1
|
Khanmohammadi M, Danish H, Sekar NC, Suarez SA, Chheang C, Peter K, Khoshmanesh K, Baratchi S. Cyclic stretch enhances neutrophil extracellular trap formation. BMC Biol 2024; 22:209. [PMID: 39289752 PMCID: PMC11409804 DOI: 10.1186/s12915-024-02009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Neutrophils, the most abundant leukocytes circulating in blood, contribute to host defense and play a significant role in chronic inflammatory disorders. They can release their DNA in the form of extracellular traps (NETs), which serve as scaffolds for capturing bacteria and various blood cells. However, uncontrolled formation of NETs (NETosis) can lead to excessive activation of coagulation pathways and thrombosis. Once neutrophils are migrated to infected or injured tissues, they become exposed to mechanical forces from their surrounding environment. However, the impact of transient changes in tissue mechanics due to the natural process of aging, infection, tissue injury, and cancer on neutrophils remains unknown. To address this gap, we explored the interactive effects of changes in substrate stiffness and cyclic stretch on NETosis. Primary neutrophils were cultured on a silicon-based substrate with stiffness levels of 30 and 300 kPa for at least 3 h under static conditions or cyclic stretch levels of 5% and 10%, mirroring the biomechanics of aged and young arteries. RESULTS Using this approach, we found that neutrophils are sensitive to cyclic stretch and that increases in stretch intensity and substrate stiffness enhance nuclei decondensation and histone H3 citrullination (CitH3). In addition, stretch intensity and substrate stiffness promote the response of neutrophils to the NET-inducing agents phorbol 12-myristate 13-acetate (PMA), adenosine triphosphate (ATP), and lipopolysaccharides (LPS). Stretch-induced activation of neutrophils was dependent on calpain activity, the phosphatidylinositol 3-kinase (PI3K)/focal adhesion kinase (FAK) signalling and actin polymerization. CONCLUSIONS In summary, these results demonstrate that the mechanical forces originating from the surrounding tissue influence NETosis, an important neutrophil function, and thus identify a potential novel therapeutic target.
Collapse
Affiliation(s)
- Manijeh Khanmohammadi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Habiba Danish
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Chanly Chheang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Khashayar Khoshmanesh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Gibson Hughes TA, Dona MSI, Sobey CG, Pinto AR, Drummond GR, Vinh A, Jelinic M. Aortic Cellular Heterogeneity in Health and Disease: Novel Insights Into Aortic Diseases From Single-Cell RNA Transcriptomic Data Sets. Hypertension 2024; 81:738-751. [PMID: 38318714 DOI: 10.1161/hypertensionaha.123.20597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.
Collapse
Affiliation(s)
- Tayla A Gibson Hughes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Malathi S I Dona
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Alexander R Pinto
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| |
Collapse
|
3
|
Liu N, Xue Y, Tang J, Zhang M, Ren X, Fu J. The dynamic change of phenotypic markers of smooth muscle cells in an animal model of cerebral small vessel disease. Microvasc Res 2021; 133:104061. [PMID: 32827495 DOI: 10.1016/j.mvr.2020.104061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND The pathological character of cerebral small vessel disease (CSVD) is the dysfunction of cerebral small arteries caused by risk factors. A switch from the contractile phenotype to the synthetic phenotype of vascular smooth muscle cells (SMCs) can decrease the contractility of arteries. The alteration of the vascular wall extracellular matrix (ECM) is found to regulate the process. We speculated that SMCs phenotype changes may also occur in CSVD induced by hypertension and the alteration of ECM especially fibronectin and laminin may regulate the process. METHOD Male spontaneously hypertensive rats (SHR) were used as a CSVD animal model. SMCs phenotypic markers and the ECM expression of the cerebral small arteries of SHR at different ages were evaluated by immunofluorescence. The phenotype changes of primary brain microvascular SMCs cultured on laminin-coating dish or fibronectin-coating dish were evaluated by western blot. RESULT A switch from the contractile phenotype to synthetic phenotype in SHR at 10 and 22 weeks of age was observed. Meanwhile, increased expression of fibronectin and a temporary decline of laminin was found in small arteries of SHR at 22 weeks. In vitro experiments also convinced that SMCs cultured on a fibronectin-coating dish failed to maintain contractile phenotype. While at 50 weeks, significant drops of both synthetic and contractile phenotypic markers were witnessed in SHR, with high expressions of four kinds of ECM. CONCLUSION SMCs in cerebral small arteries exhibited a switch from the contractile phenotype to synthetic phenotype during the chronic process of hypertension and aging. Moreover, the change of fibronectin and laminin may regulate the process.
Collapse
MESH Headings
- Age Factors
- Animals
- Biomarkers/metabolism
- Cells, Cultured
- Cerebral Arteries/metabolism
- Cerebral Arteries/pathology
- Cerebral Arteries/physiopathology
- Cerebral Small Vessel Diseases/etiology
- Cerebral Small Vessel Diseases/metabolism
- Cerebral Small Vessel Diseases/pathology
- Cerebral Small Vessel Diseases/physiopathology
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Fibronectins/metabolism
- Hypertension/complications
- Hypertension/metabolism
- Hypertension/physiopathology
- Laminin/metabolism
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Rats, Inbred SHR
- Rats, Inbred WKY
- Vascular Remodeling
- Vasoconstriction
- Rats
Collapse
Affiliation(s)
- Na Liu
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Miaoyi Zhang
- Department of Neurology, North Huashan hospital, Fudan University, No.108 Lu Xiang Road, Shanghai 201900, China
| | - Xue Ren
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, China; Department of Neurology, North Huashan hospital, Fudan University, No.108 Lu Xiang Road, Shanghai 201900, China.
| |
Collapse
|
4
|
Chen J, Zhou Y, Liu S, Li C. Biomechanical signal communication in vascular smooth muscle cells. J Cell Commun Signal 2020; 14:357-376. [PMID: 32780323 DOI: 10.1007/s12079-020-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Biomechanical stresses are closely associated with cardiovascular development and diseases. In vivo, vascular smooth muscle cells are constantly stimulated by biomechanical factors caused by increased blood pressure leading to the non-specific activation of cell transmembrane proteins. Thus, various intracellular signal molecules are simultaneously activated via signaling cascades, which are closely related to alterations in the differentiation, phenotype, inflammation, migration, pyroptosis, calcification, proliferation, and apoptosis of vascular smooth muscle cells. Meanwhile, mechanical stress-induced miRNAs and epigenetics modification on vascular smooth muscle cells play critical roles as well. Eventually, the overall pathophysiology of the cells is altered, resulting in the development of many major clinical diseases, including hypertension, atherosclerosis, grafted venous atherosclerosis, and aneurysm, among others. In this paper, important advances in mechanical signal communication in vascular smooth muscle cells are reviewed.
Collapse
Affiliation(s)
- Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Helms F, Lau S, Klingenberg M, Aper T, Haverich A, Wilhelmi M, Böer U. Complete Myogenic Differentiation of Adipogenic Stem Cells Requires Both Biochemical and Mechanical Stimulation. Ann Biomed Eng 2019; 48:913-926. [PMID: 30815762 DOI: 10.1007/s10439-019-02234-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Vascular tissue engineering of the middle layer of natural arteries requires contractile smooth muscle cells (SMC) which can be differentiated from adipose-derived mesenchymal stem cells (ASC) by treatment with transforming growth factor-β, sphingosylphosphorylcholine and bone morphogenetic protein-4 (TSB). Since mechanical stimulation may support or replace TSB-driven differentiation, we investigated its effect plus TSB-treatment on SMC orientation and contractile protein expression. Tubular fibrin scaffolds with incorporated ASC or pre-differentiated SMC were exposed to pulsatile perfusion for 10 days with or without TSB. Statically incubated scaffolds served as controls. Pulsatile incubation resulted in collagen-I expression and orientation of either cell type circumferentially around the lumen as shown by alpha smooth muscle actin (αSMA), calponin and smoothelin staining as early, intermediate and late marker proteins. Semi-quantitative Westernblot analyses revealed strongly increased αSMA and calponin expression by either pulsatile (12.48-fold; p < 0.01 and 38.15-fold; p = 0.07) or static incubation plus TSB pre-treatment (8.91-fold; p < 0.05 and 37.69-fold; p < 0.05). In contrast, contractility and smoothelin expression required both mechanical and TSB stimulation since it was 2.57-fold increased (p < 0.05) only by combining pulsatile perfusion and TSB. Moreover, pre-differentiation of ASC prior to pulsatile perfusion was not necessary since it could not further increase the expression level of any marker.
Collapse
Affiliation(s)
- Florian Helms
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Skadi Lau
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Klingenberg
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Aper
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany. .,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Kohn JC, Abdalrahman T, Sack KL, Reinhart-King CA, Franz T. Endothelial cells on an aged subendothelial matrix display heterogeneous strain profiles in silico. Biomech Model Mechanobiol 2018; 17:1405-1414. [PMID: 29802577 DOI: 10.1007/s10237-018-1034-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/16/2018] [Indexed: 10/24/2022]
Abstract
Within the artery intima, endothelial cells respond to mechanical cues and changes in subendothelial matrix stiffness. Recently, we found that the aging subendothelial matrix stiffens heterogeneously and that stiffness heterogeneities are present on the scale of one cell length. However, the impacts of these complex mechanical micro-heterogeneities on endothelial cells have not been fully understood. Here, we simulate the effects of matrices that mimic young and aged vessels on single- and multi-cell endothelial cell models and examine the resulting cell basal strain profiles. Although there are limitations to the model which prohibit the prediction of intracellular strain distributions in alive cells, this model does introduce mechanical complexities to the subendothelial matrix material. More heterogeneous basal strain distributions are present in the single- and multi-cell models on the matrix mimicking an aged artery over those exhibited on the young artery. Overall, our data indicate that increased heterogeneous strain profiles in endothelial cells are displayed in silico when there is an increased presence of microscale arterial mechanical heterogeneities in the matrix.
Collapse
Affiliation(s)
- J C Kohn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY, USA.,Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - T Abdalrahman
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - K L Sack
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - C A Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY, USA.,Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
| | - T Franz
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa. .,Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| |
Collapse
|
7
|
Charles R, Bourmoum M, Claing A. ARF GTPases control phenotypic switching of vascular smooth muscle cells through the regulation of actin function and actin dependent gene expression. Cell Signal 2018; 46:64-75. [PMID: 29499306 DOI: 10.1016/j.cellsig.2018.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 01/05/2023]
Abstract
Vascular smooth muscle cells (VSMC) can exhibit a contractile or a synthetic phenotype depending on the extracellular stimuli present and the composition of the extracellular matrix. Uncontrolled activation of the synthetic VSMC phenotype is however associated with the development of cardiovascular diseases. Here, we aimed to elucidate the role of the ARF GTPases in the regulation of VSMC dedifferentiation. First, we observed that the inhibition of the activation of ARF proteins with SecinH3, a blocker of the cytohesin ARF GEF family, reduced the ability of the cells to migrate and proliferate. In addition, this inhibitor also blocked expression of sm22α and αSMA, two contractile markers, at the transcription level impairing cell contractility. Specific knockdown of ARF1 and ARF6 showed that both isoforms were required for migration and proliferation, but ARF1 only regulated contractility through sm22α and αSMA expression. Expression of these VSMC markers was correlated with the degree of actin polymerization. VSMC treatment with SecinH3 as well as ARF1 depletion was both able to block the formation of stress fibres and focal adhesions, demonstrating the role of this GTPase in actin filament formation. Consequently, we observed that both treatments increased the ratio of G-actin to F-actin in these cells. The elevated amounts of cytoplasmic G-actin, acting as a signaling intermediate, blocked the recruitment of the Mkl1 (MRTF-A) transcription factor in the nucleus, demonstrating its involvement in the regulation of contractile protein expression. Altogether, these findings show for the first time that ARF GTPases are actively involved in VSMC phenotypic switching through the regulation of actin function in migration and proliferation, and the control of actin dependent gene regulation.
Collapse
Affiliation(s)
- Ricardo Charles
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Mohamed Bourmoum
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Audrey Claing
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
8
|
The arterial microenvironment: the where and why of atherosclerosis. Biochem J 2017; 473:1281-95. [PMID: 27208212 DOI: 10.1042/bj20150844] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
The formation of atherosclerotic plaques in the large and medium sized arteries is classically driven by systemic factors, such as elevated cholesterol and blood pressure. However, work over the past several decades has established that atherosclerotic plaque development involves a complex coordination of both systemic and local cues that ultimately determine where plaques form and how plaques progress. Although current therapeutics for atherosclerotic cardiovascular disease primarily target the systemic risk factors, a large array of studies suggest that the local microenvironment, including arterial mechanics, matrix remodelling and lipid deposition, plays a vital role in regulating the local susceptibility to plaque development through the regulation of vascular cell function. Additionally, these microenvironmental stimuli are capable of tuning other aspects of the microenvironment through collective adaptation. In this review, we will discuss the components of the arterial microenvironment, how these components cross-talk to shape the local microenvironment, and the effect of microenvironmental stimuli on vascular cell function during atherosclerotic plaque formation.
Collapse
|
9
|
Albinsson S, Bhattachariya A, Hellstrand P. Stretch-dependent smooth muscle differentiation in the portal vein-role of actin polymerization, calcium signaling, and microRNAs. Microcirculation 2015; 21:230-8. [PMID: 24238368 DOI: 10.1111/micc.12106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/09/2013] [Indexed: 11/28/2022]
Abstract
The mechanical forces acting on SMC in the vascular wall are known to regulate processes such as vascular remodeling and contractile differentiation. However, investigations to elucidate the underlying mechanisms of mechanotransduction in smooth muscle have been hampered by technical limitations associated with mechanical studies on pressurized small arteries, due primarily to the small amount of available tissue. The murine portal vein is a relatively large vessel showing myogenic tone that in many respects recapitulates the properties of small resistance vessels. Studies on stretched portal veins to elucidate mechanisms of mechanotransduction in the vascular wall have shown that stretch-sensitive regulation of contractile differentiation is mediated via Rho-activation and actin polymerization, while stretch-induced growth is regulated by the MAPK pathway. In this review, we have summarized findings on mechanotransduction in the portal vein with focus on stretch-induced contractile differentiation and the role of calcium, actin polymerization and miRNAs in this response.
Collapse
|
10
|
Kwak BR, Bäck M, Bochaton-Piallat ML, Caligiuri G, Daemen MJAP, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 2014; 35:3013-20, 3020a-3020d. [PMID: 25230814 DOI: 10.1093/eurheartj/ehu353] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Blood vessels are exposed to multiple mechanical forces that are exerted on the vessel wall (radial, circumferential and longitudinal forces) or on the endothelial surface (shear stress). The stresses and strains experienced by arteries influence the initiation of atherosclerotic lesions, which develop at regions of arteries that are exposed to complex blood flow. In addition, plaque progression and eventually plaque rupture is influenced by a complex interaction between biological and mechanical factors-mechanical forces regulate the cellular and molecular composition of plaques and, conversely, the composition of plaques determines their ability to withstand mechanical load. A deeper understanding of these interactions is essential for designing new therapeutic strategies to prevent lesion development and promote plaque stabilization. Moreover, integrating clinical imaging techniques with finite element modelling techniques allows for detailed examination of local morphological and biomechanical characteristics of atherosclerotic lesions that may be of help in prediction of future events. In this ESC Position Paper on biomechanical factors in atherosclerosis, we summarize the current 'state of the art' on the interface between mechanical forces and atherosclerotic plaque biology and identify potential clinical applications and key questions for future research.
Collapse
Affiliation(s)
- Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CMU, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | - Imo E Hoefer
- University Medical Center Urecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | - Paul C Evans
- Department of Cardiovascular Science, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
11
|
Turczyńska KM, Bhattachariya A, Säll J, Göransson O, Swärd K, Hellstrand P, Albinsson S. Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling. PLoS One 2013; 8:e65135. [PMID: 23705032 PMCID: PMC3660603 DOI: 10.1371/journal.pone.0065135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022] Open
Abstract
Vascular smooth muscle cells are constantly exposed to mechanical force by the blood pressure, which is thought to regulate smooth muscle growth, differentiation and contractile function. We have previously shown that the expression of microRNAs (miRNAs), small non-coding RNAs, is essential for regulation of smooth muscle phenotype including stretch-dependent contractile differentiation. In this study, we have investigated the effect of mechanical stretch on miRNA expression and the role of stretch-sensitive miRNAs for intracellular signaling in smooth muscle. MiRNA array analysis, comparing miRNA levels in stretched versus non-stretched portal veins, revealed a dramatic decrease in the miR-144/451 cluster level. Because this miRNA cluster is predicted to target AMPK pathway components, we next examined activation of this pathway. Diminished miR-144/451 expression was inversely correlated with increased phosphorylation of AMPKα at Thr172 in stretched portal vein. Similar to the effect of stretch, contractile differentiation could be induced in non-stretched portal veins by the AMPK activator, AICAR. Transfection with miR-144/451 mimics reduced the protein expression level of mediators in the AMPK pathway including MO25α, AMPK and ACC. This effect also decreased AICAR-induced activation of the AMPK signaling pathway. In conclusion, our results suggest that stretch-induced activation of AMPK in vascular smooth muscle is in part regulated by reduced levels of miR-144/451 and that this effect may play a role in promoting contractile differentiation of smooth muscle cells.
Collapse
|
12
|
Turczyńska KM, Sadegh MK, Hellstrand P, Swärd K, Albinsson S. MicroRNAs are essential for stretch-induced vascular smooth muscle contractile differentiation via microRNA (miR)-145-dependent expression of L-type calcium channels. J Biol Chem 2012; 287:19199-206. [PMID: 22474293 PMCID: PMC3365952 DOI: 10.1074/jbc.m112.341073] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/26/2012] [Indexed: 11/06/2022] Open
Abstract
Stretch of the vascular wall is an important stimulus to maintain smooth muscle contractile differentiation that is known to depend on L-type calcium influx, Rho-activation, and actin polymerization. The role of microRNAs in this response was investigated using tamoxifen-inducible and smooth muscle-specific Dicer KO mice. In the absence of Dicer, which is required for microRNA maturation, smooth muscle microRNAs were completely ablated. Stretch-induced contractile differentiation and Rho-dependent cofilin-2 phosphorylation were dramatically reduced in Dicer KO vessels. On the other hand, acute stretch-sensitive growth signaling, which is independent of influx through L-type calcium channels, was not affected by Dicer KO. Contractile differentiation induced by the actin polymerizing agent jasplakinolide was not altered by deletion of Dicer, suggesting an effect upstream of actin polymerization. Basal and stretch-induced L-type calcium channel expressions were both decreased in Dicer KO portal veins, and inhibition of L-type channels in control vessels mimicked the effects of Dicer deletion. Furthermore, inhibition of miR-145, a highly expressed microRNA in smooth muscle, resulted in a similar reduction of L-type calcium channel expression. This was abolished by the Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN93, suggesting that Ca(2+)/calmodulin-dependent protein kinase IIδ, a target of miR-145 and up-regulated in Dicer KO, plays a role in the regulation of L-type channel expression. These results show that microRNAs play a crucial role in stretch-induced contractile differentiation in the vascular wall in part via miR-145-dependent regulation of L-type calcium channels.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Male
- Mice
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Protein Kinase Inhibitors/pharmacology
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Karolina M. Turczyńska
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | | | - Per Hellstrand
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Karl Swärd
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Sebastian Albinsson
- From the Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
13
|
Phenotype switch of vascular smooth muscle cells after siRNA silencing of filamin. Cell Biochem Biophys 2011; 61:47-52. [PMID: 21327580 DOI: 10.1007/s12013-011-9159-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Filamin (FLN) plays an important role in differentiation, migration, and signal transduction in vascular smooth muscle cells (VSMCs). We hypothesized that suppression of FLN expression would inhibit differentiation and migration of VSMCs, and interrupt the phenotype switch of these cells. We designed and tested different shRNA sequences to silence FLN expression. The degree of silencing was assessed at mRNA (qPCR) and protein (Western blot) levels. Two sequences, FL1 and FL2, lead to the most efficient FLN silencing. Subsequent experiments were conducted using the FL1 shRNA. Cells with silenced FLN were exposed to ox-LDL, and cell phenotypic changes (cell proliferation, cell cycle, apoptosis, and morphologic changes of cytoskeleton) were evaluated. When FLN was silenced, the phenotype switch of VSMCs exposed to ox-LDL was attenuated. Further, the injury to the cytoskeleton was less prominent in the FLN-silenced cells. To conclude, RNA silencing of FLN decreases the phenotype switch of VSMCs into a pathologic state. FLN silencing could be useful in treating atherosclerosis at genetic level.
Collapse
|
14
|
The effect of selective antihypertensive drugs on the vascular remodeling-associated hypertension: insights from a profilin1 transgenic mouse model. J Cardiovasc Pharmacol 2011; 57:550-8. [PMID: 21326111 DOI: 10.1097/fjc.0b013e318212b1c2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hypertension represents a major risk factor for cardiovascular diseases. We have developed a novel transgenic mouse model by overexpressing the cDNA of human profilin1 in the blood vessels of transgenic mice, which led to vascular hypertrophy and hypertension. We assessed the effects of losartan, amlodipine, or atenolol on vascular hypertrophy-associated hypertension, by treating the profilin1 transgenic mice for 4 weeks. Our myograph results showed improvement in the contraction response toward phenylephrine and in the relaxation response toward acetylcholine and sodium nitrite in losartan- and amlodipine-treated profilin1 mice. Western blot analyses using mesenteric arteries of losartan- and amlodipine-treated profilin1 mice showed significant decreases in their signaling, respectively, as follows: the expression of α1 integrin (104% and 93%) and β1 integrin (116% and 109%); p-ERK1/2 (149% and 130%) and p-JNK (171% and 137%); the phospho-myosin light chain 20 (117% and 150%); and the ROCKII expression (125% and 180%). Conversely, there were significant increases in the endothelial nitric oxide synthase expression (82% and 80%) and activation (p-endothelial nitric oxide synthase) (78% and 76%). On the other hand, atenolol-treated profilin1 mice showed no significant change in all measured parameters. In conclusion, the profilin1 gene may represent a new therapeutic target in the treatment of vascular hypertrophy-associated hypertension.
Collapse
|
15
|
Rensen S, Doevendans P, van Eys G. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 2011; 15:100-8. [PMID: 17612668 PMCID: PMC1847757 DOI: 10.1007/bf03085963] [Citation(s) in RCA: 648] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vascular smooth muscle cells can perform both contractile and synthetic functions, which are associated with and characterised by changes in morphology, proliferation and migration rates, and the expression of different marker proteins. The resulting phenotypic diversity of smooth muscle cells appears to be a function of innate genetic programmes and environmental cues, which include biochemical factors, extracellular matrix components, and physical factors such as stretch and shear stress. Because of the diversity among smooth muscle cells, blood vessels attain the flexibility that is necessary to perform efficiently under different physiological and pathological conditions. In this review, we discuss recent literature demonstrating the extent and nature of smooth muscle cell diversity in the vascular wall and address the factors that affect smooth muscle cell phenotype. (Neth Heart J 2007;15:100-8.).
Collapse
Affiliation(s)
- S.S.M. Rensen
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands
| | - P.A.F.M. Doevendans
- Department of Cardiology, Heart Lung Centre Utrecht, Interuniversity Cardiology Institute, the Netherlands
| | - G.J.J.M. van Eys
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands
| |
Collapse
|
16
|
McClure M, Wolfe P, Rodriguez I, Bowlin G. Bioengineered vascular grafts: improving vascular tissue engineering through scaffold design. J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50030-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Hassona MDH, Abouelnaga ZA, Elnakish MT, Awad MM, Alhaj M, Goldschmidt-Clermont PJ, Hassanain H. Vascular hypertrophy-associated hypertension of profilin1 transgenic mouse model leads to functional remodeling of peripheral arteries. Am J Physiol Heart Circ Physiol 2010; 298:H2112-20. [PMID: 20400688 DOI: 10.1152/ajpheart.00016.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased mechanical stress/hypertension in the vessel wall triggers the hypertrophic signaling pathway, resulting in structural remodeling of vasculature. Vascular hypertrophy of resistance vessels leads to reduced compliance and elevation of blood pressure. We showed before that increased expression of profilin1 protein in the medial layer of the aorta induces stress fiber formation, triggering the hypertrophic signaling resulting in vascular hypertrophy and, ultimately, hypertension in older mice. Our hypothesis is that profilin1 induced vascular hypertrophy in resistance vessels, which led to elevation of blood pressure, both of which contributed to the modulation of vascular function. Our results showed significant increases in the expression of alpha(1)- and beta(1)-integrins (280 + or - 6.3 and 325 + or - 7.4%, respectively) and the activation of the Rho/Rho-associated kinase (ROCK) II pathway (260 and 350%, respectively, P < 0.05) in profilin1 mesenteric arteries. The activation of Rho/ROCK led to the inhibition of endothelial nitric oxide synthase expression (39 + or - 5.4%; P < 0.05) and phosphorylation (35 + or - 4.5%; P < 0.05) but also an increase in myosin light chain 20 phosphorylation (372%, P < 0.05). There were also increases in hypertrophic signaling pathways in the mesenteric arteries of profilin1 mice such as phospho-extracellular signal-regulated kinase 1/2 and phospho-c-Jun NH(2)-terminal kinase (312.15 and 232.5%, respectively, P < 0.05). Functional analyses of mesenteric arteries toward the vasoactive drugs were assessed using wire-myograph and showed significant increases in the vascular responses of profilin1 mesenteric arteries toward phenylephrine, but significant decreases in response toward ROCK inhibitor Y-27632, ACh, sodium nitrite, and cytochalasin D. The changes in vascular responses in the mesenteric arteries of profilin1 mice are due to vascular hypertrophy and the elevation of blood pressure in the profilin1 transgenic mice.
Collapse
Affiliation(s)
- Mohamed D H Hassona
- Dept. of Anesthesiology and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State Univ., 460 West 12th Ave., Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Exercise training changes the gating properties of large-conductance Ca2+-activated K+ channels in rat thoracic aorta smooth muscle cells. J Biomech 2010; 43:263-7. [DOI: 10.1016/j.jbiomech.2009.08.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 12/25/2022]
|
19
|
Amirak E, Zakkar M, Evans PC, Kemp PR. Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells. Biochem Biophys Res Commun 2009; 391:818-23. [PMID: 19958749 PMCID: PMC2824850 DOI: 10.1016/j.bbrc.2009.11.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 01/14/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation remains a major cause of veno-arterial graft failure. We hypothesised that exposure of venous SMCs to arterial pressure would increase KLF5 expression and that of cell cycle genes. Porcine jugular veins were perfused at arterial or venous pressure in the absence of growth factors. The KLF5, c-myc, cyclin-D and cyclin-E expression were elevated within 24h of perfusion at arterial pressure but not at venous pressure. Arterial pressure also reduced the decline in SM-myosin heavy chain expression. These data suggest a role for KLF5 in initiating venous SMCs proliferation in response to arterial pressure.
Collapse
Affiliation(s)
- Emre Amirak
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
20
|
Zheng JP, Ju D, Shen J, Yang M, Li L. Disruption of actin cytoskeleton mediates loss of tensile stress induced early phenotypic modulation of vascular smooth muscle cells in organ culture. Exp Mol Pathol 2009; 88:52-7. [PMID: 19874818 DOI: 10.1016/j.yexmp.2009.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/19/2009] [Indexed: 12/29/2022]
Abstract
Aorta organ culture has been widely used as an ex vivo model for studying vessel pathophysiology. Recent studies show that the vascular smooth muscle cells (VSMCs) in organ culture undergo drastic dedifferentiation within the first few hours (termed early phenotypic modulation). Loss of tensile stress to which aorta is subject in vivo is the cause of this early phenotypic modulation. However, no underlying molecular mechanism has been discovered thus far. The purpose of the present study is to identify intracellular signals involved in the early phenotypic modulation of VSMC in organ culture. We find that the drastic VSMC dedifferentiation is accompanied by accelerated actin cytoskeleton dynamics and downregulation of SRF and myocardin. Among the variety of signal pathways examined, increasing actin polymerization by jasplakinolide is the only one hindering VSMC dedifferentiation in organ culture. Moreover, jasplakinolide reverses actin dynamics during organ culture. Latrunculin B (disrupting actin cytoskeleton) and jasplakinolide respectively suppressed and enhanced the expression of VSMC markers, SRF, myocardin, and CArG-box-mediated SMC promoters in PAC1, a VSMC line. These results identify actin cytoskeleton degradation as a major intracellular signal for loss of tensile stress-induced early phenotypic modulation of VSMC in organ culture. This study suggests that disrupting actin cytoskeleton integrity may contribute to the pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Jian-Pu Zheng
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
21
|
Orr AW, Hastings NE, Blackman BR, Wamhoff BR. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 2009; 47:168-80. [PMID: 19851078 DOI: 10.1159/000250095] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022] Open
Abstract
Vascular smooth muscle cell (SMC) phenotypic modulation plays a key role in atherosclerosis and is classically defined as a switch from a 'contractile' phenotype to a 'synthetic' phenotype, whereby genes that define the contractile SMC phenotype are suppressed and proliferation and/or migratory mechanisms are induced. There is also evidence that SMCs may take on a 'proinflammatory' phenotype, whereby SMCs secrete cytokines and express cell adhesion molecules, e.g. IL-8, IL-6, and VCAM-1, respectively, which may functionally regulate monocyte and macrophage adhesion and other processes during atherosclerosis. Factors that drive the inflammatory phenotype are not limited to cytokines but also include hemodynamic forces imposed on the blood vessel wall and intimate interaction of endothelial cells with SMCs, as well as changes in matrix composition in the vessel wall. However, it is critical to recognize that our understanding of the complex interaction of these multiple signal inputs has only recently begun to shed light on mechanisms that regulate the inflammatory SMC phenotype, primarily through models that attempt to recreate this environment ex vivo. The goal of this review is to summarize our current knowledge in this area and identify some of the key unresolved challenges and questions requiring further study.
Collapse
Affiliation(s)
- Anthony Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, La., USA
| | | | | | | |
Collapse
|
22
|
Abstract
Blood vessels respond to changes in mechanical load from circulating blood in the form of shear stress and mechanical strain as the result of heart propulsions by changes in intracellular signaling leading to changes in vascular tone, production of vasoactive molecules, and changes in vascular permeability, gene regulation, and vascular remodeling. In addition to hemodynamic forces, microvasculature in the lung is also exposed to stretch resulting from respiratory cycles during autonomous breathing or mechanical ventilation. Among various cell signaling pathways induced by mechanical forces and reported to date, a role of reactive oxygen species (ROS) produced by vascular cells receives increasing attention. ROS play an essential role in signal transduction and physiologic regulation of vascular function. However, in the settings of chronic hypertension, inflammation, or acute injury, ROS may trigger signaling events that further exacerbate smooth muscle hypercontractility and vascular remodeling associated with hypertension and endothelial barrier dysfunction associated with acute lung injury and pulmonary edema. These conditions are also characterized by altered patterns of mechanical stimulation experienced by vasculature. This review will discuss signaling pathways regulated by ROS and mechanical stretch in the pulmonary and systemic vasculature and will summarize functional interactions between cyclic stretch- and ROS-induced signaling in mechanochemical regulation of vascular structure and function.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
23
|
Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 2009; 10:53-62. [PMID: 19197332 DOI: 10.1038/nrm2596] [Citation(s) in RCA: 819] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Forces that are associated with blood flow are major determinants of vascular morphogenesis and physiology. Blood flow is crucial for blood vessel development during embryogenesis and for regulation of vessel diameter in adult life. It is also a key factor in atherosclerosis, which, despite the systemic nature of major risk factors, occurs mainly in regions of arteries that experience disturbances in fluid flow. Recent data have highlighted the potential endothelial mechanotransducers that might mediate responses to blood flow, the effects of atheroprotective rather than atherogenic flow, the mechanisms that contribute to the progression of the disease and how systemic factors interact with flow patterns to cause atherosclerosis.
Collapse
|
24
|
Delbosc S, Haloui M, Louedec L, Dupuis M, Cubizolles M, Podust VN, Fung ET, Michel JB, Meilhac O. Proteomic analysis permits the identification of new biomarkers of arterial wall remodeling in hypertension. Mol Med 2008; 14:383-94. [PMID: 18496584 DOI: 10.2119/2008-00030.delbosc] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/12/2008] [Indexed: 11/06/2022] Open
Abstract
Hypertension represents one of the main risk factors for vascular diseases. Genetic susceptibility may influence the rate of its development and the associated vascular remodeling. To explore markers of hypertension-related morbidity, we have used surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry to study changes in proteins released by the aorta of two rat strains with different susceptibilities to hypertension. Fischer and Brown Norway (BN) rats were divided into a control group and a group receiving low-dose N(Omega)-nitro-L-arginine methyl ester (L-NAME), a hypertensive drug, interfering with endothelial function. In spite of a significant elevation of blood pressure in both strains in response to L-NAME, BN rats exhibited a lower vascular remodeling in response to hypertension. Proteomic analysis of secreted aortic proteins by SELDI-TOF MS allowed detection of four mass-to-charge ratio (m/z) peaks whose corresponding proteins were identified as ubiquitin, smooth muscle (SM) 22alpha, thymosin beta4, and C-terminal fragment of filamin A, differentially secreted in Fischer rats in response to L-NAME. We have confirmed a strain-dependent difference in susceptibility to L-NAME-induced hypertension between BN and Fischer rats. The greater susceptibility of Fischer rats is associated with aortic wall hypertrophic remodeling, reflected by increased aortic secretion of four identified biomarkers. Similar variations in one of them, SM22alpha, also were observed in plasma, suggesting that this marker could be used to assess vascular damage induced by hypertension.
Collapse
Affiliation(s)
- Sandrine Delbosc
- Inserm, U698 Hematology, Bio-engineering and Cardiovascular Remodeling, University Paris 7, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guo H, Makarova N, Cheng Y, E S, Ji RR, Zhang C, Farrar P, Tigyi G. The early- and late stages in phenotypic modulation of vascular smooth muscle cells: differential roles for lysophosphatidic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:571-81. [PMID: 18602022 DOI: 10.1016/j.bbalip.2008.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 12/16/2022]
Abstract
Lysophosphatidic acid (LPA) has been implicated as causative in phenotypic modulation (PM) of cultured vascular smooth muscle cells (VSMC) in their transition to the dedifferentiated phenotype. We evaluated the contribution of the three major LPA receptors, LPA1 and LPA2 GPCR and PPARgamma, on PM of VSMC. Expression of differentiated VSMC-specific marker genes, including smooth muscle alpha-actin, smooth muscle myosin heavy chain, calponin, SM-22alpha, and h-caldesmon, was measured by quantitative real-time PCR in VSMC cultures and aortic rings kept in serum-free chemically defined medium or serum- or LPA-containing medium using wild-type C57BL/6, LPA1, LPA2, and LPA1&2 receptor knockout mice. Within hours after cells were deprived of physiological cues, the expression of VSMC marker genes, regardless of genotype, rapidly decreased. This early PM was neither prevented by IGF-I, inhibitors of p38, ERK1/2, or PPARgamma nor significantly accelerated by LPA or serum. To elucidate the mechanism of PM in vivo, carotid artery ligation with/without replacement of blood with Krebs solution was used to evaluate contributions of blood flow and pressure. Early PM in the common carotid was induced by depressurization regardless of the presence/absence of blood, but eliminating blood flow while maintaining blood pressure or after sham surgery elicited no early PM. The present results indicate that LPA, serum, dissociation of VSMC, IGF-I, p38, ERK1/2, LPA1, and LPA2 are not causative factors of early PM of VSMC. Tensile stress generated by blood pressure may be the fundamental signal maintaining the fully differentiated phenotype of VSMC.
Collapse
Affiliation(s)
- Huazhang Guo
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Suite 426, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Haga JH, Li YSJ, Chien S. Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 2007; 40:947-60. [PMID: 16867303 DOI: 10.1016/j.jbiomech.2006.04.011] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 04/23/2006] [Indexed: 10/24/2022]
Abstract
The pulsatile nature of blood pressure and flow creates hemodynamic stimuli in the forms of cyclic stretch and shear stress, which exert continuous influences on the constituents of the blood vessel wall. Vascular smooth muscle cells (VSMCs) use multiple sensing mechanisms to detect the mechanical stimulus resulting from pulsatile stretch and transduce it into intracellular signals that lead to modulations of gene expression and cellular functions, e.g., proliferation, apoptosis, migration, and remodeling. The cytoskeleton provides a structural framework for the VSMC to transmit mechanical forces between its luminal, abluminal, and junctional surfaces, as well as its interior, including the focal adhesion sites, the cytoplasm, and the nucleus. VSMCs also respond differently to the surrounding structural environment, e.g., two-dimensional versus three-dimensional matrix. In vitro studies have been conducted on cultured VSMCs on deformable substrates to elucidate the molecular mechanisms by which the cells convert mechanical inputs into biochemical events, eventually leading to functional responses. The knowledge gained from research on mechanotransduction in vitro, in conjunction with verifications under in vivo conditions, will advance our understanding of the physiological and pathological processes involved in vascular remodeling and adaptation in health and disease.
Collapse
Affiliation(s)
- Jason H Haga
- Department of Bioengineering and Medicine, Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | | | |
Collapse
|
27
|
Jones EAV, le Noble F, Eichmann A. What Determines Blood Vessel Structure? Genetic Prespecification vs. Hemodynamics. Physiology (Bethesda) 2006; 21:388-95. [PMID: 17119151 DOI: 10.1152/physiol.00020.2006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular network remodeling, angiogenesis, and arteriogenesis play an important role in the pathophysiology of ischemic cardiovascular diseases and cancer. Based on recent studies of vascular network development in the embryo, several novel aspects to angiogenesis have been identified as crucial to generate a functional vascular network. These aspects include specification of arterial and venous identity in vessels and network patterning. In early embryogenesis, vessel identity and positioning are genetically hardwired and involve neural guidance genes expressed in the vascular system. We demonstrated that, during later stages of embryogenesis, blood flow plays a crucial role in regulating vessel identity and network remodeling. The flow-evoked remodeling process is dynamic and involves a high degree of vessel plasticity. The open question in the field is how genetically predetermined processes in vessel identity and patterning balance with the contribution of blood flow in shaping a functional vascular architecture. Although blood flow is essential, it remains unclear to what extent flow is able to act on the developing cardiovascular system. There is significant evidence that mechanical forces created by flowing blood are biologically active within the embryo and that the level of mechanical forces and the type of flow patterns present in the embryo are able to affect gene expression. Here, we highlight the pivotal role for blood flow and physical forces in shaping the cardiovascular system.
Collapse
|
28
|
Faber JE, Szymeczek CL, Salvi SS, Zhang H. Enhanced α1-adrenergic trophic activity in pulmonary artery of hypoxic pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 2006; 291:H2272-81. [PMID: 16798826 DOI: 10.1152/ajpheart.00404.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms that induce the excessive proliferation of vascular wall cells in hypoxic pulmonary hypertension (PH) are not fully understood. Alveolar hypoxia causes sympathoexcitation, and norepinephrine can stimulate α1-adrenoceptor (α1-AR)-dependent hypertrophy/hyperplasia of smooth muscle cells and adventitial fibroblasts. Adrenergic trophic activity is augmented in systemic arteries by injury and altered shear stress, which are key pathogenic stimuli in hypoxic PH, and contributes to neointimal formation and flow-mediated hypertrophic remodeling. Here we examined whether norepinephrine stimulates growth of the pulmonary artery (PA) and whether this is augmented in PH. PA from normoxic and hypoxic rats [9 days of 0.1 fraction of inspired O2 (FiO2)] was studied in organ culture, where wall tension, Po2, and Pco2 were maintained at values present in normal and hypoxic PH rats. Norepinephrine treatment for 72 h increased DNA and protein content modestly in normoxic PA (+10%, P < 0.05). In hypoxic PA, these effects were augmented threefold ( P < 0.05), and protein synthesis was increased 34-fold ( P < 0.05). Inferior thoracic vena cava from normoxic or hypoxic rats was unaffected. Norepinephrine-induced growth in hypoxic PA was dose dependent, had efficacy greater than or equal to endothelin-1, required the presence of wall tension, and was inhibited by α1A-AR antagonist. In hypoxic pulmonary vasculature, α1A-AR was downregulated the least among α1-AR subtypes. These data demonstrate that norepinephrine has trophic activity in the PA that is augmented by PH. If evident in vivo in the pulmonary vasculature, adrenergic-induced growth may contribute to the vascular hyperplasia that participates in hypoxic PH.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Agonists
- Adrenergic alpha-1 Receptor Antagonists
- Animals
- DNA/analysis
- DNA/metabolism
- Dose-Response Relationship, Drug
- Endothelin-1/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Norepinephrine/pharmacology
- Organ Culture Techniques
- Proteins/analysis
- Proteins/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/physiology
- Time Factors
Collapse
Affiliation(s)
- James E Faber
- Dept. of Cell and Molecular Physiology, 6309 MBRB, Univ. of North Carolina, Chapel Hill, NC 27599-7545, USA.
| | | | | | | |
Collapse
|
29
|
Lucitti JL, Visconti R, Novak J, Keller BB. Increased arterial load alters aortic structural and functional properties during embryogenesis. Am J Physiol Heart Circ Physiol 2006; 291:H1919-26. [PMID: 16648183 DOI: 10.1152/ajpheart.01061.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As in the adult dorsal aorta, the embryonic dorsal aorta is an important determinant of cardiovascular function, and increased stiffness may have secondary effects on cardiac and microcirculatory development. We previously showed that acutely and chronically increased arterial load via vitelline artery ligation (VAL) increases systemic arterial stiffness. To test the hypothesis that local dorsal aortic stiffness also increases, we measured aortic pulse-wave velocity (PWV) and assessed the active and passive properties (stress and strain) of isolated aortic segments. PWV along the dorsal aorta increased acutely and chronically after VAL. Analysis of isolated aortic active properties suggests that load-exposed aortas experienced higher stress, but not strain, at similar intraluminal pressures. When smooth muscle tone was relaxed, strain decreased in VAL vessels, whereas stress became similar to control vessels. Immunohistochemical analysis revealed that although aortic smooth muscle alpha-actin content was similar between groups, more cell layers expressed smooth muscle alpha-actin, and myocyte cell shape was markedly rounder in VAL embryos. Additionally, aortic and perivascular collagen type I and III content significantly increased in load-exposed VAL vessels. Increased production of these proteins is consistent with the observed increase in aortic PWV and decreased strain in VAL passive aortic segments. Thus the embryonic dorsal aorta is sensitive to increased arterial load and adapts by altering its material properties via changes in collagen content.
Collapse
Affiliation(s)
- Jennifer L Lucitti
- Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77071, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Blood vessels are permanently subjected to mechanical forces in the form of stretch, encompassing cyclic mechanical strain due to the pulsatile nature of blood flow and shear stress. Significant variations in mechanical forces, of physiological or physiopathological nature, occur in vivo. These are accompanied by phenotypical modulation of smooth muscle cells and endothelial cells, producing structural modifications of the arterial wall. In all the cases, vascular remodelling can be allotted to a modification of the tensional strain or shear, and underlie a trend to reestablish baseline mechanical conditions. Vascular cells are equipped with numerous receptors that allow them to detect and respond to the mechanical forces generated by pressure and shear stress. The cytoskeleton and other structural components have an established role in mechanotransduction, being able to transmit and modulate tension within the cell via focal adhesion sites, integrins, cellular junctions and the extracellular matrix. Mechanical forces also initiate complex signal transduction cascades, including nuclear factor-kappaB and mitogen-activated protein kinase pathways, leading to functional changes within the cell.
Collapse
Affiliation(s)
- S Lehoux
- From the INSERM U589, Hôpital Lariboisière, Paris, France
| | | | | |
Collapse
|
31
|
Berk BC. Vascular Smooth Muscle. Vasc Med 2006. [DOI: 10.1016/b978-0-7216-0284-4.50008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Albinsson S, Nordström I, Hellstrand P. Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization. J Biol Chem 2004; 279:34849-55. [PMID: 15184395 DOI: 10.1074/jbc.m403370200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Stretch of the vascular wall by the intraluminal blood pressure stimulates protein synthesis and contributes to the maintenance of the smooth muscle contractile phenotype. The expression of most smooth muscle specific genes has been shown to be regulated by serum response factor and stimulated by increased actin polymerization. Hence we hypothesized that stretch-induced differentiation is promoted by actin polymerization. Intact mouse portal veins were cultured under longitudinal stress and compared with unstretched controls. In unstretched veins the rates of synthesis of several proteins associated with the contractile/cytoskeletal system (alpha-actin, calponin, SM22alpha, tropomyosin, and desmin) were dramatically lower than in stretched veins, whereas other proteins (beta-actin and heat shock proteins) were synthesized at similar rates. The cytoskeletal proteins gamma-actin and vimentin were weakly stretch-sensitive. Inhibition of Rho-associated kinase by culture of stretched veins with Y-27632 produced similar but weaker effects compared with the absence of mechanical stress. Induction of actin polymerization by jasplakinolide increased SM22alpha synthesis in unstretched veins to the level in stretched veins. Stretch stimulated Rho activity and phosphorylation of the actin-severing protein cofilin-2, although both effects were slow in onset (Rho-GTP, >15 min; cofilin-P, >1 h). Cofilin-2 phosphorylation of stretched veins was inhibited by Y-27632. The F/G-actin ratio after 24 h of culture was significantly greater in stretched than in unstretched veins, as shown by both ultracentrifugation and confocal imaging with phalloidin/DNase I labeling. The results show that stretch of the vascular wall stimulates increased actin polymerization, activating synthesis of smooth muscle-specific proteins. The effect is partially, but probably not completely, mediated via Rho-associated kinase and cofilin downstream of Rho.
Collapse
Affiliation(s)
- Sebastian Albinsson
- Division of Molecular and Cellular Physiology, Department of Physiological Sciences, Biomedical Center, Lund University, SE-221 84 Lund, Sweden
| | | | | |
Collapse
|
33
|
Fu ZJ, Xie MJ, Zhang LF, Cheng HW, Ma J. Differential activation of potassium channels in cerebral and hindquarter arteries of rats during simulated microgravity. Am J Physiol Heart Circ Physiol 2004; 287:H1505-15. [PMID: 15142842 DOI: 10.1152/ajpheart.00143.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to test the hypothesis that differential autoregulation of cerebral and hindquarter arteries during simulated microgravity is mediated or modulated by differential activation of K(+) channels in vascular smooth muscle cells (VSMCs) of arteries in different anatomic regions. Sprague-Dawley rats were subjected to 1- and 4-wk tail suspension to simulate the cardiovascular deconditioning effect due to short- and medium-term microgravity. K(+) channel function of VSMCs was studied by pharmacological methods and patch-clamp techniques. Large-conductance Ca(2+)-activated K(+) (BK(Ca)) and voltage-gated K(+) (K(v)) currents were determined by subtracting the current recorded after applications of 1 mM tetraethylammonium (TEA) and 1 mM TEA + 3 mM 4-aminopyridine (4-AP), respectively, from that of before. For cerebral vessels, the normalized contractility of basilar arterial rings to TEA, a BK(Ca) blocker, and 4-AP, a K(v) blocker, was significantly decreased after 1- and 4-wk simulated microgravity, respectively. VSMCs isolated from the middle cerebral artery branches of suspended rats had a more depolarized membrane potential (E(m)) and a smaller K(+) current density compared with those of control rats. Furthermore, the reduced total current density was due to smaller BK(Ca) and smaller K(v) current density in cerebral VSMCs after 1- and 4-wk tail suspension, respectively. For hindquarter vessels, VSMCs isolated from second- to sixth-order small mesenteric arteries of both 1- and 4-wk suspended rats had a more negative E(m) and larger K(+) current densities for total, BK(Ca), and K(v) currents. These results indicate that differential activation of K(+) channels occur in cerebral and hindquarter VSMCs during short- and medium-term simulated microgravity. It is further suggested that different profiles of channel remodeling might occur in VSMCs as one of the important underlying cellular mechanisms to mediate and modulate differential vascular adaptation during microgravity.
Collapse
Affiliation(s)
- Zhao-Jun Fu
- Dept. of Aerospace Physiology, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | |
Collapse
|
34
|
Shukla AR, Nguyen T, Zheng Y, Zderic SA, DiSanto M, Wein AJ, Chacko S. Over Expression of Smooth Muscle Specific Caldesmon by Transfection and Intermittent Agonist Induced Contraction Alters Cellular Morphology and Restores Differentiated Smooth Muscle Phenotype. J Urol 2004; 171:1949-54. [PMID: 15076319 DOI: 10.1097/01.ju.0000123061.87723.e9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE The thin filament associated protein h-caldesmon (h-CaD) modulates actin myosin interaction and contraction. Bladder outlet obstruction and detrusor hypertrophy are associated with the over expression of the nonmuscle CaD isoform l-CaD. It implies a poorly differentiated state of bladder myocytes and cytoskeletal remodeling in detrusor hypertrophy. We determined if h-CaD expression can be increased in a unique bladder smooth muscle (BSM) cell line derived from obstructed rabbit bladder smooth muscle that over expresses l-CaD. We examined whether the genetic restoration of h-caldesmon is possible in bladder smooth muscle cells by transfection or by agonist mediated contraction and whether this manipulation would alter cellular morphology. MATERIALS AND METHODS BSM cells were transfected with chicken h-CaD cDNA inserted into a mammalian vector. In another experiment BSM cells underwent intermittent bethanechol induced stimulation. h-CaD mRNA and protein were quantified with reverse transcriptase-polymerase chain reaction and Western blot analyses. Cell morphology was assessed using phase, video and confocal microscopy after double immunostaining with antibodies against alpha-actin and caldesmon. RESULTS Reverse transcriptase-polymerase chain reaction using primers specific for the transfected vector and h-CaD cDNA confirmed stable transfection of cells and increased content of h-CaD mRNA. Following bethanechol induced intermittent contraction Western blotting revealed 80% relative over expression of h-CaD in treated transfected cell lines (p <0.05) and 74% (not significant) in treated nontransfected controls. Confocal immunofluorescence microscopy revealed CaD in the cytoplasmic filaments co-localized to alpha-actin in the main cell body and perinuclear region in transfected cells, in contrast to the diffuse, irregular distribution of these filaments in control cells. CONCLUSIONS A unique bladder myocyte cell line was successfully and stably transfected with h-CaD cDNA. We show that agonist induced intermittent contraction preferentially increases h-CaD expression, the predominant CaD in nonobstructed bladder smooth muscle, and the restoration of h-CaD alters cell morphology and the organization of cytoplasmic filaments in cells derived from obstructed rabbit detrusor musculature.
Collapse
Affiliation(s)
- Aseem R Shukla
- Division of Pediatric Urology, Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Spurrell BE, Murphy TV, Hill MA. Intraluminal pressure stimulates MAPK phosphorylation in arterioles: temporal dissociation from myogenic contractile response. Am J Physiol Heart Circ Physiol 2003; 285:H1764-73. [PMID: 12805020 DOI: 10.1152/ajpheart.00468.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the MAPK family of enzymes, p42/44 and p38, have been implicated in both the regulation of contractile function and growth responses in vascular smooth muscle. We determined whether such kinases are activated during the arteriolar myogenic response after increases in intraluminal pressure. Particular emphasis was placed on temporal aspects of activation to determine whether such phosphorylation events parallel the known time course for myogenic contraction. Experiments used single cannulated arterioles isolated from the cremaster muscle of rats with some vessels loaded with the fluorescent Ca2+-sensitive dye fura 2 (2 microM). The p42/44 inhibitor PD-98059 (50 microM) caused vasodilation but did not prevent pressure-induced myogenic constriction. The vasodilator response was accompanied by decreased smooth muscle intracellular Ca2+. Western blotting revealed a significant increase in the level of phosphorylation of p42/44 15 min after the application of a 30- to 100-mmHg pressure step. Phosphorylation of p42/44 was a late event that appeared to be temporally dissociated from contraction, which was complete within 1-5 min. EGF (80 nM) caused marked phosphorylation of p42/44 but only acted as a weak vasoconstrictor. The p38 inhibitor SB-203580 (10 microM) did not alter baseline diameter, nor did it prevent myogenic vasoconstriction. Consistent with these observations, SB-203580 did not cause a measurable change in intracellular Ca2+. The results demonstrate activation of the p42/44 class of MAPK resulting from increased transmural pressure. Such activation is, however, dissociated from the acute pressure-induced vasoconstrictor response in terms of time course and may represent the activation of compensatory, but parallel, pathways, including those related to growth and remodeling.
Collapse
Affiliation(s)
- Brian E Spurrell
- Microvascular Biology Group, School of Medical Sciences, RMIT University, Plenty Rd., Bundoora, Victoria 3083, Australia
| | | | | |
Collapse
|
36
|
Birukov KG, Jacobson JR, Flores AA, Ye SQ, Birukova AA, Verin AD, Garcia JGN. Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol Lung Cell Mol Physiol 2003; 285:L785-97. [PMID: 12639843 DOI: 10.1152/ajplung.00336.2002] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ventilator-induced lung injury syndromes are characterized by profound increases in vascular leakiness and activation of inflammatory processes. To explore whether excessive cyclic stretch (CS) directly causes vascular barrier disruption or enhances endothelial cell sensitivity to edemagenic agents, human pulmonary artery endothelial cells (HPAEC) were exposed to physiologically (5% elongation) or pathologically (18% elongation) relevant levels of strain. CS produced rapid (10 min) increases in myosin light chain (MLC) phosphorylation, activation of p38 and extracellular signal-related kinase 1/2 MAP kinases, and actomyosin remodeling. Acute (15 min) and chronic (48 h) CS markedly enhanced thrombin-induced MLC phosphorylation (2.1-fold and 3.2-fold for 15-min CS at 5 and 18% elongation and 2.1-fold and 3.1-fold for 48-h CS at 5 and 18% elongation, respectively). HPAEC preconditioned at 18% CS, but not at 5% CS, exhibited significantly enhanced thrombin-induced reduction in transendothelial electrical resistance but did not affect barrier protective effect of sphingosine-1-phosphate (0.5 microM). Finally, expression profiling analysis revealed a number of genes, including small GTPase rho, apoptosis mediator ZIP kinase, and proteinase activated receptor-2, to be regulated by CS in an amplitude-dependent manner. Thus our study demonstrates a critical role for the magnitude of CS in regulation of agonist-mediated pulmonary endothelial cell permeability and strongly suggests phenotypic regulation of HPAEC barrier properties by CS.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Univ. School of Medicine, 5501 Hopkins Bayview Circle, JHAAC, 5A.42, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Zeidan A, Nordström I, Albinsson S, Malmqvist U, Swärd K, Hellstrand P. Stretch-induced contractile differentiation of vascular smooth muscle: sensitivity to actin polymerization inhibitors. Am J Physiol Cell Physiol 2003; 284:C1387-96. [PMID: 12734104 DOI: 10.1152/ajpcell.00508.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signaling mechanisms for stretch-dependent growth and differentiation of vascular smooth muscle were investigated in mechanically loaded rat portal veins in organ culture. Stretch-dependent protein synthesis was found to depend on endogenous release of angiotensin II. Autoradiography after [(35)S]methionine incorporation revealed stretch-dependent synthesis of several proteins, of which SM22 and actin were particularly prominent. Inhibition of RhoA activity by cell-permeant C3 toxin increased tissue mechanical compliance and reduced stretch-dependent extracellular signal-regulated kinase (ERK)1/2 activation, growth, and synthesis of actin and SM22, suggesting a role of the actin cytoskeleton. In contrast, inhibition of Rho-associated kinase by Y-27632 did not reduce ERK1/2 phosphorylation or actin and SM22 synthesis and did not affect tissue mechanical compliance but still inhibited overall growth. The actin polymerization inhibitors latrunculin B and cytochalasin D both inhibited growth and caused increased tissue compliance. Whereas latrunculin B concentration-dependently reduced actin and SM22 synthesis, cytochalasin D did so at low (10(-8) M) but not at high (10(-6) M) concentration. The results show that stretch stabilizes the contractile smooth muscle phenotype. Stretch-dependent differentiation marker expression requires an intact cytoskeleton for stretch sensing, control of protein expression via the level of unpolymerized G-actin, or both.
Collapse
Affiliation(s)
- Asad Zeidan
- Division of Molecular and Cellular Physiology, Department of Physiological Sciences, Biomedical Center, Lund University, SE-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Ebrahimian T, Mathieu E, Silvestre JS, Boulanger CM. Intraluminal pressure increases vascular neuronal nitric oxide synthase expression. J Hypertens 2003; 21:937-42. [PMID: 12714868 DOI: 10.1097/00004872-200305000-00018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Development of high blood pressure (BP) is associated with an increased expression of neuronal nitric oxide synthase (nNOS) in vascular smooth muscle cells. METHODS We investigated whether or not changes in intraluminal pressure affect nNOS expression in carotid arteries of normotensive rats. Expression of nNOS and other NOS isoforms was determined by Western blot analysis in rat carotid arteries maintained up to 24 h at different levels of intraluminal pressure in an organ culture system. RESULTS Expression of nNOS in arteries exposed to 80 mmHg was stable for the duration of the experiment. Increasing intraluminal pressure to 200 mmHg transiently augmented nNOS expression at 9 h, both in intact arteries and in arteries where the endothelium and the adventitia were removed. The expression of endothelial NOS (eNOS) was also augmented under similar experimental conditions, but only after 24 h exposure. The ERK1/2 kinase cascade inhibitor PD 98059 significantly impaired the expression of nNOS in arteries exposed to 200 mmHg for 9 h. However, the angiotensin AT(1) antagonist candesartan and the angiotensin converting enzyme inhibitor perindoprilat did not have any effect under the same experimental conditions. Finally, the preferential nNOS inhibitor S-methyl-L-thiocitrulline significantly augmented the contraction evoked by angiotensin II in arteries exposed to 200 mmHg, but not in those maintained at 80 mmHg intraluminal pressure for 9 h. CONCLUSION These results show that transmural pressure increases nNOS expression and NO release in rat smooth muscle cells by a mechanism involving the mitogen-activated protein kinase pathway, but independent from the local formation of angiotensin II.
Collapse
Affiliation(s)
- Talin Ebrahimian
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 541, Hôpital lariboisiére, Cedex 10, France
| | | | | | | |
Collapse
|
39
|
Tock J, Van Putten V, Stenmark KR, Nemenoff RA. Induction of SM-alpha-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. Biochem Biophys Res Commun 2003; 301:1116-21. [PMID: 12589828 DOI: 10.1016/s0006-291x(03)00087-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mechanical forces have direct effects on the growth and differentiation of vascular smooth muscle. The goal of this study was to examine the effects of cyclic mechanical strain on expression of smooth muscle-alpha-actin (SM-alpha-actin), a marker for the differentiated state of vascular smooth muscle, in cultured rat aortic smooth muscle cells (VSMC). Cells grown on dishes coated with either laminin or pronectin were subjected to mechanical strain and effects on expression of SM-alpha-actin were evaluated using the Flexercell Strain Unit. Application of mechanical strain to cells in full media increased SM-alpha-actin protein expression and promoter activity. This was not associated with any effect on growth. Mechanical strain increased activity of all three members of the MAP kinase family (ERKs, JNKs, and p38 MAP kinase), with similar kinetics. Inhibition of either JNKs or p38 MAP kinase blocked the strain-induced increase in SM-alpha-actin promoter activity, and expression of constitutively active forms of JNK or MKK6, a p38 kinase, increased promoter activity. These studies indicate that in adult VSMC, mechanical strain leads to increased expression of smooth muscle markers, resulting in a more contractile phenotype.
Collapse
Affiliation(s)
- Jenny Tock
- Department of Pediatrics, Division of Renal Diseases and Hypertension, University of Colorado Health Sciences Center, Box C-281, 4200 E. Ninth Ave., Denver, CO 80262, USA
| | | | | | | |
Collapse
|
40
|
Ozaki H, Karaki H. Organ culture as a useful method for studying the biology of blood vessels and other smooth muscle tissues. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 89:93-100. [PMID: 12120766 DOI: 10.1254/jjp.89.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The benefit of organ culture is to retain the original structural relationship between various cell species and their interactions and enable us to study the long-term effects of exogenous stimuli. Organ culture methods have been used especially in the studies of the proliferative vascular diseases, such as atherosclerosis and restenosis. We describe here that organ culture is a useful in vitro method to study the biology of vascular and other smooth muscle organs.
Collapse
Affiliation(s)
- Hiroshi Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan.
| | | |
Collapse
|
41
|
Wernig F, Xu Q. Mechanical stress-induced apoptosis in the cardiovascular system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 78:105-37. [PMID: 12429110 DOI: 10.1016/s0079-6107(02)00008-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
All tissues in the body are subjected to physical forces originating either from tension, created by cells themselves, or from the environment. Particularly, the cardiovascular system is continuously subjected to haemodynamic forces created by blood flow and blood pressure. While biomechanical force at physiological levels is essential to develop and maintain organic structure and function, elevated mechanical stress may result in cell death leading to pathological conditions. In recent years, however, it has been widely recognized that cell death, namely apoptosis, is not just the response to an injury but a highly regulated and controlled process. Therefore, physical stimuli must be sensed by cells and transmitted through intracellular signal transduction pathways to the nucleus, resulting in cell apoptosis. Disturbances in the regulatory mechanisms of apoptosis often precede the development of a disease. Exploration of the molecular signalling mechanisms leading to mechanical stress-induced apoptosis in cardiovascular disorders revealed the crucial role of apoptosis in the pathogenesis of these diseases. For instance, heart failure, hypertension and atherosclerosis are believed to be related to sustained mechanical overloading or stress. In this review we summarize the recent data focusing on molecular mechanisms of mechanical stress-induced apoptosis and highlight the role of apoptosis in the development of cardiovascular disorders, which may lead to new therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Florian Wernig
- Department of Cardiological Sciences, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | | |
Collapse
|
42
|
D'Addario M, Arora PD, Fan J, Ganss B, Ellen RP, McCulloch CA. Cytoprotection against mechanical forces delivered through beta 1 integrins requires induction of filamin A. J Biol Chem 2001; 276:31969-77. [PMID: 11423540 DOI: 10.1074/jbc.m102715200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells in mechanically active environments can activate cytoprotective mechanisms to maintain membrane integrity in the face of potentially lethal applied forces. Cytoprotection may be mediated by expression of membrane-associated cytoskeletal proteins including filamin A, an actin-binding protein that increases the rigidity of the subcortical actin cytoskeleton. In this study, we tested the hypotheses that applied forces induce the expression of filamin A specifically and that this putative protective response inhibits cell death. Magnetically generated forces were applied to protein-coated magnetite beads bound to human gingival fibroblasts, cells with constitutively low basal levels of filamin A mRNA and protein. Forces applied through collagen or fibronectin, but not bovine serum albumin or poly-l-lysine-coated beads, increased mRNA and protein content of filamin A by 3-7-fold. Forces had no effect on the expression of other filamin isotypes or other cytoskeletal proteins. This effect was dependent on the duration of force and was blocked by anti-beta(1) integrin antibodies. Force also stimulated a 60% increase in expression of luciferase under the control of a filamin A promoter in transiently transfected Rat2 fibroblasts and was dependent on Sp1 transcription factor binding sites located immediately upstream of the transcription start site. Experiments with actinomycin D-treated cells showed that the increased filamin A expression after force application was due in part to prolongation of mRNA half-life. Antisense filamin oligonucleotides blocked force-induced filamin A expression and increased cell death by >2-fold above controls. The force-induced regulation of filamin A was dependent on intact actin filaments. We conclude that cells from mechanically active environments can couple diverse signals from forces applied through beta-integrins to up-regulate the production of cytoprotective cytoskeletal proteins, typified by filamin A.
Collapse
Affiliation(s)
- M D'Addario
- Canadian Institute of Health Research Group in Periodontal Physiology, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Vascular smooth muscle cells (VSMC) exhibit several growth responses to agonists that regulate their function including proliferation (hyperplasia with an increase in cell number), hypertrophy (an increase in cell size without change in DNA content), endoreduplication (an increase in DNA content and usually size), and apoptosis. Both autocrine growth mechanisms (in which the individual cell synthesizes and/or secretes a substance that stimulates that same cell type to undergo a growth response) and paracrine growth mechanisms (in which the individual cells responding to the growth factor synthesize and/or secrete a substance that stimulates neighboring cells of another cell type) are important in VSMC growth. In this review I discuss the autocrine and paracrine growth factors important for VSMC growth in culture and in vessels. Four mechanisms by which individual agonists signal are described: direct effects of agonists on their receptors, transactivation of tyrosine kinase-coupled receptors, generation of reactive oxygen species, and induction/secretion of other growth and survival factors. Additional growth effects mediated by changes in cell matrix are discussed. The temporal and spatial coordination of these events are shown to modulate the environment in which other growth factors initiate cell cycle events. Finally, the heterogeneous nature of VSMC developmental origin provides another level of complexity in VSMC growth mechanisms.
Collapse
Affiliation(s)
- B C Berk
- Center for Cardiovascular Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642, USA.
| |
Collapse
|
44
|
Ishida M, Komori K, Yonemitsu Y, Taguchi K, Onohara T, Sugimachi K. Immunohistochemical phenotypic alterations of rabbit autologous vein grafts implanted under arterial circulation with or without poor distal runoff-implications of vein graft remodeling. Atherosclerosis 2001; 154:345-54. [PMID: 11166767 DOI: 10.1016/s0021-9150(00)00498-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although intimal hyperplasia is a major cause limiting the long-term patency of the vein grafts, its precise mechanisms, including the effect of poor runoff, has not yet been well characterized. We thus designed the present study to try to determine the effect of poor runoff arterial flow to the phenotypic alterations of the graft wall by immnohistochemistry using anti-intermediate filaments (alpha-SM actin, desmin, and vimentin) and anti-myosin heavy chain (SM1, SM2, and SMemb) specific antibodies. Vein grafts implanted under the poor runoff hind limb of rabbits showed enhanced intimal hyperplasia, however, no apparent difference in the cytoskeleton expression, including intermediate filaments and MHC, between two groups until 4 weeks. Interestingly, six of eight vein grafts at 2 weeks after implantation in both groups showed the accumulations of perivascular fibroblast-like phenotype (negative for SM1, alpha-SM actin, and desmin) in some parts of the outer neointima, whereas the inner neointima at 2 weeks and the whole neointima at 4 weeks were mainly occupied by a smooth muscle phenotype (positive for these three). Although the cellular origin of these cells is still unknown, these results suggest that the migration of non-muscle mesenchymal cells is involved in the neointima and thus may provide a clue for better understanding vein graft remodeling.
Collapse
Affiliation(s)
- M Ishida
- Department of Surgery II, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, 812-8582, Higashi-ku Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Bakker EN, van Der Meulen ET, Spaan JA, VanBavel E. Organoid culture of cannulated rat resistance arteries: effect of serum factors on vasoactivity and remodeling. Am J Physiol Heart Circ Physiol 2000; 278:H1233-40. [PMID: 10749719 DOI: 10.1152/ajpheart.2000.278.4.h1233] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed an organoid culture technique to study the mechanisms involved in arterial remodeling. Resistance arteries were isolated from rat cremaster muscle and mounted in a pressure myograph at 75 mmHg. Vessels were studied during a 4-day culture period in DMEM with either 2% albumin, 10% heat-inactivated FCS (HI-FCS) or 10% dialyzed HI-FCS (12 kDa cut off) added to the perfusate. The albumin group showed a gradual loss of endothelial function and integrity, whereas smooth muscle agonist and myogenic responses were retained. No remodeling was observed. Vessels cultured in the presence of serum showed a progressive constriction. Smooth muscle responses and substance P-induced endothelium-dependent dilation were maintained. An inward remodeling of 17 +/- 4% in the HI-FCS group and 26 +/- 3% in the dialyzed HI-FCS group was found, while media cross-sectional areas were unchanged. These data show that pressurized resistance arteries can be maintained in culture for several days and undergo eutrophic remodeling in vitro in the presence of high molecular weight serum factors.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Albumins/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Blood Pressure/physiology
- Catheterization
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Endothelium, Vascular/ultrastructure
- Fetal Proteins/pharmacology
- Free Radical Scavengers/pharmacology
- Hot Temperature
- Ketanserin/pharmacology
- Losartan/pharmacology
- Male
- Microscopy, Electron
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/ultrastructure
- Organ Culture Techniques/methods
- Rats
- Rats, Wistar
- Serotonin/pharmacology
- Substance P/pharmacology
- Vascular Resistance/drug effects
- Vascular Resistance/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- E N Bakker
- Academic Medical Center, University of Amsterdam, Department of Medical Physics and Cardiovascular Research Institute, 1100 DE Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
46
|
Nakamura A, Isoyama S, Goto K. Vessel size-dependent expression of intermediate-sized filaments, calponin, and h-caldesmon in smooth muscle cells of human coronary arteries. Heart Vessels 1999; 14:253-61. [PMID: 10830922 DOI: 10.1007/bf01747855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The arterial media is composed of a heterogeneous population of smooth muscle cells (SMCs). Recently, the properties of SMCs were observed to be heterogeneous not only among individual cells but also among arteries of the same vascular bed. To test the hypothesis that a site-specific heterogeneity exists in the SMCs of human coronary arteries, we examined the expression of desmin, vimentin, calponin, and high-molecular-weight (h-) caldesmon in arteries of various sizes. Specimens of arteries were obtained at autopsy from 12 patients: 6 adults (67 +/- 4 years old); 3 younger adults (26 +/- 2 years old); and 3 neonates. The size of the arteries was estimated by the number of SMC layers of the media. The expression was compared in SMCs of large arteries (>10 layers in adults, >5 layers in neonates), medium-sized arteries (5-10 layers in adults, 3-5 SMC layers in neonates), and small arteries (<3 layers). In adults, the percentage of arteries positive for desmin was lower in the small (17% +/- 3%) and medium-sized arteries (44% +/- 12%) than in the large arteries (94% +/- 6%) (P < 0.01). The percentage of arteries positive for calponin was also lower in the small (18% +/- 2%) and medium-sized arteries (66% +/- 5%) than in the large arteries (100%) (P < 0.01). The percentage for vimentin and h-caldesmon did not differ among large, medium-sized, and small arteries. These observations in adults were similar to those in younger adults or neonates. The phenotypes of medial SMCs are vessel size-dependent in human coronary arteries. This finding should be important for understanding the site-specific characteristics of vascular function in the regulation of myocardial perfusion or those of vascular responses to environmental changes.
Collapse
Affiliation(s)
- A Nakamura
- First Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
47
|
|
48
|
Abstract
The increase in vascular wall stress imposed by hypertension has been strongly implicated in the pathogenesis of cardiovascular disease. Much of this chronic cyclical mechanical strain is experienced by the vascular smooth (VSM) cells of the vascular media. The cellular mechanisms whereby VSM cells sense and respond to changing mechanical forces are poorly understood. This review focuses on an emerging field of cardiovascular research in which the direct effects of mechanical strain on VSM cells and isolated blood vessels in organ culture have been characterized, in vitro. Cyclical mechanical strain profoundly influences cultured VSM cell orientation, growth and phenotype. Mechanical strain also increases the secretory function of VSM cells leading to increased extracellular matrix protein production. Vasoactive mediators such as angiotensin II potentiate these effects. Mechanical strain increases VSM cell release of platelet derived growth factor, transforming growth factor beta1, fibroblast growth factor and vascular endothelial growth factor, which act in autocrine or paracrine loops to influence VSM and endothelial cell growth and function. Mechanical strain may also activate local tissue renin-angiotensin systems and regulate expression of angiotensin II receptors within the cardiovascular system. The mechanism whereby VSM cells transduce mechanical stimuli into an intracellular signal and biological response, i.e. 'mechanotransduction', is strongly dependent on integrins. Moreover, specific matrix protein:integrin engagements lead to differential VSM cells responses via the selective activation of numerous intracellular signalling pathways including; mitogen-activated protein kinase, focal adhesion kinase and c-Src. The study of vascular mechanotransduction has begun to delineate the complex cellular basis of cardiovascular structural and functional modification in hypertension.
Collapse
Affiliation(s)
- B Williams
- Cardiovascular Research Institute, University of Leicester, UK.
| |
Collapse
|