1
|
Li X, Lindmark B, Amilon C, Samuelsson K, Weidolf L, Nelander K, Knöchel J, Heijer M, Bragg RA, Gränfors M, Lindstedt E, Sidhu S, Garkaviy P, Ericsson H. Disposition of orally administered atuliflapon, a novel 5-lipoxygenase-activating protein inhibitor in healthy participants. Pharmacol Res Perspect 2024; 12:e70029. [PMID: 39400479 PMCID: PMC11472027 DOI: 10.1002/prp2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
In this study, the mass balance, pharmacokinetics (PK) and metabolism of atuliflapon, a novel 5-lipoxygenase-activating protein inhibitor, were investigated in healthy male subjects. A single oral dose of 200 mg [14C]atuliflapon suspension was administered to six healthy male subjects. Mass balance, PK and metabolite profiles of atuliflapon were analyzed using radioactivity monitoring and liquid chromatography with mass spectrometry analysis. The safety of atuliflapon was assessed during the study. Atuliflapon was rapidly absorbed with a median tmax of 1.5 h, followed by a biphasic decline in plasma exposure rendering a terminal half-life of ~20 h. Unchanged atuliflapon was the predominant radioactive component in plasma, accounting for 40.1% of the total drug-related exposure (DRE), while a direct N-glucuronide was the only metabolite exceeding 10% of DRE, accounting for 20.9%. Renal excretion of intact atuliflapon accounted for <1% of the administered dose. In total 85.2% of administered radioactivity was recovered over 312 h with 79.3% and 5.9% in feces and urine, respectively. Parent atuliflapon contributed to approximately 40% of the recovered dose in excreta, while metabolites resulting from phase 1 oxidative pathways accounted for more than 30% of the excreted dose. Overall, a single oral dose of 200 mg [14C]atuliflapon suspension was well tolerated in healthy male subjects. The human metabolism and disposition data obtained will support future development and submissions of atuliflapon as a potential candidate drug for the treatment of cardiovascular, cardiorenal, and respiratory indications.
Collapse
Affiliation(s)
- Xue‐Qing Li
- DMPK, Research and Early Development, CardiovascularRenal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Bo Lindmark
- DMPK, Research and Early Development, CardiovascularRenal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Carl Amilon
- DMPK, Research and Early Development, CardiovascularRenal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Kristin Samuelsson
- DMPK, Research and Early Development, CardiovascularRenal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Lars Weidolf
- DMPK, Research and Early Development, CardiovascularRenal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Karin Nelander
- Biometrics CVRM, Late CVRMBioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Jane Knöchel
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety SciencesBioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Maria Heijer
- Integrated Bioanalysis, Clinical Pharmacology and Safety SciencesBioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Ryan A. Bragg
- Early Chemical DevelopmentPharmaceutical Sciences, R&D, AstraZenecaCambridgeUK
| | - Malin Gränfors
- Early Product Development and ManufacturingPharmaceutical Sciences, R&D, AstraZenecaGothenburgSweden
| | - Eva‐Lotte Lindstedt
- Projects, Research and Early Development, CardiovascularRenal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | | | - Pavlo Garkaviy
- ECD, Research and Early Development, CardiovascularRenal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Hans Ericsson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety SciencesBioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| |
Collapse
|
2
|
Kotlyarov S. Identification of Important Genes Associated with the Development of Atherosclerosis. Curr Gene Ther 2024; 24:29-45. [PMID: 36999180 DOI: 10.2174/1566523223666230330091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
Atherosclerosis is one of the most important medical problems due to its prevalence and significant contribution to the structure of temporary and permanent disability and mortality. Atherosclerosis is a complex chain of events occurring in the vascular wall over many years. Disorders of lipid metabolism, inflammation, and impaired hemodynamics are important mechanisms of atherogenesis. A growing body of evidence strengthens the understanding of the role of genetic and epigenetic factors in individual predisposition and development of atherosclerosis and its clinical outcomes. In addition, hemodynamic changes, lipid metabolism abnormalities, and inflammation are closely related and have many overlapping links in regulation. A better study of these mechanisms may improve the quality of diagnosis and management of such patients.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University Named After Academician I.P. Pavlov, Russian Federation
| |
Collapse
|
3
|
Scott HC, Draganov SD, Yu Z, Kessler BM, Pinto-Fernández A. Targeted Mass Spectrometry Reveals Interferon-Dependent Eicosanoid and Fatty Acid Alterations in Chronic Myeloid Leukaemia. Int J Mol Sci 2023; 24:15513. [PMID: 37958498 PMCID: PMC10649737 DOI: 10.3390/ijms242115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Bioactive lipids are involved in cellular signalling events with links to human disease. Many of these are involved in inflammation under normal and pathological conditions. Despite being attractive molecules from a pharmacological point of view, the detection and quantification of lipids has been a major challenge. Here, we have optimised a liquid chromatography-dynamic multiple reaction monitoring-targeted mass spectrometry (LC-dMRM-MS) approach to profile eicosanoids and fatty acids in biological samples. In particular, by applying this analytic workflow to study a cellular model of chronic myeloid leukaemia (CML), we found that the levels of intra- and extracellular 2-Arachidonoylglycerol (2-AG), intracellular Arachidonic Acid (AA), extracellular Prostaglandin F2α (PGF2α), extracellular 5-Hydroxyeicosatetraenoic acid (5-HETE), extracellular Palmitic acid (PA, C16:0) and extracellular Stearic acid (SA, C18:0), were altered in response to immunomodulation by type I interferon (IFN-I), a currently approved treatment for CML. Our observations indicate changes in eicosanoid and fatty acid metabolism, with potential relevance in the context of cancer inflammation and CML.
Collapse
Affiliation(s)
- Hannah C. Scott
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; (S.D.D.); (Z.Y.); (B.M.K.)
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Simeon D. Draganov
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; (S.D.D.); (Z.Y.); (B.M.K.)
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Zhanru Yu
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; (S.D.D.); (Z.Y.); (B.M.K.)
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M. Kessler
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; (S.D.D.); (Z.Y.); (B.M.K.)
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Adán Pinto-Fernández
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; (S.D.D.); (Z.Y.); (B.M.K.)
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| |
Collapse
|
4
|
Blockade of the BLT1-LTB 4 axis does not affect mast cell migration towards advanced atherosclerotic lesions in LDLr -/- mice. Sci Rep 2022; 12:18362. [PMID: 36319730 PMCID: PMC9626554 DOI: 10.1038/s41598-022-23162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
Abstract
Mast cells have been associated with the progression and destabilization of advanced atherosclerotic plaques. Reducing intraplaque mast cell accumulation upon atherosclerosis progression could be a potent therapeutic strategy to limit plaque destabilization. Leukotriene B4 (LTB4) has been reported to induce mast cell chemotaxis in vitro. Here, we examined whether antagonism of the LTB4-receptor BLT1 could inhibit mast cell accumulation in advanced atherosclerosis. Expression of genes involved in LTB4 biosynthesis was determined by single-cell RNA sequencing of human atherosclerotic plaques. Subsequently, Western-type diet fed LDLr-/- mice with pre-existing atherosclerosis were treated with the BLT1-antagonist CP105,696 or vehicle control three times per week by oral gavage. In the spleen, a significant reduction in CD11b+ myeloid cells was observed, including Ly6Clo and Ly6Chi monocytes as well as dendritic cells. However, atherosclerotic plaque size, collagen and macrophage content in the aortic root remained unaltered upon treatment. Finally, BLT1 antagonism did not affect mast cell numbers in the aortic root. Here, we show that human intraplaque leukocytes may be a source of locally produced LTB4. However, BLT1-antagonism during atherosclerosis progression does not affect either local mast cell accumulation or plaque size, suggesting that other mechanisms participate in mast cell accumulation during atherosclerosis progression.
Collapse
|
5
|
Montelukast and Acute Coronary Syndrome: The Endowed Drug. Pharmaceuticals (Basel) 2022; 15:ph15091147. [PMID: 36145367 PMCID: PMC9500901 DOI: 10.3390/ph15091147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022] Open
Abstract
Acute coronary syndrome (ACS) is a set of signs and symptoms caused by a reduction of coronary blood flow with subsequent myocardial ischemia. ACS is associated with activation of the leukotriene (LT) pathway with subsequent releases of various LTs, including LTB4, LTC4, and LTD4, which cause inflammatory changes and induction of immunothrombosis. LTs through cysteine leukotriene (CysLT) induce activation of platelets and clotting factors with succeeding coronary thrombosis. CysLT receptor (CysLTR) antagonists such as montelukast (MK) may reduce the risk of the development of ACS and associated complications through suppression of the activation of platelet and clotting factors. Thus, this critical review aimed to elucidate the possible protective role of MK in the management of ACS. The LT pathway is implicated in the pathogenesis of atherosclerosis, cardiac hypertrophy, and heart failure. Inhibition of the LT pathway and CysL1TR by MK might be effective in preventing cardiovascular complications. MK could be an effective novel therapy in the management of ACS through inhibition of pro-inflammatory CysLT1R and modulation of inflammatory signaling pathways. MK can attenuate thrombotic events by inhibiting platelet activation and clotting factors that are activated during the development of ACS. In conclusion, MK could be an effective agent in reducing the severity of ACS and associated complications. Experimental, preclinical, and clinical studies are recommended to confirm the potential therapeutic of MK in the management of ACS.
Collapse
|
6
|
Ménégaut L, Laubriet A, Crespy V, Nguyen M, Petit JM, Tarris G, Pilot T, Varin A, Choubley H, Bergas V, de Barros JPP, Thomas C, Steinmetz E, Masson D. Profiling of lipid mediators in atherosclerotic carotid plaques from type 2 diabetic and non-diabetic patients. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102477. [PMID: 35952424 DOI: 10.1016/j.plefa.2022.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Diabetes is associated with an accelerated development of atherosclerosis. Specific mechanisms related to diabetes and hyperglycemia may play a role in this process. In particular, alterations of arachidonic acid (AA) metabolism have been reported. Our main goal was to investigate for differences in the concentration of LTB4 and RvD1 as well as selected cyclooxygenase-derived mediators in carotid plaques from diabetic and non-diabetic patients. We also aimed to analyze the relationship between omega 6 and omega 3 Poly-Unsaturated Fatty acids (PUFAs) content in the plaques and the concentrations of these lipid mediators. METHODS 29 type 2 diabetic patients and 30 control patients admitted for surgical treatment of carotid stenosis were enrolled in the present study. Carotid plaques were harvested for in-depth lipidomic profiling. RESULTS No differences for LTB4 or other lipid mediators were observed between diabetic and non-diabetic patients. RvD1 levels were below the threshold of quantification in most of the samples. A significant correlation was found between LTB4 and 5(S)-HETE levels. Omega 3 enrichment was not significantly different between control and diabetic plaques. There was a negative correlation between DHA/AA ratio and the level of 5(S)-HETE while there was a positive association with TXB2 and PGD2 concentrations. CONCLUSION-PERSPECTIVES Our results does not support the hypothesis of a specific involvement of LTB4 or COX-derived mediators in diabetic atherosclerosis. The relationship between DHA enrichment and the concentrations of specific inflammatory mediators within the plaque is of interest and will need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Louise Ménégaut
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; CHU Dijon, Laboratory of Clinical Chemistry, Dijon, France
| | - Aline Laubriet
- CHU Dijon, Department of Cardiovascular Surgery, Dijon, France
| | - Valentin Crespy
- CHU Dijon, Department of Cardiovascular Surgery, Dijon, France
| | - Maxime Nguyen
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; CHU Dijon Department of Anesthesiology and Intensive Care, Dijon, France
| | - Jean-Michel Petit
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; CHU Dijon, Department of Endocrinology and metabolic diseases, Dijon, France
| | | | - Thomas Pilot
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Alexis Varin
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Lipidomic Analytic Platform, Université Bourgogne Franche-Comté, Dijon, France
| | - Hélène Choubley
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Lipidomic Analytic Platform, Université Bourgogne Franche-Comté, Dijon, France
| | - Victoria Bergas
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Lipidomic Analytic Platform, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Lipidomic Analytic Platform, Université Bourgogne Franche-Comté, Dijon, France
| | - Charles Thomas
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Eric Steinmetz
- CHU Dijon, Department of Cardiovascular Surgery, Dijon, France
| | - David Masson
- Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France; INSERM, UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; CHU Dijon, Laboratory of Clinical Chemistry, Dijon, France.
| |
Collapse
|
7
|
Kotlyarov S. Genetic and Epigenetic Regulation of Lipoxygenase Pathways and Reverse Cholesterol Transport in Atherogenesis. Genes (Basel) 2022; 13:1474. [PMID: 36011386 PMCID: PMC9408222 DOI: 10.3390/genes13081474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is one of the most important medical and social problems of modern society. Atherosclerosis causes a large number of hospitalizations, disability, and mortality. A considerable amount of evidence suggests that inflammation is one of the key links in the pathogenesis of atherosclerosis. Inflammation in the vascular wall has extensive cross-linkages with lipid metabolism, and lipid mediators act as a central link in the regulation of inflammation in the vascular wall. Data on the role of genetics and epigenetic factors in the development of atherosclerosis are of great interest. A growing body of evidence is strengthening the understanding of the significance of gene polymorphism, as well as gene expression dysregulation involved in cross-links between lipid metabolism and the innate immune system. A better understanding of the genetic basis and molecular mechanisms of disease pathogenesis is an important step towards solving the problems of its early diagnosis and treatment.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
8
|
Analysis of Genetic Variants in the Glucocorticoid Receptor Gene NR3C1 and Stenosis of the Carotid Artery in a Polish Population with Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081912. [PMID: 36009459 PMCID: PMC9405671 DOI: 10.3390/biomedicines10081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Early diagnosis and elimination of risk factors are crucial for better managing CVDs. Atherosclerosis, whose development might be associated with glucocorticoids (GCs), is a critical factor in the development of carotid artery (CA) stenosis and most other CVDs. Aim: To investigate the association of Tth111I, N363S, and ER22/23EK-NR3C1 polymorphisms and the incidence of CA stenosis. Methods: The study group consisted of 117 patients diagnosed with coronary artery disease (CAD) and CA stenosis and 88 patients with CAD and ruled out CA stenosis. Genomic DNA was extracted from blood, and genotyping was carried out using Tth111I, N363S, and ER22/23EK-NR3C1 polymorphism sequencing. Results: No significant association between studied polymorphisms and the incidence or the severity of CA stenosis in the Polish population with CAD was found. Conclusion: This is the first study that proves that common NR3C1 gene variants do not influence CA stenosis and probably are not associated with atherosclerosis. The search for genes that can act as prognostic markers in predicting CA stenosis is still ongoing.
Collapse
|
9
|
Prescott E, Angerås O, Erlinge D, Grove EL, Hedman M, Jensen LO, Pernow J, Saraste A, Åkerblom A, Svedlund S, Rudvik A, Knöchel J, Lindstedt EL, Garkaviy P, Gan LM, Gabrielsen A. Safety and efficacy of the 5-lipoxygenase-activating protein inhibitor AZD5718 in patients with recent myocardial infarction: The phase 2a FLAVOUR study. Int J Cardiol 2022; 365:34-40. [PMID: 35842004 DOI: 10.1016/j.ijcard.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Leukotrienes are pro-inflammatory vasoactive lipid mediators implicated in the pathophysiology of atherosclerotic cardiovascular disease. We studied the effect of the 5-lipoxygenase-activating protein inhibitor AZD5718 on leukotriene biosynthesis and coronary microvascular function in a single-blind, phase 2a study. METHODS Patients 7-28 days after myocardial infarction (±ST elevation), with <50% left anterior descending coronary artery stenosis and Thrombolysis in Myocardial Infarction flow grade ≥ 2 after percutaneous coronary intervention, were randomized 2:1:2 to once-daily AZD5718 200 mg or 50 mg, or placebo, in 4- and 12-week cohorts. Change in urine leukotriene E4 (uLTE4) was the primary endpoint, and coronary flow velocity reserve (CFVR; via echocardiography) was the key secondary endpoint. RESULTS Of 129 randomized patients, 128 received treatment (200 mg, n = 52; 50 mg, n = 25; placebo, n = 51). Statistically significant reductions in uLTE4 levels of >80% were observed in both AZD5718 groups versus the placebo group at 4 and 12 weeks. No significant changes in CFVR were observed for AZD5718 versus placebo. Adverse events (AEs) occurred in 12/18, 3/6 and 6/13 patients receiving 200 mg, 50 mg and placebo, respectively, in the 4-week cohort, and in 27/34, 14/19 and 24/38 patients, respectively, in the 12-week cohort. Serious AEs in seven patients receiving AZD5718 and four receiving placebo were not treatment-related, and there were no deaths. CONCLUSIONS In patients with recent myocardial infarction, AZD5718 was well tolerated, and leukotriene biosynthesis was dose-dependently inhibited. No significant changes in CFVR were detected. CLINICALTRIALS gov identifier: NCT03317002.
Collapse
Affiliation(s)
- Eva Prescott
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Oskar Angerås
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, and Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Erlinge
- Cardiology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Erik L Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Marja Hedman
- Heart Center and Clinical Imaging Center, Kuopio University Hospital, Kuopio, Finland; Institute of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Lisette O Jensen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institute, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Antti Saraste
- University of Turku and Heart Centre, Turku University Hospital, Turku, Finland
| | - Axel Åkerblom
- Department of Medical Sciences - Cardiology, and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital and Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudvik
- Early Biometrics and Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jane Knöchel
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eva-Lotte Lindstedt
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pavlo Garkaviy
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, and Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Research and Early Clinical Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Gabrielsen
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
10
|
Song L, Zhang J, Ma D, Fan Y, Lai R, Tian W, Zhang Z, Ju J, Xu H. A Bibliometric and Knowledge-Map Analysis of Macrophage Polarization in Atherosclerosis From 2001 to 2021. Front Immunol 2022; 13:910444. [PMID: 35795675 PMCID: PMC9250973 DOI: 10.3389/fimmu.2022.910444] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, studies of macrophage polarization in atherosclerosis have become an intense area of research. However, there are few bibliometric analyses regarding this area. In this review, we used CiteSpace 5.8.R3 and VOSviewer 1.6.16 software to perform text mining and knowledge-map analysis. We explored the development process, knowledge structure, research hotspots, and potential trends using a bibliometric and knowledge-map analysis to provide researchers with a macroscopic view of this field. The studies concerning macrophage polarization in atherosclerosis were downloaded from the Web of Science Core Collection. A total of 781 studies were identified and published by 954 institutions from 51 countries/regions. The number of studies of macrophage polarization in atherosclerosis increased over time. Arteriosclerosis Thrombosis and Vascular Biology published the highest number of articles and was the top co-cited journal. De Winther was the most prolific researcher, and Moore had the most co-citations. The author co-occurrence map illustrated that there was active cooperation among researchers. The most productive countries were the United States and China. Amsterdam University, Harvard University, and Maastricht University were the top three productive institutions in the research field. Keyword Co-occurrence, Clusters, and Burst analysis showed that “inflammation,” “monocyte,” “NF kappa B,” “mechanism,” and “foam cell” appeared with the highest frequency in studies. “Oxidative stress,” “coronary heart disease,” and “prevention” were the strongest citation burst keywords from 2019 to 2021.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hao Xu,
| |
Collapse
|
11
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Song L, Li H, Suo M, Sun Y, Su M, Song Y, Xiao N, Hui R, Qin C, Chen J. A functional variant of the long noncoding RNA AL110200 is associated with the risk of ischaemic stroke recurrence. Eur J Neurol 2021; 28:2708-2715. [PMID: 33934454 DOI: 10.1111/ene.14895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE This study aimed to test the hypothesis that long noncoding RNA (lncRNA) AL110200 exerts a proinflammatory effect on atherosclerosis and that the variant rs901681 contributes to ischaemic stroke incidence and recurrence. METHODS The expression of AL110200 was analyzed in THP-1 cells treated with oxidized low-density lipoprotein and in human peripheral blood in a coronary heart disease and control population to determine the role of AL110200 in atherosclerosis. The effect of AL110200 on cell adhesion and invasion was tested. The plasma level of leukotriene B4 and rs901681 genotype distribution were assessed in 220 participants. In 1004 ischaemic stroke patients and 1434 controls, the association between rs901681 and stroke incidence was analyzed by logistic regression, and the association of rs901681 and stroke prognosis was analyzed using Kaplan-Meier analysis and the Cox proportional hazards model. RESULTS Increased expression of AL110200 was observed in THP-1 cells under oxidized low-density lipoprotein treatment. Knockdown of AL110200 reduced the adhesive and invasive ability of THP-1 cells. AL110200 expression in peripheral blood was significantly higher in the coronary heart disease group than in the controls. The GG genotype of rs901681 is associated with reduced plasma leukotriene B4. In the ischaemic stroke population, rs901681 was not associated with ischaemic stroke incidence (p = 0.686). Patients carrying rs901681 GG had a lower risk for stroke recurrence at age ≥60 years (p = 0.001), cardiovascular stroke death (p = 0.022) and all-cause mortality (p = 0.034) in the all-age group. CONCLUSIONS AL110200 might exert a proinflammatory effect on atherosclerosis, and the variant rs901681 might be a strong predictor of stroke prognosis in ischaemic stroke patients.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Suo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yan Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunchang Qin
- Department of Cardiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Almeida SO, Ram RJ, Kinninger A, Budoff MJ. Effect of 5-lipoxygenase inhibitor, VIA-2291 (Atreleuton), on epicardial fat volume in patients with recent acute coronary syndrome. J Cardiovasc Comput Tomogr 2020; 14:343-348. [DOI: 10.1016/j.jcct.2019.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/01/2022]
|
14
|
Löfgren L, Forsberg GB, Davidsson P, Eketjäll S, Whatling C. Development of a highly sensitive liquid chromatography-mass spectrometry method to quantify plasma leukotriene E 4 and demonstrate pharmacological suppression of endogenous 5-LO pathway activity in man. Prostaglandins Other Lipid Mediat 2020; 150:106463. [PMID: 32450304 DOI: 10.1016/j.prostaglandins.2020.106463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 11/15/2022]
Abstract
Low basal endogenous concentrations (<20 pg/mL) of the 5-lipoxygenase (5-LO) pathway biomarker leukotriene E4 (LTE4) in human plasma present a significant analytical challenge. Analytical methods including liquid chromatography-mass spectrometry and enzyme linked immunosorbent assays have been used to quantify plasma LTE4 in the past but have not provided consistent data in the lower pg/mL-range. With our new method, a detection limit (<1 pg/mL plasma) significantly below basal levels of LTE4 was achieved by combining large volume sample purification and enrichment by anion-exchange mixed mode solid phase extraction (SPE) with large volume injection followed by chromatographic separation by ultra performance liquid chromatography (UPLC) and quantification by highly sensitive negative-ion electrospray tandem mass spectrometry (MS/MS). The method was reproducible, accurate and linear between 1 and 120 pg/mL plasma LTE4. The method was used to perform an analysis of plasma samples collected from healthy volunteers in a Phase 1 study with the FLAP (5-lipoxygenase activating protein) inhibitor AZD5718. Basal endogenous LTE4 levels of 5.1 ± 2.7 pg/mL were observed in healthy volunteers (n = 34). In subjects that had been administered a single oral dose of AZD5718, significant suppression (>80%) of plasma LTE4 level was observed, providing pharmacological evidence that endogenous 5-LO pathway activity could be assessed.
Collapse
Affiliation(s)
- Lars Löfgren
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Gun-Britt Forsberg
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pia Davidsson
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Susanna Eketjäll
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carl Whatling
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
15
|
Rout A, Sukhi A, Chaudhary R, Bliden KP, Tantry US, Gurbel PA. Investigational drugs in phase II clinical trials for acute coronary syndromes. Expert Opin Investig Drugs 2020; 29:33-47. [DOI: 10.1080/13543784.2020.1708324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amit Rout
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, LifeBridgehealth, Baltimore, MD, USA
| | - Ajaypaul Sukhi
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, LifeBridgehealth, Baltimore, MD, USA
| | - Rahul Chaudhary
- Division of Hospital Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kevin P Bliden
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, LifeBridgehealth, Baltimore, MD, USA
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, LifeBridgehealth, Baltimore, MD, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, LifeBridgehealth, Baltimore, MD, USA
| |
Collapse
|
16
|
Ericsson H, Nelander K, Heijer M, Kjaer M, Lindstedt EL, Albayaty M, Forte P, Lagerström-Fermér M, Skrtic S. Phase 1 Pharmacokinetic Study of AZD5718 in Healthy Volunteers: Effects of Coadministration With Rosuvastatin, Formulation and Food on Oral Bioavailability. Clin Pharmacol Drug Dev 2019; 9:411-421. [PMID: 31793171 PMCID: PMC7187334 DOI: 10.1002/cpdd.756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
AZD5718 is a first‐in‐class small‐molecule anti‐inflammatory drug with the potential to reduce the residual risk of cardiovascular events after myocardial infarction in patients receiving lipid‐lowering statin therapy. Leukotrienes are potent proinflammatory and vasoactive mediators synthesized in leukocytes via 5‐lipoxygenase and 5‐lipoxygenase‐activating protein (FLAP). AZD5718 is a FLAP inhibitor that dose‐dependently reduced leukotriene biosynthesis in a first‐in‐human study. We enrolled 12 healthy men in a randomized, open‐label, crossover, single‐dose phase 1 pharmacokinetic study of AZD5718 to investigate a potential drug‐drug interaction with rosuvastatin, and the effects of formulation and food intake (ClinicalTrials.gov identifier: NCT02963116). Rosuvastatin (10 mg) were absorbed more rapidly when coadministered with AZD5718 (200 mg), probably owing to weak inhibition of hepatic statin uptake, but relative bioavailability was unaffected (geometric least‐squares mean ratio [GMR], 100%; 90% confidence interval [CI], 86%‐116%). AZD5718 pharmacokinetics were unaffected by coadministration of rosuvastatin. AZD5718 (200 mg) was absorbed less rapidly when formulated as tablets than oral suspension, with reduced relative bioavailability (GMR, 72%; 90%CI, 64%‐80%). AZD5718 absorption was slower when 200‐mg tablets were taken after a high‐fat breakfast than after fasting, but relative bioavailability was unaffected (GMR, 96%; 90%CI, 87%‐106%). In post hoc pharmacodynamic simulations, plasma leukotriene B4 levels were inhibited by >90% throughout the day following once‐daily AZD5718, regardless of formulation or administration with food. AZD5718 was well tolerated, with no severe or serious adverse events. These data supported the design of a phase 2a efficacy study of AZD5718 in patients with coronary artery disease.
Collapse
Affiliation(s)
- Hans Ericsson
- Clinical Pharmacology, ADME and AI, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Karin Nelander
- Clinical Pharmacology, ADME and AI, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Heijer
- Clinical Pharmacology Biologics and Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Kjaer
- Early Biometrics and Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eva-Lotte Lindstedt
- Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Pablo Forte
- Parexel, Early Phase Clinical Unit, Harrow, UK
| | - Maria Lagerström-Fermér
- Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stanko Skrtic
- Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Darwesh AM, Sosnowski DK, Lee TYT, Keshavarz-Bahaghighat H, Seubert JM. Insights into the cardioprotective properties of n-3 PUFAs against ischemic heart disease via modulation of the innate immune system. Chem Biol Interact 2019; 308:20-44. [DOI: 10.1016/j.cbi.2019.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
|
18
|
Highly sensitive and specific LC–MS/MS method to determine endogenous leukotriene B4 levels in human plasma. Bioanalysis 2019; 11:1055-1066. [DOI: 10.4155/bio-2019-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To develop a high sensitivity and specific analytical method to measure endogenous levels of leukotriene B4 (LTB4) in human plasma. Methodology: LC–MS/MS and ELISA. Results: An LC–MS/MS method was developed with a sensitivity of 1.0 pg/ml, and within and between batch precision of <16% and <13% RSD, respectively. Conclusion: We have developed a sensitive LC–MS/MS method that can detect endogenous LTB4 in human plasma. The LC–MS/MS method displayed correlation with a commercial LTB4 ELISA when analyzing in ex vivo ionophore-stimulated blood samples. For untreated plasma this correlation was lost. Endogenous LTB4 was shown to be unstable in plasma during storage at -20°C and subject to stereoisomer formation. Neither of the assays could quantify endogenous plasma LTB4 in samples stored for long term.
Collapse
|
19
|
Poston RN. Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab 2019; 8:51-61. [PMID: 31588428 PMCID: PMC6738649 DOI: 10.1097/xce.0000000000000172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022]
Abstract
This review proposes that the development of the atherosclerotic plaque is critically dependent on its inflammatory components forming a self-perpetuating and propagating positive feedback loop. The components involved are: (1) LDL oxidation, (2) activation of the endothelium, (3) recruitment of inflammatory monocytes, (4) macrophage accumulation, which induces LDL oxidation, and (5) macrophage generation of inflammatory mediators, which also activate the endothelium. Through these stages, the positive feedback loop is formed, which generates and promotes expansion of the atherosclerotic process. To illustrate this dynamic of lesion development, the author previously produced a computer simulation, which allowed realistic modelling. This hypothesis on atherogenesis can explain the existence and characteristic focal morphology of the atherosclerotic plaque. Each of the components contributing to the feedback loop is discussed. Many of these components also contain subsidiary positive feedback loops, which could exacerbate the overall process.
Collapse
Affiliation(s)
- Robin N. Poston
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
Wallert M, Bauer J, Kluge S, Schmölz L, Chen YC, Ziegler M, Searle AK, Maxones A, Schubert M, Thürmer M, Pein H, Koeberle A, Werz O, Birringer M, Peter K, Lorkowski S. The vitamin E derivative garcinoic acid from Garcinia kola nut seeds attenuates the inflammatory response. Redox Biol 2019; 24:101166. [PMID: 30897408 PMCID: PMC6426704 DOI: 10.1016/j.redox.2019.101166] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 01/05/2023] Open
Abstract
The plant Garcinia kola is used in African ethno-medicine to treat various oxidation- and inflammation-related diseases but its bioactive compounds are not well characterized. Garcinoic acid (GA) is one of the few phytochemicals that have been isolated from Garcinia kola. We investigated the anti-inflammatory potential of the methanol extract of Garcinia kola seeds (NE) and purified GA, as a major phytochemical in these seeds, in lipopolysaccharide (LPS)-activated mouse RAW264.7 macrophages and its anti-atherosclerotic potential in high fat diet fed ApoE-/- mice. This study outlines an optimized procedure for the extraction and purification of GA from Garcinia kola seeds with an increased yield and a purity of >99%. We found that LPS-induced upregulation of iNos and Cox2 expression, and the formation of the respective signaling molecules nitric oxide and prostanoids, were significantly diminished by both the NE and GA. In addition, GA treatment in mice decreased intra-plaque inflammation by attenuating nitrotyrosinylation. Further, modulation of lymphocyte sub-populations in blood and spleen have been detected, showing immune regulative properties of GA. Our study provides molecular insights into the anti-inflammatory activities of Garcinia kola and reveals GA as promising natural lead for the development of multi-target drugs to treat inflammation-driven diseases.
Collapse
Affiliation(s)
- Maria Wallert
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Julia Bauer
- Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany; Institute of Human Genetics, University Medical Center Goettingen, Göttingen, Germany
| | - Stefan Kluge
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Lisa Schmölz
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Yung-Chih Chen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Amy K Searle
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Science, University of Applied Sciences Fulda, Fulda, Germany
| | - Martin Schubert
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Thürmer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Helmut Pein
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Science, University of Applied Sciences Fulda, Fulda, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Australia
| | - Stefan Lorkowski
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Jena-Halle-Leipzig, Germany; Department of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
21
|
Pang Y, Gan L, Wang X, Su Q, Liang C, He P. Celecoxib aggravates atherogenesis and upregulates leukotrienes in ApoE -/- mice and lipopolysaccharide-stimulated RAW264.7 macrophages. Atherosclerosis 2019; 284:50-58. [PMID: 30875493 DOI: 10.1016/j.atherosclerosis.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS COX-2-selective inhibitors have been associated with an increased risk of cardiovascular complications, and their impact on atherosclerosis (AS) remains controversial. The proinflammatory COX-2 and 5-LO pathways both play essential roles in AS and related cardiovascular diseases. Previous clinical studies have provided evidence of the ability of COX-2-selective inhibitors to shunt AA metabolism from the COX-2 pathway to the 5-LO pathway. In this study, the effects of celecoxib, a selective COX-2 inhibitor, on AS and the COX-2 and 5-LO pathways were investigated in vivo and in vitro. METHODS Male ApoE-/- mice fed a western-type diet for 18 weeks and cultured mouse RAW264.7 macrophages stimulated with 1 μg/mL LPS for 24 h were used in this study. RESULTS In ApoE-/- mice, intragastric administration of celecoxib (80 mg/kg/d) for 18 weeks significantly increased aortic atherosclerotic lesion area but had no effect on hyperlipidemia. In addition, celecoxib significantly lowered TNF-α and PGE2 levels but increased both LTB4 and CysLTs levels in aortic tissues. In LPS-stimulated RAW264.7 macrophages, pretreatment with 8 μmol/L celecoxib for 1 h significantly lowered the TNF-α, NO, and PGE2 levels but increased the LTB4 and CysLTs levels. Celecoxib also decreased the protein and mRNA expression of COX-2 but increased the expression of 5-LO and LTC4S in both ApoE-/- mouse aortic tissues and LPS-stimulated RAW264.7 macrophages. CONCLUSION The COX-2-selective inhibitor celecoxib can aggravate atherogenesis, an effect that may be related to upregulation of LTs via a 5-LO pathway shunt.
Collapse
Affiliation(s)
- Yimin Pang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Lu Gan
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Xianzhe Wang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Qi Su
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Cong Liang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Ping He
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
22
|
Heidari L, Ghaderian SMH, Vakili H, Salmani TA. Promoter methylation and functional variants in arachidonate 5-lipoxygenase and forkhead box protein O1 genes associated with coronary artery disease. J Cell Biochem 2019; 120:12360-12368. [PMID: 30825235 DOI: 10.1002/jcb.28501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023]
Abstract
Coronary artery disease (CAD) is a multifactorial chronic inflammatory disease, which is the most common form of heart disease. This is one of the main causes of death in the United States. Inflammation is one of the key drivers of atherosclerotic plaque development. Forkhead box protein O1 (FOXO1s) family and 5-lipoxygenase make an important contribution to atherosclerosis. The aim of this study was to investigate the methylation pattern and polymorphism analysis of FOXO1 and arachidonate 5-lipoxygenase (ALOX5) promoter genes. We studied 50 patients with CAD and 50 age- and sex-matched healthy controls by high resolution melt technique. Overall, we found significant differences between patients and controls in terms of the promoter methylation of ALOX5 (P > 0.05). But there was no significant difference in FOXO1 promoter methylation between patient and controls. Single nucleotide polymorphisms genotyping of rs12762303 and rs2297627, in ALOX5 and FOXO1 genes were demonstrated a significant correlation between mutant allele and the risk of CAD, respectively. Furthermore, there were significant associations between CT + CC genotype and ALOX5 expression. Our findings demonstrated functional effects of single nucleotide polymorphisms (SNPs) and DNA methylation in ALOX5 on mentioned genes expression and they resulted in CAD progression.
Collapse
Affiliation(s)
- Laleh Heidari
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vakili
- Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyeb Ali Salmani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2018; 19:ijms19113285. [PMID: 30360467 PMCID: PMC6274989 DOI: 10.3390/ijms19113285] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Lipid and immune pathways are crucial in the pathophysiology of metabolic and cardiovascular disease. Arachidonic acid (AA) and its derivatives link nutrient metabolism to immunity and inflammation, thus holding a key role in the emergence and progression of frequent diseases such as obesity, diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. We herein present a synopsis of AA metabolism in human health, tissue homeostasis, and immunity, and explore the role of the AA metabolome in diverse pathophysiological conditions and diseases.
Collapse
Affiliation(s)
- Thomas Sonnweber
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Alex Pizzini
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Günter Weiss
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
24
|
Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules 2018; 8:biom8030080. [PMID: 30142970 PMCID: PMC6163673 DOI: 10.3390/biom8030080] [Citation(s) in RCA: 524] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease; unstable atherosclerotic plaque rupture, vascular stenosis, or occlusion caused by platelet aggregation and thrombosis lead to acute cardiovascular disease. Atherosclerosis-related inflammation is mediated by proinflammatory cytokines, inflammatory signaling pathways, bioactive lipids, and adhesion molecules. This review discusses the effects of inflammation and the systemic inflammatory signaling pathway on atherosclerosis, the role of related signaling pathways in inflammation, the formation of atherosclerosis plaques, and the prospects of treating atherosclerosis by inhibiting inflammation.
Collapse
|
25
|
Ericsson H, Nelander K, Lagerstrom-Fermer M, Balendran C, Bhat M, Chialda L, Gan LM, Heijer M, Kjaer M, Lambert J, Lindstedt EL, Forsberg GB, Whatling C, Skrtic S. Initial Clinical Experience with AZD5718, a Novel Once Daily Oral 5-Lipoxygenase Activating Protein Inhibitor. Clin Transl Sci 2018. [PMID: 29517132 PMCID: PMC5944575 DOI: 10.1111/cts.12546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of AZD5718, a novel 5-lipooxygenase activating protein (FLAP) inhibitor, in a randomized, single-blind, placebo-controlled, first-in-human (FIH) study consisting of single and multiple ascending dosing (SAD and MAD) for 10 days in healthy subjects. Target engagement was measured by ex vivo calcium ionophore stimulated leukotriene B (LTB4 ) production in whole blood and endogenous leukotriene E (LTE4 ) in urine. No clinically relevant safety and tolerability findings were observed. The AZD5718 was rapidly absorbed and plasma concentrations declined biphasically with a mean terminal half-life of 10-12 h. Steady-state levels were achieved after ∼3 days. After both SADs and MADs, a dose/concentration-effect relationship between both LTB4 and LTE4 vs. AZD5718 exposure was observed with concentration of half inhibition (IC50 ) values in the lower nM range. Based on obtained result, AZD5718 is considered as a suitable drug candidate for future evaluation in patients with coronary artery disease (CAD).
Collapse
Affiliation(s)
- Hans Ericsson
- Early Clinical Development, AstraZeneca, Gothenburg, Sweden
| | - Karin Nelander
- Early Clinical Development, AstraZeneca, Gothenburg, Sweden
| | | | - Clare Balendran
- Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Maria Bhat
- Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Ligia Chialda
- PAREXEL International, Northwick Park Hospital, Harrow, UK
| | - Li-Ming Gan
- Early Clinical Development, AstraZeneca, Gothenburg, Sweden
| | - Maria Heijer
- Early Clinical Development, AstraZeneca, Gothenburg, Sweden
| | - Magnus Kjaer
- Early Clinical Development, AstraZeneca, Gothenburg, Sweden
| | - John Lambert
- PAREXEL International, Northwick Park Hospital, Harrow, UK
| | | | | | - Carl Whatling
- Cardiovascular and Metabolic Diseases, AstraZeneca, Gothenburg, Sweden
| | - Stanko Skrtic
- Early Clinical Development, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
26
|
Chistiakov DA, Melnichenko AA, Grechko AV, Myasoedova VA, Orekhov AN. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp Mol Pathol 2018; 104:114-124. [PMID: 29378168 DOI: 10.1016/j.yexmp.2018.01.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
Chronic inflammation is a central pathogenic mechanism of atherosclerosis induction and progression. Vascular inflammation is associated with accelerated onset of late atherosclerosis complications. Atherosclerosis-related inflammation is mediated by a complex cocktail of pro-inflammatory cytokines, chemokines, bioactive lipids, and adhesion molecules, and blocking the key pro-atherogenic inflammatory mechanisms can be beneficial for treatment of atherosclerosis. Therapeutic agents that specifically target some of the atherosclerosis-related inflammatory mechanisms have been evaluated in preclinical and clinical studies. The most promising anti-inflammatory compounds for treatment of atherosclerosis include non-specific anti-inflammatory drugs, phospholipase inhibitors, blockers of major inflammatory cytokines, leukotrienes, adhesion molecules, and pro-inflammatory signaling pathways, such as CCL2-CCR2 axis or p38 MAPK pathway. Ongoing studies attempt evaluating therapeutic utility of these anti-inflammatory drugs for treatment of atherosclerosis. The obtained results are important for our understanding of atherosclerosis-related inflammatory mechanisms and for designing randomized controlled studies assessing the effect of specific anti-inflammatory strategies on cardiovascular outcomes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Neurochemistry, Division of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, Moscow 119991, Russia
| | - Alexandra A Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, Moscow 109240, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia.
| |
Collapse
|
27
|
Gargiulo S, Testa G, Gamba P, Staurenghi E, Poli G, Leonarduzzi G. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic Biol Med 2017; 111:140-150. [PMID: 28057601 DOI: 10.1016/j.freeradbiomed.2016.12.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/31/2022]
Abstract
A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, and 4-hydroxy-2-nonenal (HNE), the major proatherogenic components of oxidized low density lipoproteins (oxLDLs), significantly contribute to atherosclerotic plaque progression and destabilization, with eventual plaque rupture. These oxidized lipids are involved in various key steps of this complex process, mainly thanks to their ability to induce inflammation, oxidative stress, and apoptosis. This review summarizes the current knowledge of the effects induced by these compounds on vascular cells, after their accumulation in the arterial wall and in the atherosclerotic plaque.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
28
|
Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases. Mediators Inflamm 2017; 2017:2432958. [PMID: 28932020 PMCID: PMC5592403 DOI: 10.1155/2017/2432958] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent lipid inflammatory mediators synthesized from arachidonic acid, through the 5-lipoxygenase (5-LO) pathway. Owing to their properties, CysLTs play a crucial role in the pathogenesis of inflammation; therefore, CysLT modifiers as synthesis inhibitors or receptor antagonists, central in asthma management, may become a potential target for the treatment of other inflammatory diseases such as the cardiovascular disorders. 5-LO pathway activation and increased expression of its mediators and receptors are found in cardiovascular diseases. Moreover, the cardioprotective effects observed by using CysLT modifiers are promising and contribute to elucidate the link between CysLTs and cardiovascular disease. The aim of this review is to summarize the state of present research about the role of the CysLTs in the pathogenesis and progression of atherosclerosis and myocardial infarction.
Collapse
|
29
|
Chatterjee A, Komshian S, Sansbury BE, Wu B, Mottola G, Chen M, Spite M, Conte MS. Biosynthesis of proresolving lipid mediators by vascular cells and tissues. FASEB J 2017; 31:3393-3402. [PMID: 28442547 PMCID: PMC6207217 DOI: 10.1096/fj.201700082r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022]
Abstract
Recent evidence suggests that specialized proresolving lipid mediators (SPMs) generated from docosahexaenoic acid (DHA) can modulate the vascular injury response. However, cellular sources for these autacoids within the vessel wall remain unclear. Here, we investigated whether isolated vascular cells and tissues can produce SPMs and assessed expression and subcellular localization of the key SPM biosynthetic enzyme 5-lipoxygenase (LOX) in vascular cells. Intact human arteries incubated with DHA ex vivo produced 17-hydroxy DHA (17-HDHA) and D-series resolvins, as assessed by liquid chromatography-tandem mass spectrometry. Addition of 17-HDHA to human arteries similarly increased resolvin production. Primary cultures of human saphenous vein endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) converted 17-HDHA to SPMs, including resolvin D1 (RvD1) and other D-series resolvins and protectins. This was accompanied by a rapid translocation of 5-LOX from nucleus to cytoplasm in both ECs and VSMCs, potentially facilitating SPM biosynthesis. Conditioned medium from cells exposed to 17-HDHA inhibited monocyte adhesion to TNF-α-stimulated EC monolayers. These downstream effects were partially reversed by antibodies against the RvD1 receptors ALX/FPR2 and GPR32. These results suggest that autocrine and/or paracrine signaling via locally generated SPMs in the vasculature may represent a novel homeostatic mechanism of relevance to vascular health and disease.-Chatterjee, A., Komshian, S., Sansbury, B. E., Wu, B., Mottola, G., Chen, M., Spite, M., Conte, M. S. Biosynthesis of proresolving lipid mediators by vascular cells and tissues.
Collapse
Affiliation(s)
- Anuran Chatterjee
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sevan Komshian
- School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Brian E Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bian Wu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Giorgio Mottola
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Mian Chen
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S Conte
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA;
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
30
|
Common Polymorphisms in the 5-Lipoxygenase Pathway and Risk of Incident Myocardial Infarction: A Danish Case-Cohort Study. PLoS One 2016; 11:e0167217. [PMID: 27893808 PMCID: PMC5125697 DOI: 10.1371/journal.pone.0167217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The 5-lipoxygenase pathway (5-LOX) has been implicated in the development of cardiovascular disease and studies have suggested that genetic polymorphisms related to key enzymes in this pathway may confer risk of myocardial infarction (MI). This study investigated the association of pre-selected genetic polymorphisms in four candidate genes of 5-LOX (arachidonate 5-lipoxygenase and its activating protein (ALOX-5 and FLAP), leukotriene A4 hydroxylase (LTA4-H) and leukotriene C4 synthase (LTC4-S)) with incident MI. METHODS In a Danish cohort including 57,053 participants, aged 50-64 at enrolment and recruited from 1993-97, we conducted a case-cohort study including cases with incident MI and a randomly selected sub cohort of 3,000 participants. Cases were identified from national registries through July 2013. A total of 22 SNPs were selected and genotyped using the commercially available KASP™ assay. A tandem-repeat polymorphism, located in the ALOX-5 gene, was genotyped by multi-titre plate sequencing. Haplotypes were inferred using PHASE 2.1. RESULTS During a median follow-up of 17.0 years we identified 3,089 cases of incident MI. In FLAP, two SNPs were negatively associated with incident MI (rs9551963 & rs17222842) while one SNP (rs2247570) located in LTA4-H, was associated with higher risk of MI when comparing subjects with two copies of the variant allele to homozygotes for the wild type. However, only rs17222842 remained significantly associated with MI after correcting for multiple testing. Furthermore, the promoter polymorphism rs59439148 was associated with risk of MI in men. For male carriers of two variant alleles we found a hazard ratio of 1.63 (95% CI: 1.06;2.52) compared to homozygotes for the wild type. Previously described haplotypes (Hap-A -B, -E and -K) were not associated with MI in our population. CONCLUSION In conclusion, some common polymorphisms in the 5-lipoxygenase pathway were modestly associated with incident MI, suggesting a potential role for this pathway in the development of cardiovascular disease.
Collapse
|
31
|
Expression Profiling of Genes Related to Endothelial Cells Biology in Patients with Type 2 Diabetes and Patients with Prediabetes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1845638. [PMID: 27781209 PMCID: PMC5066000 DOI: 10.1155/2016/1845638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022]
Abstract
Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM) and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT2 Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.
Collapse
|
32
|
Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl Leukotrienes and Their Receptors: Emerging Therapeutic Targets in Central Nervous System Disorders. CNS Neurosci Ther 2016; 22:943-951. [PMID: 27542570 DOI: 10.1111/cns.12596] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Cysteinyl leukotrienes are a group of the inflammatory lipid molecules well known as mediators of inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic asthma, allergic rhinitis, and others, recent advances in the field of biomedical research highlighted the role of these inflammatory mediators in a broader range of diseases such as in the inflammation associated with the central nervous system (CNS) disorders, vascular inflammation (atherosclerotic), and in cancer. Among the CNS diseases, they, along with their synthesis precursor enzyme 5-lipoxygenase and their receptors, have been shown to be associated with brain injury, Multiple sclerosis, Alzheimer's disease, Parkinson's disease, brain ischemia, epilepsy, and others. However, a lot more remains elusive as the research in these areas is emerging and only a little has been discovered. Herein, through this review, we first provided a general up-to-date information on the synthesis pathway and the receptors for the molecules. Next, we summarized the current findings on their role in the brain disorders, with an insight given to the future perspectives.
Collapse
Affiliation(s)
- Arijit Ghosh
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Hong
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
33
|
Kankaanranta H, Kauppi P, Tuomisto LE, Ilmarinen P. Emerging Comorbidities in Adult Asthma: Risks, Clinical Associations, and Mechanisms. Mediators Inflamm 2016; 2016:3690628. [PMID: 27212806 PMCID: PMC4861800 DOI: 10.1155/2016/3690628] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/07/2023] Open
Abstract
Asthma is a heterogeneous disease with many phenotypes, and age at disease onset is an important factor in separating the phenotypes. Most studies with asthma have been performed in patients being otherwise healthy. However, in real life, comorbid diseases are very common in adult patients. We review here the emerging comorbid conditions to asthma such as obesity, metabolic syndrome, diabetes mellitus type 2 (DM2), and cardiac and psychiatric diseases. Their role as risk factors for incident asthma and whether they affect clinical asthma are evaluated. Obesity, independently or as a part of metabolic syndrome, DM2, and depression are risk factors for incident asthma. In contrast, the effects of comorbidities on clinical asthma are less well-known and mostly studies are lacking. Cross-sectional studies in obese asthmatics suggest that they may have less well controlled asthma and worse lung function. However, no long-term clinical follow-up studies with these comorbidities and asthma were identified. These emerging comorbidities often occur in the same multimorbid adult patient and may have in common metabolic pathways and inflammatory or other alterations such as early life exposures, systemic inflammation, inflammasome, adipokines, hyperglycemia, hyperinsulinemia, lung mechanics, mitochondrial dysfunction, disturbed nitric oxide metabolism, and leukotrienes.
Collapse
Affiliation(s)
- Hannu Kankaanranta
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
- Department of Respiratory Medicine, University of Tampere, 33521 Tampere, Finland
| | - Paula Kauppi
- Department of Respiratory Medicine and Allergology, Skin and Allergy Hospital, Helsinki University Hospital and Helsinki University, 00029 Helsinki, Finland
| | - Leena E. Tuomisto
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
| | - Pinja Ilmarinen
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
| |
Collapse
|
34
|
Tsai MY, Cao J, Steffen BT, Weir NL, Rich SS, Liang S, Guan W. 5-Lipoxygenase Gene Variants Are Not Associated With Atherosclerosis or Incident Coronary Heart Disease in the Multi-Ethnic Study of Atherosclerosis Cohort. J Am Heart Assoc 2016; 5:e002814. [PMID: 27025886 PMCID: PMC4943258 DOI: 10.1161/jaha.115.002814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The arachidonate 5‐lipoxygenase enzyme plays a crucial role in mediating inflammation to maintain homeostasis, yet certain allelic variants of the 5‐lipoxygenase gene, ALOX5, may increase risk of atherosclerosis and coronary heart disease (CHD). Further, relations between ALOX5 and disease outcomes may be enhanced or attenuated depending on the bioavailability of 5‐lipoxygenase enzyme substrates. By using a candidate gene approach in 6153 Multi‐Ethnic Study of Atherosclerosis (MESA) participants, associations were determined among 1348 ALOX5 single nucleotide polymorphisms (SNPs) and carotid intima‐media thickness (cIMT) as well as incident CHD, and interactions with plasma concentrations of arachidonic acid, eicosapentaenoic acid, or docosahexaenoic acid were tested. Methods and Results Multivariable linear regression was used to test for associations between cIMT and ALOX5 SNPs, and Cox regression was used for incident CHD. Bonferroni correction was used for multiple hypothesis testing. No significant associations between ALOX5 SNPs and cIMT or CHD events were observed. Levels of arachidonic acid, eicosapentaenoic acid, or docosahexaenoic acid concentrations did not modify the relations of ALOX5 with either outcome. Conclusions ALOX5 gene variants do not appear to be related to clinical CHD events or subclinical atherosclerosis regardless of bioavailable enzyme substrate levels in this multiethnic cohort. Further studies that directly examine protein expression or enzyme activity may better define the arachidonate 5‐lipoxygenase pathway in disease development and progression.
Collapse
Affiliation(s)
- Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN
| | - Jing Cao
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN
| | - Brian T Steffen
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN
| | - Natalie L Weir
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Shuang Liang
- Department of Laboratory Medicine and Pathology, University of Minnesota, MN
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| |
Collapse
|
35
|
Salvamani S, Gunasekaran B, Shukor MY, Shaharuddin NA, Sabullah MK, Ahmad SA. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:8090841. [PMID: 27051453 PMCID: PMC4804040 DOI: 10.1155/2016/8090841] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/30/2022]
Abstract
Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase.
Collapse
Affiliation(s)
- Shamala Salvamani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Baskaran Gunasekaran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Mohd Yunus Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Mohd Khalizan Sabullah
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
36
|
EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells. PLoS One 2015; 10:e0128278. [PMID: 26035589 PMCID: PMC4452698 DOI: 10.1371/journal.pone.0128278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022] Open
Abstract
Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells.
Collapse
|
37
|
Khan R, Spagnoli V, Tardif JC, L'Allier PL. Novel anti-inflammatory therapies for the treatment of atherosclerosis. Atherosclerosis 2015; 240:497-509. [DOI: 10.1016/j.atherosclerosis.2015.04.783] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022]
|
38
|
Pettersen D, Davidsson Ö, Whatling C. Recent advances for FLAP inhibitors. Bioorg Med Chem Lett 2015; 25:2607-12. [PMID: 26004579 DOI: 10.1016/j.bmcl.2015.04.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022]
Abstract
A number of FLAP inhibitors have been progressed to clinical trials for respiratory and other inflammatory indications but so far no drug has reached the market. With this Digest we assess the opportunity to develop FLAP inhibitors for indications beyond respiratory disease, and in particular for atherosclerotic cardiovascular disease. We also show how recently disclosed FLAP inhibitors have structurally evolved from the first generation FLAP inhibitors paving the way for new compound classes.
Collapse
Affiliation(s)
| | | | - Carl Whatling
- CVMD iMed, AstraZeneca R&D Mölndal, S-413 83 Mölndal, Sweden
| |
Collapse
|
39
|
Impact of inflammation, gene variants, and cigarette smoking on coronary artery disease risk. Inflamm Res 2015; 64:415-22. [DOI: 10.1007/s00011-015-0821-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 01/04/2023] Open
|
40
|
Variants in ALOX5, ALOX5AP and LTA4H are not associated with atherosclerotic plaque phenotypes: the Athero-Express Genomics Study. Atherosclerosis 2015; 239:528-38. [PMID: 25721704 DOI: 10.1016/j.atherosclerosis.2015.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The eicosanoid genes ALOX5, ALOX5AP and LTA4H have been implicated in atherosclerosis. We assessed the impact of common variants in these genes on gene expression, circulating protein levels, and atherosclerotic plaque phenotypes. METHODS We included patients from the Stockholm Atherosclerosis Gene Expression study (STAGE, N = 109), and the Athero-Express Biobank Study (AE, N = 1443). We tested 1453 single-nucleotide variants (SNVs) in ALOX5, ALOX5AP and LTA4H for association with gene expression in STAGE. We also tested these SNVs for association with seven histologically defined plaque phenotypes in the AE (which included calcification, collagen, cellular content, atheroma size, and intraplaque vessel density and hemorrhage). RESULTS We replicate a known cis-eQTL (rs6538697, p = 1.96 × 10(-6)) for LTA4H expression in whole blood of patients from STAGE. We found no significant association for any of the SNVs tested with serum levels of ALOX5 or ALOX5AP (p > 5.79 × 10(-4)). For atherosclerotic plaque phenotypes the strongest associations were found for intraplaque vessel density and smooth muscle cells in the ALOX5AP locus (p > 1.67 × 10(-4)). CONCLUSIONS We replicate a known eQTL for LTA4H expression in whole blood using STAGE data. We found no associations of variants in and around ALOX5, ALOX5AP and LTA4H with serum ALOX5 or ALOX5AP levels, or plaque phenotypes. On the supposition that these genes play a causal role in atherosclerosis, these results suggest that common variants in these loci play a limited role (if any) in influencing advanced atherosclerotic plaque morphology to the extent that it impacts atherosclerotic disease.
Collapse
|
41
|
Wang GN, Zhang JS, Cao WJ, Sun H, Zhang J, Wang Y, Xiao H. Association of ALOX5, LTA4H and LTC4S gene polymorphisms with ischemic stroke risk in a cohort of Chinese in east China. World J Emerg Med 2014; 4:32-7. [PMID: 25215090 DOI: 10.5847/wjem.j.issn.1920-8642.2013.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Genetic variations of the 5-lipoxygenase activating protein and leukotriene A4 hydrolase genes that confer an increased risk of ischemic stroke have implicated the family of leukotrienes as potential mediators of ischemic stroke. This study aimed to explore the association of ALOX5, LTA4H and LTC4S gene polymorphisms with ischemic stroke risk in a cohort of Chinese in east China. METHODS This case-control study consisted of 690 patients with ischemic stroke and 690 controls. Polymorphisms of ALOX5 rs2029253 A/G, LTA4H rs6538697 T/C, and LTC4S rs730012 A/C were genotyped by the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. The multivariate logistic regression model was used to exclude the effects of conventional risk factors on ischemic stroke. RESULTS Carriers of C allele in rs730012 were more susceptible to ischemic stroke (OR: 1.37; 95%CI: 1.08-1.73; P=0.009). The rs2029253 GG genotype showed a risk-reducing effect on ischemic stroke (OR: 0.72; 95%CI: 0.55-0.93; P=0.013) while the rs6538697 CC genotype had an increased risk of ischemic stroke (OR: 1.77; 95%CI: 1.09-2.89; P=0.022). The rs730012 variant was not associated with ischemic stroke risk after adjusting confounding factors (P>0.05). CONCLUSION The present study suggested that gene polymorphisms in the leukotrienes pathway may exert influences, with independent genetic effects, on ischemic stroke susceptibility in a cohort of Chinese in east China.
Collapse
Affiliation(s)
- Gan-Nan Wang
- Emergency Department, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jin-Song Zhang
- Emergency Department, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei-Juan Cao
- Emergency Department, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Emergency Department, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Zhang
- Emergency Department, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yao Wang
- Emergency Department, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hang Xiao
- Laboratory of Neurotoxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
42
|
Kortz L, Dorow J, Ceglarek U. Liquid chromatography-tandem mass spectrometry for the analysis of eicosanoids and related lipids in human biological matrices: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:1-11. [PMID: 24583205 DOI: 10.1016/j.jchromb.2014.01.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/30/2013] [Accepted: 01/28/2014] [Indexed: 01/12/2023]
Abstract
Today, there is an increasing number of liquid chromatography tandem-mass spectrometric (LC-MS/MS) methods for the analysis of eicosanoids and related lipids in biological matrices. An overview of currently applied LC-MS/MS methods is given with attention to sample preparation strategies, chromatographic separation including ultra high performance liquid chromatography (UHPLC) and chiral separation, as well as to mass spectrometric detection using multiple reacting monitoring (MRM). Further, the application in recent clinical research is reviewed with focus on preanalytical aspects prior to LC-MS/MS analysis as well as applications in major diseases of Western civilization including respiratory diseases, diabetes, cancer, liver diseases, atherosclerosis, and neurovascular diseases.
Collapse
Affiliation(s)
- Linda Kortz
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Liebigstr. 27, 04103 Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| | - Juliane Dorow
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Liebigstr. 27, 04103 Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Liebigstr. 27, 04103 Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany.
| |
Collapse
|
43
|
Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness. Chem Biol Interact 2014; 213:28-36. [PMID: 24508943 DOI: 10.1016/j.cbi.2014.01.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/29/2013] [Accepted: 01/30/2014] [Indexed: 01/07/2023]
Abstract
Atherosclerosis is a major macrovascular complication of diabetes that increases the risks for myocardial infarction, stroke, and other vascular diseases. The effect of a selective 5-lipoxygenase enzyme inhibitor; caffeic acid phenethyl ester (CAPE) on diabetes-induced atherosclerotic manifestations was investigated. Insulin deficiency or resistance was induced by STZ or fructose respectively. Atherosclerosis developed when rats were left for 8 or 12 weeks subsequent STZ or fructose administration respectively. CAPE (30 mg kg(-1) day(-1)) was given in the last 6 weeks. Afterwards, blood pressure (BP) was recorded. Then, isolated aorta reactivity to KCl and phenylephrine (PE) was studied. Blood glucose level, serum levels of insulin, tumor necrosis factor α (TNF-α) as well as advanced glycation end products (AGEs) were determined. Moreover aortic haem oxygenase-1 (HO-1) protein expression and collagen deposition were also assessed. Insulin deficiency and resistance were accompanied with elevated BP, exaggerated response to KCl and PE, elevated serum TNF-α and AGEs levels. Both models showed marked increase in collagen deposition. However, CAPE alleviated systolic and diastolic BP elevations and the exaggerated vascular contractility to both PE and KCl in both models without affecting AGEs level. CAPE inhibited TNF-α serum level elevation, induced aortic HO-1 expression and reduced collagen deposition. CAPE prevented development of hyperinsulinemia in insulin resistance model without any impact on the developed hyperglycemia in insulin deficiency model. In conclusion, CAPE offsets the atherosclerotic changes associated with diabetes via amelioration of the significant functional and structural derangements in the vessels in addition to its antihyperinsulinemic effect in insulin resistant model.
Collapse
|
44
|
van den Borne P, van der Laan SW, Bovens SM, Koole D, Kowala MC, Michael LF, Schoneveld AH, van de Weg SM, Velema E, de Vries JP, de Borst GJ, Moll FL, de Kleijn DPV, Quax PHA, Hoefer IE, Pasterkamp G. Leukotriene B4 levels in human atherosclerotic plaques and abdominal aortic aneurysms. PLoS One 2014; 9:e86522. [PMID: 24475136 PMCID: PMC3903534 DOI: 10.1371/journal.pone.0086522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/10/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Leukotriene B4 (LTB4) has been associated with the initiation and progression of atherosclerosis and abdominal aortic aneurysm (AAA) formation. However, associations of LTB4 levels with tissue characteristics and adverse clinical outcome of advanced atherosclerosis and AAA are scarcely studied. We hypothesized that LTB4 levels are associated with a vulnerable plaque phenotype and adverse clinical outcome. Furthermore, that LTB4 levels are associated with inflammatory AAA and adverse clinical outcome. METHODS Atherosclerotic plaques and AAA specimens were selected from two independent databases for LTB4 measurements. Plaques were isolated during carotid endarterectomy from asymptomatic (n = 58) or symptomatic (n = 317) patients, classified prior to surgery. LTB4 levels were measured without prior lipid extraction and levels were corrected for protein content. LTB4 levels were related to plaque phenotype, baseline patient characteristics and clinical outcome within three years following surgery. Seven non-diseased mammary artery specimens served as controls. AAA specimens were isolated during open repair, classified as elective (n = 189), symptomatic (n = 29) or ruptured (n = 23). LTB4 levels were measured similar to the plaque measurements and were related to tissue characteristics, baseline patient characteristics and clinical outcome. Twenty-six non-diseased aortic specimens served as controls. RESULTS LTB4 levels corrected for protein content were not significantly associated with histological characteristics specific for vulnerable plaques or inflammatory AAA as well as clinical presentation. Moreover, it could not predict secondary manifestations independently investigated in both databases. However, LTB4 levels were significantly lower in controls compared to plaque (p = 0.025) or AAA (p = 0.017). CONCLUSIONS LTB4 levels were not associated with a vulnerable plaque phenotype or inflammatory AAA or clinical presentation. This study does not provide supportive evidence for a role of LTB4 in atherosclerotic plaque destabilization or AAA expansion. However, these data should be interpreted with care, since LTB4 measurements were performed without prior lipid extractions.
Collapse
Affiliation(s)
- Pleunie van den Borne
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander W. van der Laan
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Sandra M. Bovens
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Dave Koole
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark C. Kowala
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Laura F. Michael
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Arjan H. Schoneveld
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Sander M. van de Weg
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evelyn Velema
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jean-Paul de Vries
- Department of Vascular Surgery, Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Gert J. de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frans L. Moll
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dominique P. V. de Kleijn
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
- Cardiovascular Research Institute and Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Imo E. Hoefer
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| |
Collapse
|
45
|
Zhao L, Grosser T, Fries S, Kadakia L, Wang H, Zhao J, Falotico R. Lipoxygenase and prostaglandin G/H synthase cascades in cardiovascular disease. Expert Rev Clin Immunol 2014; 2:649-58. [DOI: 10.1586/1744666x.2.4.649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Yaiw KC, Ovchinnikova O, Taher C, Mohammad AA, Davoudi B, Shlyakhto E, Rotar O, Konradi A, Wilhelmi V, Rahbar A, Butler L, Assinger A, Söderberg-Nauclér C. High prevalence of human cytomegalovirus in carotid atherosclerotic plaques obtained from Russian patients undergoing carotid endarterectomy. HERPESVIRIDAE 2013; 4:3. [PMID: 24229441 PMCID: PMC4177206 DOI: 10.1186/2042-4280-4-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 11/04/2013] [Indexed: 11/10/2022]
Abstract
Background Human cytomegalovirus (HCMV) infection is associated with cardiovascular disease (CVD) but the role of this virus in CVD progression remains unclear. We aimed to examine the HCMV serostatus in Russian patients (n = 90) who had undergone carotid endarterectomy (CEA) and controls (n = 82) as well as to determine the prevalence of HCMV immediate early (IE) and late (LA) antigens in carotid atherosclerotic plaques obtained from 89 patients. In addition, we sought to determine whether HCMV infection was associated with inflammatory activity in the plaque by quantifying infiltrating CD3 and CD68 positive cells and 5-LO immunoreactivity. Methods HCMV serology was assessed with ELISA and immunohistochemistry staining was performed to detect HCMV antigens, CD3, CD68 and 5-LO reactivity. The Fisher’s exact test was used to compare i) seroprevalence of HCMV IgG between patients and controls and ii) HCMV-positive or –negative to that of CD3, CD68 and 5-LO immunoreactive cells in plaque samples. The student-t test was performed to connote the significance level of mean optical density between patients and controls. Results The seroprevalence for HCMV IgG was high in both patients and controls (99% and 98%, respectively). Controls had significantly higher IgG titers for HCMV compared with patients (p = 0.0148). Strikingly, we found a high prevalence of HCMV antigens in atherosclerotic plaques; 57/89 (64%) and 47/87 (54%) were HCMV IE and LA positive, respectively. Most plaques had rather low HCMV reactivity with distinct areas of HCMV-positive cells mainly detected in shoulder regions of the plaques, but also in the area adjacent to the necrotic core and fibrous cap. In plaques, the cellular targets for HCMV infection appeared to be mainly macrophages/foam cells and smooth muscle cells. HCMV-positive plaques trended to be associated with increased numbers of CD68 positive macrophages and CD3 positive T cells, while 5-LO reactivity was high in both HCMV-positive and HCMV-negative plaques. Conclusions In Russian patients undergoing CEA, HCMV proteins are abundantly expressed in carotid plaques and may contribute to the inflammatory response in plaques via enhanced infiltration of CD68 and CD3 cells.
Collapse
Affiliation(s)
- Koon-Chu Yaiw
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden
| | - Olga Ovchinnikova
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden.,Almazov Federal Center for Heart, Blood and Endocrinology, St. Petersburg, Russia
| | - Chato Taher
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden
| | - Abdul-Aleem Mohammad
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden
| | - Belghis Davoudi
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden
| | - Eugene Shlyakhto
- Almazov Federal Center for Heart, Blood and Endocrinology, St. Petersburg, Russia
| | - Oxana Rotar
- Almazov Federal Center for Heart, Blood and Endocrinology, St. Petersburg, Russia
| | - Alexandra Konradi
- Almazov Federal Center for Heart, Blood and Endocrinology, St. Petersburg, Russia
| | - Vanessa Wilhelmi
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden
| | - Afsar Rahbar
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden
| | - Lynn Butler
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden
| | - Alice Assinger
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Center for Molecular Medicine, CMM L8:03, Karolinska Institutet, Solna, Stockholm SE-171 76, Sweden
| |
Collapse
|
47
|
Tu XK, Yang WZ, Shi SS, Chen CM, Wang CH. 5-lipoxygenase inhibitor zileuton attenuates ischemic brain damage: involvement of matrix metalloproteinase 9. Neurol Res 2013; 31:848-52. [DOI: 10.1179/174313209x403913] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Vijayakumar J, Subramanian S, Singh P, Corsini E, Fontanez S, Lawler M, Kaplan R, Brady TJ, Hoffmann U, Tawakol A. Arterial inflammation in bronchial asthma. J Nucl Cardiol 2013; 20:385-95. [PMID: 23526296 DOI: 10.1007/s12350-013-9697-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bronchial asthma is a chronic inflammatory condition associated with increased cardiovascular (CV) events. Here, we assess arterial inflammation, using 18F-fluorodeoxyglucose positron emission tomography/computed tomography imaging (FDG-PET/CT), in patients with bronchial asthma and low to intermediate Framingham risk scores (FRS). METHODS A total of 102 patients underwent FDG-PET/CT imaging for clinical indications. Thirty-four patients (mean age 54.9 ± 16.1) with mild asthma and no known atherosclerotic disease were compared to 2 non-asthmatic groups. The first control group (n = 34) were matched by age, gender, and FRS. The second control group (n = 34) had clinical atherosclerosis and were matched by gender. Thereafter, arterial FDG uptake on PET images was determined, while blinded to patient identifiers. RESULTS Target-to-background-ratio (TBR) in the aorta was higher in asthmatics vs non-asthmatic FRS-matched controls (1.96 ± 0.26 vs 1.76 ± 0.20; P < .001). The aortic TBR remained elevated in asthmatics vs non-asthmatic controls after adjusting traditional CV risk factors (P < .001). An inverse correlation was observed between FDG uptake and lung function, FEV1 (P = .02) and peak flow (P = .03). CONCLUSIONS Bronchial asthma is associated with increased arterial inflammation beyond that estimated by current risk stratification tools. Further studies are required to evaluate whether attenuation of systemic inflammation will decrease CV events.
Collapse
Affiliation(s)
- Jayanthi Vijayakumar
- Cardiac MR PET CT Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee SJ, Choi EK, Seo KW, Bae JU, Kim YH, Park SY, Oh SO, Kim CD. 5-Lipoxygenase plays a pivotal role in endothelial adhesion of monocytes via an increased expression of Mac-1. Cardiovasc Res 2013; 99:724-33. [DOI: 10.1093/cvr/cvt135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
50
|
Berman JP, Farkouh ME, Rosenson RS. Emerging anti-inflammatory drugs for atherosclerosis. Expert Opin Emerg Drugs 2013; 18:193-205. [DOI: 10.1517/14728214.2013.801453] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|