1
|
Piristine HC, May HI, Jiang N, Daou D, Olivares-Silva F, Elnwasany A, Szweda P, Szweda L, Kinter C, Kinter M, Sharma G, Wen X, Malloy CR, Jessen ME, Gillette TG, Hill JA. Afterload-induced Decreases in Fatty Acid Oxidation Develop Independently of Increased Glucose Utilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613531. [PMID: 39345412 PMCID: PMC11429894 DOI: 10.1101/2024.09.17.613531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Metabolic substrate utilization in HFpEF (heart failure with preserved ejection fraction), the leading cause of heart failure worldwide, is pivotal to syndrome pathogenesis and yet remains ill defined. Under resting conditions, oxidation of free fatty acids (FFA) is the predominant energy source of the heart, supporting its unremitting contractile activity. In the context of disease-related stress, however, a shift toward greater reliance on glucose occurs. In the setting of obesity or diabetes, major contributors to HFpEF pathophysiology, the shift in metabolic substrate use toward glucose is impaired, sometimes attributed to the lower oxygen requirement of glucose oxidation versus fat metabolism. This notion, however, has never been tested conclusively. Furthermore, whereas oxygen demand increases in the setting of increased afterload, myocardial oxygen availability remains adequate for fatty acid oxidation (FAO). Therefore, a "preference" for glucose has been proposed. Methods and Results Pyruvate dehydrogenase complex (PDC) is the rate-limiting enzyme linking glycolysis to the TCA cycle. As PDK4 (PDC kinase 4) is up-regulated in HFpEF, we over-expressed PDK4 in cardiomyocytes, ensuring that PDC is phosphorylated and thereby inhibited. This leads to diminished use of pyruvate as energy substrate, mimicking the decline in glucose oxidation in HFpEF. Importantly, distinct from HFpEF-associated obesity, this model positioned us to abrogate the load-induced shift to glucose utilization in the absence of systemic high fat conditions. As expected, PDK4 transgenic mice manifested normal cardiac performance at baseline. However, they manifested a rapid and severe decline in contractile performance when challenged with modest increases in afterload triggered either by L-NAME or surgical transverse aortic constriction (TAC). This decline in function was not accompanied by an exacerbation of the myocardial hypertrophic growth response. Surprisingly, metabolic flux analysis revealed that, after TAC, fractional FAO decreased, even when glucose/pyruvate utilization was clamped at very low levels. Additionally, proteins involved in the transport and oxidation of FFA were paradoxically downregulated after TAC regardless of genotype. Conclusions These data demonstrate that cardiomyocytes in a setting in which glucose utilization is robustly diminished and prevented from increasing do not compensate for the deficit in glucose utilization by up-regulating FFA use.
Collapse
|
2
|
Shi Y, Ma J, Li S, Liu C, Liu Y, Chen J, Liu N, Liu S, Huang H. Sex difference in human diseases: mechanistic insights and clinical implications. Signal Transduct Target Ther 2024; 9:238. [PMID: 39256355 PMCID: PMC11387494 DOI: 10.1038/s41392-024-01929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
Sex characteristics exhibit significant disparities in various human diseases, including prevalent cardiovascular diseases, cancers, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Risk profiles and pathological manifestations of these diseases exhibit notable variations between sexes. The underlying reasons for these sex disparities encompass multifactorial elements, such as physiology, genetics, and environment. Recent studies have shown that human body systems demonstrate sex-specific gene expression during critical developmental stages and gene editing processes. These genes, differentially expressed based on different sex, may be regulated by androgen or estrogen-responsive elements, thereby influencing the incidence and presentation of cardiovascular, oncological, metabolic, immune, and neurological diseases across sexes. However, despite the existence of sex differences in patients with human diseases, treatment guidelines predominantly rely on male data due to the underrepresentation of women in clinical trials. At present, there exists a substantial knowledge gap concerning sex-specific mechanisms and clinical treatments for diverse diseases. Therefore, this review aims to elucidate the advances of sex differences on human diseases by examining epidemiological factors, pathogenesis, and innovative progress of clinical treatments in accordance with the distinctive risk characteristics of each disease and provide a new theoretical and practical basis for further optimizing individualized treatment and improving patient prognosis.
Collapse
Affiliation(s)
- Yuncong Shi
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jianshuai Ma
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Sijin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chao Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yuning Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Ariyasinghe NR, Gupta D, Escopete S, Stotland AB, Sundararaman N, Ngu B, Dabke K, Rai D, McCarthy L, Santos RS, McCain ML, Sareen D, Parker SJ. Identification of Disease-relevant, Sex-based Proteomic Differences in iPSC-derived Vascular Smooth Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605659. [PMID: 39211096 PMCID: PMC11361011 DOI: 10.1101/2024.07.30.605659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insight into some aspects of human biology, however not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology. Our analysis confirmed that differentiated cells have a proteomic profile more similar to healthy primary aortic smooth muscle than iPSCs. We also identified sex-based differences in iPSC- derived vascular smooth muscle in pathways related to ATP binding, glycogen metabolic process, and cadherin binding as well as multiple proteins relevant to cardiovascular pathophysiology and disease. Additionally, we explored the role of autosomal and sex chromosomes in protein regulation, identifying that proteins on autosomal chromosomes also show sex-based regulation that may affect the protein expression of proteins from autosomal chromosomes. This work supports the biological relevance of iPSC-derived vascular smooth muscle cells as a model for disease, and further exploration of the pathways identified here can lead to the discovery of sex-specific pharmacological targets for cardiovascular disease. Significance In this work, we have differentiated 4 male and 4 female iPSC lines into vascular smooth muscle cells, giving us the ability to identify statistically-significant sex-specific proteomic markers that are relevant to cardiovascular disease risk (such as PCK2, MTOR, IGFBP2, PTGR2, and SULTE1).
Collapse
|
4
|
Corbi G, Comegna M, Vinciguerra C, Capasso A, Onorato L, Salucci AM, Rapacciuolo A, Cannavo A. Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology. Exp Gerontol 2024; 190:112420. [PMID: 38588751 DOI: 10.1016/j.exger.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Advanced Biotechnologies - Franco Salvatore, Naples, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Capasso
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Onorato
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
5
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj J, Selvaraj D. The identification of cianidanol as a selective estrogen receptor beta agonist and evaluation of its neuroprotective effects on Parkinson's disease models. Life Sci 2023; 333:122144. [PMID: 37797687 DOI: 10.1016/j.lfs.2023.122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
AIM The present study aims to identify selective estrogen receptor beta (ERβ) agonists and to evaluate the neuroprotective mechanism in Parkinson's disease (PD) models. MAIN METHODS In-silico studies were carried out using Maestro and GROMACS. Neuroprotective activity and apoptosis were evaluated using cytotoxicity assay and flow cytometry respectively. Gene expression studies were carried out by reverse transcription polymerase chain reaction. Motor and cognitive functions were assessed by actophotometer, rotarod, catalepsy, and elevated plus maze. The neuronal population in the substantia nigra and striatum of rats was assessed by hematoxylin and eosin staining. KEY FINDINGS Cianidanol was identified as a selective ERβ agonist through virtual screening. The cianidanol-ERβ complex is stable during the 200 ns simulation and was able to retain the interactions with key amino acid residues. Cianidanol (25 μM) prevents neuronal toxicity and apoptosis induced by rotenone in differentiated SH-SY5Y cells. Additionally, cianidanol (25 μM) increases the expression of ERβ, cathepsin D, and Nrf2 transcripts. The neuroprotective effects of cianidanol (25 μM) were reversed in the presence of a selective ERβ antagonist. In this study, we found that selective activation of ERβ could decrease the transcription of α-synuclein gene. Additionally, cianidanol (10, 20, 30 mg/kg, oral) improves the motor and cognitive deficit in rats induced by rotenone. SIGNIFICANCE Cianidanol shows neuroprotective action in PD models and has the potential to serve as a novel therapeutic agent for the treatment of PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
6
|
Tang Y, Shen L, Bao J, Xu D. Deficiency of Tregs in hypertension-associated left ventricular hypertrophy. J Clin Hypertens (Greenwich) 2023; 25:562-572. [PMID: 37196041 PMCID: PMC10246464 DOI: 10.1111/jch.14660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/19/2023]
Abstract
Left ventricular hypertrophy (LVH) is the most common target organ damage in hypertension. Abnormal numbers or functions of CD4+ CD25+ Foxp3+ regulatory T lymphocytes (Tregs) can cause immune disorders, which participates in LVH. This study aimed to explore the role of Tregs in LVH by investigating circulating Tregs and associated cytokine levels in hypertensive patients with or without LVH. Blood samples were collected from 83 hypertensive patients without LVH (essential hypertension group, EH), 91 hypertensive patients with LVH (left ventricular hypertrophy group, LVH), and 69 normotensive controls without LVH (control group, CG). Tregs and cytokines were measured by flow cytometry and enzyme-linked immunosorbent assays. We found that circulating Tregs were significantly lower in hypertensive patients than in CG subjects. It was lower in LVH than in EH patients. No correlation between blood pressure regulation and Tregs was found in EH or LVH patients. Furthermore, Tregs in older females were lower than those in older males among LVH patients. Additionally, serum interleukin-10 (IL-10) and transforming growth factor beta 1 (TGFβ1) decreased in hypertensive patients, and interleukin-6 (IL-6) increased in LVH patients. Tregs were negatively correlated with creatine kinase, low-density lipoprotein cholesterol, apoprotein B, high-sensitivity C-reactive protein, and left ventricular mass index (LVMI) values. In general, our study demonstrates significantly decreased circulating Tregs in hypertensive LVH patients. Decreased circulating Tregs in LVH is independent of blood pressure regulation. IL-6, IL-10, and TGF-β1 are related with LVH in hypertension.
Collapse
Affiliation(s)
- Ying Tang
- Department of Internal Cardiovascular MedicineSecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Li Shen
- Department of Internal Cardiovascular MedicineSecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jing‐hui Bao
- Department of Internal Cardiovascular MedicineSecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Dan‐Yan Xu
- Department of Internal Cardiovascular MedicineSecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
7
|
Dorey ES, Headrick JP, Paravicini TM, Wlodek ME, Moritz KM, Reichelt ME. Periconceptional alcohol alters in vivo heart function in ageing female rat offspring: Possible involvement of oestrogen receptor signalling. Exp Physiol 2023; 108:772-784. [PMID: 36951040 PMCID: PMC10988452 DOI: 10.1113/ep090587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the cardiovascular consequences of periconceptual ethanol on offspring throughout the lifespan? What is the main finding and its importance? It is shown for the first time that periconceptional alcohol has sex-specific effects on heart growth, with ageing female offspring exhibiting decreased cardiac output. Altered in vivo cardiac function in ageing female offspring may be linked to changes in cardiac oestrogen receptor expression. ABSTRACT Alcohol exposure throughout gestation is detrimental to cardiac development and function. Although many women decrease alcohol consumption once aware of a pregnancy, exposure prior to recognition is common. We, therefore, examined the effects of periconceptional alcohol exposure (PC:EtOH) on heart function, and explored mechanisms that may contribute. Female Sprague-Dawley rats received a liquid diet ±12.5% v/v ethanol from 4 days prior to mating until 4 days after mating (PC:EtOH). Cardiac function was assessed via echocardiography, and offspring were culled at multiple time points for assessment of morphometry, isolated heart and aortic ring function, protein and transcriptional changes. PC:EtOH-exposed embryonic day 20 fetuses (but not postnatal offspring) had larger hearts relative to body weight. Ex vivo analysis of hearts at 5-7 months old (mo) indicated no changes in coronary function or cardiac ischaemic tolerance, and apparently improved ventricular compliance in PC:EtOH females (compared to controls). At 12 mo, vascular responses in isolated aortic rings were unaltered by PC:EtOH, whilst echocardiography revealed reduced cardiac output in female but not male PC:EtOH offspring. At 19 mo, left ventricular transcript and protein for type 1 oestrogen receptor (ESR1), HSP90 transcript and plasma oestradiol levels were all elevated in female PC:EtOH exposed offspring. Summarising, PC:EtOH adversely impacts in vivo heart function in mature female offspring, associated with increased ventricular oestrogen-related genes. PC:EtOH may thus influence age-related heart dysfunction in females through modulation of oestrogen signalling.
Collapse
Affiliation(s)
- Emily S. Dorey
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - John P. Headrick
- School of Pharmacy and Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Tamara M. Paravicini
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Mary E. Wlodek
- The Department of Obstetrics and GynaecologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Child Health Research CentreUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Melissa E. Reichelt
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
8
|
Ahluwalia A, Hoa N, Moreira D, Aziz D, Singh K, Patel KN, Levin ER. Membrane Estrogen Receptor β Is Sufficient to Mitigate Cardiac Cell Pathology. Endocrinology 2022; 164:6867852. [PMID: 36461668 DOI: 10.1210/endocr/bqac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Estrogen acting through estrogen receptor β (ERβ) has been shown to oppose the stimulation of cardiac myocytes and cardiac fibroblasts that results in cardiac hypertrophy and fibrosis. Previous work has implicated signal transduction from ERβ as being important to the function of estrogen in this regard. Here we address whether membrane ERβ is sufficient to oppose key mechanisms by which angiotensin II (AngII) stimulates cardiac cell pathology. To do this we first defined essential structural elements within ERβ that are necessary for membrane or nuclear localization in cells. We previously determined that cysteine 418 is the site of palmitoylation of ERβ that is required and sufficient for cell membrane localization in mice and is the same site in humans. Here we determined in Chinese hamster ovarian (CHO) cells, and mouse and rat myocytes and cardiac fibroblasts, the effect on multiple aspects of signal transduction by expressing wild-type (WT ) or a C418A-mutant ERβ. To test the importance of the nuclear receptor, we determined a 4-amino acid deletion in the E domain of ERβ that strongly blocked nuclear localization. Using these tools, we expressed WT and mutant ERβ constructs into cardiomyocytes and cardiac fibroblasts from ERβ-deleted mice. We determined the ability of estrogen to mitigate cell pathology stimulated by AngII and whether the membrane ERβ is necessary and sufficient.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Neil Hoa
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Debbie Moreira
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Daniel Aziz
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Karanvir Singh
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Khushin N Patel
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Veterans Affairs, Medical Center, Long Beach, Long Beach, California 90822, USA
- Department of Medicine, University of California, Irvine, Irvine, California 92717, USA
- Department of Biochemistry, University of California, Irvine, Irvine, California 92717, USA
| |
Collapse
|
9
|
Yoshida K, Saucerman JJ, Holmes JW. Multiscale model of heart growth during pregnancy: integrating mechanical and hormonal signaling. Biomech Model Mechanobiol 2022; 21:1267-1283. [PMID: 35668305 DOI: 10.1007/s10237-022-01589-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/01/2022] [Indexed: 12/01/2022]
Abstract
Pregnancy stands at the interface of mechanics and biology. The growing fetus continuously loads the maternal organs as circulating hormone levels surge, leading to significant changes in mechanical and hormonal cues during pregnancy. In response, maternal soft tissues undergo remarkable growth and remodeling to support the mother and baby for a healthy pregnancy. We focus on the maternal left ventricle, which increases its cardiac output and mass during pregnancy. This study develops a multiscale cardiac growth model for pregnancy to understand how mechanical and hormonal cues interact to drive this growth process. We coupled a cell signaling network model that predicts cell-level hypertrophy in response to hormones and stretch to a compartmental model of the rat heart and circulation that predicts organ-level growth in response to hemodynamic changes. We calibrated this multiscale model to data from experimental volume overload and hormonal infusions of angiotensin 2 (AngII), estrogen (E2), and progesterone (P4). We then validated the model's ability to capture interactions between inputs by comparing model predictions against published observations for the combinations of VO + E2 and AngII + E2. Finally, we simulated pregnancy-induced changes in hormones and hemodynamics to predict heart growth during pregnancy. Our model produced growth consistent with experimental data. Overall, our analysis suggests that the rise in P4 during the first half of gestation is an important contributor to heart growth during pregnancy. We conclude with suggestions for future experimental studies that will provide a better understanding of how hormonal and mechanical cues interact to drive pregnancy-induced heart growth.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey W Holmes
- School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Murphy KA, Harsch BA, Healy CL, Joshi SS, Huang S, Walker RE, Wagner BM, Ernste KM, Huang W, Block RC, Wright CD, Tintle N, Jensen BC, Wells QS, Shearer GC, O’Connell TD. Free fatty acid receptor 4 responds to endogenous fatty acids to protect the heart from pressure overload. Cardiovasc Res 2022; 118:1061-1073. [PMID: 33752243 PMCID: PMC8930069 DOI: 10.1093/cvr/cvab111] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS Free fatty acid receptor 4 (Ffar4) is a G-protein-coupled receptor for endogenous medium-/long-chain fatty acids that attenuates metabolic disease and inflammation. However, the function of Ffar4 in the heart is unclear. Given its putative beneficial role, we hypothesized that Ffar4 would protect the heart from pathologic stress. METHODS AND RESULTS In mice lacking Ffar4 (Ffar4KO), we found that Ffar4 is required for an adaptive response to pressure overload induced by transverse aortic constriction (TAC), identifying a novel cardioprotective function for Ffar4. Following TAC, remodelling was worsened in Ffar4KO hearts, with greater hypertrophy and contractile dysfunction. Transcriptome analysis 3-day post-TAC identified transcriptional deficits in genes associated with cytoplasmic phospholipase A2α signalling and oxylipin synthesis and the reduction of oxidative stress in Ffar4KO myocytes. In cultured adult cardiac myocytes, Ffar4 induced the production of the eicosapentaenoic acid (EPA)-derived, pro-resolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE). Furthermore, the activation of Ffar4 attenuated cardiac myocyte death from oxidative stress, while 18-HEPE rescued Ffar4KO myocytes. Systemically, Ffar4 maintained pro-resolving oxylipins and attenuated autoxidation basally, and increased pro-inflammatory and pro-resolving oxylipins, including 18-HEPE, in high-density lipoproteins post-TAC. In humans, Ffar4 expression decreased in heart failure, while the signalling-deficient Ffar4 R270H polymorphism correlated with eccentric remodelling in a large clinical cohort paralleling changes observed in Ffar4KO mice post-TAC. CONCLUSION Our data indicate that Ffar4 in cardiac myocytes responds to endogenous fatty acids, reducing oxidative injury, and protecting the heart from pathologic stress, with significant translational implications for targeting Ffar4 in cardiovascular disease.
Collapse
Affiliation(s)
- Katherine A Murphy
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Brian A Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
| | - Chastity L Healy
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Sonal S Joshi
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Shue Huang
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
| | - Rachel E Walker
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
| | - Brandon M Wagner
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Katherine M Ernste
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Wei Huang
- Division of Cardiology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Robert C Block
- Department of Public Health Sciences, University of Rochester, NY, USA
| | | | - Nathan Tintle
- Department of Statistics, Dordt University, Sioux Center, IA, USA
| | - Brian C Jensen
- Division of Cardiology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Quinn S Wells
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
| | - Timothy D O’Connell
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| |
Collapse
|
11
|
Ferreira C, Trindade F, Ferreira R, Neves JS, Leite-Moreira A, Amado F, Santos M, Nogueira-Ferreira R. Sexual dimorphism in cardiac remodeling: the molecular mechanisms ruled by sex hormones in the heart. J Mol Med (Berl) 2021; 100:245-267. [PMID: 34811581 DOI: 10.1007/s00109-021-02169-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is growing in prevalence, due to an increase in aging and comorbidities. Heart failure with reduced ejection fraction (HFrEF) is more common in men, whereas heart failure with preserved ejection fraction (HFpEF) has a higher prevalence in women. However, the reasons for these epidemiological trends are not clear yet. Since HFpEF affects mostly postmenopausal women, sex hormones should play a pivotal role in HFpEF development. Furthermore, for HFpEF, contrary to HFrEF, effective therapeutic approaches are missing. Interestingly, studies evidenced that some therapies can have better results in women than in HFpEF men, emphasizing the necessity of understanding these observations at a molecular level. Thus, herein, we review the molecular mechanisms of estrogen and androgen actions in the heart in physiological conditions and explain how its dysregulation can lead to disease development. This clarification is essential in the road for an effective personalized management of HF, particularly HFpEF, towards the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Cláudia Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Department of Cardiology, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal.
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
12
|
Hajializadeh Z, Khaksari M. The protective effects of 17-β estradiol and SIRT1 against cardiac hypertrophy: a review. Heart Fail Rev 2021; 27:725-738. [PMID: 34537933 DOI: 10.1007/s10741-021-10171-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
One of the major causes of morbidity and mortality worldwide is cardiac hypertrophy (CH), which leads to heart failure. Sex differences in CH can be caused by sex hormones or their receptors. The incidence of CH increases in postmenopausal women due to the decrease in female sex hormone 17-β estradiol (E2) during menopause. E2 and its receptors inhibit CH in humans and animal models. Silent information regulator 1 (SIRT1) is a NAD+-dependent HDAC (histone deacetylase) and plays a major role in biological processes, such as inflammation, apoptosis, and oxidative stress responses. Probably SIRT1 because of these effects, is one of the main suppressors of CH and has a cardioprotective effect. On the other hand, estrogen and its agonists are highly efficient in modulating SIRT1 expression. In the present study, we review the protective effects of E2 and SIRT1 against CH.
Collapse
Affiliation(s)
- Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Hasan AS, Luo L, Baba S, Li TS. Estrogen is required for maintaining the quality of cardiac stem cells. PLoS One 2021; 16:e0245166. [PMID: 33481861 PMCID: PMC7822545 DOI: 10.1371/journal.pone.0245166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Compared to the age-matched men, the incidence of cardiovascular diseases is lower in premenopausal but higher in postmenopausal women, suggesting the cardio-protective role of estrogen in females. Although cardiac stem cells (CSCs) express estrogen receptors, yet the effects of estrogen on CSCs remain unclear. In this study, we investigated the potential role of estrogen in maintaining the quality of CSCs by in vivo and in vitro experiments. For the in vivo study, estrogen deficiency was induced by ovariectomy in 6-weeks-old C57BL/6 female mice, and then randomly given 17β-estradiol (E2) replacements at a low dose (0.01 mg/60 days) and high dose (0.18 mg/60 days), or vehicle treatment. All mice were killed 2 months after treatments, and heart tissues were collected for ex vivo expansion of CSCs. Compared to age-matched healthy controls, estrogen deficiency slightly decreased the yield of CSCs with significantly lower telomerase activity and more DNA damage. Interestingly, E2 replacements at low and high doses significantly increased the yield of CSCs and reversed the quality impairment of CSCs following estrogen deficiency. For the in vitro study, twice-passaged CSCs from the hearts of adult healthy female mice were cultured with the supplement of 0.01, 0.1, and 1 μM E2 in the medium for 3 days. We found that E2 supplement increased c-kit expression, increased proliferative activity, improved telomerase activity, and reduced DNA damage of CSCs in a dose-dependent manner. Our data suggested the potential role of estrogen in maintaining the quality of CSCs, providing new insight into the cardio-protective effects of estrogen.
Collapse
Affiliation(s)
- Al Shaimaa Hasan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Department of Medical Pharmacology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lan Luo
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Satoko Baba
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
14
|
Yoshida K, Holmes JW. Computational models of cardiac hypertrophy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 159:75-85. [PMID: 32702352 PMCID: PMC7855157 DOI: 10.1016/j.pbiomolbio.2020.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Cardiac hypertrophy, defined as an increase in mass of the heart, is a complex process driven by simultaneous changes in hemodynamics, mechanical stimuli, and hormonal inputs. It occurs not only during pre- and post-natal development but also in adults in response to exercise, pregnancy, and a range of cardiovascular diseases. One of the most exciting recent developments in the field of cardiac biomechanics is the advent of computational models that are able to accurately predict patterns of heart growth in many of these settings, particularly in cases where changes in mechanical loading of the heart play an import role. These emerging models may soon be capable of making patient-specific growth predictions that can be used to guide clinical interventions. Here, we review the history and current state of cardiac growth models and highlight three main limitations of current approaches with regard to future clinical application: their inability to predict the regression of heart growth after removal of a mechanical overload, inability to account for evolving hemodynamics, and inability to incorporate known growth effects of drugs and hormones on heart growth. Next, we outline growth mechanics approaches used in other fields of biomechanics and highlight some potential lessons for cardiac growth modeling. Finally, we propose a multiscale modeling approach for future studies that blends tissue-level growth models with cell-level signaling models to incorporate the effects of hormones in the context of pregnancy-induced heart growth.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA, 22908, USA.
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Box 800759, Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
15
|
Cheng TC, Philip JL, Tabima DM, Kumari S, Yakubov B, Frump AL, Hacker TA, Bellofiore A, Li R, Sun X, Goss KN, Lahm T, Chesler NC. Estrogen receptor-α prevents right ventricular diastolic dysfunction and fibrosis in female rats. Am J Physiol Heart Circ Physiol 2020; 319:H1459-H1473. [PMID: 33064565 PMCID: PMC7792707 DOI: 10.1152/ajpheart.00247.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Although women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH.NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Fibrillar Collagens/metabolism
- Fibrosis
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Kallikreins/genetics
- Kallikreins/metabolism
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Rats, Mutant Strains
- Rats, Sprague-Dawley
- Sex Factors
- Signal Transduction
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/prevention & control
- Ventricular Function, Right
- Ventricular Remodeling
Collapse
Affiliation(s)
- Tik-Chee Cheng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer L Philip
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Santosh Kumari
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bakhtiyor Yakubov
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea L Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alessandro Bellofiore
- Department of Biomedical, Chemical and Materials Engineering, San Jose State University, San Jose, California
| | - Rongbo Li
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Kara N Goss
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
16
|
Summerhill VI, Moschetta D, Orekhov AN, Poggio P, Myasoedova VA. Sex-Specific Features of Calcific Aortic Valve Disease. Int J Mol Sci 2020; 21:ijms21165620. [PMID: 32781508 PMCID: PMC7460640 DOI: 10.3390/ijms21165620] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease in developed countries predominantly affecting the elderly population therefore posing a large economic burden. It is a gradually progressive condition ranging from mild valve calcification and thickening, without the hemodynamic obstruction, to severe calcification impairing leaflet motion, known as aortic stenosis (AS). The progression of CAVD occurs over many years, and it is extremely variable among individuals. It is also associated with an increased risk of coronary events and mortality. The recent insights into the CAVD pathophysiology included an important role of sex. Accumulating evidence suggests that, in patients with CAVD, sex can determine important differences in the relationship between valvular calcification process, fibrosis, and aortic stenosis hemodynamic severity between men and women. Consequently, it has implications on the development of different valvular phenotypes, left ventricular hypertrophy, and cardiovascular outcomes in men and women. Along these lines, taking into account the sex-related differences in diagnosis, prognosis, and treatment outcomes is of profound importance. In this review, the sex-related differences in patients with CAVD, in terms of pathobiology, clinical phenotypes, and outcomes were discussed.
Collapse
Affiliation(s)
- Volha I. Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia;
- Correspondence:
| | - Donato Moschetta
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Monzino Cardiology Center IRCCS, 20138 Milan, Italy; (D.M.); (P.P.); (V.A.M.)
- Department of Pharmacological and Biomolecular Sciences, The University of Milan, 20133 Milan, Italy
| | - Alexander N. Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Monzino Cardiology Center IRCCS, 20138 Milan, Italy; (D.M.); (P.P.); (V.A.M.)
| | - Veronika A. Myasoedova
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Monzino Cardiology Center IRCCS, 20138 Milan, Italy; (D.M.); (P.P.); (V.A.M.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| |
Collapse
|
17
|
Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ 2020; 11:31. [PMID: 32487164 PMCID: PMC7268741 DOI: 10.1186/s13293-020-00306-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress, endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification of targets with therapeutic potential would contribute to the development of more efficient treatments according to individual needs.
Collapse
Affiliation(s)
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Abstract
Hypertension represents one of the most important and most frequent cardiovascular risk factors responsible for heart failure (HF) development. Both sexes are equally affected by arterial hypertension. The difference is lying in the fact that prevalence of hypertension as well as hypertension-induced target organ damage varies during lifetime due to substantial variation of sex hormones in women. Left ventricular (LV) structural, functional, and mechanical changes induced by hypertension are well-known complications that occur in both sexes and they are responsible for HF development. However, their prevalence is significantly different between women and men, which could potentially explain the variation in HF occurrence and prognosis between the sexes. Studies have shown that the prevalence of left ventricular hypertrophy is higher in men. The data are not consistent regarding LV diastolic dysfunction and a similar report has been given for LV mechanical changes. Most investigations agree that LV longitudinal strain is lower among hypertensive men. However, even in the healthy population, men have lower LV longitudinal strain and the cutoff values are still missing. Therefore, it would be difficult to draw the conclusion that LV mechanical dysfunction is more prevalent among men. The main mechanisms responsible for sex-related LV remodeling are sex hormones and their influence on biohumoral systems. This review provides an updated overview of the available data about sex-related LV remodeling, as well as potential mechanisms for these changes, in the patients with arterial hypertension.
Collapse
Affiliation(s)
- Marijana Tadic
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.
| | - Cesare Cuspidi
- Clinical Research Unit, University of Milan-Bicocca and Istituto Auxologico Italiano IRCCS, Viale della Resistenza 23, 20036, Meda, Italy
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University Milano-Bicocca, Milan, Italy
| |
Collapse
|
19
|
Wu J, Dai F, Li C, Zou Y. Gender Differences in Cardiac Hypertrophy. J Cardiovasc Transl Res 2019; 13:73-84. [PMID: 31418109 DOI: 10.1007/s12265-019-09907-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Cardiac hypertrophy is an adaptive response to abnormal physiological and pathological stimuli, which can be classified into concentric and eccentric hypertrophy, induced by pressure overload or volume overload, respectively. In both physiological and pathological scenarios, females generally show a more favorable form of hypertrophy compared with their male counterparts. However once established, cardiac hypertrophy is a stronger risk factor for heart failure in females. Pre-menopausal women are better protected against cardiac hypertrophy compared with men, but this protection is abolished following menopause and is partially restored after estrogen replacement therapy. Estrogen exerts its protection by counteracting pro-hypertrophy signaling pathways, whereas androgen mostly plays an opposite role in cardiac hypertrophy. We here summarize the progress in the understanding of sexual dimorphisms in cardiac hypertrophy and highlight recent breakthroughs in the regulatory role of sex hormones and their intricate molecular networks, in order to shed light on gender-oriented therapeutic efficacy for pathological hypertrophy.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Fangjie Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
20
|
Effects of Cardiac Hypertrophy, Diabetes, Aging, and Pregnancy on the Cardioprotective Effects of Postconditioning in Male and Female Rats. Cardiol Res Pract 2019; 2019:3403959. [PMID: 31198607 PMCID: PMC6526533 DOI: 10.1155/2019/3403959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/12/2019] [Accepted: 03/25/2019] [Indexed: 01/17/2023] Open
Abstract
Background Aging, left ventricular hypertrophy (LVH), diabetes mellitus, and pregnancy are well-recognized risk factors that increase the prevalence of cardio-ischemic events and are linked to poor clinical recovery following acute myocardial infarction. The coexistence of these risk factors with ischemic heart disease (IHD) deteriorates disease prognosis and could potentially lead to fatal arrhythmias and heart failure. The objective of this study was to investigate the vulnerability of hearts with aging, LVH, diabetes, and pregnancy to ischemic insult and their response to pacing postconditioning- (PPC-) induced heart protection. Methods Hearts isolated from aged, spontaneously hypertensive and diabetic male and female rats and hearts from pregnant female rats (n=8 per group) were subjected to coronary occlusion followed by reperfusion using a modified Langendorff system. Hemodynamics data were computed digitally, and cardiac damage was accessed by measurements of infarct size and cardiac enzyme release. Results There were no significant differences in the vulnerability of all hearts to ischemic insult compared to their respective controls. PPC improved cardiac hemodynamics and reduced infarct size and cardiac enzyme release in hearts isolated from aged and spontaneously hypertensive female rats and female rats with hypertrophied hearts subjected to PPC (P < 0.001). Aged or hypertrophied male hearts were not protected by PPC maneuver. Moreover, the protective effects of PPC were lost in diabetic male and female hearts although retained in hearts from pregnant rats. Conclusions We demonstrate that aging, LVH, diabetes mellitus, and pregnancy do not affect cardiac vulnerability to ischemic insult. Moreover, PPC mediates cardioprotection in a gender-specific manner in aged and spontaneously hypertensive rats. Diabetes mellitus provokes the protective effects of PPC on both genders equally. Finally, we demonstrate that PPC is a new cardioprotective maneuver in hearts from pregnant female rats.
Collapse
|
21
|
Zhao Y, Song W, Wang L, Rane MJ, Han F, Cai L. Multiple roles of KLF15 in the heart: Underlying mechanisms and therapeutic implications. J Mol Cell Cardiol 2019; 129:193-196. [PMID: 30831134 DOI: 10.1016/j.yjmcc.2019.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Although there is an increasing understanding of the signaling pathways that promote cardiac hypertrophy, negative regulatory factors of this process have received less attention. Increasing evidence indicates that Krüppel-like factor 15 (KLF15) plays an important role in maintaining cardiac function by controlling the transcriptional pathways that regulating cardiac metabolism. Recent studies have also revealed a vital role for KLF15 as an inhibitor of pathological cardiac hypertrophy and fibrosis via its effects on factors such as myocyte enhancer factor 2 (MEF2), GATA-binding protein 4 (GATA4), transforming growth factor-β (TGF-β), and myocardin. KLF15 may therefore be an effective therapeutic target for the treatment of heart failure and other cardiovascular diseases. In this review, we focus on the physiological and pathophysiological roles of KLF15 in the heart and the potential mechanisms through which KLF15 is regulated in various cardiac diseases.
Collapse
Affiliation(s)
- Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lizhe Wang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Madhavi J Rane
- Departments of Medicine, Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
22
|
Sanchez-Ruderisch H, Queirós AM, Fliegner D, Eschen C, Kararigas G, Regitz-Zagrosek V. Sex-specific regulation of cardiac microRNAs targeting mitochondrial proteins in pressure overload. Biol Sex Differ 2019; 10:8. [PMID: 30728084 PMCID: PMC6366038 DOI: 10.1186/s13293-019-0222-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Background Maladaptive remodeling in pressure overload (PO)-induced left ventricular hypertrophy (LVH) may lead to heart failure. Major sex differences have been reported in this process. The steroid hormone 17β-estradiol, along with its receptors ERα and ERβ, is thought to be crucial for sex differences and is expected to be protective, but this may not hold true for males. Increasing evidence demonstrates a major role for microRNAs (miRNAs) in PO-induced LVH. However, little is known about the effects of biological sex and ERβ on cardiac miRNA regulation and downstream mitochondrial targets. We aimed at the analysis of proteins involved in mitochondrial metabolism testing the hypothesis that they are the target of sex-specific miRNA regulation. Methods We employed the transverse aortic constriction model in mice and assessed the levels of five mitochondrial proteins, i.e., Auh, Crat, Decr1, Hadha, and Ndufs4. Results We found a significant decrease of the mitochondrial proteins primarily in the male overloaded heart compared with the corresponding control group. Following computational analysis to identify miRNAs putatively targeting these proteins, our in vitro experiments employing miRNA mimics demonstrated the presence of functional target sites for miRNAs in the 3′-untranslated region of the messenger RNAs coding for these proteins. Next, we assessed the levels of the functionally validated miRNAs under PO and found that their expression was induced only in the male overloaded heart. In contrast, there was no significant effect on miRNA expression in male mice with deficient ERβ. Conclusion We put forward that the male-specific induction of miRNAs and corresponding downregulation of downstream protein targets involved in mitochondrial metabolism may contribute to sex-specific remodeling in PO-induced LVH.
Collapse
Affiliation(s)
- Hugo Sanchez-Ruderisch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine and Center for Cardiovascular Research, and DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Ana Maria Queirós
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine and Center for Cardiovascular Research, and DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Daniela Fliegner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine and Center for Cardiovascular Research, and DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Claudia Eschen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine and Center for Cardiovascular Research, and DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine and Center for Cardiovascular Research, and DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| | - Vera Regitz-Zagrosek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine and Center for Cardiovascular Research, and DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
23
|
Mahmoodzadeh S, Dworatzek E. The Role of 17β-Estradiol and Estrogen Receptors in Regulation of Ca 2+ Channels and Mitochondrial Function in Cardiomyocytes. Front Endocrinol (Lausanne) 2019; 10:310. [PMID: 31156557 PMCID: PMC6529529 DOI: 10.3389/fendo.2019.00310] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Numerous epidemiological, clinical, and animal studies showed that cardiac function and manifestation of cardiovascular diseases (CVDs) are different between males and females. The underlying reasons for these sex differences are definitely multifactorial, but major evidence points to a causal role of the sex steroid hormone 17β-estradiol (E2) and its receptors (ER) in the physiology and pathophysiology of the heart. Interestingly, it has been shown that cardiac calcium (Ca2+) ion channels and mitochondrial function are regulated in a sex-specific manner. Accurate mitochondrial function and Ca2+ signaling are of utmost importance for adequate heart function and crucial to maintaining the cardiovascular health. Due to the highly sensitive nature of these processes in the heart, this review article highlights the current knowledge regarding sex dimorphisms in the heart implicating the importance of E2 and ERs in the regulation of cardiac mitochondrial function and Ca2+ ion channels, thus the contractility. In particular, we provide an overview of in-vitro and in-vivo studies using either E2 deficiency; ER deficiency or selective ER activation, which suggest that E2 and ERs are strongly involved in these processes. In this context, this review also discusses the divergent E2-responses resulting from the activation of different ER subtypes in these processes. Detailed understanding of the E2 and ER-mediated molecular and cellular mechanisms in the heart under physiological and pathological conditions may help to design more specifically targeted drugs for the management of CVDs in men and women.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- *Correspondence: Shokoufeh Mahmoodzadeh
| | - Elke Dworatzek
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Gender in Medicine, Charité Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
24
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
25
|
Groban L, Tran QK, Ferrario CM, Sun X, Cheng CP, Kitzman DW, Wang H, Lindsey SH. Female Heart Health: Is GPER the Missing Link? Front Endocrinol (Lausanne) 2019; 10:919. [PMID: 31993020 PMCID: PMC6970950 DOI: 10.3389/fendo.2019.00919] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor that mediates non-genomic actions of the primary female sex hormone 17β-estradiol. Studies over the past two decades have elucidated the beneficial actions of this receptor in a number of cardiometabolic diseases. This review will focus specifically on the cardiac actions of GPER, since this receptor is expressed in cardiomyocytes as well as other cells within the heart and most likely contributes to estrogen-induced cardioprotection. Studies outlining the impact of GPER on diastolic function, mitochondrial function, left ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility are discussed. In addition, recent data using genetic mouse models with global or cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due to menopause in combination with chronological aging contributes to unique aspects of cardiac dysfunction in women, this receptor may provide novel therapeutic effects. While clinical studies are still required to fully understand the potential for pharmacological targeting of this receptor in postmenopausal women, this review will summarize the evidence gathered thus far on its likely beneficial effects.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- *Correspondence: Leanne Groban
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Che Ping Cheng
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Dalane W. Kitzman
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
26
|
Bernasochi GB, Boon WC, Delbridge LMD, Bell JR. The myocardium and sex steroid hormone influences. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Rodgers JL, Rodgers LE, Tian Z, Allen‐Gipson D, Panguluri SK. Sex differences in murine cardiac pathophysiology with hyperoxia exposure. J Cell Physiol 2018; 234:1491-1501. [DOI: 10.1002/jcp.27010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/22/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jennifer L. Rodgers
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
| | - Lydia E. Rodgers
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
| | - Zhi Tian
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
| | - Diane Allen‐Gipson
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
- Division of Allergy and Immunology, Department of Internal Medicine College of Medicine, University of South Florida Tampa Florida
| | - Siva K. Panguluri
- Department of Pharmaceutical Sciences College of Pharmacy, University of South Florida Tampa Florida
| |
Collapse
|
28
|
Hoa N, Ge L, Korach KS, Levin ER. Estrogen receptor beta maintains expression of KLF15 to prevent cardiac myocyte hypertrophy in female rodents. Mol Cell Endocrinol 2018; 470:240-250. [PMID: 29127073 PMCID: PMC6242344 DOI: 10.1016/j.mce.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Maintaining a healthy, anti-hypertrophic state in the heart prevents progression to cardiac failure. In humans, angiotensin II (AngII) indirectly and directly stimulates hypertrophy and progression, while estrogens acting through estrogen receptor beta (ERβ) inhibit these AngII actions. The KLF15 transcription factor has been purported to provide anti-hypertrophic action. In cultured neonatal rat cardiomyocytes, we found AngII inhibited KLF1 expression and nuclear localization, substantially prevented by estradiol (E2) or β-LGND2 (β-LGND2), an ERβ agonist. AngII stimulation of transforming growth factor beta expression in the myocytes activated p38α kinase via TAK1 kinase, inhibiting KLF15 expression. All was comparably reduced by E2 or β-LGND2. Knockdown of KLF15 in the myocytes induced myocyte hypertrophy and limited the anti-hypertrophic actions of E2 and β-LGND2. Key aspects were confirmed in an in-vivo model of cardiac hypertrophy. Our findings define additional anti-hypertrophic effects of ERβ supporting testing specific receptor agonists in humans to prevent progression of cardiac disease.
Collapse
Affiliation(s)
- Neil Hoa
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA
| | - Lisheng Ge
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA
| | | | - Ellis R Levin
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA; Department of Medicine, University of California, Irvine, CA, 92717, USA; Department of Biochemistry, University of California, Irvine, CA, 92717, USA.
| |
Collapse
|
29
|
Fang HY, Hung MY, Lin YM, Pandey S, Chang CC, Lin KH, Shen CY, Viswanadha VP, Kuo WW, Huang CY. 17β-Estradiol and/or estrogen receptor alpha signaling blocks protein phosphatase 1 mediated ISO induced cardiac hypertrophy. PLoS One 2018; 13:e0196569. [PMID: 29723269 PMCID: PMC5933784 DOI: 10.1371/journal.pone.0196569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
Earlier studies have shown that estrogen possess protective function against the development of pathological cardiac hypertrophy. However, the molecular mechanisms of estrogens (E2) protective effect are poorly understood. Additionally, abnormal activation of β-adrenergic signaling have been implicated in the development of pathological cardiac remodeling. However, the role of serine/threonine protein phosphatase 1 (PP1) in pathological cardiac remodeling under the influence of β-adrenergic signaling have been sparsely investigated. In this study, we assessed the downstream effects of abnormal activation of PP1 upon isoproterenol (ISO) induced pathological cardiac changes. We found that pre-treatment of 17β-estradiol (E2), tet-on estrogen receptor-α, or both significantly inhibited ISO-induced increase in cell size, hypertrophy marker gene expression and cytosolic calcium accumulation in H9c2 cells. Additionally, treatment with estrogen receptor inhibitor (ICI) reversed those effects, implicating role of E2 in inhibiting pathological cardiac remodeling. However, specific inhibition of ERα using melatonin, reduced ISO-induced PP1c expression and enhanced the level of ser-16 phosphorylated phospholamban (PLB), responsible for regulation of sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Furthermore, hypertrophic effect caused by overexpression of PP1cα was reduced by treatment with specific inhibitor of ERα. Collectively, we found that estrogen and estrogen receptor-α have protective effect against pathological cardiac changes by suppressing PP1 expression and its downstream signaling pathway, which further needs to be elucidated.
Collapse
Affiliation(s)
- Hsin-Yuan Fang
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Yu Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Chien Chang
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
30
|
Baetta R, Pontremoli M, Fernandez AM, Spickett CM, Banfi C. Reprint of: Proteomics in cardiovascular diseases: Unveiling sex and gender differences in the era of precision medicine. J Proteomics 2018; 178:57-72. [PMID: 29622522 DOI: 10.1016/j.jprot.2018.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 01/19/2023]
Abstract
Cardiovascular diseases (CVDs) represent the most important cause of mortality in women and in men. Contrary to the long-standing notion that the effects of the major risk factors on CVD outcomes are the same in both sexes, recent evidence recognizes new, potentially independent, sex/gender-related risk factors for CVDs, and sex/gender-differences in the clinical presentation of CVDs have been demonstrated. Furthermore, some therapeutic options may not be equally effective and safe in men and women. In this context, proteomics offers an extremely useful and versatile analytical platform for biomedical researches that expand from the screening of early diagnostic and prognostic biomarkers to the investigation of the molecular mechanisms underlying CDVs. In this review, we summarized the current applications of proteomics in the cardiovascular field, with emphasis on sex and gender-related differences in CVDs. SIGNIFICANCE Increasing evidence supports the profound effect of sex and gender on cardiovascular physio-pathology and the response to drugs. A clear understanding of the mechanisms underlying sexual dimorphisms in CVDs would not only improve our knowledge of the etiology of these diseases, but could also inform health policy makers and guideline committees in tailoring specific interventions for the prevention, treatment and management of CVDs in both men and women.
Collapse
|
31
|
Reumiller CM, Schmidt GJ, Dhrami I, Umlauf E, Rappold E, Zellner M. Gender-related increase of tropomyosin-1 abundance in platelets of Alzheimer's disease and mild cognitive impairment patients. J Proteomics 2017; 178:73-81. [PMID: 29278785 DOI: 10.1016/j.jprot.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/13/2023]
Abstract
The incidence of Alzheimer's disease (AD) is higher in elderly women than in men. The molecular background of this gender-related risk, however, is largely unknown. In a previous proteomics study, we identified significantly elevated levels of monoamine oxidase-B and tropomyosin-1 in AD patients, together with significant changes of the genetic AD risk factors apolipoprotein E4 (APOE4) and glutathione S-transferase omega 1 (GSTO1), in platelets - a promising source for AD blood biomarkers. The present study aimed to investigate the gender-specificity as well as the disease-stage dependency of these biomarkers in AD patients and those with mild cognitive impairment (MCI). Tropomyosin-1 and monoamine oxidase-B protein levels were quantified by 2-D DIGE and 1-D Western blotting. Here, for the first time, we revealed a significant increase of 38&39kDa tropomyosin-1 protein levels in female but not male AD (+56%; p=0.008) and MCI patients (+46%; p=0.041) measured by 1-D WB. In contrast, levels of monoamine oxidase-B were, independently of gender, elevated in AD patients (+52%; p=0.009) but unaltered in MCI compared to control subjects. Moreover, we confirmed that APOE4-positive females are at a higher risk (OR=18.7; p=9.7E-09) of developing AD compared to APOE4-positive males (OR=6.5; p=5.9E-04). No gender-related effects were observed for GSTO1. SIGNIFICANCE Platelet tropomyosin-1 constitutes a gender-related and stage-dependent protein in cognitive impairment. In contrast, platelet monoamine oxidase-B, frequently described to be increased in platelets and brains of AD patients, shows a gender-independent but stage-related increase since it is unaltered in MCI subjects. A blood biomarker test for this preceding stage of AD that considers gender-specificity is not yet available. The newly described AD-related platelet protein profiles might refine and facilitate routine diagnosis and enable early as well as tailored interventions.
Collapse
Affiliation(s)
- Christina Maria Reumiller
- Center of Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | | | - Ina Dhrami
- Center of Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Ellen Umlauf
- Center of Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Eduard Rappold
- Center of Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Maria Zellner
- Center of Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Baetta R, Pontremoli M, Martinez Fernandez A, Spickett CM, Banfi C. Proteomics in cardiovascular diseases: Unveiling sex and gender differences in the era of precision medicine. J Proteomics 2017; 173:62-76. [PMID: 29180046 DOI: 10.1016/j.jprot.2017.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) represent the most important cause of mortality in women and in men. Contrary to the long-standing notion that the effects of the major risk factors on CVD outcomes are the same in both sexes, recent evidence recognizes new, potentially independent, sex/gender-related risk factors for CVDs, and sex/gender-differences in the clinical presentation of CVDs have been demonstrated. Furthermore, some therapeutic options may not be equally effective and safe in men and women. In this context, proteomics offers an extremely useful and versatile analytical platform for biomedical researches that expand from the screening of early diagnostic and prognostic biomarkers to the investigation of the molecular mechanisms underlying CDVs. In this review, we summarized the current applications of proteomics in the cardiovascular field, with emphasis on sex and gender-related differences in CVDs. SIGNIFICANCE Increasing evidence supports the profound effect of sex and gender on cardiovascular physio-pathology and the response to drugs. A clear understanding of the mechanisms underlying sexual dimorphisms in CVDs would not only improve our knowledge of the etiology of these diseases, but could also inform health policy makers and guideline committees in tailoring specific interventions for the prevention, treatment and management of CVDs in both men and women.
Collapse
|
33
|
Rabadiya S, Bhadada S, Dudhrejiya A, Vaishnav D, Patel B. Magnesium valproate ameliorates type 1 diabetes and cardiomyopathy in diabetic rats through estrogen receptors. Biomed Pharmacother 2017; 97:919-927. [PMID: 29136770 DOI: 10.1016/j.biopha.2017.10.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 01/14/2023] Open
Abstract
Estrogen is known to exhibit cardioprotective and antihyperlipidemic action. Valproic acid has been shown to upregulate estrogen receptors (ERs) in breast and prostate cancer tissues. No pharmacological evaluations for magnesium valproate (MgV) so far have been done for diabetic cadio-lipidemic complications. Based on the above context, current study was undertaken to evaluate the therapeutic effectiveness of MgV in cardiac complications associated with type-1 diabetes mellitus in rats wherein diabetes was induced by single tail vein injection of streptozotocin (STZ, 45mg/kg, IV) in female Sprague Dawley rats and treatment of MgV (210mg/kg, PO) was given for eight weeks to diabetic animals, after which, various biochemical and cardiac biomarkers, hypertrophic, hemodynamic and histological parameters along with immunohistochemistry of ERs in the left ventricle (LV) were estimated. MgV treatment significantly controlled hyperglycemia and dyslipidemia, reduced elevated cardiac biomarkers and C-reactive protein(CRP), significantly improved hemodynamic functions and increased the rate of pressure development and decay. MgV also significantly reduced left ventricular hypertrophy index and cardiac hypertrophy index, LV wall thickness, LV collagen, cardiomyocyte diameter and prevented the oxidative stress with significant increase in Na+-K+-ATPase activity in LV. Moreover, MgV reversed STZ-induced histological alterations and decreased glycogen content in LV and increased the ERβ expressions in LV as evidenced by immunohistochemistry. The result indicated that MgV prevented disease progression in the early stage of diabetic cardiomyopathy which seems to be mediated by upregulation of estrogen receptors in LV tissue.
Collapse
Affiliation(s)
- Samir Rabadiya
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Shradhha Bhadada
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Ashvin Dudhrejiya
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Devendra Vaishnav
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Bhoomika Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India.
| |
Collapse
|
34
|
Sritharen Y, Enriquez-Sarano M, Schaff HV, Casaclang-Verzosa G, Miller JD. Pathophysiology of Aortic Valve Stenosis: Is It Both Fibrocalcific and Sex Specific? Physiology (Bethesda) 2017; 32:182-196. [PMID: 28404735 PMCID: PMC6148342 DOI: 10.1152/physiol.00025.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/24/2022] Open
Abstract
Our understanding of the fundamental biology and identification of efficacious therapeutic targets in aortic valve stenosis has lagged far behind the fields of atherosclerosis and heart failure. In this review, we highlight the most clinically relevant problems facing men and women with fibrocalcific aortic valve stenosis, discuss the fundamental biology underlying valve calcification and fibrosis, and identify key molecular points of intersection with sex hormone signaling.
Collapse
Affiliation(s)
- Yoginee Sritharen
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Hartzell V Schaff
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Grace Casaclang-Verzosa
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jordan D Miller
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota;
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Surgery, Mayo Clinic, Rochester, Minnesota; and the
- Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
36
|
Dworatzek E, Mahmoodzadeh S. Targeted basic research to highlight the role of estrogen and estrogen receptors in the cardiovascular system. Pharmacol Res 2017; 119:27-35. [PMID: 28119050 DOI: 10.1016/j.phrs.2017.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/18/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
Epidemiological, clinical and animal studies revealed that sex differences exist in the manifestation and outcome of cardiovascular disease (CVD). The underlying molecular mechanisms implicated in these sex differences are not fully understood. The reasons for sex differences in CVD are definitely multifactorial, but major evidence points to the contribution of sex steroid hormone, 17β-estradiol (E2), and its receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). In this review, we summarize past and present studies that implicate E2 and ER as important determinants of sexual dimorphism in the physiology and pathophysiology of the heart. In particular, we give an overview of studies aimed to reveal the role of E2 and ER in the physiology of the observed sex differences in CVD using ER knock-out mice. Finally, we discuss recent findings from novel transgenic mouse models, which have provided new information on the sexual dimorphic roles of ER specifically in cardiomyocytes under pathological conditions.
Collapse
Affiliation(s)
- Elke Dworatzek
- Institut of Gender in Medicine and Center for Cardiovascular Research, Charitè-Universitaetsmedizin Berlin, Berlin, Germany; DZHK (German Center for Cardiovascular Research, partner site Berlin), Berlin, Germany
| | - Shokoufeh Mahmoodzadeh
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research, partner site Berlin), Berlin, Germany.
| |
Collapse
|
37
|
17β-Estradiol-induced interaction of estrogen receptor α and human atrial essential myosin light chain modulates cardiac contractile function. Basic Res Cardiol 2016; 112:1. [DOI: 10.1007/s00395-016-0590-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022]
|
38
|
Babiker F, Al-Jarallah A, Joseph S. The Interplay between the Renin Angiotensin System and Pacing Postconditioning Induced Cardiac Protection. PLoS One 2016; 11:e0165777. [PMID: 27814397 PMCID: PMC5096684 DOI: 10.1371/journal.pone.0165777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Accumulating evidence suggests a cardioprotective role of pacing postconditioning (PPC) maneuvers in animal models and more recently in humans. The procedure however remains to be optimized and its interaction with physiological systems remains to be further explored. The renin angiotensin system (RAS) plays a dual role in ischemia/reperfusion (I/R) injury. The interaction between RAS and PPC induced cardiac protection is however not clearly understood. We have recently demonstrated that angiotensin (1–7) via Mas receptor played a significant role in PPC mediated cardiac protection against I/R injury. Objective The objective of this study was to investigate the role of angiotensin converting enzyme (ACE)—chymase—angiotensin II (Ang II)—angiotensin receptor 1 (AT1) axes of RAS in PPC mediated cardiac protection. Methods Isolated rat hearts were subjected to I/R (control) or PPC in the presence or absence of Ang II, chymostatin (inhibitor of locally produced Ang II), ACE blocker (captopril) or AT1 antagonist (irbesartan). Hemodynamics data was computed digitally and infarct size was determined histologically using TTC staining and biochemically by measuring creatine kinase (CK) and lactate dehydrogenase levels. Results Cardiac hemodynamics were significantly (P<0.001) improved and infarct size and cardiac enzymes were significantly (P<0.001) reduced in hearts subjected to PPC relative to hearts subjected to I/R injury. Exogenous administration of Ang II did not affect I/R injury or PPC mediated protection. Nonetheless inhibition of endogenously synthesized Ang II protected against I/R induced cardiac damage yet did not block or augment the protective effects of PPC. The administration of AT1 antagonist did not alleviate I/R induced damage. Interestingly it abrogated PPC induced cardiac protection in isolated rat hearts. Finally, PPC induced protection and blockade of locally produced Ang II involved enhanced activation of ERK1/2 and Akt components of the reperfusion injury salvage kinase (RISK) pathway. Conclusions This study demonstrate a novel role of endogenously produced Ang II in mediating I/R injury and highlights the significance of AT1 signaling in PPC mediated cardiac protection in isolated rodents hearts ex vivo. The interaction between Ang II-AT1 and PPC appears to involve alterations in the activation state of ERK1/2 and Akt components of the RISK pathway.
Collapse
Affiliation(s)
- Fawzi Babiker
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
- * E-mail:
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| | - Shaji Joseph
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
39
|
El Hajj MC, Ninh VK, El Hajj EC, Bradley JM, Gardner JD. Estrogen receptor antagonism exacerbates cardiac structural and functional remodeling in female rats. Am J Physiol Heart Circ Physiol 2016; 312:H98-H105. [PMID: 27769996 DOI: 10.1152/ajpheart.00348.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
We have previously demonstrated the cardioprotective effects of ovarian hormones against adverse ventricular remodeling imposed by chronic volume overload. Here, we assess the estrogen receptor dependence of this cardioprotection. Four groups of female rats were studied: sham-operated (Sham), volume overloaded [aortocaval fistula (ACF)], Sham treated with estrogen receptor antagonist ICI 182,780 (Sham + ICI), and ACF treated with ICI. Cardiac function was assessed temporally using echocardiogram, and tissue samples were collected at 5 days and 6 wk postsurgery. All rats with volume overload had significantly increased cardiac output (96 ± 32 ml/min for ACF and 108 ± 11 ml/min for ACF + ICI vs. 31 ± 2 for Sham, P < 0.05). At 6 wk, volume overload induced significant left ventricular (LV) hypertrophy in both untreated and treated ACF groups. Both ACF groups developed significantly increased LV end-diastolic diameter (LVEDD), indicating LV dilatation, with the ACF + ICI group having the greatest increase (340%, relative to Sham). Ejection fraction was significantly reduced in the ACF + ICI group (23% reduction) at 6 wk postsurgery compared with untreated ACF (P < 0.05). Interstitial collagen staining was significantly reduced by volume overload, with estrogen receptor antagonism causing greater collagen loss at both 5 days and 6 wk postsurgery. Furthermore, volume overload induced a significant increase in LV wall stress only in rats treated with estrogen antagonist. These data indicate that estrogen receptor signaling is essential for sex hormone-dependent cardioprotection against adverse remodeling. The maintenance of myocardial extracellular matrix collagen appears to play a key role in this cardioprotection. NEW & NOTEWORTHY We assessed the estrogen receptor (ER) dependence of female-specific cardioprotection using a rat model of chronic volume-overload stress. ER antagonism worsened ventricular wall stress, ventricular dilation, and cardiac dysfunction induced by volume overload. Further, blocking ERs resulted in cardiac remodeling and functional changes similar to that previously found in ovariectomized rats.
Collapse
Affiliation(s)
- M C El Hajj
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - V K Ninh
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - E C El Hajj
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - J M Bradley
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - J D Gardner
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
40
|
Pedram A, Razandi M, Narayanan R, Levin ER. Estrogen receptor beta signals to inhibition of cardiac fibrosis. Mol Cell Endocrinol 2016; 434:57-68. [PMID: 27321970 DOI: 10.1016/j.mce.2016.06.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022]
Abstract
Cardiac fibrosis evolves from the cardiac hypertrophic state. In this respect, estrogen and estrogen receptor beta (ERβ) inhibit the effects of cardiac hypertrophic peptides that also stimulate fibrosis. Here we determine details of the anti-fibrotic functions of ERβ. In acutely isolated rat cardiac fibroblasts. E2 or a specific ERβ agonist (βLGND2) blocked angiotensin II (AngII) signaling to fibrosis. This resulted from ERβ activating protein kinase A and AMP kinase, inhibiting both AngII de-phosphorylation of RhoA and the resulting stimulation of Rho kinase. Inhibition of Rho kinase from ERβ signaling resulted in marked decrease of TGFβ expression, connective tissue growth factor production and function, matrix metalloproteinases 2 and 9 expression and activity, and the conversion of fibroblasts to myofibroblasts. Production of collagens I and III were also significantly decreased. Several important aspects were corroborated in-vivo from βLGND2-treated mice that underwent AngII-induced cardiac hypertrophy. Thus, ERβ in cardiac fibroblasts prevents key aspects of cardiac fibrosis development.
Collapse
Affiliation(s)
- Ali Pedram
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, CA 90822, United States
| | - Mahnaz Razandi
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, CA 90822, United States
| | - Ramesh Narayanan
- Department of Medicine, University of Tennessee, Memphis, TE, 38163, United States
| | - Ellis R Levin
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, CA 90822, United States; Departments of Medicine and Biochemistry, University of California, Irvine, Irvine, CA 92717, United States.
| |
Collapse
|
41
|
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ Res 2016; 118:1294-312. [PMID: 27081111 DOI: 10.1161/circresaha.116.307509] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Nearly one-third of deaths in the United States are caused by cardiovascular disease (CVD) each year. In the past, CVD was thought to mainly affect men, leading to the exclusion of women and female animals from clinical studies and preclinical research. In light of sexual dimorphisms in CVD, a need exists to examine baseline cardiac differences in humans and the animals used to model CVD. In humans, sex differences are apparent at every level of cardiovascular physiology from action potential duration and mitochondrial energetics to cardiac myocyte and whole-heart contractile function. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Although endogenous estrogen is most likely a mediator of the observed functional differences in both health and disease, the signaling mechanisms involved are complex and are not yet fully understood. To investigate how sex modulates CVD development, animal models are essential tools and should be useful in the development of therapeutics. This review will focus on describing the cardiovascular sexual dimorphisms that exist both physiologically and in common animal models of CVD.
Collapse
Affiliation(s)
- Christa L Blenck
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Pamela A Harvey
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Jane F Reckelhoff
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.).
| |
Collapse
|
42
|
Pugach EK, Blenck CL, Dragavon JM, Langer SJ, Leinwand LA. Estrogen receptor profiling and activity in cardiac myocytes. Mol Cell Endocrinol 2016; 431:62-70. [PMID: 27164442 PMCID: PMC4899180 DOI: 10.1016/j.mce.2016.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/14/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023]
Abstract
Estrogen signaling appears critical in the heart. However a mechanistic understanding of the role of estrogen in the cardiac myocyte is lacking. Moreover, there are multiple cell types in the heart and multiple estrogen receptor (ER) isoforms. Therefore, we studied expression, localization, transcriptional and signaling activity of ERs in isolated cardiac myocytes. We found only ERα RNA (but no ERβ RNA) in cardiac myocytes using two independent methods. The vast majority of full-length ERα protein (ERα66) localizes to cardiac myocyte nuclei where it is competent to activate transcription. Alternate isoforms of ERα encoded by the same genomic locus (ERα46 and ERα36) have differential transcriptional activity in cardiac myocytes but also primarily localize to nuclei. In contrast to other reports, no ERα isoform is competent to activate MAPK or PI3K signaling in cardiac myocytes. Together these data support a role for ERα at the level of transcription in cardiac myocytes.
Collapse
Affiliation(s)
- Emily K Pugach
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| | - Christa L Blenck
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| | - Joseph M Dragavon
- University of Colorado, BioFrontiers Advanced Light Microscopy Core, BioFrontiers Institute, Boulder, CO 80309 USA
| | - Stephen J Langer
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| | - Leslie A Leinwand
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| |
Collapse
|
43
|
Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats. Adv Pharmacol Sci 2016; 2016:2428052. [PMID: 26941790 PMCID: PMC4752972 DOI: 10.1155/2016/2428052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/10/2016] [Indexed: 01/20/2023] Open
Abstract
The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (-); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats.
Collapse
|
44
|
Muka T, Vargas KG, Jaspers L, Wen KX, Dhana K, Vitezova A, Nano J, Brahimaj A, Colpani V, Bano A, Kraja B, Zaciragic A, Bramer WM, van Dijk GM, Kavousi M, Franco OH. Estrogen receptor β actions in the female cardiovascular system: A systematic review of animal and human studies. Maturitas 2016; 86:28-43. [PMID: 26921926 DOI: 10.1016/j.maturitas.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/27/2022]
Abstract
Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anna Vitezova
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Adela Brahimaj
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Veronica Colpani
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Arjola Bano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Gaby M van Dijk
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Cacioppo JA, Koo Y, Lin PCP, Osmulski SA, Ko CD, Ko C. Generation of an estrogen receptor beta-iCre knock-in mouse. Genesis 2016; 54:38-52. [PMID: 26663382 DOI: 10.1002/dvg.22911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023]
Abstract
A novel knock-in mouse that expresses codon-improved Cre recombinase (iCre) under regulation of the estrogen receptor beta (Esr2) promoter was developed for conditional deletion of genes and for the spatial and/or temporal localization of Esr2 expression. ESR2 is one of two classical nuclear estrogen receptors and displays a spatiotemporal expression pattern and functions that are different from the other estrogen receptor, ESR1. A cassette was constructed that contained iCre, a polyadenylation sequence, and a neomycin selection marker. This construct was used to insert iCre in front of the endogenous start codon of the Esr2 gene of a C57BL/6J embryonic stem cell line via homologous recombination. Resulting Esr2-iCre mice were bred with ROSA26-lacZ and Ai9-RFP reporter mice to visualize cells of functional iCre expression. Strong expression was observed in the ovary, the pituitary, the interstitium of the testes, the head and tail but not body of the epididymis, skeletal muscle, the coagulation gland (anterior prostate), the lung, and the preputial gland. Additional diffuse or patchy expression was observed in the cerebrum, the hypothalamus, the heart, the adrenal gland, the colon, the bladder, and the pads of the paws. Overall, Esr2-iCre mice will serve as a novel line for conditionally ablating genes in Esr2-expressing tissues, identifying novel Esr2-expressing cells, and differentiating the functions of ESR2 and ESR1.
Collapse
Affiliation(s)
- Joseph A Cacioppo
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| | - Yongbum Koo
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802.,School of Biological Sciences, Inje University, Gimhae, South Korea
| | - Po-Ching Patrick Lin
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| | - Sarah A Osmulski
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| | - Chunjoo D Ko
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| | - CheMyong Ko
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| |
Collapse
|
46
|
Menazza S, Murphy E. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circ Res 2016; 118:994-1007. [PMID: 26838792 DOI: 10.1161/circresaha.115.305376] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.
Collapse
Affiliation(s)
- Sara Menazza
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Elizabeth Murphy
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
47
|
Abwainy A, Babiker F, Akhtar S, Benter IF. Endogenous angiotensin-(1-7)/Mas receptor/NO pathway mediates the cardioprotective effects of pacing postconditioning. Am J Physiol Heart Circ Physiol 2015; 310:H104-12. [PMID: 26519026 DOI: 10.1152/ajpheart.00121.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to investigate the role of the ANG-(1-7) receptor (Mas) and nitric oxide (NO) in pacing postconditiong (PPC)-mediated cardioprotection against ischemia-reperfusion injury. Cardiac contractility and hemodynamics were assessed using a modified Langendorff system, cardiac damage was assessed by measuring infarct size and creatinine kinase levels, and levels of phosphorylated and total endothelial NO synthase (eNOS) were determined by Western blot analysis. Isolated hearts were subjected to 30 min of regional ischemia, produced by fixed position ligation of the left anterior descending coronary artery, followed by 30 min of reperfusion (n = 6). Hearts were also subjected to PPC (three cycles of 30 s of left ventricular pacing alternated with 30 s of right atrial pacing) and/or treated during reperfusion with ANG-(1-7), N(G)-nitro-l-arginine methyl ester, or the Mas antagonist (d-Ala7)-ANG I/II (1-7). The PPC-mediated improvement in cardiac contractility and hemodyanamics, cardiac damage, and eNOS phosphorylation were significantly attenuated upon treatment with (d-Ala7)-ANG I/II (1-7) or N(G)-nitro-l-arginine methyl ester. Treatment with ANG-(1-7) improved cardiac function and reduced infarct size and creatinine kinase levels; however, the effects of ANG-(1-7) were not additive with PPC. In conclusion, these data provide novel insights into the cardioprotective mechanisms of PPC in that they involve the Mas receptor and eNOS and further suggest a potential therapeutic role for ANG-(1-7) in cardiac ischemic injury.
Collapse
Affiliation(s)
- Ala'a Abwainy
- Department of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Kuwait
| | - Fawzi Babiker
- Department of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Kuwait;
| | - Saghir Akhtar
- Department of Pharmacology, Faculty of Medicine, Health Science Center, Kuwait University, Kuwait; and
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| |
Collapse
|
48
|
Heller AR, Heger J, Gama de Abreu M, Müller MP. Cafedrine/theodrenaline in anaesthesia: influencing factors in restoring arterial blood pressure. Anaesthesist 2015; 64:190-6. [PMID: 25757552 PMCID: PMC4383809 DOI: 10.1007/s00101-015-0005-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/26/2022]
Abstract
Background Hypotensive states that require fast stabilisation of blood pressure can occur during anaesthesia. In 1963, the 20:1 mixture of cafedrine/theodrenaline (Akrinor®) was introduced in Germany for use in anaesthesia and emergency medicine in the first-line management of hypotensive states. Though on the market for many years, few pharmacodynamic data are available on this combination net beta-mimetic agent. Aim This study aimed to examine the drug combination in real-life clinical practice and recorded time to 10 % mean arterial blood pressure (MAP) increase and heart rate. Furthermore, potential factors that influence drug effectiveness under anaesthesia were assessed. Methods Data were collected within a standardised anaesthesia protocol. A total of 353 consecutive patients (female/male = 149/204) who received cafedrine/theodrenaline after a drop in MAP ≥ 5 % were included in the study. The time to 10 % increase in MAP, dosage of cafedrine/theodrenaline, volume loading, blood pressure and heart rate were monitored over time. Results Patients were a mean (standard deviation) of 64.4 ± 15.1 years old with a baseline MAP of 82 ± 14 mmHg, which dropped to a mean of 63 ± 10 mmHg during anaesthesia without gender differences. Cafedrine/theodrenaline (1.27 ± 1.0 mg/kg; 64 ± 50 µg/kg) significantly increased MAP (p < 0.001) by 11 ± 16 mmHg within 5 min, reaching peak values within 17.4 ± 9.0 min. Heart rate was not affected in a clinically significant manner. Cafedrine/theodrenaline induced a 10 % MAP increase after 7.2 ± 4.6 min (women) and after 8.6 ± 6.3 min (men) (p = 0.018). Independent of gender, the dose of cafedrine/theodrenaline required to achieve the observed MAP increase of 14 ± 16 mmHg at 15 min was significantly different in patients with heart failure [1.78 ± 1.67 mg/kg (cafedrine)/89.0 ± 83.5 µg/kg (theodrenaline)] compared with healthy patients [1.16 ± 0.77 mg/kg (cafedrine)/58.0 ± 38.5 µg/kg (theodrenaline)] (p = 0.005). Concomitant medication with beta-blocking agents significantly prolonged the time to 10 % MAP increase [9.0 ± 7.0 vs. 7.3 ± 4.3 min (p = 0.008)]. Conclusion Cafedrine/theodrenaline quickly restores MAP during anaesthesia. Female gender is associated with higher effectiveness, while heart failure and beta-blocker administration lower the anti-hypotonic effect. Prospective studies in defined patient populations are warranted to further characterise the effect of cafedrine/theodrenaline.
Collapse
Affiliation(s)
- A R Heller
- Department of Anaesthesia and Intensive Care Medicine, Department of Anesthesiology and Critical Care Medicine, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany,
| | | | | | | |
Collapse
|
49
|
Wang YC, Xiao XL, Li N, Yang D, Xing Y, Huo R, Liu MY, Zhang YQ, Dong DL. Oestrogen inhibits BMP4-induced BMP4 expression in cardiomyocytes: a potential mechanism of oestrogen-mediated protection against cardiac hypertrophy. Br J Pharmacol 2015; 172:5586-95. [PMID: 25323043 DOI: 10.1111/bph.12983] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/17/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Oestrogen inhibits cardiac hypertrophy and bone morphogenetic protein-4 (BMP4) induces cardiac hypertrophy. Here we have studied the inhibition by oestrogen of BMP4 expression in cardiomyocytes. EXPERIMENTAL APPROACH Cultures of neonatal rat cardiomyocytes were used in in vitro experiments. Bilatαl ovariectomy (OVX) was carried out in female Kunming mice and cardiac hypertrophy was induced by transverse aortic constriction (TAC). KEY RESULTS Oestrogen inhibited BMP4-induced cardiomyocyte hypertrophy and BMP4 expression in vitro. The inhibition of BMP4-induced BMP4 protein expression by oestrogen was prevented by the inhibitor of oestrogen receptor-β, PHTPP, but not by the inhibitor of oestrogen receptor-α MPP. BMP4 induced smad1/5/8 activation, which was not affected by oestrogen in cardiomyocytes. BMP4 induced JNK but not ERK1/2 and p38 activation, and activated JNK was inhibited by oestrogen. Treatment with the p38 inhibitor SB203580 or the JNK inhibitor SP600125 inhibited BMP4-induced BMP4 expression in cardiomyocytes, but the ERK1/2 inhibitor U0126 increased BMP4-induced BMP4 expression, indicating that JNK, ERK1/2 and p38 MAPKs were all involved, although only JNK activation contributed to the inhibition of BMP4-induced BMP4 expression by oestrogen. TAC induced significant heart hypertrophy in OVX mice in vivo and oestrogen replacement inhibited TAC-induced heart hypertrophy in OVX mice. In parallel with the data of heart hypertrophy, oestrogen replacement significantly reduced the increased BMP4 protein expression in TAC-treated OVX mice. CONCLUSIONS AND IMPLICATIONS Oestrogen treatment inhibited BMP4-induced BMP4 expression in cardiomyocytes through stimulating oestrogen receptor-β and inhibiting JNK activation. Our results provide a novel mechanism underlying oestrogen-mediated protection against cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu-Chun Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiao-Lin Xiao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Na Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Di Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yue Xing
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Rong Huo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Ming-Yu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yan-Qiu Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| |
Collapse
|
50
|
Kararigas G, Fliegner D, Forler S, Klein O, Schubert C, Gustafsson JÅ, Klose J, Regitz-Zagrosek V. Comparative Proteomic Analysis Reveals Sex and Estrogen Receptor β Effects in the Pressure Overloaded Heart. J Proteome Res 2014; 13:5829-36. [DOI: 10.1021/pr500749j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Georgios Kararigas
- Institute
of Gender in Medicine, Center for Cardiovascular Research, and DZHK (German Center for Cardiovascular Research), Berlin partner site, Charite University Hospital, 10117 Berlin, Germany
| | - Daniela Fliegner
- Institute
of Gender in Medicine, Center for Cardiovascular Research, and DZHK (German Center for Cardiovascular Research), Berlin partner site, Charite University Hospital, 10117 Berlin, Germany
| | - Stefanie Forler
- Institute
for Human Genetics, Charite University Hospital, 10117 Berlin, Germany
| | - Oliver Klein
- Institute
for Human Genetics, Charite University Hospital, 10117 Berlin, Germany
- Core
Unit Proteomics, Berlin-Brandenburg Center for Regenerative Therapies, Charite University Hospital, 10117 Berlin, Germany
| | - Carola Schubert
- Institute
of Gender in Medicine, Center for Cardiovascular Research, and DZHK (German Center for Cardiovascular Research), Berlin partner site, Charite University Hospital, 10117 Berlin, Germany
| | - Jan-Åke Gustafsson
- Center
for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas 77004, United States
| | - Joachim Klose
- Institute
for Human Genetics, Charite University Hospital, 10117 Berlin, Germany
- Core
Unit Proteomics, Berlin-Brandenburg Center for Regenerative Therapies, Charite University Hospital, 10117 Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute
of Gender in Medicine, Center for Cardiovascular Research, and DZHK (German Center for Cardiovascular Research), Berlin partner site, Charite University Hospital, 10117 Berlin, Germany
| |
Collapse
|