chinese elderly: a community study. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:474. [PMID: 31700910 DOI: 10.21037/atm.2019.07.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Serum total bilirubin (TB) was used as a predictor of diabetes mellitus (DM) and this study was undertaken to investigate the relationship between serum TB and DM. Methods In this cross-sectional study, a total of 3,867 subjects older than 65 years were recruited from East China. The anthropometric data, lifestyle and past history were collected. The fasting blood glucose, total cholesterol (TC), triglycerides (TGs), TB and alanine aminotransferase (ALT) were detected. The prevalence of DM was calculated for every serum TB quartile. Logistic regression analysis was employed to evaluate the relationship between serum TB and DM. Results Serum TB was significantly higher in non-DM than DM patients (P=0.001). Serum TB was negatively related to the prevalence of DM (P=0.004). Logistic regression analysis revealed that serum TB was an independent prognostic factor of DM [odds ratio (OR): 0.876, 95% confidence interval (CI): 0.807-0.951]. Conclusions Our results showed serum TB in physiological range is an independent risk factor of DM in old people; the prevalence of DM in old people has a linear relationship with serum TB quartiles; the prevalence of DM reduces with the increasing of serum TB within physiological range.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Neurology, Shanghai Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Dongmei Sun
- Puxing Community Health Service Centers, Pudong New Area, Shanghai 200129, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
26
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Correlations between the serum bilirubin level and ulcerative colitis: a case-control study. Eur J Gastroenterol Hepatol 2019; 31:992-997. [PMID: 31205128 DOI: 10.1097/meg.0000000000001466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To analyze whether the bilirubin level is a protective factor in ulcerative colitis (UC) and the predictive value of the bilirubin level. PATIENTS AND METHODS We compared the bilirubin levels of 100 UC patients and 140 healthy controls as well as those of the subgroups of patients with different UC severities and then analyzed the correlation between the bilirubin level and UC and the correlations among the erythrocyte sedimentation rate (ESR), high sensitivity C-reactive protein (hs-CRP) level, UC severity, and bilirubin level. The predictive value of the bilirubin level for UC was determined by constructing a receiver operating characteristic (ROC) curve. RESULTS The mean levels of the total bilirubin (TBIL) and indirect bilirubin (IBIL) in the UC were lower in comparison with the mean TBIL and IBIL levels in the control group, and the TBIL and IBIL levels were significantly higher in the mild activity subgroup than in the moderate and severe activity subgroups (P<0.05). TBIL (P<0.001, 95% confidence interval: 0.794-0.918) and especially IBIL (P<0.001, 95% confidence interval: 0.646-0.809) were independent protective factors for UC. There were also significant differences in the serum ESR and hs-CRP levels between the patients with different UC severities (ESR=χ: 23.975; hs-CRP=χ: 26.626, P<0.001), and there was a positive correlation between these two parameters (ESR=r: 0.472; hs-CRP=r: 0.495, P<0.001). However, the TBIL and IBIL levels were correlated negatively with the ESR (rtotal=-0.429, rindirect=-0.461, P<0.001) and hs-CRP (rtotal=-0.289, rindirect=-0.25, P<0.05) levels. The ROC curve showed that the threshold values of TBIL and IBIL were 8.87 and 6.735 µmol/l, the areas under the maximum ROC curve were 0.664 and 0.716, the sensitivities were 0.450 and 0.61, and the specificities were 0.800 and 0.786, respectively. CONCLUSION TBIL and especially IBIL may be independent protective factors for UC because of their antioxidant and anti-inflammatory effects. A low level of IBIL has a moderate predictive value for UC, and an IBIL level less than 6.735 µmol/l can be used as a defining index for predicting UC.
Collapse
|
28
|
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules 2019; 9:E301. [PMID: 31349600 PMCID: PMC6722928 DOI: 10.3390/biom9080301] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease which is a major cause of coronary heart disease and stroke in humans. It is characterized by intimal plaques and cholesterol accumulation in arterial walls. The side effects of currently prescribed synthetic drugs and their high cost in the treatment of atherosclerosis has prompted the use of alternative herbal medicines, dietary supplements, and antioxidants associated with fewer adverse effects for the treatment of atherosclerosis. This article aims to present the activity mechanisms of antioxidants on atherosclerosis along with a review of the most prevalent medicinal plants employed against this multifactorial disease. The wide-ranging information in this review article was obtained from scientific databases including PubMed, Web of Science, Scopus, Science Direct and Google Scholar. Natural and synthetic antioxidants have a crucial role in the prevention and treatment of atherosclerosis through different mechanisms. These include: The inhibition of low density lipoprotein (LDL) oxidation, the reduction of reactive oxygen species (ROS) generation, the inhibition of cytokine secretion, the prevention of atherosclerotic plaque formation and platelet aggregation, the preclusion of mononuclear cell infiltration, the improvement of endothelial dysfunction and vasodilation, the augmentation of nitric oxide (NO) bioavailability, the modulation of the expression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells, and the suppression of foam cell formation.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord 8818634141, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran.
| |
Collapse
|
29
|
The Protective Role of Heme Oxygenase-1 in Atherosclerotic Diseases. Int J Mol Sci 2019; 20:ijms20153628. [PMID: 31344980 PMCID: PMC6695885 DOI: 10.3390/ijms20153628] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an intracellular enzyme that catalyzes the oxidation of heme to generate ferrous iron, carbon monoxide (CO), and biliverdin, which is subsequently converted to bilirubin. These products have anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-thrombotic properties. Although HO-1 is expressed at low levels in most tissues under basal conditions, it is highly inducible in response to various pathophysiological stresses/stimuli. HO-1 induction is thus thought to be an adaptive defense system that functions to protect cells and tissues against injury in many disease settings. In atherosclerosis, HO-1 may play a protective role against the progression of atherosclerosis, mainly due to the degradation of pro-oxidant heme, the generation of anti-oxidants biliverdin and bilirubin and the production of vasodilator CO. In animal models, a lack of HO-1 was shown to accelerate atherosclerosis, whereas HO-1 induction reduced atherosclerosis. It was also reported that HO-1 induction improved the cardiac function and postinfarction survival in animal models of heart failure or myocardial infarction. Recently, we and others examined blood HO-1 levels in patients with atherosclerotic diseases, e.g., coronary artery disease (CAD) and peripheral artery disease (PAD). Taken together, these findings to date support the notion that HO-1 plays a protective role against the progression of atherosclerotic diseases. This review summarizes the roles of HO-1 in atherosclerosis and focuses on the clinical studies that examined the relationships between HO-1 levels and atherosclerotic diseases.
Collapse
|
30
|
Jia YN, Peng YL, Zhao YP, Cheng XF, Zhou Y, Chai CL, Zeng LS, Pan MH, Xu L. Comparison of the Hepatoprotective Effects of the Three Main Stilbenes from Mulberry Twigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5521-5529. [PMID: 31012578 DOI: 10.1021/acs.jafc.8b07245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to compare the hepatoprotective effects of Oxy (oxyresveratrol), Res (resveratrol), and MulA (mulberroside A) (80 mg/kg body weight/d, i.g.) on acute liver injury (ALI) induced by lipopolysaccharide (LPS)/d-galactosamine (d-GalN) in mice. After 7 h of LPS (50 μg/kg body weight, i.p.) and d-GalN (500 mg/kg body weight, i.p.) exposure, the activities of serum transaminases and antioxidant enzymes were determined. The expressions of the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway, the nuclear factor-kappa B (NF-κB) signal pathway, and the mitogen-activated protein kinase (MAPK) signal pathway related proteins were evaluated by Western blot assays. Histopathological analysis was performed by hematoxylin-eosin (H&E) staining on the separated livers of mice. The results showed that treatment with Oxy, Res, and MulA could significantly decreases the levels of alanine transaminase (ALT) and aspartate transaminase (AST) ( P < 0.01). MulA was the most effective ingredient among the three, and the ALT and AST levels were reduced at 90.3 ± 1.3% and 93.9 ± 1.1% compared with the LPS/D-GalN treated group ( P < 0.01). Meanwhile, the stilbenes curbed the expression of inflammatory factors, NF-κB pathway activation, and MAPKs phosphorylation and upregulated antioxidant enzymes, Nrf2, NAD (P) H:quinone oxidoreductase (NQO1), and heme oxygenase-1 (HO-1) expression levels. Stilbenes might protect the ALI caused by LPS/d-GalN through inhibiting the negative effectiveness of oxidation stress and inflammation. The protective performance of MulA was better than those of Oxy and Res, and we hypothesize that it might be due to the mediation of the specific metabolic pathway of the MulA in vivo. All of these results implied that stilbenes in mulberry twigs might be promising as natural additives.
Collapse
Affiliation(s)
- Ya-Nan Jia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology , Southwest University , Chongqing 400715 , China
| | - Ya-Lin Peng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology , Southwest University , Chongqing 400715 , China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University , Chongqing 400715 , China
| | - Yi-Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology , Southwest University , Chongqing 400715 , China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University , Chongqing 400715 , China
| | - Xi-Fei Cheng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology , Southwest University , Chongqing 400715 , China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University , Chongqing 400715 , China
| | - You Zhou
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology , Southwest University , Chongqing 400715 , China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University , Chongqing 400715 , China
| | - Chun-Li Chai
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology , Southwest University , Chongqing 400715 , China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University , Chongqing 400715 , China
| | - Ling-Shu Zeng
- Chongqing Sericulture Science and Technology Research Institute , No. 1 Shangba Road, Dongyang Street , Beibei District, Chongqing 400700 , China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology , Southwest University , Chongqing 400715 , China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University , Chongqing 400715 , China
| | - Li Xu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology , Southwest University , Chongqing 400715 , China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University , Chongqing 400715 , China
| |
Collapse
|
31
|
Fiorelli S, Porro B, Cosentino N, Di Minno A, Manega CM, Fabbiocchi F, Niccoli G, Fracassi F, Barbieri S, Marenzi G, Crea F, Cavalca V, Tremoli E, Eligini S. Activation of Nrf2/HO-1 Pathway and Human Atherosclerotic Plaque Vulnerability:an In Vitro and In Vivo Study. Cells 2019; 8:E356. [PMID: 30995787 PMCID: PMC6523494 DOI: 10.3390/cells8040356] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) induce nuclear factor erythroid 2-related factor 2 (Nrf2) activation as an adaptive defense mechanism, determining the synthesis of antioxidant molecules, including heme-oxygenase-1 (HO-1). HO-1 protects cells against oxidative injury, degrading free heme and inhibiting ROS production. HO-1 is highly expressed in macrophages during plaque growth. Macrophages are morpho-functionally heterogeneous, and the prevalence of a specific phenotype may influence the plaque fate. This heterogeneity has also been observed in monocyte-derived macrophages (MDMs), a model of macrophages infiltrating tissue. The study aims to assess oxidative stress status and Nrf2/HO-1 axis in MDM morphotypes obtained from healthy subjects and coronary artery disease (CAD) patients, in relation to coronary plaque features evaluated in vivo by optical coherence tomography (OCT). We found that MDMs of healthy subjects exhibited a lower oxidative stress status, lower Nrf2 and HO-1 levels as compared to CAD patients. High HO-1 levels in MDMs were associated with the presence of a higher macrophage content, a thinner fibrous cap, and a ruptured plaque with thrombus formation, detected by OCT analysis. These findings suggest the presence of a relationship between in vivo plaque characteristics and in vitro MDM profile, and may help to identify patients with rupture-prone coronary plaque.
Collapse
Affiliation(s)
| | - Benedetta Porro
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | | | | | | | | | - Giampaolo Niccoli
- Department of Cardiovascular & Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, I.R.C.C.S., Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Francesco Fracassi
- Department of Cardiovascular & Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, I.R.C.C.S., Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Simone Barbieri
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Giancarlo Marenzi
- Department of Cardiovascular & Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, I.R.C.C.S., Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Filippo Crea
- Department of Cardiovascular & Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, I.R.C.C.S., Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Viviana Cavalca
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Elena Tremoli
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Sonia Eligini
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| |
Collapse
|
32
|
Fizeșan I, Cambier S, Moschini E, Chary A, Nelissen I, Ziebel J, Audinot JN, Wirtz T, Kruszewski M, Pop A, Kiss B, Serchi T, Loghin F, Gutleb AC. In vitro exposure of a 3D-tetraculture representative for the alveolar barrier at the air-liquid interface to silver particles and nanowires. Part Fibre Toxicol 2019; 16:14. [PMID: 30940208 PMCID: PMC6444883 DOI: 10.1186/s12989-019-0297-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The present study aimed to evaluate the potential differences in the biological effects of two types of spherical silver particles of 20 and 200 nm (Ag20 and Ag200), and of PVP-coated silver nanowires (AgNWs) with a diameter of 50 nm and length up to 50 μm, using a complex 3D model representative for the alveolar barrier cultured at air-liquid interface (ALI). The alveolar model was exposed to 0.05, 0.5 and 5 μg/cm2 of test compounds at ALI using a state-of-the-art exposure system (Vitrocell™Cloud System). Endpoints related to the oxidative stress induction, anti-oxidant defence mechanisms, pro-inflammatory responses and cellular death were selected to evaluate the biocompatibility of silver particles and nanowires (AgNMs) and to further ascribe particular biological effects to the different morphologic properties between the three types of AgNMs evaluated. RESULTS Significant cytotoxic effect was observed for all three types of AgNMs at the highest tested doses. The increased mRNA levels of the pro-apoptotic gene CASP7 suggests that apoptosis may occur after exposure to AgNWs. All three types of AgNMs increased the mRNA level of the anti-oxidant enzyme HMOX-1 and of the metal-binding anti-oxidant metallothioneins (MTs), with AgNWs being the most potent inducer. Even though all types of AgNMs induced the nuclear translocation of NF-kB, only AgNWs increased the mRNA level of pro-inflammatory mediators. The pro-inflammatory response elicited by AgNWs was further confirmed by the increased secretion of the 10 evaluated interleukins. CONCLUSION In the current study, we demonstrated that the direct exposure of a complex tetra-culture alveolar model to different types of AgNMs at ALI induces shape- and size-specific biological responses. From the three AgNMs tested, AgNWs were the most potent in inducing biological alterations. Starting from 50 ng/cm2, a dose representative for an acute exposure in a high exposure occupational setting, AgNWs induced prominent changes indicative for a pro-inflammatory response. Even though the acute responses towards a dose representative for a full-lifetime exposure were also evaluated, chronic exposure scenarios at low dose are still unquestionably needed to reveal the human health impact of AgNMs during realistic conditions.
Collapse
Affiliation(s)
- Ionel Fizeșan
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Elisa Moschini
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Aline Chary
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Johanna Ziebel
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jean-Nicolas Audinot
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Tom Wirtz
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Marcin Kruszewski
- Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, Rzeszow, Poland
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, Warszawa, Poland
| | - Anca Pop
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Béla Kiss
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Arno C. Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| |
Collapse
|
33
|
Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A. Crosstalk Between Oxidative Stress and Endoplasmic Reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the Protective Roles of Heme Oxygenase (HO)-1. Front Physiol 2019; 10:70. [PMID: 30804804 PMCID: PMC6378556 DOI: 10.3389/fphys.2019.00070] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Type-2 diabetes prevalence is continuing to rise worldwide due to physical inactivity and obesity epidemic. Diabetes and fluctuations of blood sugar are related to multiple micro- and macrovascular complications, that are attributed to oxidative stress, endoplasmic reticulum (ER) activation and inflammatory processes, which lead to endothelial dysfunction characterized, among other features, by reduced availability of nitric oxide (NO) and aberrant angiogenic capacity. Several enzymatic anti-oxidant and anti-inflammatory agents have been found to play protective roles against oxidative stress and its downstream signaling pathways. Of particular interest, heme oxygenase (HO) isoforms, specifically HO-1, have attracted much attention as major cytoprotective players in conditions associated with inflammation and oxidative stress. HO operates as a key rate-limiting enzyme in the process of degradation of the iron-containing molecule, heme, yielding the following byproducts: carbon monoxide (CO), iron, and biliverdin. Because HO-1 induction was linked to pro-oxidant states, it has been regarded as a marker of oxidative stress; however, accumulating evidence has established multiple cytoprotective roles of the enzyme in metabolic and cardiovascular disorders. The cytoprotective effects of HO-1 depend on several cellular mechanisms including the generation of bilirubin, an anti-oxidant molecule, from the degradation of heme; the induction of ferritin, a strong chelator of free iron; and the release of CO, that displays multiple anti-inflammatory and anti-apoptotic actions. The current review article describes the major molecular mechanisms contributing to endothelial dysfunction and altered angiogenesis in diabetes with a special focus on the interplay between oxidative stress and ER stress response. The review summarizes the key cytoprotective roles of HO-1 against hyperglycemia-induced endothelial dysfunction and aberrant angiogenesis and discusses the major underlying cellular mechanisms associated with its protective effects.
Collapse
Affiliation(s)
- Hatem Maamoun
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tarek Benameur
- College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, United States
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
34
|
Plasma Heme Oxygenase-1 Levels in Patients with Coronary and Peripheral Artery Diseases. DISEASE MARKERS 2018; 2018:6138124. [PMID: 30159103 PMCID: PMC6109503 DOI: 10.1155/2018/6138124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/07/2018] [Accepted: 07/29/2018] [Indexed: 02/06/2023]
Abstract
Aims Heme oxygenase-1 (HO-1) is an intracellular enzyme that catalyzes the oxidation of heme to generate CO, biliverdin, and iron. Since these products have antiatherogenic properties, HO-1 may play a protective role against the progression of atherosclerosis. However, plasma HO-1 levels in patients with atherosclerotic diseases, such as coronary artery disease (CAD) and peripheral artery disease (PAD), have not been clarified yet. Methods We investigated plasma HO-1 levels by ELISA in 410 consecutive patients undergoing elective coronary angiography who also had an ankle-brachial index (ABI) test for PAD screening. Results Of the 410 study patients, CAD was present in 225 patients (55%) (1-vessel (1-VD), n = 91; 2-vessel (2-VD), n = 66; 3-vessel disease (3-VD), n = 68). PAD (ABI < 0.9) was found in 36 (9%) patients. Plasma HO-1 levels did not differ between 225 patients with CAD and 185 without CAD (median 0.44 versus 0.35 ng/mL), but they were significantly lower in 36 patients with PAD than in 374 without PAD (0.27 versus 0.41 ng/mL, P < 0.02). After excluding the 36 patients with PAD, HO-1 levels were significantly higher in 192 patients with CAD than in 182 without CAD (0.45 versus 0.35 ng/mL, P < 0.05). HO-1 levels in 4 groups of CAD(−), 1-VD, 2-VD, and 3-VD were 0.35, 0.49, 0.44, and 0.44 ng/mL, respectively, and were highest in 1-VD (P < 0.05). In the multivariate analysis, HO-1 levels were inversely associated with PAD, whereas they were also associated with CAD. The odds ratios for PAD and CAD were 2.12 (95% CI = 1.03–4.37) and 0.65 (95% CI = 0.42–0.99) for the HO-1 level of <0.35 ng/mL, respectively. Conclusions Plasma HO-1 levels were found to be low in patients with PAD, in contrast to high levels in patients with CAD.
Collapse
|
35
|
Fizeșan I, Chary A, Cambier S, Moschini E, Serchi T, Nelissen I, Kiss B, Pop A, Loghin F, Gutleb AC. Responsiveness assessment of a 3D tetra-culture alveolar model exposed to diesel exhaust particulate matter. Toxicol In Vitro 2018; 53:67-79. [PMID: 30081072 DOI: 10.1016/j.tiv.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 01/12/2023]
Abstract
The aim of the current study was to evaluate the responses of a 3D tetra-culture alveolar model cultivated at the air-liquid-interface (ALI) after apical exposure to diesel exhaust particulate matter (DEPM) based on the three-tiered oxidative stress concept. The alveolar model exposed to increasing doses of DEPM (1.75-5 μg/cm2) responded with increasing activity of the anti-oxidant defense mechanisms (Nrf2 translocation, increased gene expression for anti-oxidant proteins and increased HMOX-1 synthesis) (tier 1). Higher exposure generated a proinflammatory response (NF-kB translocation, increased gene expression of pro-inflammatory cytokines and adhesion molecules, and increased IL-6 and IL-8 synthesis) (tier 2) and, finally, the highest doses applied resulted in a decrease of cell viability due to necrosis (extra-cellular release of LDH) or apoptosis (increased expression of the pro-apoptotic genes CASP7 and FAS) (tier 3). Overall, the results of our study demonstrate that the 3D tetra-culture model when directly exposed to DEPM potently generates a realistic response according to the three-tiered oxidative stress concept. Further evaluation and benchmarking against currently used in vivo rodent models is needed to show its suitability, and to serve in the future as an alternative for in vivo studies in the hazard evaluation of inhalable irritants.
Collapse
Affiliation(s)
- Ionel Fizeșan
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Aline Chary
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Elisa Moschini
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Béla Kiss
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Anca Pop
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Felicia Loghin
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg.
| |
Collapse
|
36
|
Sundararaghavan VL, Binepal S, Stec DE, Sindhwani P, Hinds TD. Bilirubin, a new therapeutic for kidney transplant? Transplant Rev (Orlando) 2018; 32:234-240. [PMID: 29983261 PMCID: PMC6535229 DOI: 10.1016/j.trre.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/16/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022]
Abstract
In patients with end-stage renal disease, kidney transplantation has been associated with numerous benefits, including increased daily activity, and better survival rates. However, over 20% of kidney transplants result in rejection within five years. Rejection is primarily due to a hypersensitive immune system and ischemia/reperfusion injury. Bilirubin has been shown to be a potent antioxidant that is capable of potentially reversing or preventing damage from reactive oxygen species generated from ischemia and reperfusion. Additionally, bilirubin has several immunomodulatory effects that can dampen the immune system to promote organ acceptance. Increased bilirubin has also been shown to have a positive impact on renal hemodynamics, which is critical post-transplantation. Lastly, bilirubin levels have been correlated with biomarkers of successful transplantation. In this review, we discuss a multitude of potentially beneficial effects that bilirubin has on kidney acceptance of transplantation based on numerous clinical trials and animal models. Exogenous bilirubin delivery or increasing endogenous levels pre- or post-transplantation may have therapeutic benefits.
Collapse
Affiliation(s)
- Vikram L Sundararaghavan
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA; Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Sivjot Binepal
- Internal Medicine Department, Kettering Medical Center, Kettering, OH 45429, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Puneet Sindhwani
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA
| | - Terry D Hinds
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA; Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| |
Collapse
|
37
|
Nishimura T, Tanaka M, Sekioka R, Itoh H. Serum total bilirubin concentration in patients with type 2 diabetes as a possible biomarker of polyvascular disease. Diabetol Int 2018; 9:129-135. [PMID: 30603360 PMCID: PMC6224939 DOI: 10.1007/s13340-017-0337-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/29/2017] [Indexed: 01/26/2023]
Abstract
AIMS The aim of this study was to investigate the association between serum total bilirubin concentration and complicated macrovascular diseases, such as cerebrovascular disease (CBVD), cardiovascular disease (CAD), and peripheral arterial disease (PAD), in patients with type 2 diabetes. METHODS We performed a retrospective cross-sectional study in 674 patients with type 2 diabetes. Serum total bilirubin concentration was compared between patients with and without CBVD, CAD, and PAD. Logistic regression analyses were performed to identify risk factors for CBVD, CAD, and PAD. Associations between total bilirubin concentration and the number of complicated macrovascular diseases were analyzed. RESULTS Patients with CBVD and PAD showed significantly lower serum total bilirubin concentrations than did those patients without those diseases. However, the bilirubin concentration did not differ between patients with and without CAD. Total bilirubin concentration was an independent predictor of CBVD, but not of CAD or PAD. There was a statistically significant trend for a decrease in bilirubin concentration in the presence of an increasing number of macrovascular diseases. CONCLUSION The presence of more than one macrovascular disease, called polyvascular disease, carries a high risk for cardiovascular mortality. Serum total bilirubin concentration may be useful as a clinical biomarker of polyvascular disease.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masami Tanaka
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Risa Sekioka
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
- Department of Internal Medicine, Jujo Takeda Rehabilitation Hospital, 32 Kisshoinhatsutandacho, Kyoto Minami-ku, Kyoto, 601-8325 Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
38
|
Bulmer AC, Bakrania B, Du Toit EF, Boon AC, Clark PJ, Powell LW, Wagner KH, Headrick JP. Bilirubin acts as a multipotent guardian of cardiovascular integrity: more than just a radical idea. Am J Physiol Heart Circ Physiol 2018; 315:H429-H447. [PMID: 29600900 DOI: 10.1152/ajpheart.00417.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bilirubin, a potentially toxic catabolite of heme and indicator of hepatobiliary insufficiency, exhibits potent cardiac and vascular protective properties. Individuals with Gilbert's syndrome (GS) may experience hyperbilirubinemia in response to stressors including reduced hepatic bilirubin excretion/increased red blood cell breakdown, with individuals usually informed by their clinician that their condition is of little consequence. However, GS appears to protect from all-cause mortality, with progressively elevated total bilirubin associated with protection from ischemic heart and chronic obstructive pulmonary diseases. Bilirubin may protect against these diseases and associated mortality by reducing circulating cholesterol, oxidative lipid/protein modifications, and blood pressure. In addition, bilirubin inhibits platelet activation and protects the heart from ischemia-reperfusion injury. These effects attenuate multiple stages of the atherosclerotic process in addition to protecting the heart during resultant ischemic stress, likely underpinning the profound reduction in cardiovascular mortality in hyperbilirubinemic GS. This review outlines our current knowledge of and uses for bilirubin in clinical medicine and summarizes recent progress in revealing the physiological importance of this poorly understood molecule. We believe that this review will be of significant interest to clinicians, medical researchers, and individuals who have GS.
Collapse
Affiliation(s)
- Andrew C Bulmer
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Bhavisha Bakrania
- Department of Physiology and Biophysics, University of Mississippi Medical Centre , Jackson, Mississippi
| | - Eugene F Du Toit
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Ai-Ching Boon
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Paul J Clark
- QIMR-Berghofer Medical Research Institute, School of Medicine, University of Queensland and Princess Alexandra and Mater Hospitals , Brisbane, New South Wales , Australia
| | - Lawrie W Powell
- The Centre for the Advancement of Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland Centre for Clinical Research , Brisbane, Queensland , Australia
| | - Karl-Heinz Wagner
- Department of Nutritional Science, University of Vienna , Vienna , Austria
| | - John P Headrick
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| |
Collapse
|
39
|
Chen W, Maghzal GJ, Ayer A, Suarna C, Dunn LL, Stocker R. Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress. Free Radic Biol Med 2018; 115:156-165. [PMID: 29195835 DOI: 10.1016/j.freeradbiomed.2017.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/27/2017] [Accepted: 11/25/2017] [Indexed: 11/20/2022]
Abstract
Bilirubin, a byproduct of heme catabolism, has been shown to be an effective lipid-soluble antioxidant in vitro. Bilirubin is able to inhibit free radical chain reactions and protects against oxidant-induced damage in vitro and ex vivo. However, direct evidence for bilirubin's antioxidant effects in vivo remains limited. As bilirubin is formed from biliverdin by biliverdin reductase, we generated global biliverdin reductase-a gene knockout (Bvra-/-) mice to assess the contribution of bilirubin as an endogenous antioxidant. Bvra-/- mice appear normal and are born at the expected Mendelian ratio from Bvra+/- x Bvra+/- matings. Compared with corresponding littermate Bvra+/+ and Bvra+/- animals, Bvra-/- mice have green gall bladders and their plasma concentrations of biliverdin and bilirubin are approximately 25-fold higher and 100-fold lower, respectively. Naïve Bvra-/- and Bvra+/+ mice have comparable plasma lipid profiles and low-molecular weight antioxidants, i.e., ascorbic acid, α-tocopherol and ubiquinol-9. Compared with wild-type littermates, however, plasma from Bvra-/- mice contains higher concentrations of cholesteryl ester hydroperoxides (CE-OOH), and their peroxiredoxin 2 (Prx2) in erythrocytes is more oxidized as assessed by the extent of Prx2 dimerization. These data show that Bvra-/- mice experience higher oxidative stress in blood, implying that plasma bilirubin attenuates endogenous oxidative stress.
Collapse
Affiliation(s)
- Weiyu Chen
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Cacang Suarna
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Louise L Dunn
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia.
| |
Collapse
|
40
|
Jang HJ, Hong EM, Kim M, Kim JH, Jang J, Park SW, Byun HW, Koh DH, Choi MH, Kae SH, Lee J. Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer. Oncotarget 2018; 7:46219-46229. [PMID: 27323826 PMCID: PMC5216792 DOI: 10.18632/oncotarget.10078] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022] Open
Abstract
Statin has been known not only as their cholesterol-lowering action but also on their pleiotropic effects including anti-inflammatory and anti-oxidant as well as anti-cancer effect. Nrf2 (NF-E2-related factor 2) is a transcription factor to activate cellular antioxidant response to oxidative stress. There are little known whether statins affect activation of Nrf2 and Nrf2 signaling pathway in colon cancer cells. We investigated whether simvastatin stimulates the expression of Nrf2 and nuclear translocation of Nrf2 and which signal pathway is involved in the expression of Nrf2 and antioxidant enzymes. We investigated the effect of simvastatin on the expression of Nrf2 and nuclear translocation of Nrf2 in two human colon cancer cell lines, HT-29 and HCT 116 through cell proliferation assay, Western blotting and immunocytochemical analysis. We evaluated which signal pathway such as ERK or PI3K pathway affect Nrf2 activation and whether simvastatin induces antioxidant enzymes (heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1), γ-glutamate-cysteine ligase catalytic subunit (GCLC)). We demonstrated simvastatin-induced dose-dependent up-regulation of Nrf2 expression and stimulated Nrf2 nuclear translocation in colon cancer cells. We also demonstrated that simvastatin-induced anti-oxidant enzymes (HO-1, NQO1, and GCLC) in HT-29 and HCT 116 cells. PI3K/Akt inhibitor (LY294002) and ERK inhibitor (PD98059) suppressed simvastatin-induced Nrf2 and HO-1 expression in both HT-29 and HCT 116 cells. This study shows that simvastatin induces the activation and nuclear translocation of Nrf2 and the expression of various anti-oxidant enzymes via ERK and PI3K/Akt pathway in colon cancer cells.
Collapse
Affiliation(s)
- Hyun Joo Jang
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Eun Mi Hong
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Mikang Kim
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Jae Hyun Kim
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Juah Jang
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Se Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Hyun Wu Byun
- Division of Gastroenterology, Department of Internal Medicine, Hangang Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Dong Hee Koh
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Min Ho Choi
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Sea Hyub Kae
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| |
Collapse
|
41
|
Carbon monoxide prevents TNF-α-induced eNOS downregulation by inhibiting NF-κB-responsive miR-155-5p biogenesis. Exp Mol Med 2017; 49:e403. [PMID: 29170479 PMCID: PMC5704195 DOI: 10.1038/emm.2017.193] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/24/2017] [Accepted: 05/28/2017] [Indexed: 12/22/2022] Open
Abstract
Heme oxygenase-1-derived carbon monoxide prevents inflammatory vascular disorders. To date, there is no clear evidence that HO-1/CO prevents endothelial dysfunction associated with the downregulation of endothelial NO synthesis in human endothelial cells stimulated with TNF-α. Here, we found that the CO-releasing compound CORM-2 prevented TNF-α-mediated decreases in eNOS expression and NO/cGMP production, without affecting eNOS promoter activity, by maintaining the functional activity of the eNOS mRNA 3′-untranslated region. By contrast, CORM-2 inhibited MIR155HG expression and miR-155-5p biogenesis in TNF-α-stimulated endothelial cells, resulting in recovery of the 3′-UTR activity of eNOS mRNA, a target of miR-155-5p. The beneficial effect of CORM-2 was blocked by an NF-κB inhibitor, a miR-155-5p mimic, a HO-1 inhibitor and siRNA against HO-1, indicating that CO rescues TNF-α-induced eNOS downregulation through NF-κB-responsive miR-155-5p expression via HO-1 induction; similar protective effects of ectopic HO-1 expression and bilirubin were observed in endothelial cells treated with TNF-α. Moreover, heme degradation products, except iron and N-acetylcysteine prevented H2O2-mediated miR-155-5p biogenesis and eNOS downregulation. These data demonstrate that CO prevents TNF-α-mediated eNOS downregulation by inhibiting redox-sensitive miR-155-5p biogenesis through a positive forward circuit between CO and HO-1 induction. This circuit may play an important preventive role in inflammatory endothelial dysfunction associated with human vascular diseases.
Collapse
|
42
|
Peng YF, Wei YS. Associations between serum bilirubin levels and essential trace elements status in an adult population. Oncotarget 2017; 8:81315-81320. [PMID: 29113390 PMCID: PMC5655285 DOI: 10.18632/oncotarget.18351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
Objective This paper aims to evaluate the relations between serum bilirubin and essential trace elements in an adult population. Results Demographic and clinical data were stratified according to the median of serum bilirubin concentrations (50th percentiles). There were statistical differences in regarding with age, body mass index, white blood count, hemoglobin, mean corpuscular hemoglobin, alanine aminotransferase, creatinine, high-sensitivity C-reactive protein, iron, zinc and copper. Studying the correlation of serum bilirubin levels with iron, zinc, copper and high-sensitivity C-reactive protein, we found positive correlations for iron and zinc, and negative correlations for high-sensitivity C-reactive protein and copper in whole participants. Similar results of correlation analysis were repeated when the further analyses were performed separately for subjects with high and low serum bilirubin concentrations. Similar results were also observed in gender-based stratified analysis. Multiple linear regression analysis revealed that serum bilirubin levels were independently correlated with serum iron, zinc and copper. Materials and Methods The cross-sectional study involved 264 healthy subjects. Conclusions The current study demonstrated that serum bilirubin within the reference range is correlated with iron, zinc and copper in an adult population, regardless of potential confounders.
Collapse
Affiliation(s)
- You-Fan Peng
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, China
| | - Ye-Sheng Wei
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, China
| |
Collapse
|
43
|
Cardioprotective Effect of Selective Estrogen Receptor Modulator Raloxifene Are Mediated by Heme Oxygenase in Estrogen-Deficient Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2176749. [PMID: 28770019 PMCID: PMC5523444 DOI: 10.1155/2017/2176749] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 01/26/2023]
Abstract
Estrogens and raloxifene (RAL) have beneficial effects on certain cardiovascular indices in postmenopausal women characterized by estrogen deficiency. Heme oxygenase (HO) activity is increased by 17β-estradiol (E2) and RAL in estrogen-deficient rat resulting in vasorelaxation mediated by carbon monoxide. We determined the expressions of HO in cardiac and aortic tissues after ovariectomy (OVX) and subsequent RAL or E2 treatment. We investigated the effects of pharmacological inhibition of HO enzyme on the arginine vasopressin- (AVP-) induced blood pressure in vivo, the epinephrine- and phentolamine-induced electrocardiogram ST segment changes in vivo, and the myeloperoxidase (MPO) enzyme activity. When compared with intact females, OVX decreased the HO-1 and HO-2 expression, aggravated the electrocardiogram signs of heart ischemia and the blood pressure response to AVP, and increased the cardiac MPO. E2 and RAL are largely protected against these negative impacts induced by OVX. The pharmacological inhibition of HO in E2- or RAL-treated OVX animals, however, restored the cardiovascular status close to that observed in nontreated OVX animals. The decreased expression of HO enzymes and the changes in blood pressure ischemia susceptibility and inflammatory state in OVX rat can be reverted by the administration of E2 or RAL partly through its antioxidant and anti-inflammatory roles.
Collapse
|
44
|
Zhou JA, Jiang M, Yang X, Liu Y, Guo J, Zheng J, Qu Y, Song Y, Li R, Qin X, Wang X. Unconjugated bilirubin ameliorates the inflammation and digestive protease increase in TNBS-induced colitis. Mol Med Rep 2017; 16:1779-1784. [PMID: 28656252 PMCID: PMC5562003 DOI: 10.3892/mmr.2017.6825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
The authors previously demonstrated that unconjugated bilirubin (UCB) may inhibit the activities of various digestive proteases, including trypsin and chymotrypsin. The digestive proteases in the lower gut are important in the pathogenesis of inflammatory bowel diseases. The effects of UCB on the inflammation and levels of digestive proteases in feces of rats with colitis have not yet been revealed. The present study investigated the effect of UCB on the inflammatory status and levels of trypsin and chymotrypsin in the feces of rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis. The data indicated that treatment with TNBS resulted in a marked reduction in weight gain, which was significantly alleviated in UCB-treated rats. Furthermore, UCB treatment alleviated the inflammation induced by TNBS, detected via macroscopic damage and microscopic inflammation scores, and pro-inflammatory markers including myeloperoxidase (MPO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Furthermore, rats with colitis demonstrated significant increases in fecal trypsin and chymotrypsin levels, whereas UCB treatment significantly alleviated these increases. A significant positive correlation was additionally revealed among the pro-inflammatory markers (MPO, TNF-α and IL-1β) and fecal digestive proteases (trypsin and chymotrypsin) in colitis. The results of the present study demonstrated that UCB ameliorated the inflammation and digestive protease increase in TNBS-induced colitis.
Collapse
Affiliation(s)
- Jin-An Zhou
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mingshan Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xinguang Yang
- Department of Biochemistry and Molecular Biology, Daqing Branch of Harbin Medical University, Daqing, Heilongjiang 163319, P.R. China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Junyu Guo
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiadong Zheng
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yilin Qu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yu Song
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Rongyan Li
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaofa Qin
- GI Biopharma Inc., Westfield, NJ 07090, USA
| | - Xiuhong Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
45
|
van Rijt LS, Utsch L, Lutter R, van Ree R. Oxidative Stress: Promoter of Allergic Sensitization to Protease Allergens? Int J Mol Sci 2017; 18:ijms18061112. [PMID: 28545251 PMCID: PMC5485936 DOI: 10.3390/ijms18061112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/18/2023] Open
Abstract
Allergies arise from aberrant T helper type 2 responses to allergens. Several respiratory allergens possess proteolytic activity, which has been recognized to act as an adjuvant for the development of a Th2 response. Allergen source-derived proteases can activate the protease-activated receptor-2, have specific effects on immune cells by cleaving cell membrane-bound regulatory molecules, and can disrupt tight junctions. The protease activity can induce a non-allergen-specific inflammatory response in the airways, which will set the stage for an allergen-specific Th2 response. In this review, we will discuss the evidence for the induction of oxidative stress as an underlying mechanism in Th2 sensitization to proteolytic allergens. We will discuss recent data linking the proteolytic activity of an allergen to its potential to induce oxidative stress and how this can facilitate allergic sensitization. Based on experimental data, we propose that a less proficient anti-oxidant response to allergen-induced oxidative stress contributes to the susceptibility to allergic sensitization. Besides the effect of oxidative stress on the immune response, we will also discuss how oxidative stress can increase the immunogenicity of an allergen by chemical modification.
Collapse
Affiliation(s)
- Leonie S van Rijt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Lara Utsch
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - René Lutter
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald van Ree
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Vogel ME, Idelman G, Konaniah ES, Zucker SD. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling. J Am Heart Assoc 2017; 6:JAHA.116.004820. [PMID: 28365565 PMCID: PMC5532999 DOI: 10.1161/jaha.116.004820] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low‐density lipoprotein receptor‐deficient (Ldlr−/−) mice and elucidate the molecular processes underlying this effect. Methods and Results Bilirubin, at physiological concentrations (≤20 μmol/L), dose‐dependently inhibits THP‐1 monocyte migration across tumor necrosis factor α–activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross‐linking of endothelial vascular cell adhesion molecule 1 (VCAM‐1) or intercellular adhesion molecule 1 (ICAM‐1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM‐1 and ICAM‐1 signaling. When administered to Ldlr−/− mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin‐treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM‐1 or ICAM‐1 expression. Conclusions Bilirubin suppresses atherosclerotic plaque formation in Ldlr−/− mice by disrupting endothelial VCAM‐1‐ and ICAM‐1‐mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin.
Collapse
Affiliation(s)
- Megan E Vogel
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Gila Idelman
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eddy S Konaniah
- Department of Pathology and Laboratory Medicine, Metabolic Disease Institute, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Stephen D Zucker
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
47
|
Wang J, Wu X, Li Y, Han X, Hu H, Wang F, Yu C, Li X, Yang K, Yuan J, Yao P, Miao X, Wei S, Wang Y, Chen W, Liang Y, Guo H, Yang H, Wu T, Zhang X, He M. Serum bilirubin concentrations and incident coronary heart disease risk among patients with type 2 diabetes: the Dongfeng-Tongji cohort. Acta Diabetol 2017; 54:257-264. [PMID: 27933515 DOI: 10.1007/s00592-016-0946-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023]
Abstract
AIMS Elevated serum bilirubin levels are associated with decreased coronary heart disease (CHD) risk in cross-sectional studies among diabetic patients, but prospective evidence is limited. We investigated the relationship of serum bilirubin levels with incident CHD risk among type 2 diabetes patients. METHODS In a prospective study of 2918 type 2 diabetes embedded in the Dongfeng-Tongji cohort, serum total bilirubin (TBil), direct bilirubin (DBil), and indirect bilirubin (IBil) were measured at baseline. Cox proportional hazards models were used to examine the association between serum bilirubin levels and CHD risk. RESULTS A total of 440 CHD cases were identified during 12,017 person-years of follow-up. Compared with extreme quartiles, the adjusted hazard ratio and 95% confidence interval of incident CHD were 0.74 (0.56-0.99) with P trend = 0.08 in IBil, while in TBil and DBil, the bilirubin-CHD associations were not significant. Moreover, serum TBil and IBil levels were interacted with drinking status on the risk of incident CHD (P interaction = 0.021 and 0.037, respectively), and the associations were evident in ever drinkers. In drinkers, when serum TBil or IBil concentrations increased 1 μmol/L, the CHD risk both decreased 6% (95% CIs 0.89-0.99 and 0.87-1.00, respectively). CONCLUSIONS Serum IBil levels were marginally related to decreased incident CHD risk among type 2 diabetes. Drinking could potentially enhance the associations of serum TBil and DBil levels with incident CHD risk.
Collapse
Affiliation(s)
- Jing Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Department of Preventive Medicine, School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaofen Wu
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xu Han
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Hua Hu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xiulou Li
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Kun Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Ping Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youjie Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Yuan Liang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China.
| |
Collapse
|
48
|
Liu XM, Peyton KJ, Durante W. Ammonia promotes endothelial cell survival via the heme oxygenase-1-mediated release of carbon monoxide. Free Radic Biol Med 2017; 102:37-46. [PMID: 27867098 PMCID: PMC5209302 DOI: 10.1016/j.freeradbiomed.2016.11.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
Although endothelial cells produce substantial quantities of ammonia during cell metabolism, the physiologic role of this gas in these cells is not known. In this study, we investigated if ammonia regulates the expression of heme oxygenase-1 (HO-1), and if this enzyme influences the biological actions of ammonia on endothelial cells. Exogenously administered ammonia, given as ammonium chloride or ammonium hydroxide, or endogenously generated ammonia stimulated HO-1 protein expression in cultured human and murine endothelial cells. Dietary supplementation of ammonia also induced HO-1 protein expression in murine arteries. The increase in HO-1 protein by ammonia in endothelial cells was first detected 4h after ammonia exposure and was associated with the induction of HO-1 mRNA, enhanced production of reactive oxygen species (ROS), and increased expression and activity of NF-E2-related factor-2 (Nrf2). Ammonia also activated the HO-1 promoter and this was blocked by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. The induction of HO-1 expression by ammonia was dependent on ROS formation and prevented by N-acetylcysteine or rotenone. Finally, prior treatment of endothelial cells with ammonia inhibited tumor necrosis factor-α-stimulated cell death. However, silencing HO-1 expression abrogated the protective action of ammonia and this was reversed by the administration of carbon monoxide but not bilirubin or iron. In conclusion, this study demonstrates that ammonia stimulates the expression of HO-1 in endothelial cells via the ROS-Nrf2 pathway, and that the induction of HO-1 contributes to the cytoprotective action of ammonia by generating carbon monoxide. Moreover, it identifies ammonia as a potentially important signaling gas in the vasculature that promotes endothelial cell survival.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA.
| |
Collapse
|
49
|
Kawamoto R, Ninomiya D, Senzaki K, Kumagi T. Mildly elevated serum total bilirubin is negatively associated with hemoglobin A1c independently of confounding factors among community-dwelling middle-aged and elderly persons. J Circ Biomark 2017; 6:1849454417726609. [PMID: 28936268 PMCID: PMC5599010 DOI: 10.1177/1849454417726609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/14/2017] [Indexed: 01/10/2023] Open
Abstract
Abnormally high glycated hemoglobin (Hb) (HbA1c) is significantly associated with oxidative stress and an increased risk of cardiovascular disease (CVD). Serum total bilirubin (T-B) may have a beneficial role in preventing oxidative changes and be a negative risk factor of CVD. Limited information is available on whether serum T-B is an independent confounding factor of HbA1c. The study subjects were 633 men aged 70 ± 9 (mean ± standard deviation (SD)) years and 878 women aged 70 ± 8 years who were enrolled consecutively from among patients aged ≥40 years through a community-based annual check-up process. We evaluated the relationship between various confounding factors including serum T-B and HbA1c in each gender. Multiple linear regression analysis pertaining to HbA1c showed that in men, serum T-B (β = -0.139) as well as waist circumference (β = 0.099), exercise habit (β = 0.137), systolic blood pressure (SBP) (β = 0.076), triglycerides (β = 0.087), and uric acid (β = -0.123) were significantly and independently associated with HbA1c, and in women, serum T-B (β = -0.084) as well as body mass index (β = 0.090), smoking status (β = -0.077), SBP (β = 0.117), diastolic blood pressure (DBP) (β = -0.155), low-density lipoprotein cholesterol (β = 0.074), prevalence of antidyslipidemic medication (β = 0.174), and uric acid (β = 0.090) were also significantly and independently associated with HbA1c. Multivariate-adjusted serum HbA1c levels were significantly high in subjects with the lowest serum T-B levels in both genders. Serum T-B is an independent confounding factor for HbA1c among community-dwelling middle-aged and elderly persons.
Collapse
Affiliation(s)
- Ryuichi Kawamoto
- Department of Community Medicine, Ehime University Graduate School of Medicine, Toon-city, Ehime, Japan
- Department of Internal Medicine, Seiyo Municipal Nomura Hospital, Seiyo-city, Ehime, Japan
| | - Daisuke Ninomiya
- Department of Community Medicine, Ehime University Graduate School of Medicine, Toon-city, Ehime, Japan
- Department of Internal Medicine, Seiyo Municipal Nomura Hospital, Seiyo-city, Ehime, Japan
| | - Kensuke Senzaki
- Department of Community Medicine, Ehime University Graduate School of Medicine, Toon-city, Ehime, Japan
- Department of Internal Medicine, Seiyo Municipal Nomura Hospital, Seiyo-city, Ehime, Japan
| | - Teru Kumagi
- Department of Community Medicine, Ehime University Graduate School of Medicine, Toon-city, Ehime, Japan
| |
Collapse
|
50
|
Lee YB, Lee SE, Jun JE, Jee JH, Bae JC, Jin SM, Kim JH. Change in Serum Bilirubin Level as a Predictor of Incident Metabolic Syndrome. PLoS One 2016; 11:e0168253. [PMID: 27936224 PMCID: PMC5148095 DOI: 10.1371/journal.pone.0168253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023] Open
Abstract
Aim Serum bilirubin level was negatively associated with the prevalence of metabolic syndrome (MetS) in previous cross-sectional studies. However, bilirubin variance preceding the development of MetS has yet to be investigated. We aimed to determine the effect of change in bilirubin concentration on the risk of incident MetS in healthy Korean adults. Methods We conducted a retrospective longitudinal study of subjects who had undergone at least four yearly health check-ups between 2006 and 2012. Of 24,185 total individuals who received annual check-ups, 11,613 non-MetS participants with a baseline bilirubin level not exceeding 34.2 μmol/l were enrolled. We evaluated the association between percent change in bilirubin and risk of incident MetS. Results During 55,407 person-years of follow-up, 2,439 cases of incident MetS developed (21.0%). Baseline serum bilirubin level clearly showed no association with the development of MetS in men but an independent significant inverse association in women which attenuated (hence may be mediated) by elevated homeostatic model assessment index 2 for insulin resistance (HOMA2-IR). However, increased risk for incident MetS was observed in higher percent change in bilirubin quartiles, with hazard ratios of 2.415 (95% CI 2.094–2.785) in men and 2.156 (95% CI 1.738–2.675) in women in the fourth quartile, compared to the lowest quartile, after adjusting for age, smoking status, medication history, alanine aminotransferase, uric acid, estimated glomerular filtration rate, fasting glucose, baseline diabetes mellitus prevalence, systolic blood pressure, waist circumference, and body mass index. The hazard ratios per one standard deviation increase in percent change in bilirubin as a continuous variable were 1.277 (95% CI 1.229–1.326) in men and 1.366 (95% CI 1.288–1.447) in women. Conclusions Increases in serum bilirubin concentration were positively associated with a higher risk of incident MetS. Serum bilirubin increment might be a sensitive marker for the development of MetS.
Collapse
Affiliation(s)
- You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Seung-Eun Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Ji Eun Jun
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Jae Hwan Jee
- Department of Health Promotion Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Ji Cheol Bae
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, MasanHoiwon-gu, Changwon-si, Gyeongsangnam-do, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|