1
|
Liu WX, Hu YF, Tai GJ, Li YP, Li JP, Qiu S, Zheng RF, Damdinjav D, Otieno JN, Li XX, Xu M. Macrophages regulate plaque progression in diabetic Apoe -/- mice dependent on Pi4p/Nlrp3 signaling pathway. Atherosclerosis 2024; 397:118556. [PMID: 39222595 DOI: 10.1016/j.atherosclerosis.2024.118556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Atherosclerotic cardiovascular disease complicated by diabetes mellitus (DM) is the leading cause of death in diabetic patients, and it is strongly associated with macrophages and inflammasomes. It has been found that activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is closely associated with phosphatidylinositol 4-phosphate (PI4P) on the trans-Golgi. However, how PI4P and NLRP3 regulate macrophage function and its role in diabetic atherosclerotic plaques is unclear. METHODS The expression of Pi4p and Nlrp3-inflammasome-related proteins in atherosclerosis in apolipoprotein E-deficient (Apoe-/-) and Apoe-/- DM mice was investigated. Then, Pi4p levels were affected by shRNA-Pi4kb or cDNA-Sac1 plasmid to investigate the effects of changes in Pi4p-related metabolic enzymes on macrophage function. Finally, genetically modified macrophages were injected into diabetic Apoe-/- mice to explore the effects on atherosclerosis. RESULTS DM promoted plaque progression in atherosclerotic mice and increased expression of Pi4p and Nlrp3 in plaques. In addition, impaired macrophage function induced by high glucose was reversed by transfected shRNA-Pi4kb or cDNA-Sac1 plasmid. Furthermore, decreased levels of Pi4p reduced plaque area in diabetic Apoe-/- mice. CONCLUSIONS Our data suggests that Pi4p/Nlrp3 in macrophages play an important role in the exacerbation of atherosclerosis in diabetic mice. Pi4p-related metabolizing enzymes (PI4KB and SAC1) may be a potential therapeutic strategy for diabetic atherosclerosis, and macrophage therapy is also a potential treatment.
Collapse
Affiliation(s)
- Wang-Xin Liu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi-Fan Hu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan-Ping Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui-Fang Zheng
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Joseph Nicolao Otieno
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciencea, Dar es Salaam Tanzania
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Quan W, Sun T, Hu B, Luo Q, Zhong Y, Chen W, Tuo Q. Dipsacoside B Attenuates Atherosclerosis by Promoting Autophagy to Inhibit Macrophage Lipid Accumulation. Biomolecules 2024; 14:1226. [PMID: 39456159 PMCID: PMC11506285 DOI: 10.3390/biom14101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation and foam cell formation in the arterial wall. Promoting macrophage autophagy has emerged as a promising therapeutic strategy against atherosclerosis. Dipsacoside B (DB) is an oleanane-type pentacyclic triterpenoid saponin extracted from Lonicerae flos with potential anti-atherosclerotic properties. In this study, we investigated the effects of DB on atherosclerosis progression in ApoE-/- mice fed a high-fat diet and explored the underlying mechanisms in oxidized low-density lipoprotein (ox-LDL)-induced foam cells. DB treatment significantly reduced atherosclerotic lesion size, improved plaque stability, and regulated lipid metabolism without impairing liver and kidney function in ApoE-/- mice. In vitro studies revealed that DB dose-dependently inhibited ox-LDL internalization and intracellular lipid accumulation in RAW264.7 macrophages. Mechanistically, DB induced autophagy, as evidenced by increased autophagosome formation and upregulated expression of autophagy markers LC3-II and p62 both in vivo and in vitro. Inhibition of autophagy by chloroquine abolished the antiatherosclerotic and pro-autophagic effects of DB. Furthermore, DB treatment increased LC3-II and p62 mRNA levels, suggesting transcriptional regulation of autophagy. Collectively, our findings demonstrate that DB exerts anti-atherosclerotic effects by inhibiting foam cell formation via autophagy induction, providing new insights into the pharmacological actions of DB and its potential as a therapeutic agent against atherosclerosis.
Collapse
Affiliation(s)
- Wenjuan Quan
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.Q.); (T.S.)
- Department of Critical Care Medicine, Changde Hospital of Hunan University of Chinese Medicine, Changde 415000, China
| | - Taoli Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.Q.); (T.S.)
| | - Bo Hu
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Quanye Luo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Yancheng Zhong
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Qinhui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.Q.); (T.S.)
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| |
Collapse
|
3
|
Wang P, Li M, Gao T, Fan J, Zhang D, Zhao Y, Zhao Y, Wang Y, Guo T, Gao X, Liu Y, Gao Y, Guan X, Sun X, Zhao J, Li H, Yang L. Vascular Electrical Stimulation with Wireless, Battery-Free, and Fully Implantable Features Reduces Atherosclerotic Plaque Formation Through Sirt1-Mediated Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300584. [PMID: 37267941 DOI: 10.1002/smll.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Electrical stimulation (ES) is a safe and effective procedure in clinical rehabilitation with few adverse effects. However, studies on ES for atherosclerosis (AS) are scarce because ES does not provide a long-term intervention for chronic disease processes. Battery-free implants and surgically mounted them in the abdominal aorta of high-fat-fed Apolipoprotein E (ApoE-/- ) mice are used, which are electrically stimulated for four weeks using a wireless ES device to observe changes in atherosclerotic plaques. Results showed that there is almost no growth of atherosclerotic plaque at the stimulated site in AopE-/- mice after ES. RNA-sequencing (RNA-seq) analysis of Thp-1 macrophages reveal that the transcriptional activity of autophagy-related genes increase substantially after ES. Additionally, ES reduces lipid accumulation in macrophages by restoring ABCA1- and ABCG1-mediated cholesterol efflux. Mechanistically, it is demonstrated that ES reduced lipid accumulation through Sirtuin 1 (Sirt1)/Autophagy related 5 (Atg5) pathway-mediated autophagy. Furthermore, ES reverse autophagic dysfunction in macrophages of AopE-/- mouse plaques by restoring Sirt1, blunting P62 accumulation, and inhibiting the secretion of interleukin (IL)-6, resulting in the alleviation of atherosclerotic lesion formation. Here, a novel approach is shown in which ES can be used as a promising therapeutic strategy for AS treatment through Sirt1/Atg5 pathway-mediated autophagy.
Collapse
Affiliation(s)
- Pengyu Wang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Manman Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Tielei Gao
- Department of Forensic Medicine, Harbin Medical University, Harbin, 150081, P. R. China
| | - Jiaying Fan
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Dengfeng Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Ying Zhao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yajie Zhao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yuqin Wang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Tianwei Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Xi Gao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yujun Liu
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yang Gao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, 163319, P. R. China
| | - Xue Guan
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, P. R. China
| | - Xinyong Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Jiyi Zhao
- Cardiovascular Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Hong Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Liming Yang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, P. R. China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, P. R. China
| |
Collapse
|
4
|
Sales PF, do Nascimento AL, Pinheiro FC, Alberto AKM, Teixeira dos Santos AVTDL, Carvalho HDO, de Souza GC, Carvalho JCT. Effect of the Association of Fixed Oils from Abelmoschus esculentus (L.) Moench, Euterpe oleracea Martius, Bixa orellana Linné and Chronic SM ® on Atherogenic Dyslipidemia in Wistar Rats. Molecules 2023; 28:6689. [PMID: 37764465 PMCID: PMC10534590 DOI: 10.3390/molecules28186689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Dyslipidemia presents high levels of serum cholesterol and is characterized as a risk factor for cardiovascular diseases, especially for the development of atherosclerosis. E. oleracea oil (OFEO), A. esculentus oil (OFAE), B. orellana oil (OFBO), and Chronic SM® granules (CHR) are rich in bioactive compounds with the potential to treat changes in lipid metabolism. This study investigated the effects of treatments with oils from A. esculentus, E. oleracea, B. orellana, and Chronic SM® on Cocos nucifera L. saturated-fat-induced dyslipidemia. The chromatographic profile showed the majority presence of unsaturated fatty acids in the tested oils. The quantification of tocotrienols and geranylgeraniol in OFBO and CHR was obtained. Treatments with OFEO, OFAE, OFBO, and CHR were able to significantly reduce glycemia, as well as hypertriglyceridemia, total cholesterol, and LDL-cholesterol, besides increasing HDL-cholesterol. The treatments inhibited the formation of atheromatous plaques in the vascular endothelium of the treated rats. The obtained results suggest that the OFEO, OFAE, OFBO, and CHR exhibit antidyslipidemic effects and antiatherogenic activity.
Collapse
Affiliation(s)
- Priscila Faimann Sales
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Aline Lopes do Nascimento
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Fernanda Cavalcante Pinheiro
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Andressa Ketelem Meireles Alberto
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Abrahão Victor Tavares de Lima Teixeira dos Santos
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Helison de Oliveira Carvalho
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Gisele Custódio de Souza
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - José Carlos Tavares Carvalho
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
- University Hospital of Federal University of Amapá, Rodovia Josmar Chaves Pinto, Macapá 68903-419, Brazil
| |
Collapse
|
5
|
Lien CF, Lin CS, Shyue SK, Hsieh PS, Chen SJ, Lin YT, Chien S, Tsai MC. Peroxisome proliferator-activated receptor δ improves the features of atherosclerotic plaque vulnerability by regulating smooth muscle cell phenotypic switching. Br J Pharmacol 2023; 180:2085-2101. [PMID: 36942453 DOI: 10.1111/bph.16074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular smooth muscle cells (SMCs) undergo phenotypic switching during sustained inflammation, contributing to an unfavourable atherosclerotic plaque phenotype. PPARδ plays an important role in regulating SMC functions; however, its role in atherosclerotic plaque vulnerability remains unclear. Here, we explored the pathological roles of PPARδ in atherosclerotic plaque vulnerability in severe atherosclerosis and elucidated the underlying mechanisms. EXPERIMENTAL APPROACH Plasma levels of PPARδ were measured in patients with acute coronary syndrome (ACS) and stable angina (SA). SMC contractile and synthetic phenotypic markers, endoplasmic reticulum (ER) stress, and features of atherosclerotic plaque vulnerability were analysed for the brachiocephalic artery of apolipoprotein E-knockout (ApoE-/- ) mice, fed a high-cholesterol diet (HCD) and treated with or without the PPARδ agonist GW501516. In vitro, the role of PPARδ was elucidated using human aortic SMCs (HASMCs). KEY RESULTS Patients with ACS had significantly lower plasma PPARδ levels than those with SA. GW501516 reduced atherosclerotic plaque vulnerability, a synthetic SMC phenotype, ER stress markers, and NLRP3 inflammasome expression in HCD-fed ApoE-/- mice. ER stress suppressed PPARδ expression in HASMCs. PPARδ activation inhibited ER stress-induced synthetic phenotype development, ER stress-NLRP3 inflammasome axis activation and matrix metalloproteinase 2 (MMP2) expression in HASMCs. PPARδ inhibited NFκB signalling and alleviated ER stress-induced SMC phenotypic switching. CONCLUSIONS AND IMPLICATIONS Low plasma PPARδ levels may be associated with atherosclerotic plaque vulnerability. Our findings provide new insights into the mechanisms underlying the protective effect of PPARδ on SMC phenotypic switching and improvement the features of atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Chih-Feng Lien
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Song-Kun Shyue
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Tan Lin
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Shu Chien
- Department of Bioengineering and Medicine, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Jin Z, Luo Y, Zhao H, Cui J, He W, Li J, Pi J, Qing L, Wu W. Qingre Huoxue Decoction regulates macrophage polarisation to attenuate atherosclerosis through the inhibition of NF-κB signalling-mediated inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115787. [PMID: 36206868 DOI: 10.1016/j.jep.2022.115787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Qingre Huoxue Decoction (QRHX) is an herbal formula used for the prevention and treatment of AS. However, the potential mechanism of QRHX is not clear. AIM OF THE STUDY In our study, RNA sequencing combined with preclinical models were used to analyse the effect and mechanism of QRHX for the treatment of AS. MATERIALS AND METHODS For in vivo studies, ApoE-/- mice were fed with a high-fat diet to induce AS. We measured weight, blood lipid, inflammatory cytokines, lipid deposition, plaque, and the M1/M2 macrophage. For in vitro studies, RAW264.7 were induced by lipopolysaccharides and treated with different concentrations of QRHX. We focusd on the relationship between QRHX, the NF-κB pathway, and macrophage polarisation, and performed simultaneous RNA sequencing both in vivo and in vitro. RESULTS In vivo, QRHX decreased weight, improved blood lipid, relieved the degree of lipid deposition, reduced plaque area, decreased the levels of inflammatory cytokines (MCP-1, NLRP3, and TNFα), down-regulated the expression of iNOS, and up-regulated the expression of Arg-1. In vitro, QRHX down-regulated M1 markers, iNOS and CCR7, with lower concentrations of IL-1β; furthermore, QRHX up-regulated M2 markers, Arg-1, CD163, Ym-1, and Fizz-1, with higher concentrations of IL-4 and IL-10. RNA sequencing of both samples in vivo and in vitro suggested that NF-κB was the target pathway of QRHX to regulate macrophage polarisation; this result was validated at the gene and protein levels. CONCLUSIONS QRHX induced M2 polarisation, reduced an inflammatory response, and played a role in stabilising plaque by mediating the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuan Luo
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Huanyi Zhao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Jiayan Cui
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weifeng He
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Junlong Li
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Jianbin Pi
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, 528099, China
| | - Lijin Qing
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Wei Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| |
Collapse
|
7
|
Demirdelen S, Mannes PZ, Aral AM, Haddad J, Leers SA, Gomez D, Tavakoli S. Divergence of acetate uptake in proinflammatory and inflammation-resolving macrophages: implications for imaging atherosclerosis. J Nucl Cardiol 2022; 29:1266-1276. [PMID: 33420659 PMCID: PMC8935477 DOI: 10.1007/s12350-020-02479-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metabolic divergence of macrophages polarized into different phenotypes represents a mechanistically relevant target for non-invasive characterization of atherosclerotic plaques using positron emission tomography (PET). Carbon-11 (11C)-labeled acetate is a clinically available tracer which accumulates in atherosclerotic plaques, but its biological and clinical correlates in atherosclerosis are undefined. METHODS AND RESULTS Histological correlates of 14C-acetate uptake were determined in brachiocephalic arteries of western diet-fed apoE-/- mice. The effect of polarizing stimuli on 14C-acetate uptake was determined by proinflammatory (interferon-γ + lipopolysaccharide) vs inflammation-resolving (interleukin-4) stimulation of murine macrophages and human carotid endarterectomy specimens over 2 days. 14C-acetate accumulated in atherosclerotic regions of arteries. CD68-positive monocytes/macrophages vs smooth muscle actin-positive smooth muscle cells were the dominant cells in regions with high vs low 14C-acetate uptake. 14C-acetate uptake progressively decreased in proinflammatory macrophages to 25.9 ± 4.5% of baseline (P < .001). A delayed increase in 14C-acetate uptake was induced in inflammation-resolving macrophages, reaching to 164.1 ± 21.4% (P < .01) of baseline. Consistently, stimulation of endarterectomy specimens with interferon-γ + lipopolysaccharide decreased 14C-acetate uptake to 66.5 ± 14.5%, while interleukin-4 increased 14C-acetate uptake to 151.5 ± 25.8% compared to non-stimulated plaques (P < .05). CONCLUSIONS Acetate uptake by macrophages diverges upon proinflammatory and inflammation-resolving stimulation, which may be exploited for immunometabolic characterization of atherosclerosis.
Collapse
Affiliation(s)
- Selim Demirdelen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Z Mannes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ali Mubin Aral
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph Haddad
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven A Leers
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Delphine Gomez
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, Blood, and Vascular Medicine Institute, UPMC Department of Medicine, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, Blood, and Vascular Medicine Institute, UPMC Department of Medicine, Pittsburgh, PA, USA.
- UPMC Presbyterian Hospital, 200 Lothrop Street, Suite E200, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Investigation of Atherosclerotic Plaque Vulnerability. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:521-535. [PMID: 35237986 DOI: 10.1007/978-1-0716-1924-7_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Histochemical and immunohistochemical approaches permit the detection and evaluation of proteins and cell types within murine brachiocephalic artery atherosclerotic plaques, that can be subsequently analyzed to provide inferences on atherosclerotic plaque vulnerability. Here we describe the specific histochemical techniques deployed to examine the expression of elastin, fibrillar collagens, and neutral lipids, alongside immunohistochemistry protocols for the identification of macrophages (CD68) and vascular smooth muscle cells (α-smooth muscle actin). We will also describe how analyses derived from these methods can be combined to determine evidence of previous plaque rupture and susceptibility to rupture.
Collapse
|
9
|
Acetylsalicylic Acid Reduces Passive Aortic Wall Stiffness and Cardiovascular Remodelling in a Mouse Model of Advanced Atherosclerosis. Int J Mol Sci 2021; 23:ijms23010404. [PMID: 35008828 PMCID: PMC8745264 DOI: 10.3390/ijms23010404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022] Open
Abstract
Acetylsalicylic acid (ASA) is widely used in secondary prevention of cardiovascular (CV) disease, mainly because of its antithrombotic effects. Here, we investigated whether ASA can prevent the progression of vessel wall remodelling, atherosclerosis, and CV complications in apolipoprotein E deficient (ApoE-/-) mice, a model of stable atherosclerosis, and in ApoE-/- mice with a mutation in the fibrillin-1 gene (Fbn1C1039G+/-), which is a model of elastic fibre fragmentation, accompanied by exacerbated unstable atherosclerosis. Female ApoE-/- and ApoE-/-Fbn1C1039G+/- mice were fed a Western diet (WD). At 10 weeks of WD, the mice were randomly divided into four groups, receiving either ASA 5 mg/kg/day in the drinking water (ApoE-/- (n = 14), ApoE-/-Fbn1C1039G+/- (n = 19)) or plain drinking water (ApoE-/- (n = 15), ApoE-/-Fbn1C1039G+/- (n = 21)) for 15 weeks. ApoE-/-Fbn1C1039G+/- mice showed an increased neutrophil-lymphocyte ratio (NLR) compared to ApoE-/- mice, and this effect was normalised by ASA. In the proximal ascending aorta wall, ASA-treated ApoE-/-Fbn1C1039G+/- mice showed less p-SMAD2/3 positive nuclei, a lower collagen percentage and an increased elastin/collagen ratio, consistent with the values measured in ApoE-/- mice. ASA did not affect plaque progression, incidence of myocardial infarction and survival of ApoE-/-Fbn1C1039G+/- mice, but systolic blood pressure, cardiac fibrosis and hypertrophy were reduced. In conclusion, ASA normalises the NLR, passive wall stiffness and cardiac remodelling in ApoE-/-Fbn1C1039G+/- mice to levels observed in ApoE-/- mice, indicating additional therapeutic benefits of ASA beyond its classical use.
Collapse
|
10
|
Ohmura Y, Ishimori N, Saito A, Yokota T, Horii S, Tokuhara S, Iwabuchi K, Tsutsui H. Natural Killer T Cells Are Involved in Atherosclerotic Plaque Instability in Apolipoprotein-E Knockout Mice. Int J Mol Sci 2021; 22:ijms222212451. [PMID: 34830332 PMCID: PMC8618636 DOI: 10.3390/ijms222212451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
The infiltration and activation of macrophages as well as lymphocytes within atherosclerotic lesion contribute to the pathogenesis of plaque rupture. We have demonstrated that invariant natural killer T (iNKT) cells, a unique subset of T lymphocytes that recognize glycolipid antigens, play a crucial role in atherogenesis. However, it remained unclear whether iNKT cells are also involved in plaque instability. Apolipoprotein E (apoE) knockout mice were fed a standard diet (SD) or a high-fat diet (HFD) for 8 weeks. Moreover, the SD- and the HFD-fed mice were divided into two groups according to the intraperitoneal injection of α-galactosylceramide (αGC) that specifically activates iNKT cells or phosphate-buffered saline alone (PBS). ApoE/Jα18 double knockout mice, which lack iNKT cells, were also fed an SD or HFD. Plaque instability was assessed at the brachiocephalic artery by the histological analysis. In the HFD group, αGC significantly enhanced iNKT cell infiltration and exacerbated atherosclerotic plaque instability, whereas the depletion of iNKT cells attenuated plaque instability compared to PBS-treated mice. Real-time PCR analyses in the aortic tissues showed that αGC administration significantly increased expressional levels of inflammatory genes such as IFN-γ and MMP-2, while the depletion of iNKT cells attenuated these expression levels compared to those in the PBS-treated mice. Our findings suggested that iNKT cells are involved in the exacerbation of plaque instability via the activation of inflammatory cells and upregulation of MMP-2 in the vascular tissues.
Collapse
MESH Headings
- Animals
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Brachial Artery/immunology
- Brachial Artery/pathology
- Cell Movement/drug effects
- Diet, High-Fat/adverse effects
- Galactosylceramides/pharmacology
- Gene Expression Regulation
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lymphocyte Activation
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Male
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Yoshinori Ohmura
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
| | - Naoki Ishimori
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
- Correspondence: ; Tel.: +81-11-706-6973
| | - Akimichi Saito
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
| | - Shunpei Horii
- Department of Cardiovascular Medicine, National Defense Medical College, Namiki 3-2, Tokorozawa 359-0042, Japan;
| | - Satoshi Tokuhara
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara 252-0374, Japan;
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medicine, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan;
| |
Collapse
|
11
|
Ouerd S, Idris-Khodja N, Trindade M, Ferreira NS, Berillo O, Coelho SC, Neves MF, Jandeleit-Dahm KA, Paradis P, Schiffrin EL. Endothelium-restricted endothelin-1 overexpression in type 1 diabetes worsens atherosclerosis and immune cell infiltration via NOX1. Cardiovasc Res 2021; 117:1144-1153. [PMID: 32533834 PMCID: PMC7983005 DOI: 10.1093/cvr/cvaa168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/15/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS NADPH oxidase (NOX) 1 but not NOX4-dependent oxidative stress plays a role in diabetic vascular disease, including atherosclerosis. Endothelin (ET)-1 has been implicated in diabetes-induced vascular complications. We showed that crossing mice overexpressing human ET-1 selectively in endothelium (eET-1) with apolipoprotein E knockout (Apoe-/-) mice enhanced high-fat diet-induced atherosclerosis in part by increasing oxidative stress. We tested the hypothesis that ET-1 overexpression in the endothelium would worsen atherosclerosis in type 1 diabetes through a mechanism involving NOX1 but not NOX4. METHODS AND RESULTS Six-week-old male Apoe-/- and eET-1/Apoe-/- mice with or without Nox1 (Nox1-/y) or Nox4 knockout (Nox4-/-) were injected intraperitoneally with either vehicle or streptozotocin (55 mg/kg/day) for 5 days to induce type 1 diabetes and were studied 14 weeks later. ET-1 overexpression increased 2.5-fold and five-fold the atherosclerotic lesion area in the aortic sinus and arch of diabetic Apoe-/- mice, respectively. Deletion of Nox1 reduced aortic arch plaque size by 60%; in contrast, Nox4 knockout increased lesion size by 1.5-fold. ET-1 overexpression decreased aortic sinus and arch plaque alpha smooth muscle cell content by ∼35% and ∼50%, respectively, which was blunted by Nox1 but not Nox4 knockout. Reactive oxygen species production was increased two-fold in aortic arch perivascular fat of diabetic eET-1/Apoe-/- and eET-1/Apoe-/-/Nox4-/- mice but not eET-1/Apoe-/-/Nox1y/- mice. ET-1 overexpression enhanced monocyte/macrophage and CD3+ T-cell infiltration ∼2.7-fold in the aortic arch perivascular fat of diabetic Apoe-/- mice. Both Nox1 and Nox4 knockout blunted CD3+ T-cell infiltration whereas only Nox1 knockout prevented the monocyte/macrophage infiltration in diabetic eET-1/Apoe-/- mice. CONCLUSION Endothelium ET-1 overexpression enhances the progression of atherosclerosis in type 1 diabetes, perivascular oxidative stress, and inflammation through NOX1.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/pathology
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Fibrosis
- Humans
- Macrophages/enzymology
- Macrophages/immunology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Monocytes/enzymology
- Monocytes/immunology
- NADPH Oxidase 1/genetics
- NADPH Oxidase 1/metabolism
- Oxidative Stress
- Plaque, Atherosclerotic
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Up-Regulation
- Mice
Collapse
Affiliation(s)
- Sofiane Ouerd
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Noureddine Idris-Khodja
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Michelle Trindade
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Suellen C Coelho
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Mario F Neves
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127 3755 Cote Ste-Catherine Road, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
12
|
Nie P, Yang F, Wan F, Jin S, Pu J. Analysis of MicroRNAs Associated With Carotid Atherosclerotic Plaque Rupture With Thrombosis. Front Genet 2021; 12:599350. [PMID: 33679879 PMCID: PMC7928327 DOI: 10.3389/fgene.2021.599350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is a progressive vascular wall inflammatory disease, and the rupture of atherosclerotic vulnerable plaques is the leading cause of morbidity and mortality worldwide. This study intended to explore the potential mechanisms behind plaque rupture and thrombosis in ApoE knockout mice. The spontaneous plaque rupture models were established, and left carotid artery tissues at different time points (1-, 2-, 4-, 6-, 8-, 12-, and 16-week post-surgery) were collected. By the extent of plaque rupture, plaque was defined as (1) control groups, (2) atherosclerotic plaque group, and (3) plaque rupture group. Macrophage (CD68), MMP-8, and MMP-13 activities were measured by immunofluorescence. Cytokines and inflammatory markers were measured by ELISA. The left carotid artery sample tissue was collected to evaluate the miRNAs expression level by miRNA-microarray. Bioinformatic analyses were conducted at three levels: (2) vs. (1), (3) vs. (2), and again in seven time series analysis. The plaque rupture with thrombus and intraplaque hemorrhage results peaked at 8 weeks and decreased thereafter. Similar trends were seen in the number of plaque macrophages and lipids, the expression of matrix metalloproteinase, and the atherosclerotic and plasma cytokine levels. MiRNA-microarray showed that miR-322-5p and miR-206-3p were specifically upregulated in the atherosclerotic plaque group compared with those in the control group. Meanwhile, miR-466h-5p was specifically upregulated in the plaque rupture group compared with the atherosclerotic plaque group. The highest incidence of plaque rupture and thrombosis occurred at 8 weeks post-surgery. miR-322-5p and miR-206-3p may be associated with the formation of atherosclerotic plaques. miR-466h-5p may promote atherosclerotic plaque rupture via apoptosis-related pathways.
Collapse
Affiliation(s)
- Peng Nie
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Yang
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Wan
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxuan Jin
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Division of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Chen H, Wang J, Xie L, Shen YL, Wang HM, Zheng KL, Zhang Q. Correlation between serum cartilage oligomeric matrix protein and major adverse cardiovascular events within 30 days in patients with acute coronary syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:353. [PMID: 33708980 PMCID: PMC7944313 DOI: 10.21037/atm-21-333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background We studied the correlation between cartilage oligomeric matrix protein (COMP) and major adverse cardiovascular events in patients with acute coronary syndrome (ACS) within 30 days. Methods This study included 170 ACS patients who were hospitalized in the Second Affiliated Hospital of Nantong University from August 2017 to April 2019. Serum COMP level was measured at baseline. The enrolled patients were followed up for 30 days and grouped according to the occurrence of major adverse cardiovascular events (MACE) during follow-up. Among the 170 patients, 23 patients had MACE during hospitalization (MACE group), and 147 patients had no MACE (no MACE group). Results The serum COMP levels in the MACE group were significantly higher than those of the non-MACE group [84.85 (51.55, 141.75) vs. 20.65 (9.11, 46.31) ng/mL, respectively, P<0.05]. The area under the receiver operating characteristic (ROC) curve for COMP in predicting the occurrence of MACE within 30 days was 0.839, with a cutoff level of 39.9 ng/mL [95% confidence interval (CI): 0.774–0.890], 86.96% sensitivity, and 72.79% specificity (P<0.0001). Multivariate logistic regression analysis showed that serum COMP could be used as an independent predictor of MACE within 30 days in ACS patients [odds ratio (OR): 1.024, 95% CI: 1.0133–1.0349, P=0.0001]. Conclusions Serum COMP is associated with the short-term prognosis of ACS patients. High serum COMP levels can be used as a predictor of MACE within 30 days in ACS patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ling Xie
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ya-Li Shen
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hui-Min Wang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Kou-Long Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qing Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
14
|
Florea A, Sigl JP, Morgenroth A, Vogg A, Sahnoun S, Winz OH, Bucerius J, Schurgers LJ, Mottaghy FM. Sodium [ 18F]Fluoride PET Can Efficiently Monitor In Vivo Atherosclerotic Plaque Calcification Progression and Treatment. Cells 2021; 10:cells10020275. [PMID: 33573188 PMCID: PMC7911917 DOI: 10.3390/cells10020275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Given the high sensitivity and specificity of sodium [18F]Fluoride (Na[18F]F) for vascular calcifications and positive emerging data of vitamin K on vascular health, the aim of this study is to assess the ability of Na[18F]F to monitor therapy and disease progression in a unitary atherosclerotic mouse model. ApoE−/− mice were placed on a Western-type diet for 12-weeks and then split into four groups. The early stage atherosclerosis group received a chow diet for an additional 12-weeks, while the advanced atherosclerosis group continued the Western-type diet. The Menaquinone-7 (MK-7) and Warfarin groups received MK-7 or Warfarin supplementation during the additional 12-weeks, respectively. Control wild type mice were fed a chow diet for 24-weeks. All of the mice were scanned with Na[18F]F using a small animal positron emission tomography (PET)/computed tomography (CT). The Warfarin group presented spotty calcifications on the CT in the proximal aorta. All of the spots corresponded to dense mineralisations on the von Kossa staining. After the control, the MK-7 group had the lowest Na[18F]F uptake. The advanced and Warfarin groups presented the highest uptake in the aortic arch and left ventricle. The advanced stage group did not develop spotty calcifications, however Na[18F]F uptake was still observed, suggesting the presence of micro-calcifications. In a newly applied mouse model, developing spotty calcifications on CT exclusively in the proximal aorta, Na[18F]F seems to efficiently monitor plaque progression and the beneficial effects of vitamin K on cardiovascular disease.
Collapse
Affiliation(s)
- Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (J.P.S.); (A.M.); (A.V.); (S.S.); (O.H.W.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
| | - Julius P. Sigl
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (J.P.S.); (A.M.); (A.V.); (S.S.); (O.H.W.)
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (J.P.S.); (A.M.); (A.V.); (S.S.); (O.H.W.)
| | - Andreas Vogg
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (J.P.S.); (A.M.); (A.V.); (S.S.); (O.H.W.)
| | - Sabri Sahnoun
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (J.P.S.); (A.M.); (A.V.); (S.S.); (O.H.W.)
| | - Oliver H. Winz
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (J.P.S.); (A.M.); (A.V.); (S.S.); (O.H.W.)
| | - Jan Bucerius
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
- Department of Nuclear Medicine, University of Göttingen, 37075 Göttingen, Germany
| | - Leon J. Schurgers
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
- Department of Biochemistry, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (J.P.S.); (A.M.); (A.V.); (S.S.); (O.H.W.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands;
- Correspondence: ; Tel.: +49-241-80-88741
| |
Collapse
|
15
|
Wang ZY, Cheng J, Liu B, Xie F, Li CL, Qiao W, Lu QH, Wang Y, Zhang MX. Protein deglycase DJ-1 deficiency induces phenotypic switching in vascular smooth muscle cells and exacerbates atherosclerotic plaque instability. J Cell Mol Med 2021; 25:2816-2827. [PMID: 33501750 PMCID: PMC7957272 DOI: 10.1111/jcmm.16311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Protein deglycase DJ‐1 (DJ‐1) is a multifunctional protein involved in various biological processes. However, it is unclear whether DJ‐1 influences atherosclerosis development and plaque stability. Accordingly, we evaluated the influence of DJ‐1 deletion on the progression of atherosclerosis and elucidate the underlying mechanisms. We examine the expression of DJ‐1 in atherosclerotic plaques of human and mouse models which showed that DJ‐1 expression was significantly decreased in human plaques compared with that in healthy vessels. Consistent with this, the DJ‐1 levels were persistently reduced in atherosclerotic lesions of ApoE−/− mice with the increasing time fed by western diet. Furthermore, exposure of vascular smooth muscle cells (VSMCs) to oxidized low‐density lipoprotein down‐regulated DJ‐1 in vitro. The canonical markers of plaque stability and VSMC phenotypes were evaluated in vivo and in vitro. DJ‐1 deficiency in Apoe−/− mice promoted the progression of atherosclerosis and exaggerated plaque instability. Moreover, isolated VSMCs from Apoe−/−DJ‐1−/− mice showed lower expression of contractile markers (α‐smooth muscle actin and calponin) and higher expression of synthetic indicators (osteopontin, vimentin and tropoelastin) and Kruppel‐like factor 4 (KLF4) by comparison with Apoe−/−DJ‐1+/+ mice. Furthermore, genetic inhibition of KLF4 counteracted the adverse effects of DJ‐1 deletion. Therefore, our results showed that DJ‐1 deletion caused phenotype switching of VSMCs and exacerbated atherosclerotic plaque instability in a KLF4‐dependent manner.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chang-Ling Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qing-Hua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Ying Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
16
|
Santos Rodrigues AP, Faria E Souza BS, Alves Barros AS, de Oliveira Carvalho H, Lobato Duarte J, Leticia Elizandra Boettger M, Barbosa R, Maciel Ferreira A, Maciel Ferreira I, Fernandes CP, Cesar Matias Pereira A, Tavares Carvalho JC. The effects of Rosmarinus officinalis L. essential oil and its nanoemulsion on dyslipidemic Wistar rats. J Appl Biomed 2020; 18:126-135. [PMID: 34907765 DOI: 10.32725/jab.2020.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/03/2020] [Indexed: 11/05/2022] Open
Abstract
Dyslipidemias are lipid metabolism alterations that cause increased levels of serum lipoprotein, cholesterol, and triglycerides. These alterations are associated with a higher incidence of cardiovascular diseases and are a risk factor for atherosclerosis development. This study aimed to evaluate the effect of Rosmarinus officinalis essential oil (EORO, 100 mg/kg) and its nanoemulsion (NEORO, 500 µg/kg) on Triton and coconut saturated-fat-induced (CSF) dyslipidemias using Wistar rats. The phytochemical evaluation of EORO performed by gas chromatography-mass spectroscopy (GC-MS) revealed 1,8-cineole (33.70%), camphor (27.68%), limonene (21.99%), and α-pinene (8.13%) as its major compounds. Triton-induced dyslipidemia significantly increased total cholesterol, LDL, and triglycerides levels. On the other hand, the groups treated with EORO and NEORO had significantly reduced total cholesterol, LDL, and triglycerides compared to the group treated only with Triton. Similar results were observed on the positive control treated with simvastatin. Dyslipidemia induced with coconut saturated-fat (CSF) caused abdominal fat gain, hypercholesterolemia, hypertriglyceridemia, increased LDL levels, and atherogenesis in the aorta. In contrast, the groups treated with EORO, NEORO, and simvastatin had significantly reduced hypercholesterolemia and hypertriglyceridemia, reduced abdominal fat gain, and absence of atherogenesis in the vascular endothelium. Overall, in the Triton-induced dyslipidemia model, EORO treatment had superior values than NEORO's (and simvastatin), although the differences were not too high, while in the CSF model, the values were mixed. In this manner, our results show an anti-dyslipidemic and anti-atherogenic activity effect by EORO and NEORO.
Collapse
Affiliation(s)
- Ana Paula Santos Rodrigues
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
| | - Belmira Silva Faria E Souza
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
| | - Albenise Santana Alves Barros
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
| | - Helison de Oliveira Carvalho
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
| | - Jonatas Lobato Duarte
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
| | - Mehl Leticia Elizandra Boettger
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Bioquimica e Citologia Clinica, Macapa, Amapa, Brasil
| | - Robson Barbosa
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Bioquimica e Citologia Clinica, Macapa, Amapa, Brasil
| | - Adriana Maciel Ferreira
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
| | - Irlon Maciel Ferreira
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Curso de Quimica, Laboratorio de Biocatalise e Biotransformacao em Quimica Organica, Macapa, Amapa, Brasil
| | - Caio Pinho Fernandes
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Nanobiotecnologia Fitofarmaceutica, Macapa, Amapa, Brasil
| | - Arlindo Cesar Matias Pereira
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
| | - Jose Carlos Tavares Carvalho
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
| |
Collapse
|
17
|
Vaisar T, Hu JH, Airhart N, Fox K, Heinecke J, Nicosia RF, Kohler T, Potter ZE, Simon GM, Dix MM, Cravatt BF, Gharib SA, Dichek DA. Parallel Murine and Human Plaque Proteomics Reveals Pathways of Plaque Rupture. Circ Res 2020; 127:997-1022. [PMID: 32762496 PMCID: PMC7508285 DOI: 10.1161/circresaha.120.317295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Plaque rupture is the proximate cause of most myocardial infarctions and many strokes. However, the molecular mechanisms that precipitate plaque rupture are unknown. OBJECTIVE By applying proteomic and bioinformatic approaches in mouse models of protease-induced plaque rupture and in ruptured human plaques, we aimed to illuminate biochemical pathways through which proteolysis causes plaque rupture and identify substrates that are cleaved in ruptured plaques. METHODS AND RESULTS We performed shotgun proteomics analyses of aortas of transgenic mice with macrophage-specific overexpression of urokinase (SR-uPA+/0 mice) and of SR-uPA+/0 bone marrow transplant recipients, and we used bioinformatic tools to evaluate protein abundance and functional category enrichment in these aortas. In parallel, we performed shotgun proteomics and bioinformatics studies on extracts of ruptured and stable areas of freshly harvested human carotid plaques. We also applied a separate protein-analysis method (protein topography and migration analysis platform) to attempt to identify substrates and proteolytic fragments in mouse and human plaque extracts. Approximately 10% of extracted aortic proteins were reproducibly altered in SR-uPA+/0 aortas. Proteases, inflammatory signaling molecules, as well as proteins involved with cell adhesion, the cytoskeleton, and apoptosis, were increased. ECM (Extracellular matrix) proteins, including basement-membrane proteins, were decreased. Approximately 40% of proteins were altered in ruptured versus stable areas of human carotid plaques, including many of the same functional categories that were altered in SR-uPA+/0 aortas. Collagens were minimally altered in SR-uPA+/0 aortas and ruptured human plaques; however, several basement-membrane proteins were reduced in both SR-uPA+/0 aortas and ruptured human plaques. Protein topography and migration analysis platform did not detect robust increases in proteolytic fragments of ECM proteins in either setting. CONCLUSIONS Parallel studies of SR-uPA+/0 mouse aortas and human plaques identify mechanisms that connect proteolysis with plaque rupture, including inflammation, basement-membrane protein loss, and apoptosis. Basement-membrane protein loss is a prominent feature of ruptured human plaques, suggesting a major role for basement-membrane proteins in maintaining plaque stability.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jie H Hu
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Nathan Airhart
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Kate Fox
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jay Heinecke
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Roberto F Nicosia
- Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (R.F.N.), VA Puget Sound Health Care System, Seattle, WA
| | - Ted Kohler
- Departments of Surgery (T.K.), University of Washington, Seattle.,Departments of Surgery (T.K.), VA Puget Sound Health Care System, Seattle, WA
| | - Zachary E Potter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | | | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Sina A Gharib
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - David A Dichek
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle
| |
Collapse
|
18
|
Liu XM, Du SL, Miao R, Wang LF, Zhong JC. Targeting the forkhead box protein P1 pathway as a novel therapeutic approach for cardiovascular diseases. Heart Fail Rev 2020; 27:345-355. [PMID: 32648149 DOI: 10.1007/s10741-020-09992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and encompasses diverse diseases of the vasculature, myocardium, cardiac electrical circuit, and cardiac development. Forkhead box protein P1 (Foxp1) is a large multi-domain transcriptional regulator belonging to the Fox family with winged helix DNA-binding protein, which plays critical roles in cardiovascular homeostasis and disorders. The broad distribution of Foxp1 and alternative splicing isoforms implicate its distinct functions in diverse cardiac and vascular cells and tissue types. Foxp1 is essential for diverse biological processes and has been shown to regulate cellular proliferation, apoptosis, oxidative stress, fibrosis, angiogenesis, cardiovascular remodeling, and dysfunction. Notably, both loss-of-function and gain-of-function approaches have defined critical roles of Foxp1 in CVD. Genetic deletion of Foxp1 results in pathological cardiac remodeling, exacerbation of atherosclerotic lesion formation, prolonged occlusive thrombus formation, severe cardiac defects, and embryo death. In contrast, activation of Foxp1 performs a wide range of physiological effects, including cell growth, hypertrophy, differentiation, angiogenesis, and cardiac development. More importantly, Foxp1 exerts anti-inflammatory and anti-atherosclerotic effects in controlling coronary thrombus formation and myocardial infarction (MI). Thus, targeting for Foxp1 signaling has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of CVD, and an increased understanding of cardiovascular actions of the Foxp1 signaling will help to develop effective interventions. In this review, we focus on the diverse actions and underlying mechanisms of Foxp1 highlighting its roles in CVD, including heart failure, MI, atherosclerosis, congenital heart defects, and atrial fibrillation.
Collapse
Affiliation(s)
- Xin-Ming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Sheng-Li Du
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ran Miao
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Le-Feng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China. .,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
19
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
Stasinopoulou M, Kadoglou NPE, Christodoulou E, Paronis E, Kostomitsopoulos NG, Valsami G, Liapis CD, Kakisis J. Statins’ Withdrawal Induces Atherosclerotic Plaque Destabilization in Animal Model—A “Rebound” Stimulation of Inflammation. J Cardiovasc Pharmacol Ther 2019; 24:377-386. [DOI: 10.1177/1074248419838499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marianna Stasinopoulou
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos P. E. Kadoglou
- Centre for Statistics in Medicine—Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Eirini Christodoulou
- Department of Pharmacy, Laboratory of Biopharmaceutics-Pharmacokinetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Paronis
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos G. Kostomitsopoulos
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, Laboratory of Biopharmaceutics-Pharmacokinetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos D. Liapis
- Department of Vascular Surgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - John Kakisis
- Department of Vascular Surgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Wang XL, Sun W, Zhou YL, Li L. Rosuvastatin stabilizes atherosclerotic plaques by reducing CD40L overexpression-induced downregulation of P4Hα1 in ApoE -/- mice. Int J Biochem Cell Biol 2018; 105:70-77. [PMID: 30336263 DOI: 10.1016/j.biocel.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023]
Abstract
Background Cluster of differentiation 40 ligand (CD40L) and rosuvastatin (RSV) affect atherosclerotic plaque stability, but little is known about their roles in extracellular matrix (ECM) production. We investigated the effects of CD40L and RSV on pre-existing advanced plaques. Methods and results Pre-existing advanced plaques were induced in apolipoprotein E-knockout (ApoE-/-) mice by the surgical placement of carotid constrictive silastic collars. Two weeks after surgery, mice were divided into the following treatment groups: control, empty adenovirus, CD40L adenovirus, CD40L adenovirus + RSV, and RSV. Mice received adenovirus via two tail-vein injections (2 × 109 pfu each) and/or RSV via intragastric administration (5 mg/kg; daily for 4 weeks). Mice in the CD40L adenovirus group exhibited increased plaque disruption rates, increased relative plaque macrophage and lipid content, reduced plaque collagen content, and increased local inflammation compared to the other treatment groups, but no significant differences in plaque area were observed among the groups. Notably, in the atherosclerotic plaques of the CD40L adenovirus group, both the mRNA and protein expression of prolyl-4-hydroxylase alpha 1 (P4Hα1) was significantly decreased, leading to a consequent decrease in the protein expression of collagen types I and III. Treatment with RSV decreased the serum levels of CD40L in a lipid-independent fashion and attenuated the effects of CD40L overexpression, particularly with respect to P4Hα1 downregulation. Conclusions CD40L destabilized advanced plaques in the carotid arteries of ApoE-/- mice, in part by decreasing P4Hα1 expression, and consequently collagen expression. These destabilizing effects were attenuated by RSV.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Wei Sun
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng, Shandong, 252000, China
| | - Yuan-Li Zhou
- Department of Health, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, China
| | - Li Li
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, Shandong, 250013, China.
| |
Collapse
|
22
|
Chen YC, Huang AL, Kyaw TS, Bobik A, Peter K. Atherosclerotic Plaque Rupture: Identifying the Straw That Breaks the Camel's Back. Arterioscler Thromb Vasc Biol 2018; 36:e63-72. [PMID: 27466619 DOI: 10.1161/atvbaha.116.307993] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Yung-Chih Chen
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Alex L Huang
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Tin S Kyaw
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Alex Bobik
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.).
| |
Collapse
|
23
|
Jehle J, Schöne B, Bagheri S, Avraamidou E, Danisch M, Frank I, Pfeifer P, Bindila L, Lutz B, Lütjohann D, Zimmer A, Nickenig G. Elevated levels of 2-arachidonoylglycerol promote atherogenesis in ApoE-/- mice. PLoS One 2018; 13:e0197751. [PMID: 29813086 PMCID: PMC5973571 DOI: 10.1371/journal.pone.0197751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is a known modulator of inflammation and ligand to both, pro-inflammatory cannabinoid receptor 1 (CB1) and anti-inflammatory CB2. While the role of both receptors in atherogenesis has been studied extensively, the significance of 2-AG for atherogenesis is less well characterized. METHODS The impact of 2-AG on atherogenesis was studied in two treatment groups of ApoE-/- mice. One group received the monoacylglycerol lipase (MAGL)-inhibitor JZL184 [5 mg/kg i.p.], which impairs 2-AG degradation and thus causes elevated 2-AG levels, the other group received vehicle for four weeks. Simultaneously, both groups were fed a high-cholesterol diet. The atherosclerotic plaque burden was assessed in frozen sections through the aortic sinus following oil red O staining and infiltrating macrophages were detected by immunofluorescence targeting CD68. In vitro, the effect of 2-AG on B6MCL macrophage migration was assessed by Boyden chamber experiments. Transcription of adhesion molecules and chemokine receptors in macrophages was assessed by qPCR. RESULTS As expected, application of the MAGL-inhibitor JZL184 resulted in a significant increase in 2-AG levels in vascular tissue (98.2 ± 16.1 nmol/g vs. 27.3 ± 4.5 nmol/g; n = 14-16; p < 0.001). ApoE-/- mice with elevated 2-AG levels displayed a significantly increased plaque burden compared to vehicle treated controls (0.44 ± 0.03 vs. 0.31 ± 0.04; n = 14; p = 0.0117). This was accompanied by a significant increase in infiltrating macrophages within the atherosclerotic vessel wall (0.33 ± 0.02 vs. 0.27 ± 0.01; n = 13-14; p = 0.0076). While there was no alteration to the white blood counts of JZL184-treated animals, 2-AG enhanced macrophage migration in vitro by 1.8 ± 0.2 -fold (n = 4-6; p = 0.0393) compared to vehicle, which was completely abolished by co-administration of either CB1- or CB2-receptor-antagonists. qPCR analyses of 2-AG-stimulated macrophages showed an enhanced transcription of the chemokine CCL5 (1.59 ± 0.23 -fold; n = 5-6; p = 0.0589) and its corresponding receptors CCR1 (2.04 ± 0.46 -fold; n = 10-11; p = 0.0472) and CCR5 (2.45 ± 0.62 -fold; n = 5-6; p = 0.0554). CONCLUSION Taken together, elevated 2-AG levels appear to promote atherogenesis in vivo. Our data suggest that 2-AG promotes macrophage migration, possibly by the CCL5-CCR5/CCR1 axis, and thereby contributes to vascular inflammation. Thus, decreasing vascular 2-AG levels might represent a promising therapeutic strategy in patients suffering from atherosclerosis and coronary heart disease.
Collapse
Affiliation(s)
- Julian Jehle
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Benedikt Schöne
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Sayeh Bagheri
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Elina Avraamidou
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Melina Danisch
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Imke Frank
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Philipp Pfeifer
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dieter Lütjohann
- Insitute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Andreas Zimmer
- Department of Molecular Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
24
|
Daemen MJ, Gijsen FJH, Heiden KVD, Hoogendoorn A. Animal models for plaque rupture: a biomechanical assessment. Thromb Haemost 2018; 115:501-8. [DOI: 10.1160/th15-07-0614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/22/2015] [Indexed: 11/05/2022]
Abstract
SummaryRupture of atherosclerotic plaques is the main cause of acute cardiovascular events. Animal models of plaque rupture are rare but essential for testing new imaging modalities to enable diagnosis of the patient at risk. Moreover, they enable the design of new treatment strategies to prevent plaque rupture. Several animal models for the study of atherosclerosis are available. Plaque rupture in these models only occurs following severe surgical or pharmaceutical intervention. In the process of plaque rupture, composition, biology and mechanics each play a role, but the latter has been disregarded in many animal studies. The biomechanical environment for atherosclerotic plaques is comprised of two parts, the pressure-induced stress distribution, mainly - but not exclusively – influenced by plaque composition, and the strength distribution throughout the plaque, largely determined by the inflammatory state. This environment differs considerably between humans and most animals, resulting in suboptimal conditions for plaque rupture. In this review we describe the role of the biomechanical environment in plaque rupture and assess this environment in animal models that present with plaque rupture.
Collapse
|
25
|
Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewicz M, Newby A, Pasterkamp G, Serruys PWJC, Waltenberger J, Weber C, Tokgözoglu L, Ylä-Herttuala S. Stabilisation of atherosclerotic plaques. Thromb Haemost 2017; 106:1-19. [DOI: 10.1160/th10-12-0784] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/29/2011] [Indexed: 01/04/2023]
Abstract
SummaryPlaque rupture and subsequent thrombotic occlusion of the coronary artery account for as many as three quarters of myocardial infarctions. The concept of plaque stabilisation emerged about 20 years ago to explain the discrepancy between the reduction of cardiovascular events in patients receiving lipid lowering therapy and the small decrease seen in angiographic evaluation of atherosclerosis. Since then, the concept of a vulnerable plaque has received a lot of attention in basic and clinical research leading to a better understanding of the pathophysiology of the vulnerable plaque and acute coronary syndromes. From pathological and clinical observations, plaques that have recently ruptured have thin fibrous caps, large lipid cores, exhibit outward remodelling and invasion by vasa vasorum. Ruptured plaques are also focally inflamed and this may be a common denominator of the other pathological features. Plaques with similar characteristics, but which have not yet ruptured, are believed to be vulnerable to rupture. Experimental studies strongly support the validity of anti-inflammatory approaches to promote plaque stability. Unfortunately, reliable non-invasive methods for imaging and detection of such plaques are not yet readily available. There is a strong biological basis and supportive clinical evidence that low-density lipoprotein lowering with statins is useful for the stabilisation of vulnerable plaques. There is also some clinical evidence for the usefulness of antiplatelet agents, beta blockers and renin-angiotensin-aldosterone system inhibitors for plaque stabilisation. Determining the causes of plaque rupture and designing diagnostics and interventions to prevent them are urgent priorities for current basic and clinical research in cardiovascular area.
Collapse
|
26
|
Lietman CD, Segedy AK, Li B, Fazio S, Atkinson JB, Linton MF, Young PP. Loss of SPRR3 in ApoE-/- mice leads to atheroma vulnerability through Akt dependent and independent effects in VSMCs. PLoS One 2017; 12:e0184620. [PMID: 28886156 PMCID: PMC5590986 DOI: 10.1371/journal.pone.0184620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 01/18/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) represent important modulators of plaque stability in advanced lesions. We previously reported that loss of small proline-rich repeat protein 3 (Sprr3), leads to VSMC apoptosis in a PI3K/Akt-dependent manner and accelerates lesion progression. Here, we investigated the role of Sprr3 in modulating plaque stability in hyperlipidemic ApoE-/- mice. We show that loss of Sprr3 increased necrotic core size and reduced cap collagen content of atheromas in brachiocephalic arteries with evidence of plaque rupture and development of intraluminal thrombi. Moreover, Sprr3-/-ApoE-/- mice developed advanced coronary artery lesions accompanied by intraplaque hemorrhage and left ventricle microinfarcts. SPRR3 is known to reduce VSMC survival in lesions by promoting their apoptosis. In addition, we demonstrated that Sprr3-/- VSMCs displayed reduced expression of procollagen in a PI3K/Akt dependent manner. SPRR3 loss also increased MMP gelatinase activity in lesions, and increased MMP2 expression, migration and contraction of VSMCs independently of PI3K/Akt. Consequently, Sprr3 represents the first described VSMC modulator of each of the critical features of cap stability, including VSMC numbers, collagen type I synthesis, and protease activity through Akt dependent and independent pathways.
Collapse
Affiliation(s)
- Caressa D. Lietman
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
| | - Amanda K. Segedy
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
| | - Bin Li
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
| | - Sergio Fazio
- Center of Preventive Cardiology; Knight Cardiovascular Institute; Oregon Health & Science University; Portland, OR, United States of America
| | - James B. Atkinson
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
- Veterans Affairs Medical Center, Nashville, TN, United States of America
| | - MacRae F. Linton
- Department of Pharmacology, Vanderbilt University Medical Center; Nashville, TN, United States of America
- Department of Medicine; Vanderbilt University Medical Center; Nashville, TN, United States of America
| | - Pampee P. Young
- Department of Pathology Microbiology and Immunology; Vanderbilt University Medical Center; Nashville, TN, United States of America
- Veterans Affairs Medical Center, Nashville, TN, United States of America
- Department of Medicine; Vanderbilt University Medical Center; Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
27
|
Daugherty A, Tall AR, Daemen MJ, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circ Res 2017; 121:e53-e79. [DOI: 10.1161/res.0000000000000169] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
28
|
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2017; 37:e131-e157. [PMID: 28729366 DOI: 10.1161/atv.0000000000000062] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
29
|
Reduced Necrosis and Content of Apoptotic M1 Macrophages in Advanced Atherosclerotic Plaques of Mice With Macrophage-Specific Loss of Trpc3. Sci Rep 2017; 7:42526. [PMID: 28186192 PMCID: PMC5301208 DOI: 10.1038/srep42526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/09/2017] [Indexed: 01/08/2023] Open
Abstract
In previous work we reported that ApoeKO mice transplanted with bone marrow cells deficient in the Transient Receptor Potential Canonical 3 (TRPC3) channel have reduced necrosis and number of apoptotic macrophages in advanced atherosclerotic plaques. Also, in vitro studies with polarized macrophages derived from mice with macrophage-specific loss of TRPC3 showed that M1, but not M2 macrophages, deficient in Trpc3 are less susceptible to ER stress-induced apoptosis than Trpc3 expressing cells. The questions remained (a) whether the plaque phenotype in transplanted mice resulted from a genuine effect of Trpc3 on macrophages, and (b) whether the reduced necrosis and macrophage apoptosis in plaques of these mice was a manifestation of the selective effect of TRPC3 on apoptosis of M1 macrophages previously observed in vitro. Here, we addressed these questions using Ldlr knockout (Ldlr−/−) mice with macrophage-specific loss of Trpc3 (MacTrpc3−/−/Ldlr−/− → Ldlr−/−). Compared to controls, we observed decreased plaque necrosis and number of apoptotic macrophages in MacTrpc3−/−/Ldlr−/− → Ldlr−/− mice. Immunohistochemical analysis revealed a reduction in apoptotic M1, but not apoptotic M2 macrophages. These findings confirm an effect of TRPC3 on plaque necrosis and support the notion that this is likely a reflection of the reduced susceptibility of Trpc3-deficient M1 macrophages to apoptosis.
Collapse
|
30
|
Gajda M, Jasztal A, Banasik T, Jasek-Gajda E, Chlopicki S. Combined orcein and martius scarlet blue (OMSB) staining for qualitative and quantitative analyses of atherosclerotic plaques in brachiocephalic arteries in apoE/LDLR -/- mice. Histochem Cell Biol 2017; 147:671-681. [PMID: 28168649 PMCID: PMC5429900 DOI: 10.1007/s00418-017-1538-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
Abstract
Numerous cellular and extracellular components should be analyzed in sections of atherosclerotic plaques to assess atherosclerosis progression and vulnerability. Here, we combined orcein (O) staining for elastic fibers and martius scarlet blue (MSB) polychrome to visualize various morphological contents of plaque in brachiocephalic arteries (BCA) of apoE/LDLR−/− mice. Elastic fibers (including broken elastic laminae and ‘buried’ fibrous caps) were stained purple and they could be easily distinguished from collagen fibers (blue). Orcein allowed clear identification of even the finest elastic fibers. Erythrocytes were stained yellow and they could easily be discerned from mature fibrin (red). Old fibrin tends to acquire blue color. The method of OMSB staining is simple, takes less than 1 h to perform and can be adapted to automatic stainers. Most importantly, the color separation is good enough to allow digital automatic segmentation of specific components in tissue section and quantitative analysis of the plaque constituents. OMSB was used to compare atherosclerotic plaques in proximal and distal regions of BCA in apoE/LDLR−/− mice. In conclusion, OMSB staining represents a novel staining that could be routinely used for qualitative and quantitative microscopic assessments of formaldehyde-fixed and paraffin-embedded sections of arteries with atherosclerotic lesions.
Collapse
Affiliation(s)
- Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland.
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, 30-348, Kraków, Poland
| | - Tomasz Banasik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, 30-348, Kraków, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, 30-348, Kraków, Poland
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531, Kraków, Poland
| |
Collapse
|
31
|
Daeichin V, Sluimer JC, van der Heiden K, Skachkov I, Kooiman K, Janssen A, Janssen B, Bosch JG, de Jong N, Daemen MJAP, van der Steen AFW. Live Observation of Atherosclerotic Plaque Disruption in Apolipoprotein E-Deficient Mouse. Ultrasound Int Open 2016; 1:E67-71. [PMID: 27689156 DOI: 10.1055/s-0035-1565092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AIM The actual occurrence of spontaneous plaque rupture in mice has been a matter of debate. We report on an in vivo observation of the actual event of possible plaque disruption in a living ApoE(-/-) mouse. METHODS AND RESULTS During live contrast-enhanced ultrasonography of a 50-week-old ApoE(-/-) male mouse, symptoms suggesting plaque disruption in the brachiocephalic artery were observed. Histological analysis confirmed the presence of advanced atherosclerotic lesions with dissections and intraplaque hemorrhage in the affected brachiocephalic trunk, pointing towards plaque rupture as the cause of the observed event. However, we did not detect a luminal thrombus or cap rupture, which is a key criterion for plaque rupture in human atherosclerosis. CONCLUSION This study reports the real-time occurrence of a possible plaque rupture in a living ApoE(-/-) mouse.
Collapse
Affiliation(s)
- V Daeichin
- Erasmus Medical Center, Thoraxcenter Biomedical Engineering, Rotterdam, Netherlands
| | - J C Sluimer
- Department of Pathology, Maastricht University, CARIM, Maastricht, Netherlands
| | - K van der Heiden
- Erasmus Medical Center, Thoraxcenter Biomedical Engineering, Rotterdam, Netherlands
| | - I Skachkov
- Erasmus Medical Center, Thoraxcenter Biomedical Engineering, Rotterdam, Netherlands
| | - K Kooiman
- Erasmus Medical Center, Thoraxcenter Biomedical Engineering, Rotterdam, Netherlands
| | - A Janssen
- Department of Pathology, Maastricht University, CARIM, Maastricht, Netherlands
| | - B Janssen
- Pharmacology & Toxicology, Maastricht University Medical Center, Maastricht, Netherlands
| | - J G Bosch
- Erasmus Medical Center, Thoraxcenter Biomedical Engineering, Rotterdam, Netherlands
| | - N de Jong
- Erasmus Medical Center, Thoraxcenter Biomedical Engineering, Rotterdam, Netherlands; Lab of Acoustical Wavefield Imaging, Delft University of Technology, Delft, the Netherlands
| | - M J A P Daemen
- Pathology, Amsterdam Medical Center, Amsterdam, Netherlands
| | - A F W van der Steen
- Erasmus Medical Center, Thoraxcenter Biomedical Engineering, Rotterdam, Netherlands; Lab of Acoustical Wavefield Imaging, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
32
|
Dai X, Ding Y, Liu Z, Zhang W, Zou MH. Phosphorylation of CHOP (C/EBP Homologous Protein) by the AMP-Activated Protein Kinase Alpha 1 in Macrophages Promotes CHOP Degradation and Reduces Injury-Induced Neointimal Disruption In Vivo. Circ Res 2016; 119:1089-1100. [PMID: 27650555 DOI: 10.1161/circresaha.116.309463] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Elevated levels of CHOP (C/EBP homologous protein), a member of the C/EBP transcription factor family, in advanced atherosclerotic plaques is reported to be associated with atherosclerotic plaque rupture in humans. However, the molecular mechanism by which CHOP accumulation occurs is poorly defined. OBJECTIVE The aim of this study was to investigate if (1) macrophage AMPK (AMP-activated protein kinase) regulates cellular CHOP accumulation and (2) whole-body Ampk deletion leads to neointimal disruption. METHODS AND RESULTS In isolated or cultured macrophages, Ampkα1 deletion markedly increased apoptosis and CHOP, whereas pharmacological activation of AMPK dramatically reduced CHOP protein level via promoting CHOP degradation by proteasome. In addition, cotransfection of Chop-specific siRNA, but not control siRNA, markedly reduced apoptosis in macrophages transfected with Ampkα1-specific siRNA. Mechanistically, AMPKα1 was found to coimmunoprecipitate with CHOP and phosphorylate CHOP at serine 30. Furthermore, serine 30 phosphorylation of CHOP triggered its ubiquitination and proteasomal degradation. In a mouse model of plaque stability, deletion of Ampkα1 but not Ampkα2 promoted injury-induced neointimal disruption. This was paralleled by increased CHOP expression and apoptosis in vivo. Finally, transfection of Chop-specific siRNA but not control siRNA reduced both CHOP level and injury-induced neointimal disruption in vivo. CONCLUSIONS Our results indicate that AMPKα1 mediates CHOP ubiquitination and proteasomal degradation in macrophages by promoting the phosphorylation of CHOP at serine 30. We conclude that AMPKα1 might be a valid therapeutic target in preventing atherosclerotic vulnerable plaque formation.
Collapse
Affiliation(s)
- Xiaoyan Dai
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (X.D., Y.D., Z.L., M.-H.Z.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Ye Ding
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (X.D., Y.D., Z.L., M.-H.Z.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Zhaoyu Liu
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (X.D., Y.D., Z.L., M.-H.Z.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Wencheng Zhang
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (X.D., Y.D., Z.L., M.-H.Z.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Ming-Hui Zou
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (X.D., Y.D., Z.L., M.-H.Z.); The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.).
| |
Collapse
|
33
|
Ding Y, Zhang M, Zhang W, Lu Q, Cai Z, Song P, Okon IS, Xiao L, Zou MH. AMP-Activated Protein Kinase Alpha 2 Deletion Induces VSMC Phenotypic Switching and Reduces Features of Atherosclerotic Plaque Stability. Circ Res 2016; 119:718-30. [PMID: 27439892 DOI: 10.1161/circresaha.116.308689] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE AMP-activated protein kinase (AMPK) has been reported to play a protective role in atherosclerosis. However, whether AMPKα2 controls atherosclerotic plaque stability remains unknown. OBJECTIVE The aim of this study was to evaluate the impact of AMPKα2 deletion on atherosclerotic plaque stability in advanced atherosclerosis at the brachiocephalic arteries and to elucidate the underlying mechanisms. METHODS AND RESULTS Features of atherosclerotic plaque stability and the markers for contractile or synthetic vascular smooth muscle cell (VSMC) phenotypes were monitored in the brachiocephalic arteries from Apoe(-/-)AMPKα2(-/-) mice or VSMC-specific AMPKα2(-/-) mice in an Apoe(-/-) background (Apoe(-/-)AMPKα2(sm-/-)) fed Western diet for 10 weeks. We identified that Apoe(-/-)AMPKα2(-/-) mice and Apoe(-/-)AMPKα2(sm-/-) mice exhibited similar unstable plaque features, aggravated VSMC phenotypic switching, and significant upregulation of Kruppel-like factor 4 (KLF4) in the plaques located in the brachiocephalic arteries compared with those found in Apoe(-/-) and Apoe(-/-)AMPKα2(sm+/+) control mice. Pravastatin, an AMPK activator, suppressed VSMC phenotypic switching and alleviated features of atherosclerotic plaque instability in Apoe(-/-)AMPKα2(sm+/+) mice, but not in Apoe(-/-)AMPKα2(sm-/-) mice. VSMC isolated from AMPKα2(-/-) mice displayed a significant reduction of contractile proteins(smooth muscle actin-α, calponin, and SM-MHC [smooth muscle-mysion heavy chain]) in parallel with increased detection of synthetic proteins (vimentin and osteopontin) and KLF4, as observed in vivo. KLF4-specific siRNA abolished AMPKα2 deletion-induced VSMC phenotypic switching. Furthermore, pharmacological or genetic inhibition of nuclear factor-κB significantly decreased KLF4 upregulation in VSMC from AMPKα2(-/-) mice. Finally, we found that AMPKα2 deletion markedly promoted the binding of nuclear factor-κBp65 to KLF4 promoter. CONCLUSIONS This study demonstrated that AMPKα2 deletion induces VSMC phenotypic switching and promotes features of atherosclerotic plaque instability in nuclear factor-κB-KLF4-dependent manner.
Collapse
Affiliation(s)
- Ye Ding
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Miao Zhang
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Wencheng Zhang
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Qiulun Lu
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Zhejun Cai
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Ping Song
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Imoh Sunday Okon
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Lei Xiao
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.)
| | - Ming-Hui Zou
- From the Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., Q.L., Z.C., P.S., I.S.O., L.X., M.-H.Z.); Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City (M.Z.); and The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China (W.Z.).
| |
Collapse
|
34
|
Geronimo FRB, Barter PJ, Rye KA, Heather AK, Shearston KD, Rodgers KJ. Plaque stabilizing effects of apolipoprotein A-IV. Atherosclerosis 2016; 251:39-46. [PMID: 27240254 DOI: 10.1016/j.atherosclerosis.2016.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/20/2016] [Accepted: 04/24/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Apolipoprotein (apo) A-IV, the third most abundant HDL-associated protein, is atheroprotective and shares similar properties as apoA-I. We have reported previously that apoA-I, the most abundant apolipoprotein in HDL, inhibits plaque disruption in a mouse model. We aimed at examining the effects of apoA-IV on markers of plaque stability in vivo. METHODS Plaques within brachiocephalic arteries of 16-week old apoE-knockout C57BL/6 mice were examined for changes in composition after 10 weeks on a high-fat diet (HFD). The animals received twice-weekly injections of human lipid-free apoA-IV (1 mg/kg, n = 31) or PBS (n = 32) during the 9th and 10th weeks of the HFD. RESULTS In the apoA-IV treated mice, there were significantly fewer hemorrhagic plaque disruptions (9/31 vs. 18/32, p < 0.05), thicker fibrous caps, smaller lipid cores, a lower macrophage:SMC ratio, less MMP-9 protein, more collagen, and fewer proliferating cells. In the plaques of mice given apoA-IV, MCP-1, VCAM-1, and inducible NOS were also significantly lower. Based on the percentage of cleaved PARP-positive and TUNEL-positive plaque nuclei, apoA-IV reduced apoptosis. in HMDMs, apoA-IV reduced MMP-9 mRNA expression by half, doubled mRNA levels of TIMP1 and decreased MMP-9 activity. CONCLUSIONS ApoA-IV treatment is associated with a more stable plaque phenotype and a reduced incidence of acute disruptions in this mouse model.
Collapse
Affiliation(s)
| | - P J Barter
- School of Medical Sciences, University of New South Wales, Australia.
| | - K A Rye
- School of Medical Sciences, University of New South Wales, Australia.
| | - A K Heather
- The Heart Research Institute, Sydney, Australia; School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | - K D Shearston
- School of Dentistry, University of Western Australia, Australia.
| | - K J Rodgers
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, Australia.
| |
Collapse
|
35
|
Hong J, Liu R, Chen L, Wu B, Yu J, Gao W, Pan J, Luo X, Shi H. Conditional knockout of tissue factor pathway inhibitor 2 in vascular endothelial cells accelerates atherosclerotic plaque development in mice. Thromb Res 2015; 137:148-156. [PMID: 26603320 DOI: 10.1016/j.thromres.2015.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Tissue factor pathway inhibitor-2 (TFPI-2) regulates matrix metalloproteinases activation and extracellular matrix degradation. Over-expression of TFPI-2 enhances atherosclerotic plaque stability. The aim of this study is to investigate the effect of conditional knockout (KO) of TFPI-2 in vascular endothelial cells on the initiation and development of atherosclerotic plaque. METHODS A Cre/mloxP conditional KO system and Tek-Cre mice were used to generate offsprings with monoallelic deletion of the TFPI-2 gene in endothelial cells. TFPI-2(fl/+)/Tek-Cre mice, TFPI-2(fl/+) mice and ApoE(-/-) mice (n=6 for each group) were included. Arteries were obtained. HE, EVG and anti-α-SMA staining were used to examine the morphology of vessel and plaque. Protein expression and phosphorylation were detected by Western blot or immunohistochemistry. RESULTS TFPI-2(fl/+)/Tek-Cre mice were generated. TFPI-2 level decreased to 40.68% in TFPI-2(fl/+)/Tek-Cre group. TFPI-2(fl/+)/Tek-Cre developed plaques when no plaque was found in TFPI-2(fl/+) mice. Compared with ApoE(-/-) group, TFPI-2(fl/+)/Tek-Cre group has smaller plaque area, decreased lipid content and less buried fibrous cap layers. MMP-2 and MMP-9 in TFPI-2(fl/+)/Tek-Cre group was higher than in TFPI-2(fl/+)group. The phosphorylation of PPAR-α and PPAR-γ was decreased in TFPI-2(fl/+)/Tek-Cre group. CONCLUSIONS A novel mouse model is presented and can be used to investigate the role of TFPI-2 in the process of atherosclerosis. Our findings suggest that monoallelic deletion of TFPI-2 gene in vascular endothelial cells leads to significant downregulation of TFPI-2. TFPI-2 deficiency may accelerate initiation of atherosclerotic lesion in mice. Elevated MMP-2 and 9 and decreased phosphorylation of PPAR-α and PPAR-γ may contribute to this phenotype.
Collapse
Affiliation(s)
- Jin Hong
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Rongle Liu
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Lewen Chen
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Bangwei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Jia Yu
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Junjie Pan
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China.
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China.
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| |
Collapse
|
36
|
Hartwig H, Silvestre-Roig C, Hendrikse J, Beckers L, Paulin N, Van der Heiden K, Braster Q, Drechsler M, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic Plaque Destabilization in Mice: A Comparative Study. PLoS One 2015; 10:e0141019. [PMID: 26492161 PMCID: PMC4619621 DOI: 10.1371/journal.pone.0141019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
Atherosclerosis-associated diseases are the main cause of mortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions that may become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-threatening thrombotic events associated with high-risk vulnerable plaques. Hyperlipidemic mouse models have been extensively used in studying the mechanisms controlling initiation and progression of atherosclerosis. However, the understanding of mechanisms leading to atherosclerotic plaque destabilization has been hampered by the lack of proper animal models mimicking this process. Although various mouse models generate atherosclerotic plaques with histological features of human advanced lesions, a consensus model to study atherosclerotic plaque destabilization is still lacking. Hence, we studied the degree and features of plaque vulnerability in different mouse models of atherosclerotic plaque destabilization and find that the model based on the placement of a shear stress modifier in combination with hypercholesterolemia represent with high incidence the most human like lesions compared to the other models.
Collapse
Affiliation(s)
- Helene Hartwig
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Carlos Silvestre-Roig
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Jeffrey Hendrikse
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Nicole Paulin
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Kim Van der Heiden
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Quinte Braster
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Maik Drechsler
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Mat J. Daemen
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Oliver Soehnlein
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- * E-mail:
| |
Collapse
|
37
|
Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. Proc Natl Acad Sci U S A 2015; 112:13033-8. [PMID: 26438837 DOI: 10.1073/pnas.1517820112] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is the major cause of cardiovascular disease (CVD), the leading cause of death worldwide. Despite much focus on lipid abnormalities in atherosclerosis, it is clear that the immune system also has important pro- and antiatherogenic functions. The enzyme indoleamine-2,3-dioxygenase (IDO) catalyses degradation of the essential amino acid tryptophan into immunomodulatory metabolites. How IDO deficiency affects immune responses during atherogenesis is unknown and we explored potential mechanisms in models of murine and human atherosclerosis. IDO deficiency in hypercholesterolemic ApoE(-/-) mice caused a significant increase in lesion size and surrogate markers of plaque vulnerability. No significant changes in cholesterol levels were observed but decreases in IL-10 production were found in the peripheral blood, spleen and lymph node B cells of IDO-deficient compared with IDO-competent ApoE(-/-) mice. 3,4,-Dimethoxycinnamoyl anthranilic acid (3,4-DAA), an orally active synthetic derivative of the tryptophan metabolite anthranilic acid, but not l-kynurenine, enhanced production of IL-10 in cultured splenic B cells. Finally, 3,4-DAA treatment reduced lesion formation and inflammation after collar-induced arterial injury in ApoE(-/-) mice, and reduced cytokine and chemokine production in ex vivo human atheroma cell cultures. Our data demonstrate that endogenous production of tryptophan metabolites via IDO is an essential feedback loop that controls atherogenesis and athero-inflammation. We show that the IDO pathway induces production of IL-10 in B cells in vivo and in vitro, suggesting that IDO may induce immunoregulatory functions of B cells in atherosclerosis. The favorable effects of anthranilic acid derivatives in atherosclerosis indicate a novel approach toward therapy of CVD.
Collapse
|
38
|
Suxiaojiuxin pill enhances atherosclerotic plaque stability by modulating the MMPs/TIMPs balance in ApoE-deficient mice. J Cardiovasc Pharmacol 2015; 64:120-6. [PMID: 24621651 DOI: 10.1097/fjc.0000000000000095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: Suxiaojiuxin pill (SX) is a famous Chinese formulated product, which has been used to treat coronary heart disease and angina pectoris in China. This study was carried out to investigate the effect and possible mechanism of SX on the stability of atherosclerotic plaque in ApoE-deficient mice. ApoE-/- mice of 6-8 weeks old were fed with high-fat diet for developing artherosclerosis. After oral administration of SX for 8 weeks, histopathology of aortic plaque was performed by Sudan III and hematoxylin-eosin staining, and muscle protein was detected by Western blotting (WB). The mRNA and proteins associated with aortic plaque stability were detected by reverse transcription-polymerase chain reaction and WB, respectively. SX treatment could not only reduce serum triglyceride level and plaque area but also increase fibrous cap thickness and collagen content compared with the model group. WB results showed that SX could increase α-smooth muscle actin, tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2 protein expression, whereas decrease matrix metalloproteinase 2 (MMP-2) and MMP-9 protein expression. Moreover, SX could upregulate the expression of α-smooth muscle actin mRNA and downregulate the expression of vascular endothelial growth factor mRNA. These results showed that SX could enhance atherosclerotic plaque stability in ApoE-deficient mice. The mechanism may be associated with modulating the MMPs/TIMPs balance.
Collapse
|
39
|
Parolini C, Busnelli M, Ganzetti GS, Dellera F, Manzini S, Scanziani E, Johnson JL, Sirtori CR, Chiesa G. Magnetic resonance imaging visualization of vulnerable atherosclerotic plaques at the brachiocephalic artery of apolipoprotein E knockout mice by the blood-pool contrast agent B22956/1. Mol Imaging 2015; 13. [PMID: 24825406 DOI: 10.2310/7290.2014.00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to identify, by magnetic resonance imaging (MRI), the ability of the blood-pool contrast agent B22956/1 to detect atherosclerotic plaques developing at the brachiocephalic artery of apolipoprotein E knockout (apoE-KO) mice and to possibly identify vulnerable atherosclerotic lesions. After high-fat feeding for 8 or 12 weeks, MRIs of brachiocephalic arteries were acquired before and after B22956/1 administration; then vessels were removed and analyzed by histology. B22956/1 injection caused a rapid increase in plaque signal enhancement and plaque to muscle contrast values, which remained stable up to 70 minutes. A linear correlation between signal enhancement and macrophage content was found 10 minutes after B22956/1 injection (p < .01). Signal enhancement and plaque to muscle contrast values correlated with macrophage content 40 minutes after contrast agent administration (p < .01). Finally, 70 minutes after B22956/1 infusion, plaque to muscle contrast significantly correlated with the percentage of stenosis (p < .005). B22956/1 administration to high fat-fed apoE-KO mice resulted in a rapid enhancement of atherosclerotic plaques and in a great ability to rapidly visualize vulnerable plaques, characterized by a high macrophage content. These results suggest that B22956/1 could represent an interesting tool for the identification of atherosclerotic plaques potentially leading to acute cardiovascular events.
Collapse
|
40
|
Angsana J, Chen J, Smith S, Xiao J, Wen J, Liu L, Haller CA, Chaikof EL. Syndecan-1 modulates the motility and resolution responses of macrophages. Arterioscler Thromb Vasc Biol 2014; 35:332-40. [PMID: 25550207 DOI: 10.1161/atvbaha.114.304720] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Syndecan-1 (Sdc-1) is a member of a family of cell surface proteoglycans, which has been reported to participate in the regulation of events relevant to tissue repair and chronic injury responses, including cell-substrate interactions, matrix remodeling, and cell migration. In this study, we report the functional significance of Sdc-1 in polarized macrophage populations and its role in adhesion and motility events relevant to resolution of the inflammatory program. APPROACH AND RESULTS Macrophage Sdc-1 expression is associated with differentiated M2 macrophages with high intrinsic motility, and Sdc-1 deficiency is characterized by impaired migration and enhanced adhesion. Leukocyte infiltration and emigration were examined in a thioglycollate-induced model of peritonitis in Sdc-1(+/+) and Sdc-1(-/-) mice. Although the infiltration of inflammatory cells was similar in both cohorts, a significant delay in the lymphatic clearance of Sdc-1(-/-) macrophages was observed. Moreover, we observed enhanced inflammation and greater burden of atherosclerotic plaques in ApoE(-/-)Sdc-1(-/-) mice maintained on a Western diet. CONCLUSIONS These results demonstrate that defective motility in Sdc-1(-/-) macrophages promotes a persistent inflammatory state with relevance to the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Julianty Angsana
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Jiaxuan Chen
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Sumona Smith
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Jiantao Xiao
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Jing Wen
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Liying Liu
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.)
| | - Carolyn A Haller
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.).
| | - Elliot L Chaikof
- From the Department of Bioengineering, Georgia Institute of Technology, Atlanta (J.A.); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.C., L.L., C.A.H., E.L.C.); Department of Surgery, Emory University, Atlanta, GA (S.S., J.X., J.W.); and Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA (E.L.C.).
| |
Collapse
|
41
|
Cartilage oligomeric matrix protein (COMP) in murine brachiocephalic and carotid atherosclerotic lesions. Atherosclerosis 2014; 236:366-72. [PMID: 25133350 PMCID: PMC4181795 DOI: 10.1016/j.atherosclerosis.2014.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the hypothesis that COMP can influence the morphology, stability and size of murine atherosclerotic lesions. METHODS ApoE- and ApoE/COMP-knockout mice were fed a high-fat diet to develop atherosclerotic plaques at lesion sites of three different types; inflammatory and fibrous plaques induced in the carotid artery by low or oscillatory shear stress, respectively, and spontaneously developing plaques in the brachiocephalic artery. The localization of COMP in the plaques and the effect of COMP deficiency on plaque development were evaluated. RESULTS COMP immunoreactivity was observed in about half of the investigated plaques from the ApoE null mice, mainly located along the intima-medial border. There were no significant differences in the size of inflammatory and fibrous carotid plaques between the genotypes. Plaques in the brachiocephalic artery from ApoE mice lacking COMP were increased in size with 54%. In these plaques the collagen content was also increased by 48%. There were no differences in relative collagen content in inflammatory and fibrous carotid plaques between genotypes. Polarized light microscopy showed that the increase in total collagen in brachiocephalic plaques was more than proportionally accounted for by an increase in thicker collagen fibrils. CONCLUSION We have shown that COMP deficiency has a significant impact on atherosclerotic plaque morphology and size. Our data also suggest that an altered collagen metabolism may be an important mechanism in this finding.
Collapse
|
42
|
Millon A, Canet-Soulas E, Boussel L, Fayad Z, Douek P. Animal models of atherosclerosis and magnetic resonance imaging for monitoring plaque progression. Vascular 2014; 22:221-37. [DOI: 10.1177/1708538113478758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atherosclerosis, the main cause of heart attack and stroke, is the leading cause of death in most modern countries. Preventing clinical events depends on a better understanding of the mechanism of atherosclerotic plaque destabilization. Our knowledge on the characteristics of vulnerable plaques in humans has grown past decades. Histological studies have provided a precise definition of high-risk lesions and novel imaging methods for human atherosclerotic plaque characterization have made significant progress. However the pathological mechanisms leading from stable lesions to the formation of vulnerable plaques remain uncertain and the related clinical events are unpredictable. An animal model mimicking human plaque destablization is required as well as an in vivo imaging method to assess and monitor atherosclerosis progression. Magnetic resonance imaging (MRI) is increasingly used for in vivo assessment of atherosclerotic plaques in the human carotids. MRI provides well-characterized morphological and functional features of human atherosclerotic plaque which can be also assessed in animal models. This review summarizes the most common species used as animal models for experimental atherosclerosis, the techniques to induce atherosclerosis and to obtain vulnerable plaques, together with the role of MRI for monitoring atherosclerotic plaques in animals.
Collapse
Affiliation(s)
- Antoine Millon
- Department of Vascular Surgery, University Hospital of Lyon, 69000 Lyon, France
- CREATIS, UMR CNRS 5515, INSERM U630, Lyon University, 69000 Lyon, France
| | | | - Loic Boussel
- CREATIS, UMR CNRS 5515, INSERM U630, Lyon University, 69000 Lyon, France
- Department of Radiology, Hôpital Cardiovasculaire et Pneumologique, Louis Pradel, 69000 Lyon, France
| | - Zahi Fayad
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Philippe Douek
- CREATIS, UMR CNRS 5515, INSERM U630, Lyon University, 69000 Lyon, France
- Department of Radiology, Hôpital Cardiovasculaire et Pneumologique, Louis Pradel, 69000 Lyon, France
| |
Collapse
|
43
|
Bale LK, Chakraborty S, Conover CA. Inducible reduction in pregnancy-associated plasma protein-A gene expression inhibits established atherosclerotic plaque progression in mice. Endocrinology 2014; 155:1184-7. [PMID: 24506074 PMCID: PMC3959602 DOI: 10.1210/en.2013-2110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) is a novel zinc metalloproteinase implicated in cardiovascular disease. The aim of this study was to determine whether a reduction in PAPP-A expression in the adult affects the progression of established atherosclerotic plaque. Apolipoprotein E-null mice were fed a high-fat diet for 5 weeks to initiate early-stage plaque development before tamoxifen-inducible, Cre recombinase-mediated excision of the floxed PAPP-A gene. High-fat feeding was continued, and after 10 weeks the aorta and brachiocephalic artery were harvested for atherosclerotic plaque analyses of overall burden and morphology, respectively. An inducible decrease in PAPP-A gene expression significantly inhibited atherosclerotic plaque progression as assessed by a 70% reduction in plaque burden in the aorta (P = .012) without an effect on the elevated circulating levels of cholesterol and triglycerides in this model. Furthermore, this reduction in PAPP-A prevented the development of advanced plaque with necrotic cores and buried fibrous caps in the brachiocephalic artery. These data indicate PAPP-A as a potential target to limit progression of established atherosclerotic plaque.
Collapse
Affiliation(s)
- Laurie K Bale
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905
| | | | | |
Collapse
|
44
|
Riou LM, Broisat A, Ghezzi C, Finet G, Rioufol G, Gharib AM, Pettigrew RI, Ohayon J. Effects of mechanical properties and atherosclerotic artery size on biomechanical plaque disruption - mouse vs. human. J Biomech 2014; 47:765-72. [PMID: 24491495 DOI: 10.1016/j.jbiomech.2014.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 12/16/2022]
Abstract
Mouse models of atherosclerosis are extensively being used to study the mechanisms of atherosclerotic plaque development and the results are frequently extrapolated to humans. However, major differences have been described between murine and human atherosclerotic lesions and the determination of similarities and differences between these species has been largely addressed recently. This study takes over and extends previous studies performed by our group and related to the biomechanical characterization of both mouse and human atherosclerotic lesions. Its main objective was to determine the distribution and amplitude of mechanical stresses including peak cap stress (PCS) in aortic vessels from atherosclerotic apoE(-/-) mice, in order to evaluate whether such biomechanical data would be in accordance with the previously suggested lack of plaque rupture in this model. Successful finite element analysis was performed from the zero-stress configuration of aortic arch sections and mainly indicated (1) the modest role of atherosclerotic lesions in the observed increase in residual parietal stresses in apoE(-/-) mouse vessels and (2) the low amplitude of murine PCS as compared to humans. Overall, the results from the present study support the hypothesis that murine biomechanical properties and artery size confer less propensity to rupture for mouse lesions in comparison with those of humans.
Collapse
Affiliation(s)
- Laurent M Riou
- INSERM, UMR_S 1039, Radiopharmaceutiques Biocliniques, Faculté de Médecine de Grenoble, Grenoble, France
| | - Alexis Broisat
- INSERM, UMR_S 1039, Radiopharmaceutiques Biocliniques, Faculté de Médecine de Grenoble, Grenoble, France
| | - Catherine Ghezzi
- INSERM, UMR_S 1039, Radiopharmaceutiques Biocliniques, Faculté de Médecine de Grenoble, Grenoble, France
| | - Gérard Finet
- Department of Hemodynamics and Interventional Cardiology, Hospices Civils de Lyon and Claude Bernard University Lyon1, INSERM Unit 886, Lyon, France
| | - Gilles Rioufol
- Department of Hemodynamics and Interventional Cardiology, Hospices Civils de Lyon and Claude Bernard University Lyon1, INSERM Unit 886, Lyon, France
| | - Ahmed M Gharib
- Laboratory of Integrative Cardiovascular Imaging Science, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Roderic I Pettigrew
- Laboratory of Integrative Cardiovascular Imaging Science, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jacques Ohayon
- Laboratory TIMC-IMAG/DyCTiM, UJF, CNRS UMR 5525, In(3)S, Grenoble, France; Polytech Annecy-Chambéry, University of Savoie, Le Bourget du Lac, France.
| |
Collapse
|
45
|
Miller MR, McLean SG, Duffin R, Lawal AO, Araujo JA, Shaw CA, Mills NL, Donaldson K, Newby DE, Hadoke PWF. Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. Part Fibre Toxicol 2013; 10:61. [PMID: 24330719 PMCID: PMC3907045 DOI: 10.1186/1743-8977-10-61] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/02/2013] [Indexed: 12/22/2022] Open
Abstract
Objective Diesel exhaust particulate (DEP), a major component of urban air pollution, has been linked to atherogenesis and precipitation of myocardial infarction. We hypothesized that DEP exposure would increase and destabilise atherosclerotic lesions in apolipoprotein E deficient (ApoE−/−) mice. Methods ApoE−/− mice were fed a ‘Western diet’ (8 weeks) to induce ‘complex’ atherosclerotic plaques, with parallel experiments in normal chow fed wild-type mice. During the last 4 weeks of feeding, mice received twice weekly instillation (oropharyngeal aspiration) of 35 μL DEP (1 mg/mL, SRM-2975) or vehicle (saline). Atherosclerotic burden was assessed by en-face staining of the thoracic aorta and histological examination of the brachiocephalic artery. Results Brachiocephalic atherosclerotic plaques were larger in ApoE−/− mice treated with DEP (59±10%) than in controls (32±7%; P = 0.017). In addition, DEP-treated mice had more plaques per section of artery (2.4±0.2 vs 1.8±0.2; P = 0.048) and buried fibrous layers (1.2±0.2 vs 0.4±0.1; P = 0.028). These changes were associated with lung inflammation and increased antioxidant gene expression in the liver, but not with changes in endothelial function, plasma lipids or systemic inflammation. Conclusions Increased atherosclerosis is caused by the particulate component of diesel exhaust producing advanced plaques with a potentially more vulnerable phenotype. These results are consistent with the suggestion that removal of the particulate component would reduce the adverse cardiovascular effects of diesel exhaust.
Collapse
Affiliation(s)
- Mark R Miller
- Centre for Cardiovascular Sciences, University of Edinburgh, 47 Little France Crescent, EH16 4TJ Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chronic Exposure to Bisphenol A can Accelerate Atherosclerosis in High-Fat-Fed Apolipoprotein E Knockout Mice. Cardiovasc Toxicol 2013; 14:120-8. [DOI: 10.1007/s12012-013-9235-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
48
|
Preusch MR, Baeuerle M, Albrecht C, Blessing E, Bischof M, Katus HA, Bea F. GDF-15 protects from macrophage accumulation in a mousemodel of advanced atherosclerosis. Eur J Med Res 2013; 18:19. [PMID: 23800095 PMCID: PMC3701574 DOI: 10.1186/2047-783x-18-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/29/2013] [Indexed: 01/10/2023] Open
Abstract
Background The cytokine growth differentiation factor-15 (GDF-15), a member of the TGF beta superfamily, has recently been discovered to play an important role in cardiovascular diseases. It is mostly expressed in macrophages of atherosclerotic lesions, but its impact on advanced atherosclerosis is still unknown. This study was performed to evaluate the effects of GDF-15 in an established mouse model of advanced atherosclerosis. Methods Thirty-eight LDL receptor deficient mice received a lethal body radiation. Half of the group was transplanted with bone marrow of GDF-15 deficient mice. Nineteen mice were transplanted with bone marrow from wild-type controls. After 24 weeks on an atherogenic diet, animals were euthanized and sections of the aortic sinus were prepared. Lesion size and lesion composition, as well as macrophage content,were evaluated. Results While demonstrating no difference in lesion size, LDL-receptor knockout mice transplanted with bone marrow from GDF-15 deficient mice showed enhanced macrophage accumulation and features of atherosclerotic plaque destabilization, such as thinning of fibrous caps. Immunostaining against intercellular adhesion molecule-1 further revealed an increased expression in mice receiving GDF-15-deficient bone marrow. Conclusions This is the first study that demonstrates a protective role of GDF-15 in advanced atherosclerosis and macrophage accumulation, possibly due to the reduced expression of adhesion molecules.
Collapse
Affiliation(s)
- Michael R Preusch
- Department of Internal Medicine, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen YC, Bui AV, Diesch J, Manasseh R, Hausding C, Rivera J, Haviv I, Agrotis A, Htun NM, Jowett J, Hagemeyer CE, Hannan RD, Bobik A, Peter K. A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling. Circ Res 2013; 113:252-65. [PMID: 23748430 DOI: 10.1161/circresaha.113.301562] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE The high morbidity/mortality of atherosclerosis is typically precipitated by plaque rupture and consequent thrombosis. However, research on underlying mechanisms and therapeutic approaches is limited by the lack of animal models that reproduce plaque instability observed in humans. OBJECTIVE Development and use of a mouse model of plaque rupture that reflects the end stage of human atherosclerosis. METHODS AND RESULTS On the basis of flow measurements and computational fluid dynamics, we applied a tandem stenosis to the carotid artery of apolipoprotein E-deficient mice on high-fat diet. At 7 weeks postoperatively, we observed intraplaque hemorrhage in ≈50% of mice, as well as disruption of fibrous caps, intraluminal thrombosis, neovascularization, and further characteristics typically seen in human unstable plaques. Administration of atorvastatin was associated with plaque stabilization and downregulation of monocyte chemoattractant protein-1 and ubiquitin. Microarray profiling of mRNA and microRNA (miR) and, in particular, its combined analysis demonstrated major differences in the hierarchical clustering of genes and miRs among nonatherosclerotic arteries, stable, and unstable plaques and allows the identification of distinct genes/miRs, potentially representing novel therapeutic targets for plaque stabilization. The feasibility of the described animal model as a discovery tool was established in a pilot approach, identifying a disintegrin and metalloprotease with thrombospondin motifs 4 (ADAMTS4) and miR-322 as potential pathogenic factors of plaque instability in mice and validated in human plaques. CONCLUSIONS The newly described mouse model reflects human atherosclerotic plaque instability and represents a discovery tool toward the development and testing of therapeutic strategies aimed at preventing plaque rupture. Distinctly expressed genes and miRs can be linked to plaque instability.
Collapse
Affiliation(s)
- Yung-Chih Chen
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Over-expression of TFPI-2 promotes atherosclerotic plaque stability by inhibiting MMPs in apoE-/- mice. Int J Cardiol 2013; 168:1691-7. [PMID: 23608390 DOI: 10.1016/j.ijcard.2013.03.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 11/24/2022]
|