1
|
Ghodrati M, Schlöglhofer T, Maurer A, Khienwad T, Zimpfer D, Beitzke D, Zonta F, Moscato F, Schima H, Aigner P. Effects of the atrium on intraventricular flow patterns during mechanical circulatory support. Int J Artif Organs 2021; 45:421-430. [PMID: 34715752 PMCID: PMC8922056 DOI: 10.1177/03913988211056018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Simulations of the ventricular flow patterns during left ventricular assist device (LVAD) support are mainly performed with idealized cylindrical inflow, neglecting the influence of the atrial vortex. In this study, the influence of the left atrium (LA) on the intra-ventricular flow was investigated via Computational Fluid Dynamics (CFD) simulations. Ventricular flow was simulated by a combined Eulerian (carrier flow)/Lagrangian (particles) approach taking into account either the LA or a cylindrical inflow section to mimic a fully support condition. The flow deviation at the mitral valve, the blood low-velocity volume as well as the residence time and shear stress history of the particles were calculated. Inclusion of the LA deflects the flow at the mitral valve by 25°, resulting in an asymmetric flow jet entering the left ventricle. This reduced the ventricular low-velocity volume by 40% (from 6.4 to 3.9 cm3), increased (40%) the shear stress experienced by particles and correspondingly increased (27%) their residence time. Under the studied conditions, the atrial geometry plays a major role in the development of intraventricular flow patterns. A reliable prediction of blood flow dynamics and consequently thrombosis risk analysis within the ventricle requires the consideration of the LA in computational simulations.
Collapse
Affiliation(s)
- Mojgan Ghodrati
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Thomas Schlöglhofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexander Maurer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Thananya Khienwad
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Francesco Zonta
- Institute of Fluid Dynamics and Heat Transfer, Technical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Aigner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
2
|
A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions. Microorganisms 2021; 9:microorganisms9091993. [PMID: 34576888 PMCID: PMC8468346 DOI: 10.3390/microorganisms9091993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
The early colonization of surfaces and subsequent biofilm development have severe impacts in environmental, industrial, and biomedical settings since they entail high costs and health risks. To develop more effective biofilm control strategies, there is a need to obtain laboratory biofilms that resemble those found in natural or man-made settings. Since microbial adhesion and biofilm formation are strongly affected by hydrodynamics, the knowledge of flow characteristics in different marine, food processing, and medical device locations is essential. Once the hydrodynamic conditions are known, platforms for cell adhesion and biofilm formation should be selected and operated, in order to obtain reproducible biofilms that mimic those found in target scenarios. This review focuses on the most widely used platforms that enable the study of initial microbial adhesion and biofilm formation under controlled hydrodynamic conditions—modified Robbins devices, flow chambers, rotating biofilm devices, microplates, and microfluidic devices—and where numerical simulations have been used to define relevant flow characteristics, namely the shear stress and shear rate.
Collapse
|
3
|
Dolid A, Gomes LC, Mergulhão FJ, Reches M. Combining chemistry and topography to fight biofilm formation: Fabrication of micropatterned surfaces with a peptide-based coating. Colloids Surf B Biointerfaces 2020; 196:111365. [DOI: 10.1016/j.colsurfb.2020.111365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
|
4
|
Malkin AD, Ye SH, Lee EJ, Yang X, Zhu Y, Gamble LJ, Federspiel WJ, Wagner WR. Development of zwitterionic sulfobetaine block copolymer conjugation strategies for reduced platelet deposition in respiratory assist devices. J Biomed Mater Res B Appl Biomater 2018; 106:2681-2692. [PMID: 29424964 PMCID: PMC6085169 DOI: 10.1002/jbm.b.34085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
Respiratory assist devices, that utilize ∼2 m2 of hollow fiber membranes (HFMs) to achieve desired gas transfer rates, have been limited in their adoption due to such blood biocompatibility limitations. This study reports two techniques for the functionalization and subsequent conjugation of zwitterionic sulfobetaine (SB) block copolymers to polymethylpentene (PMP) HFM surfaces with the intention of reducing thrombus formation in respiratory assist devices. Amine or hydroxyl functionalization of PMP HFMs (PMP-A or PMP-H) was accomplished using plasma-enhanced chemical vapor deposition. The generated functional groups were conjugated to low molecular weight SB block copolymers with N-hydroxysuccinimide ester or siloxane groups (SBNHS or SBNHSi) that were synthesized using reversible addition fragmentation chain transfer polymerization. The modified HFMs (PMP-A-SBNHS or PMP-H-SBNHSi) showed 80-95% reduction in platelet deposition from whole ovine blood, stability under the fluid shear of anticipated operating conditions, and uninhibited gas exchange performance relative to non-modified HFMs (PMP-C). Additionally, the functionalization and SBNHSi conjugation technique was shown to reduce platelet deposition on polycarbonate and poly(vinyl chloride), two other materials commonly found in extracorporeal circuits. The observed thromboresistance and stability of the SB modified surfaces, without degradation of HFM gas transfer performance, indicate that this approach is promising for longer term pre-clinical testing in respiratory assist devices and may ultimately allow for the reduction of anticoagulation levels in patients being supported for extended periods. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2681-2692, 2018.
Collapse
Affiliation(s)
- Alexander D. Malkin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Evan J. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Xiguang Yang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Yang Zhu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Lara J. Gamble
- Department of Bioengineering and NESAC/BIO, University of Washington, Seattle, Washington 98195, United States
| | - William J. Federspiel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
5
|
Lee H, Sturgeon S, Jackson S, Hamilton J. The contribution of thrombin-induced platelet activation to thrombus growth is diminished under pathological blood shear conditions. Thromb Haemost 2017; 107:328-37. [DOI: 10.1160/th11-06-0418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/04/2011] [Indexed: 11/05/2022]
Abstract
SummaryDeveloping novel anti-platelet therapies is an important clinical strategy for the prevention of arterial thromboses which cause heart attacks and most strokes. Thrombin activates platelets via protease-activated receptors (PARs), and PAR antagonists are currently under investigation as antithrombotics. Yet despite these clinical advances, the importance of PARs to platelet activation during thromboses formed under pathological conditions has not been investigated. To this end, we examined the role of PAR-dependent platelet activation in thrombus formation in the presence of elevated blood shear rates. We used two in vivo thrombosis models and an ex vivo whole blood flow approach in PAR4-/-mice, whose platelets are unresponsive to thrombin, to show that the contribution of PAR-mediated platelet activation to thrombosis is diminished at pathological blood shear rates as a direct result of decreased incorporation of thrombin-activated platelets into growing thrombi. Our ex vivo observations were replicated in human whole blood treated with a PAR1 antagonist. These results define a novel, shear-regulated role for thrombin/PAR-dependent platelet activation during thrombosis and provide important insights into the conditions under which PAR antagonists may best be used for the prevention of acute coronary syndromes.
Collapse
|
6
|
Hosseinzadegan H, Tafti DK. Modeling thrombus formation and growth. Biotechnol Bioeng 2017; 114:2154-2172. [DOI: 10.1002/bit.26343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/03/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Hamid Hosseinzadegan
- Mechanical Engineering DepartmentVirginia Polytechnic Institute and State University, 213E Goodwin Hall ‐ 0238, 635 Prices Fork RoadBlacksburgVirginia24061
| | - Danesh K. Tafti
- Mechanical Engineering DepartmentVirginia Polytechnic Institute and State University, 213E Goodwin Hall ‐ 0238, 635 Prices Fork RoadBlacksburgVirginia24061
| |
Collapse
|
7
|
Hosseinzadegan H, Tafti DK. Prediction of Thrombus Growth: Effect of Stenosis and Reynolds Number. Cardiovasc Eng Technol 2017; 8:164-181. [PMID: 28470538 DOI: 10.1007/s13239-017-0304-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/23/2017] [Indexed: 11/26/2022]
Abstract
Shear stresses play a major role in platelet-substrate interactions and thrombus formation and growth in blood flow, where under both pathological and physiological conditions platelet adhesion and accumulation occur. In this study, a shear-dependent continuum model for platelet activation, adhesion and aggregation is presented. The model was first verified under three different shear conditions and at two heparin levels. Three-dimensional simulations were then carried out to evaluate the performance of the model for severely damaged (stripped) aortas with mild and severe stenosis degrees in laminar flow regime. For these cases, linear shear-dependent functions were developed for platelet-surface and platelet-platelet adhesion rates. It was confirmed that the platelet adhesion rate is not only a function of Reynolds number (or wall shear rate) but also the stenosis severity of the vessel. General correlations for adhesion rates of platelets as functions of stenosis and Reynolds number were obtained based on these cases. Finally using the new platelet adhesion rates, the model was applied to different experimental systems and shown to agree well with measured platelet deposition.
Collapse
Affiliation(s)
| | - Danesh K Tafti
- Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
8
|
Fernández-Ruiz R, Pino M, Hurtado B, García de Frutos P, Caballo C, Escolar G, Gomis R, Diaz-Ricart M. Role of sodium tungstate as a potential antiplatelet agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2777-86. [PMID: 26060394 PMCID: PMC4454192 DOI: 10.2147/dddt.s77221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose Platelet inhibition is a key strategy in the management of atherothrombosis. However, the large variability in response to current strategies leads to the search for alternative inhibitors. The antiplatelet effect of the inorganic salt sodium tungstate (Na2O4W), a protein tyrosine phosphatase 1B (PTP1B) inhibitor, has been investigated in this study. Methods Wild-type (WT) and PTP1B knockout (PTP1B−/−) mice were treated for 1 week with Na2O4W to study platelet function with the platelet function analyzer PFA-100, a cone-and-plate analyzer, a flat perfusion chamber, and thrombus formation in vivo. Human blood aliquots were incubated with Na2O4W for 1 hour to measure platelet function using the PFA-100 and the annular perfusion chamber. Aggregometry and thromboelastometry were also performed. Results In WT mice, Na2O4W treatment prolonged closure times in the PFA-100 and decreased the surface covered (%SC) by platelets on collagen. Thrombi formed in a thrombosis mice model were smaller in animals treated with Na2O4W (4.6±0.7 mg vs 8.9±0.7 mg; P<0.001). Results with Na2O4W were similar to those in untreated PTP1B−/− mice (5.0±0.3 mg). Treatment of the PTP1B−/− mice with Na2O4W modified only slightly this response. In human blood, a dose-dependent effect was observed. At 200 μM, closure times in the PFA-100 were prolonged. On denuded vessels, %SC and thrombi formation (%T) decreased with Na2O4W. Neither the aggregating response nor the viscoelastic clot properties were affected. Conclusion Na2O4W decreases consistently the hemostatic capacity of platelets, inhibiting their adhesive and cohesive properties under flow conditions in mice and in human blood, resulting in smaller thrombi. Although Na2O4W may be acting on platelet PTP1B, other potential targets should not be disregarded.
Collapse
Affiliation(s)
- Rebeca Fernández-Ruiz
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosellón, Barcelona, Spain ; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Marc Pino
- Hemotherapy-Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, Spain
| | - Begoña Hurtado
- Institutode Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomediques August Pi i Sunyer, Rosellón, Barcelona, Spain
| | - Pablo García de Frutos
- Institutode Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomediques August Pi i Sunyer, Rosellón, Barcelona, Spain
| | - Carolina Caballo
- Hemotherapy-Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, Spain
| | - Ginés Escolar
- Hemotherapy-Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, Spain
| | - Ramón Gomis
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosellón, Barcelona, Spain ; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain ; Hospital Clinic, Universitat de Barcelona, Villarroel, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemotherapy-Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, Spain
| |
Collapse
|
9
|
French SL, Arthur JF, Tran HA, Hamilton JR. Approval of the first protease-activated receptor antagonist: Rationale, development, significance, and considerations of a novel anti-platelet agent. Blood Rev 2014; 29:179-89. [PMID: 25467961 DOI: 10.1016/j.blre.2014.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Abstract
Twenty-three years after the discovery of the first thrombin receptor, now known as protease-activated receptor 1 (PAR1), the first drug targeting this receptor is available for human use. The PAR1 inhibitor, vorapaxar (Zontivity, MSD), was recently approved by the FDA for use in the USA for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or peripheral artery disease. In this review, we detail the rationale, development, as well as the clinical significance and considerations of vorapaxar, the original PAR antagonist and the latest anti-platelet agent in the pharmaco-armoury against arterial thrombosis.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| | - Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| | - Huyen A Tran
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Gomes LC, Moreira JMR, Teodósio JS, Araújo JDP, Miranda JM, Simões M, Melo LF, Mergulhão FJ. 96-well microtiter plates for biofouling simulation in biomedical settings. BIOFOULING 2014; 30:535-46. [PMID: 24684538 DOI: 10.1080/08927014.2014.890713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Microtiter plates with 96 wells are routinely used in biofilm research mainly because they enable high-throughput assays. These platforms are used in a variety of conditions ranging from static to dynamic operation using different shaking frequencies and orbital diameters. The main goals of this work were to assess the influence of nutrient concentration and flow conditions on biofilm formation by Escherichia coli in microtiter plates and to define the operational conditions to be used in order to simulate relevant biomedical scenarios. Assays were performed in static mode and in incubators with distinct orbital diameters using different concentrations of glucose, peptone and yeast extract. Computational fluid dynamics (CFD) was used to simulate the flow inside the wells for shaking frequencies ranging from 50 to 200 rpm and orbital diameters from 25 to 100 mm. Higher glucose concentrations enhanced adhesion of E. coli in the first 24 h, but variation in peptone and yeast extract concentration had no significant impact on biofilm formation. Numerical simulations indicate that 96-well microtiter plates can be used to simulate a variety of biomedical scenarios if the operating conditions are carefully set.
Collapse
Affiliation(s)
- L C Gomes
- a LEPABE - Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Influence of flow rate variation on the development of Escherichia coli biofilms. Bioprocess Biosyst Eng 2013; 36:1787-96. [DOI: 10.1007/s00449-013-0954-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/12/2013] [Indexed: 11/26/2022]
|
12
|
Moreira JM, Gomes LC, Araújo JD, Miranda JM, Simões M, Melo LF, Mergulhão FJ. The effect of glucose concentration and shaking conditions on Escherichia coli biofilm formation in microtiter plates. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2013.02.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Abstract
Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis.
Collapse
|
14
|
Peng H, Schlaich EM, Row S, Andreadis ST, Swartz DD. A novel ovine ex vivo arteriovenous shunt model to test vascular implantability. Cells Tissues Organs 2011; 195:108-21. [PMID: 22005667 DOI: 10.1159/000331415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The major objective of successful development of tissue-engineered vascular grafts is long-term in vivo patency. Optimization of matrix, cell source, surface modifications, and physical preconditioning are all elements of attaining a compatible, durable, and functional vascular construct. In vitro model systems are inadequate to test elements of thrombogenicity and vascular dynamic functional properties while in vivo implantation is complicated, labor-intensive, and cost-ineffective. We proposed an ex vivo ovine arteriovenous shunt model in which we can test the patency and physical properties of vascular grafts under physiologic conditions. The pressure, flow rate, and vascular diameter were monitored in real-time in order to evaluate the pulse wave velocity, augmentation index, and dynamic elastic modulus, all indicators of graft stiffness. Carotid arteries, jugular veins, and small intestinal submucosa-based grafts were tested. SIS grafts demonstrated physical properties between those of carotid arteries and jugular veins. Anticoagulation properties of grafts were assessed via scanning electron microscopy imaging, en face immunostaining, and histology. Luminal seeding with endothelial cells greatly decreased the attachment of thrombotic components. This model is also suture free, allowing for multiple samples to be stably processed within one animal. This tunable (pressure, flow, shear) ex vivo shunt model can be used to optimize the implantability and long-term patency of tissue-engineered vascular constructs.
Collapse
Affiliation(s)
- Haofan Peng
- Department of Chemical and Biological Engineering, Women and Children's Hospital of Buffalo, N.Y., USA
| | | | | | | | | |
Collapse
|
15
|
Koukos G, Sevigny L, Zhang P, Covic L, Kuliopulos A. Serine and metalloprotease signaling through PAR1 in arterial thrombosis and vascular injury. IUBMB Life 2011; 63:412-8. [PMID: 21557445 DOI: 10.1002/iub.465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/10/2011] [Indexed: 12/22/2022]
Abstract
Thrombin-dependent platelet activation has been shown to be important in the setting of angioplasty and stenting, which may cause ischemic complications including acute myocardial infarction and death. Inhibitors of the high-affinity thrombin receptor, protease-activated receptor 1 (PAR1), are now being evaluated in clinical trials for safety and efficacy in patients with atherothrombotic disease. However, it is unknown whether chronic inhibition of PAR1 in these large patient populations will have beneficial or possibly adverse effects on other biologic processes involved in blood vessel homeostasis and the response to vascular injury. Most recently, PAR1 was found to be cleaved at a distinct site by matrix metalloprotease-1 (MMP-1) to create a longer tethered ligand, which activates a distinct spectrum of G protein pathways in platelets. The differential activation by serine proteases such as thrombin and the metalloprotease MMP-1, places the protease receptor PAR1 at the junction of two major protease classes critically involved in thrombosis, matrix remodeling, and the response to vascular injury.
Collapse
Affiliation(s)
- Georgios Koukos
- Hemostasis and Thrombosis Laboratory, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
16
|
Berny MA, Munnix ICA, Auger JM, Schols SEM, Cosemans JMEM, Panizzi P, Bock PE, Watson SP, McCarty OJT, Heemskerk JWM. Spatial distribution of factor Xa, thrombin, and fibrin(ogen) on thrombi at venous shear. PLoS One 2010; 5:e10415. [PMID: 20454680 PMCID: PMC2861630 DOI: 10.1371/journal.pone.0010415] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 03/31/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear. METHODOLOGY/PRINCIPAL FINDINGS Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca(2+) signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl(3). Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen). CONCLUSIONS/SIGNIFICANCE FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).
Collapse
Affiliation(s)
- Michelle A. Berny
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Imke C. A. Munnix
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Jocelyn M. Auger
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Saskia E. M. Schols
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | | | - Peter Panizzi
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Johan W. M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
Trivedi V, Boire A, Tchernychev B, Kaneider NC, Leger AJ, O'Callaghan K, Covic L, Kuliopulos A. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 2009; 137:332-43. [PMID: 19379698 DOI: 10.1016/j.cell.2009.02.018] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 12/01/2008] [Accepted: 02/05/2009] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteases (MMPs) play important roles in normal and pathological remodeling processes including atherothrombotic disease, inflammation, angiogenesis, and cancer. MMPs have been viewed as matrix-degrading enzymes, but recent studies have shown that they possess direct signaling capabilities. Platelets harbor several MMPs that modulate hemostatic function and platelet survival; however their mode of action remains unknown. We show that platelet MMP-1 activates protease-activated receptor-1 (PAR1) on the surface of platelets. Exposure of platelets to fibrillar collagen converts the surface-bound proMMP-1 zymogen to active MMP-1, which promotes aggregation through PAR1. Unexpectedly, MMP-1 cleaves PAR1 at a distinct site that strongly activates Rho-GTP pathways, cell shape change and motility, and MAPK signaling. Blockade of MMP1-PAR1 curtails thrombogenesis under arterial flow conditions and inhibits thrombosis in animals. These studies provide a link between matrix-dependent activation of metalloproteases and platelet-G protein signaling and identify MMP1-PAR1 as a potential target for the prevention of arterial thrombosis.
Collapse
Affiliation(s)
- Vishal Trivedi
- Department of Medicine, Tufts University School of Medicine, Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sakariassen KS. Blood flow devices in medical research and clinical testing in humans: are we approaching personalized medicine? Future Cardiol 2007; 3:71-90. [DOI: 10.2217/14796678.3.1.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review focuses on studies of blood flow devices employed in man to unravel the mechanisms of bleeding and thrombotic disorders, and on the characterization of novel experimental antithrombotic entities and drug candidates in biopharmaceutical research and development. Clinical studies with drug candidates and new therapeutic strategies have also been performed, and the predictability of these experimental approaches to clinical situations is excellent. Based on the solid validation of these flow devices, miniature flow devices employing nonanticoagulated blood drawn directly from an antecubital vein should be developed for diagnostic purposes. It is anticipated that such a diagnostic flow device could develop into a personalized medicine approach.
Collapse
|
19
|
Mouton W, Madon J, Fehr J, Bombeli T. Evaluation of the effect of 6 von Willebrand factor concentrates on platelet adhesion to human vein segments under flow conditions. Int J Hematol 2004; 80:383-5. [PMID: 15615267 DOI: 10.1532/ijh97.e0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Jackson SP, Schoenwaelder SM. Antiplatelet therapy: in search of the 'magic bullet'. Nat Rev Drug Discov 2003; 2:775-89. [PMID: 14526381 DOI: 10.1038/nrd1198] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The central importance of platelets in the development of arterial thrombosis and cardiovascular disease is well established. No other single cell type is responsible for as much morbidity and mortality as the platelet and, as a consequence, it represents a major target for therapeutic intervention. The growing awareness of the importance of platelets is reflected in the increasing number of patients receiving antiplatelet therapy, a trend that is likely to continue in the future. There are, however, significant drawbacks with existing therapies, including issues related to limited efficacy and safety. The discovery of a 'magic bullet' that selectively targets pathological thrombus formation without undermining haemostasis remains elusive, although recent progress in unravelling the molecular events regulating thrombosis has provided promising new avenues to solve this long-standing problem.
Collapse
Affiliation(s)
- Shaun P Jackson
- The Australian Centre for Blood Diseases, Department of Medicine, Monash University, Arnold Street, Box Hill Hospital, Box Hill, Victoria 3128, Australia.
| | | |
Collapse
|
21
|
Abstract
Recent in vivo studies have highlighted the dynamic and complex nature of platelet thrombus growth and the requirement for multiple adhesive receptor-ligand interactions in this process. In particular, the importance of von Willebrand factor (VWF) in promoting both primary adhesion and aggregation under high shear conditions is now well established. In general, the efficiency with which platelets adhere and aggregate at sites of vessel wall injury is dependent on the synergistic action of various adhesive and soluble agonist receptors, with the contribution of each of the individual receptors dependent on the prevailing blood flow conditions. In this review, we will discuss the major platelet adhesive interactions regulating platelet thrombus formation under high shear, with specific focus on the VWF (GPIb and integrin alphaIIbbeta3) and collagen receptors (GPVI and integrin alpha2beta1). We will also discuss the signaling mechanisms utilized by these receptors to induce platelet activation with specific emphasis on the role of cytosolic calcium flux in regulating platelet adhesion dynamics. The role of soluble agonists in promoting thrombus growth will be highlighted and a model to explain the synergistic requirement for adhesive and soluble stimuli for efficient platelet aggregation will be discussed.
Collapse
Affiliation(s)
- S P Jackson
- Australian Center for Blood Diseases, Department of Medicine, Monash Medical School, Box Hill Hospital, Box Hill, Victoria, Australia.
| | | | | |
Collapse
|
22
|
Hatton MW, Ross B, Southward SM, DeReske M, Richardson M. Pretreatment of rabbits with either hirudin, ancrod, or warfarin significantly reduces the immediate uptake of fibrinogen and platelets by the deendothelialized aorta wall after balloon-catheter injury in vivo. Arterioscler Thromb Vasc Biol 1998; 18:816-24. [PMID: 9598842 DOI: 10.1161/01.atv.18.5.816] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrinogen and platelets rapidly saturate the exposed subendothelium of a freshly deendothelialized aorta in vivo. As thrombin generated within the site of injury is largely responsible for fibrin(ogen) deposition, we questioned whether various anticoagulant treatments would inhibit uptake of both fibrinogen and platelets in vivo. Rabbits were anticoagulated by pretreatment with either Warfarin, Ancrod, or recombinant hirudin. Each anesthetized, anticoagulated (or saline-injected control) rabbit was injected i.v. with rabbit 51Cr-platelets and 125I-fibrinogen before a balloon-catheter deendothelializing (or sham) injury of the thoracic aorta. At 10 minutes after injury, the rabbit was exsanguinated and the aorta excised. Platelet adsorption by the deendothelialized aorta surface was substantially reduced in anticoagulated rabbits (controls, 2.2x10(5)/mm2; Warfarin-treated, 1.2x10(5)/mm2; Ancrod-treated, 5.3x10(4)/mm2; r-hirudin-treated [5 mg/kg], 5.3x10(4)/mm2), and a significant reduction of fibrinogen associated with the platelet layer (from 5.3 to 1 to 2 pmol/cm2) and within the underlying intima-media layer (from 16.9 to 5 to 6 pmol/cm2) was observed in the r-hirudin-and Warfarin-treated rabbits. The pattern of aorta-deposited 51Cr-platelets and 125I-fibrin in the anticoagulated rabbits corresponded well with an assessment by transmission electron microscopy of aortic tissue samples. We conclude that approximately 70% of fibrinogen uptake is thrombin dependent and that approximately 80% of platelet adsorption depends on codeposited fibrin(ogen) during the 10-minute interval after balloon injury. Pretreatment with an agent that interferes with either thrombin or fibrin production will inhibit the immediate interaction of fibrinogen and platelets with the freshly exposed subendothelium.
Collapse
Affiliation(s)
- M W Hatton
- Department of Pathology, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
23
|
Padró T, Quax PH, van den Hoogen CM, Roholl P, Verheijen JH, Emeis JJ. Tissue-type plasminogen activator and its inhibitor in rat aorta. Effect of endotoxin. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1994; 14:1459-65. [PMID: 8068608 DOI: 10.1161/01.atv.14.9.1459] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Plasminogen activator (PA) and PA inhibitor (PAI) antigen, activity, and mRNA were analyzed in the three layers of rat aorta, and the effect of endotoxin on PA and PAI was studied. All PA activity in aorta was identified as tissue-type PA (TPA) activity; no urokinase-type PA was detected. In the tunica adventitia TPA activity, TPA antigen, and TPA mRNA were detected, whereas in the tunica media TPA antigen and TPA mRNA, but no TPA activity, were found. PAI activity was detected in the tunica media, explaining the absence of TPA activity in this layer. Removal of the endothelial cells had no effect on TPA antigen and PAI activity in intima-media preparations. Also, similar amounts of PAI-1 mRNA were found in intima-media preparations, irrespective of the presence or absence of the intima. Immunohistochemical staining showed that TPA immunoreactivity was present in all three layers of the aorta, whereas PAI-1 immunoreactivity was found in medial smooth muscle cells but not in endothelial cells. After endotoxin treatment, TPA activity was decreased in extracts of the total aorta and of the adventitia, although TPA antigen and TPA mRNA were unchanged. PAI-1 mRNA was strongly increased in the tunica adventitia and in the tunica media, as was PAI activity in the tunica media. Thus, endotoxin decreased TPA activity by increasing the synthesis of PAI-1; TPA was unaffected. Our observations in rat aorta differ from observations in mouse aorta and in rat carotid artery, and they caution against extrapolation from one tissue (or species) to another.
Collapse
Affiliation(s)
- T Padró
- Gaubius Laboratory TNO-PG, Leiden, Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Gast A, Tschopp TB, Baumgartner HR. Thrombin plays a key role in late platelet thrombus growth and/or stability. Effect of a specific thrombin inhibitor on thrombogenesis induced by aortic subendothelium exposed to flowing rabbit blood. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1994; 14:1466-74. [PMID: 8068609 DOI: 10.1161/01.atv.14.9.1466] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thrombin is involved in the pathogenesis of venous and arterial thrombosis. This study addressed the question of the relative importance of thrombin in the early and late phases of thrombogenesis. The effect of Ro 46-6240 (1.43 mg/kg bolus and 0.1 mg/kg per minute i.v.), a novel, selective thrombin inhibitor on thrombogenesis induced by rabbit aorta subendothelium, was measured ex vivo in a perfusion chamber model after a short (5-minute) and long (30-minute) exposure time to rabbit native blood. The role of the perfusion time was assessed at shear rates of 100/s, 650/s, and 2600/s. These shear rates mimic blood flow conditions found in veins, arteries, and small or stenosed arteries, respectively. Fibrin deposition and platelet thrombus formation on subendothelium were evaluated by microscopic morphometry. In the presence of Ro 46-6240, fibrin deposition was abolished at both perfusion times and at all shear rates. In the 5-minute experiments, thrombus height was reduced by Ro 46-6240 at shear rates of 100/s (85%) and 650/s (35%) but not at a shear rate of 2600/s, whereas thrombus area was not affected at any shear rate. In contrast, both thrombus height and thrombus area were reduced (60% to 90%) by Ro 46-6240 in the 30-minute perfusion groups at all wall shear rates. The antithrombotic effect of Ro 46-6240 after 30-minute perfusion was confirmed by the minimal increase in the pressure difference between the entrance and the exit of the perfusion chamber compared with the control groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Gast
- F. Hoffmann-La Roche Ltd, Pharmaceutical Division, Preclinical Research Department, Basel, Switzerland
| | | | | |
Collapse
|
25
|
Kirchhofer D, Tschopp TB, Hadváry P, Baumgartner HR. Endothelial cells stimulated with tumor necrosis factor-alpha express varying amounts of tissue factor resulting in inhomogenous fibrin deposition in a native blood flow system. Effects of thrombin inhibitors. J Clin Invest 1994; 93:2073-83. [PMID: 8182139 PMCID: PMC294327 DOI: 10.1172/jci117202] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
TNF-alpha induces changes in endothelial cell functions, such as upregulation of tissue factor, resulting in endothelial procoagulant activity which may play a role in disseminated intravascular coagulation. The procoagulant activity of TNF-alpha-stimulated endothelial cell monolayers was studied in a human ex vivo native (nonanticoagulated) blood flow system using the three thrombin inhibitors recombinant hirudin, Ro 46-6240, and heparin. Under venous blood flow conditions (shear rate 65 s-1) recombinant hirudin, Ro 46-6240, and heparin inhibited fibrin deposition on the endothelial cells by 50% at concentrations of 14, 28, and 412 ng/ml, respectively. The highest tested concentrations of the thrombin inhibitors reduced the postchamber fibrinopeptide A levels from 713 +/- 69 to < 70 ng/ml. Surprisingly, even at relatively high inhibitor concentrations, some local fibrin deposits were found on TNF-alpha-stimulated cells, suggesting that some endothelial cells possess higher procoagulant activity than others. Therefore, the surface expression pattern of tissue factor, the primary initiator of coagulation in this system, was examined by immunogold-silver staining. The results showed that the tissue factor density on the cell surface varied strongly among TNF-alpha-stimulated endothelial cells. Using TNF receptor-selective agonistic mutants of TNF-alpha, it was demonstrated further that the heterogenous surface expression of tissue factor was mediated entirely by the 55-kD TNF receptor and did not involve the 75-kD TNF receptor. We conclude that in this system TNF-alpha induces heterogenous tissue factor expression which may lead to a high local thrombin concentration, such that even in the presence of thrombin inhibitors focal fibrin deposition occurs.
Collapse
Affiliation(s)
- D Kirchhofer
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | | |
Collapse
|
26
|
Abstract
Endothelial cells are subjected to shear forces which influence important cell functions. Shear stress induces cell elongation and formation of stress fibers, increases permeability, pinocytosis and lipoprotein internalization, is involved in the formation of atherosclerotic lesions, increases the production of tissue plasminogen activator, and enhances von Willebrand factor release and hence platelet aggregation. It decreases adherence of erythrocytes and leukocytes, and increases the release of prostacyclin, endothelium derived relaxing factor, histamine and other compounds, but decreases erythropoietin secretion. The mechanism of signal transduction to the endothelial cell is not known exactly; shear-sensitive ion channels seem to be involved. It is concluded that a better understanding of shear-dependent endothelial functions will influence pathophysiologic concepts and therapeutic interventions.
Collapse
|
27
|
Donayre CE, Ouriel K, Rhee RY, Shortell CK. Future alternatives to heparin: Low-molecular-weight heparin and hirudin. J Vasc Surg 1992. [DOI: 10.1016/0741-5214(92)90015-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Ouriel K, Donayre C, Shortell CK, Cimino C, Donnelly J, Oxley D, Green RM. The hemodynamics of thrombus formation in arteries. J Vasc Surg 1991; 14:757-62; discussion 762-3. [PMID: 1960805 DOI: 10.1067/mva.1991.33157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alterations in arterial blood flow are thought to predispose to thrombus formation, but the exact relationships have not been fully elucidated. The effect of varying blood flows on the accumulation of thrombotic material within arteries was investigated, with use of shear rate as an index of flow across the luminal surface. Partially denuded rabbit aortas were perfused with fresh nonanticoagulated human blood for 3 minutes, with an in vitro recirculating apparatus, Indium 111-labeled platelets, and fibrinogen I 125. Shear rates ranged from zero to 1500 sec-1, correlating with the hemodynamics of various segments of the human arterial tree. A significant correlation was observed between shear rate and platelet deposition, ranging from 5.2 +/- 2.8 x 10(6) platelets/cm2 of vessel surface area at zero shear to a maximum of 64.7 +/- 8.3 x 10(6) platelets/cm2 at a shear rate of 1500 sec-1 (F = 5.01, p less than 0.05). Fibrin deposition paralleled that of platelets, ranging from 28.2 +/- 7.6 micrograms/cm2 at zero shear to 354.1 +/- 62.7 micrograms/cm2 at a shear rate of 1500 sec-1 (F = 5.91, p less than 0.05). These results suggest that shear rate is a most important determinant of platelet and fibrin deposition on altered arterial surfaces.
Collapse
Affiliation(s)
- K Ouriel
- Department of Surgery, University of Rochester, New York 14642
| | | | | | | | | | | | | |
Collapse
|
29
|
Rhee RY, Donayre CE, Ouriel K, Neschis DG, Shortell CK. Low dose heparin therapy: In vitro verification of antithrombotic effect. J Vasc Surg 1991. [DOI: 10.1016/0741-5214(91)90186-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Inauen W, Stocker G, Haeberli A, Straub PW. Effects of low and high dose oral contraceptives on blood coagulation and thrombogenesis induced by vascular subendothelium exposed to flowing human blood. Contraception 1991; 43:435-46. [PMID: 1833126 DOI: 10.1016/0010-7824(91)90134-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigated the effect of oral contraceptives with low and high estrogen concentration on blood coagulation and thrombogenesis, induced by vascular subendothelium of rabbit aorta exposed to flowing human blood. Twenty healthy women intending to take oral contraceptives were studied [1] before drug ingestion (control), and subsequently during the intake of oral contraceptives with [2] low estrogen content (20 micrograms ethinyl estradiol and 150 micrograms desogestrel per day) and [3] high estrogen content (50 micrograms ethinyl estradiol and 125 micrograms desogestrel per day). All experiments were performed between day 17 and 21 of the menstrual cycle and drug effects were studied during the third tablet cycle. Deposition of fibrin, platelets and platelet thrombi on vascular subendothelium was tested at a defined blood flow and wall shear rate (10 ml/min, 650 s-1) and was quantified by morphometrical techniques. Treatment with the low and high dose contraceptive increased the plasma levels of ethinyl estradiol (728 +/- 139 and 1438 +/- 212 vs. 0 fmol/l [low and high dose vs. control], means +/- SEM, P less than 0.001) and fibrinogen (2.3 +/- 0.1 and 2.6 +/- 0.1 vs. 2.0 +/- 0.1 g/l, P less than 0.05); and decreased antithrombin III activity (95 +/- 3 and 92 +/- 3 vs. 101 +/- 3 %, P less than 0.05). Fibrin deposition on vascular subendothelium was enhanced by the high dose contraceptive only (47 +/- 4 vs. 35 +/- 4 % coverage of the subendothelial surface with fibrin, high dose vs. control, P less than 0.05). The subendothelial deposition of platelets and platelet thrombi was not changed by contraceptive treatment. These results indicate that treatment with high dose contraceptives leads to an increase of fibrin-subendothelial interactions, whereas low dose contraceptives do not significantly alter the blood-subendothelium interactions. observed in this ex vivo model of thrombogenesis.
Collapse
Affiliation(s)
- W Inauen
- Department of Internal Medicine, University Hospital, Inselspital, Bern, Switzerland
| | | | | | | |
Collapse
|