1
|
Hamblin MH, Boese AC, Murad R, Lee JP. MMP-3 Knockout Induces Global Transcriptional Changes and Reduces Cerebral Infarction in Both Male and Female Models of Ischemic Stroke. Int J Mol Sci 2024; 25:7383. [PMID: 39000490 PMCID: PMC11242542 DOI: 10.3390/ijms25137383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Ischemic stroke followed by reperfusion (IR) leads to extensive cerebrovascular injury characterized by neuroinflammation and brain cell death. Inhibition of matrix metalloproteinase-3 (MMP-3) emerges as a promising therapeutic approach to mitigate IR-induced stroke injury. We employed middle cerebral artery occlusion with subsequent reperfusion (MCAO/R) to model ischemic stroke in adult mice. Specifically, we investigated the impact of MMP-3 knockout (KO) on stroke pathophysiology using RNA sequencing (RNA-seq) of stroke brains harvested 48 h post-MCAO. MMP-3 KO significantly reduced brain infarct size following stroke. Notably, RNA-seq analysis showed that MMP-3 KO altered expression of 333 genes (252 downregulated) in male stroke brains and 3768 genes (889 downregulated) in female stroke brains. Functional pathway analysis revealed that inflammation, integrin cell surface signaling, endothelial- and epithelial-mesenchymal transition (EndMT/EMT), and apoptosis gene signatures were decreased in MMP-3 KO stroke brains. Intriguingly, MMP-3 KO downregulated gene signatures more profoundly in females than in males, as indicated by greater negative enrichment scores. Our study underscores MMP-3 inhibition as a promising therapeutic strategy, impacting multiple cellular pathways following stroke.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
| | - Austin C. Boese
- School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Rabi Murad
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Jean-Pyo Lee
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Zhang S, Zhang Q, Lu Y, Chen J, Liu J, Li Z, Xie Z. Roles of Integrin in Cardiovascular Diseases: From Basic Research to Clinical Implications. Int J Mol Sci 2024; 25:4096. [PMID: 38612904 PMCID: PMC11012347 DOI: 10.3390/ijms25074096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and β subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Yutong Lu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
| |
Collapse
|
3
|
Wang X, Wang M, Zhou Z, Zou X, Song G, Zhang Q, Zhou H. SMOC2 promoted vascular smooth muscle cell proliferation, migration, and extracellular matrix degradation by activating BMP/TGF-β1 signaling pathway. J Clin Biochem Nutr 2023; 73:116-123. [PMID: 37700850 PMCID: PMC10493216 DOI: 10.3164/jcbn.22-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/04/2023] [Indexed: 09/14/2023] Open
Abstract
A widespread degenerative condition of the aorta, abdominal aortic aneurysm (AAA), severely endangers the health of middle-aged and elderly people. SPARC related modular calcium binding2 (SMOC2) is upregulated in the carotid arteries of rats with atherosclerotic lesions, but its function in AAA is still unknown. Therefore, the aim of this research was to evaluate the function of SMOC2 in AAA. The results showed that in the AAA tissues, SMOC2 expression was upregulated compared with healthy controls. Overexpression of SMOC2 promoted vascular smooth muscle cells (VSMCs) proliferation, migration, and extracellular matrix (ECM) degradation. In contrast, silence of SMOC2 inhibited VSMCs proliferation, migration, and ECM degradation. Overexpression of SMOC2 promoted BMP and TGF-β1 expression and silence of SMOC2 had an opposite effect. Besides, inhibition of BMP or TGF-β1 suppressed VSMCs cell proliferation, migration, and ECM degradation. Moreover, inhibition BMP or TGF-β1 reversed the promotive effects of SMOC2 overexpression on VSMCs proliferation, migration, and ECM degradation. SMOC2 may affecte the formation of AAA by upregulating BMP and TGF-β1 to regulate the proliferation, migration, and ECM degradation of VSMCs.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Meng Wang
- Department of Nephrology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Zhongxiao Zhou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Xin Zou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Guoxin Song
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Qingsong Zhang
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| | - Haimeng Zhou
- Department of Vascular Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70 Heping Road, Huancui District, Weihai, Shandong 264200, China
| |
Collapse
|
4
|
Mamazhakypov A, Maripov A, Sarybaev AS, Schermuly RT, Sydykov A. Osteopontin in Pulmonary Hypertension. Biomedicines 2023; 11:biomedicines11051385. [PMID: 37239056 DOI: 10.3390/biomedicines11051385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathological condition with multifactorial etiology, which is characterized by elevated pulmonary arterial pressure and pulmonary vascular remodeling. The underlying pathogenetic mechanisms remain poorly understood. Accumulating clinical evidence suggests that circulating osteopontin may serve as a biomarker of PH progression, severity, and prognosis, as well as an indicator of maladaptive right ventricular remodeling and dysfunction. Moreover, preclinical studies in rodent models have implicated osteopontin in PH pathogenesis. Osteopontin modulates a plethora of cellular processes within the pulmonary vasculature, including cell proliferation, migration, apoptosis, extracellular matrix synthesis, and inflammation via binding to various receptors such as integrins and CD44. In this article, we provide a comprehensive overview of the current understanding of osteopontin regulation and its impact on pulmonary vascular remodeling, as well as consider research issues required for the development of therapeutics targeting osteopontin as a potential strategy for the management of PH.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
5
|
Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications. Cells 2022; 11:cells11040646. [PMID: 35203297 PMCID: PMC8870356 DOI: 10.3390/cells11040646] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle cells (SMCs), present in the media layer of blood vessels, are crucial in maintaining vascular homeostasis. Upon vascular injury, SMCs show a high degree of plasticity, undergo a change from a “contractile” to a “synthetic” phenotype, and play an essential role in the pathophysiology of diseases including atherosclerosis and restenosis. Integrins are cell surface receptors, which are involved in cell-to-cell binding and cell-to-extracellular-matrix interactions. By binding to extracellular matrix components, integrins trigger intracellular signaling and regulate several of the SMC function, including proliferation, migration, and phenotypic switching. Although pharmacological approaches, including antibodies and synthetic peptides, have been effectively utilized to target integrins to limit atherosclerosis and restenosis, none has been commercialized yet. A clear understanding of how integrins modulate SMC biology is essential to facilitate the development of integrin-based interventions to combat atherosclerosis and restenosis. Herein, we highlight the importance of integrins in modulating functional properties of SMCs and their implications for vascular pathology.
Collapse
|
6
|
Pilecki B, de Carvalho PVSD, Kirketerp-Møller KL, Schlosser A, Kejling K, Dubik M, Madsen NP, Stubbe J, Hansen PBL, Andersen TL, Moeller JB, Marcussen N, Azevedo V, Hvidsten S, Baun C, Shi GP, Lindholt JS, Sorensen GL. MFAP4 Deficiency Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm Formation Through Regulation of Macrophage Infiltration and Activity. Front Cardiovasc Med 2021; 8:764337. [PMID: 34805319 PMCID: PMC8602692 DOI: 10.3389/fcvm.2021.764337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 01/14/2023] Open
Abstract
Objective: Abdominal aortic aneurysm (AAA) is a common age-related vascular disease characterized by progressive weakening and dilatation of the aortic wall. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein involved in the induction of vascular remodeling. This study aimed to investigate if MFAP4 facilitates the development of AAA and characterize the underlying MFAP4-mediated mechanisms. Approach and Results: Double apolipoprotein E- and Mfap4-deficient (ApoE−/−Mfap4−/−) and control apolipoprotein E-deficient (ApoE−/−) mice were infused subcutaneously with angiotensin II (Ang II) for 28 days. Mfap4 expression was localized within the adventitial and medial layers and was upregulated after Ang II treatment. While Ang II-induced blood pressure increase was independent of Mfap4 genotype, ApoE−/−Mfap4−/− mice exhibited significantly lower AAA incidence and reduced maximal aortic diameter compared to ApoE−/− littermates. The ApoE−/−Mfap4−/− AAAs were further characterized by reduced macrophage infiltration, matrix metalloproteinase (MMP)-2 and MMP-9 activity, proliferative activity, collagen content, and elastic membrane disruption. MFAP4 deficiency also attenuated activation of integrin- and TGF-β-related signaling within the adventitial layer of AAA tissues. Finally, MFAP4 stimulation promoted human monocyte migration and significantly upregulated MMP-9 activity in macrophage-like THP-1 cells. Conclusion: This study demonstrates that MFAP4 induces macrophage-rich inflammation, MMP activity, and maladaptive remodeling of the ECM within the vessel wall, leading to an acceleration of AAA development and progression. Collectively, our findings suggest that MFAP4 is an essential aggravator of AAA pathology that acts through regulation of monocyte influx and MMP production.
Collapse
Affiliation(s)
- Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Paulo V S D de Carvalho
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Mathematics and Informatics, University of Southern Denmark, Odense, Denmark
| | - Katrine L Kirketerp-Møller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karin Kejling
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Magdalena Dubik
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nicklas P Madsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pernille B L Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Thomas L Andersen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Pathology Research Unit, Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper B Moeller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Vasco Azevedo
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Svend Hvidsten
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jes S Lindholt
- Department of Thoracic, Heart and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Grith L Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021; 40:1043-1063. [PMID: 33420366 DOI: 10.1038/s41388-020-01588-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Integrins are cell adhesion receptors, which are typically transmembrane glycoproteins that connect to the extracellular matrix (ECM). The function of integrins regulated by biochemical events within the cells. Understanding the mechanisms of cell growth by integrins is important in elucidating their effects on tumor progression. One of the major events in integrin signaling is integrin binding to extracellular ligands. Another event is distant signaling that gathers chemical signals from outside of the cell and transmit the signals upon cell adhesion to the inside of the cell. In normal breast tissue, integrins function as checkpoints to monitor effects on cell proliferation, while in cancer tissue these functions altered. The combination of tumor microenvironment and its associated components determines the cell fate. Hypoxia can increase the expression of several integrins. The exosomal integrins promote the growth of metastatic cells. Expression of certain integrins is associated with increased metastasis and decreased prognosis in cancers. In addition, integrin-binding proteins promote invasion and metastasis in breast cancer. Targeting specific integrins and integrin-binding proteins may provide new therapeutic approaches for breast cancer therapies. This review will examine the current knowledge of integrins' role in breast cancer.
Collapse
|
8
|
Squalene synthase promotes the invasion of lung cancer cells via the osteopontin/ERK pathway. Oncogenesis 2020; 9:78. [PMID: 32862200 PMCID: PMC7456423 DOI: 10.1038/s41389-020-00262-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022] Open
Abstract
Cholesterol is the major component of lipid rafts. Squalene synthase (SQS) is a cholesterol biosynthase that functions in cholesterol biosynthesis, modulates the formation of lipids rafts and promotes lung cancer metastasis. In this study, we investigated the lipid raft-associated pathway of SQS in lung cancer. Gene expression microarray data revealed the upregulation of secreted phosphoprotein 1 (SPP1; also known as osteopontin, OPN) in CL1-0/SQS-overexpressing cells. Knockdown of OPN in SQS-overexpressing cells inhibits their migration and invasion, whereas an OPN treatment rescues the migration and invasion of SQS knockdown cells. High OPN expression is associated with lymph node status, advanced stage and poor prognosis in patients with lung cancer. Moreover, patients with high SQS expression and high OPN expression show poor survival compared with patients with low SQS expression and low OPN expression. SQS induces the phosphorylation of Src and ERK1/2 via OPN, resulting in increased expression of MMP1 and subsequent metastasis of lung cancer cells. Based on our findings, SQS expression increases the expression of OPN and phosphorylation of Src through cholesterol synthesis to modulate the formation of lipid rafts. SQS may represent a therapeutic strategy for lung cancer.
Collapse
|
9
|
Deletion of interleukin-18 attenuates abdominal aortic aneurysm formation. Atherosclerosis 2019; 289:14-20. [PMID: 31445353 DOI: 10.1016/j.atherosclerosis.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/04/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) is a common disease; however, its exact pathogenesis remains unknown, and no specific medical therapies are available. Interleukin (IL)-18 plays a crucial role in atherosclerotic plaque destabilization and is a strong predictor of cardiovascular death. Here, we investigated the role of IL-18 in AAA pathogenesis using an experimental mouse model. METHODS AND RESULTS After infusion of angiotensin II (Ang II) for 4 weeks and β-aminopropionitrile (BAPN) for 2 weeks, 58% of C57/6J wild-type (WT) mice developed AAA associated with enhanced expression of IL-18; however, disease incidence was significantly lower in IL-18-/- mice than in WT mice (p < 0.01), although no significant difference was found in systolic blood pressure between WT mice and IL-18-/- mice in this model. Additionally, IL-18 deletion significantly attenuated Ang II/BAPN-induced macrophage infiltration, macrophage polarization into inflammatory M1 phenotype, and matrix metalloproteinase (MMP) activation in abdominal aortas, which is associated with reduced expression of osteopontin (OPN). CONCLUSIONS These findings indicate that IL-18 plays an important role in the development of AAA by enhancing OPN expression, macrophage recruitment, and MMP activation. Moreover, IL-18 represents a previously unrecognized therapeutic target for the prevention of AAA formation.
Collapse
|
10
|
Lagrange J, Didelot M, Mohamadi A, Walton LA, Bloemen S, de Laat B, Louis H, Thornton SN, Derby B, Sherratt MJ, Fève B, Challande P, Akhtar R, Cruickshank JK, Lacolley P, Regnault V. Implication of Free Fatty Acids in Thrombin Generation and Fibrinolysis in Vascular Inflammation in Zucker Rats and Evolution with Aging. Front Physiol 2017; 8:949. [PMID: 29213245 PMCID: PMC5702631 DOI: 10.3389/fphys.2017.00949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
Background: The metabolic syndrome (MetS) and aging are associated with modifications in blood coagulation factors, vascular inflammation, and increased risk of thrombosis. Objectives: Our aim was to determine concomitant changes in thrombin generation in the blood compartment and at the surface of vascular smooth muscle cells (VSMCs) and its interplay with adipokines, free fatty acids (FFA), and metalloproteinases (MMPs) in obese Zucker rats that share features of the human MetS. Methods: Obese and age-matched lean Zucker rats were compared at 25 and 80 weeks of age. Thrombin generation was assessed by calibrated automated thrombography (CAT). Results: Endogenous thrombin potential (ETP) was increased in obese rats independent of platelets and age. Clot half-lysis time was delayed with obesity and age. Interleukin (IL)-1β and IL-13 were increased with obesity and age respectively. Addition of exogenous fibrinogen, leptin, linoleic, or palmitic acid increased thrombin generation in plasma whereas adiponectin had an opposite effect. ETP was increased at the surface of VSMCs from obese rats and addition of exogenous palmitic acid further enhanced ETP values. Gelatinase activity was increased in aorta at both ages in obese rats and MMP-2 activity was increased in VSMCs from obese rats. Conclusions: Our study demonstrated in MetS an early prothrombotic phenotype of the blood compartment reinforced by procoagulant properties of dedifferentiated and inflammatory VSMCs. Mechanisms involved (1) increased fibrinogen and impaired fibrinolysis and (2) increased saturated fatty acids responsible for additive procoagulant effects. Whether specifically targeting this hypercoagulability using direct thrombin inhibitors would improve outcome in MetS is worth investigating.
Collapse
Affiliation(s)
- Jérémy Lagrange
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1116, Vandœuvre-lès-Nancy, France.,Faculté de Médecine, Université de Lorraine, Nancy, France.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Mélusine Didelot
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1116, Vandœuvre-lès-Nancy, France.,Faculté de Médecine, Université de Lorraine, Nancy, France
| | - Amel Mohamadi
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1116, Vandœuvre-lès-Nancy, France.,Faculté de Médecine, Université de Lorraine, Nancy, France
| | - Lucy A Walton
- Faculty of Medical and Human Sciences, Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom.,Directorate of Radiography, School of Health Sciences, University of Salford, Salford, United Kingdom
| | - Saartje Bloemen
- Synapse Research Institute, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bas de Laat
- Synapse Research Institute, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Huguette Louis
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1116, Vandœuvre-lès-Nancy, France.,Faculté de Médecine, Université de Lorraine, Nancy, France
| | - Simon N Thornton
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1116, Vandœuvre-lès-Nancy, France.,Faculté de Médecine, Université de Lorraine, Nancy, France
| | - Brian Derby
- School of Materials, University of Manchester, Manchester, United Kingdom
| | - Michael J Sherratt
- Faculty of Medical and Human Sciences, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Bruno Fève
- Centre de Recherche Saint-Antoine Institut National de la Santé et de la Recherche Médicale-Université Pierre et Marie Curie, UMR_S 938, Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France.,Assistance-Publique des Hôpitaux de Paris, Service d'Endocrinologie, Hôpital Saint-Antoine, Paris, France
| | - Pascal Challande
- UPMC, University of Paris, Paris, France.,Centre National de la Recherche Scientifique, UMR 7190, Paris, France
| | - Riaz Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - J Kennedy Cruickshank
- Diabetes & Cardiovascular Medicine, Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Patrick Lacolley
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1116, Vandœuvre-lès-Nancy, France.,Faculté de Médecine, Université de Lorraine, Nancy, France.,CHRU Nancy, Vandœuvre-lès-Nancy, France
| | - Véronique Regnault
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1116, Vandœuvre-lès-Nancy, France.,Faculté de Médecine, Université de Lorraine, Nancy, France.,CHRU Nancy, Vandœuvre-lès-Nancy, France
| |
Collapse
|
11
|
Molecular Ultrasound Imaging of αvβ3-Integrin Expression in Carotid Arteries of Pigs After Vessel Injury. Invest Radiol 2017; 51:767-775. [PMID: 27119438 DOI: 10.1097/rli.0000000000000282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Interventions such as balloon angioplasty can cause vascular injury leading to platelet activation, thrombus formation, and inflammatory response. This induces vascular smooth muscle cell activation and subsequent re-endothelialization with expression of αvβ3-integrin by endothelial cells and vascular smooth muscle cell. Thus, poly-N-butylcyanoacrylate microbubbles (MBs) targeted to αvβ3-integrin were evaluated for monitoring vascular healing after vessel injury in pigs using molecular ultrasound imaging. MATERIALS AND METHODS Approval for animal experiments was obtained. The binding specificity of αvβ3-integrin-targeted MB to human umbilical vein endothelial cells was tested with fluorescence microscopy. In vivo imaging was performed using a clinical ultrasound system and an 8-MHz probe. Six mini pigs were examined after vessel injury in the left carotid artery. The right carotid served as control. Uncoated MB, cDRG-coated MB, and αvβ3-integrin-specific cRGD-coated MB were injected sequentially. Bound MBs were assessed 8 minutes after injection using ultrasound replenishment analysis. Measurements were performed 2 hours, 1 and 5 weeks, and 3 and 6 months after injury. In vivo data were validated by immunohistochemistry. RESULTS Significantly stronger binding of cRGD-MB than MB and cDRG-MB to human umbilical vein endothelial cells was found (P < 0.01). As vessel injury leads to upregulation of αvβ3-integrin, cRGD-MBs bound significantly stronger (P < 0.05) in injured carotid arteries than at the counter side 1 week after vessel injury and significant differences could also be observed after 5 weeks. After 3 months, αvβ3-integrin expression decreased to baseline and binding of cRGD-MB was comparable in both vessels. Values remained at baseline also after 6 months. CONCLUSIONS Ultrasound imaging with RGD-MB is promising for monitoring vascular healing after vessel injury. This may open new perspectives to assess vascular damage after radiological interventions.
Collapse
|
12
|
Zhou Z, Park S, Kim JW, Zhao J, Lee MY, Choi KC, Lim CW, Kim B. Detrimental effects of nicotine on thioacetamide-induced liver injury in mice. Toxicol Mech Methods 2017; 27:501-510. [DOI: 10.1080/15376516.2017.1323256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Surim Park
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Jong Won Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Jing Zhao
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea
| | - Kyung Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
13
|
Abstract
Protection of mucosal tissues of the oral cavity, intestines, respiratory tract, and urogenital tract from the constant challenge of pathogens is achieved by the combined barrier function of the lining epithelia and specialized immune cells. Recent studies have indicated that osteopontin (OPN) has a pivotal role in the development of immune responses and in the tissue destruction and the subsequent repair processes associated with inflammatory diseases. While expression of OPN is increased in immune cells—including neutrophils, macrophages, T- and B-lymphocytes—and in epithelial, endothelial, and fibroblastic cells of inflamed tissues, deciphering the specific functions of OPN has been difficult. In part, this is due to the broad range of biological activities of OPN that are mediated by multiple receptors which recognize several signaling motifs whose activities are influenced by post-translational modifications and proteolytic processing of OPN. Understanding the role of OPN in mucosal inflammation is further complicated by its contributions to the barrier function of the lining epithelia and the complexity of the specialized mucosal immune system. In an attempt to provide some insights into the involvement of OPN in mucosal diseases, this review summarizes current knowledge of the biological activities of OPN involved in the development of inflammatory responses and in wound healing, and indicates how these activities may affect the protection of mucosal tissues.
Collapse
Affiliation(s)
- J Sodek
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, ON, Canada
| | | | | |
Collapse
|
14
|
Sawadsopanon T, Meksawan K, Chanvorachote P. Aspartame inhibits migration of human intestinal epithelial cells. J Food Biochem 2016. [DOI: 10.1111/jfbc.12341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tawiwan Sawadsopanon
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences; Chulalongkorn University; Bangkok Thailand
- Cell-based Drug and Health Product Development Research Unit, Chulalongkorn University; Bangkok Thailand
| | - Kulwara Meksawan
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences; Chulalongkorn University; Bangkok Thailand
- Cell-based Drug and Health Product Development Research Unit, Chulalongkorn University; Bangkok Thailand
| | - Pithi Chanvorachote
- Cell-based Drug and Health Product Development Research Unit, Chulalongkorn University; Bangkok Thailand
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences; Chulalongkorn University; Bangkok Thailand
| |
Collapse
|
15
|
Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, Okuda T, Ohara S, Murayama S, Takao M, Uchida S, Yamanaka K, Misawa H. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep 2016; 6:27354. [PMID: 27264390 PMCID: PMC4893611 DOI: 10.1038/srep27354] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Differential vulnerability among motor neuron (MN) subtypes is a fundamental feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) MNs are more vulnerable than fast fatigue-resistant (FR) or slow (S) MNs. The reason for this selective vulnerability remains enigmatic. We report here that the extracellular matrix (ECM) protein osteopontin (OPN) is selectively expressed by FR and S MNs and ALS-resistant motor pools, whereas matrix metalloproteinase-9 (MMP-9) is selectively expressed by FF MNs. OPN is secreted and accumulated as extracellular granules in ECM in three ALS mouse models and a human ALS patient. In SOD1(G93A) mice, OPN/MMP-9 double positivity marks remodeled FR and S MNs destined to compensate for lost FF MNs before ultimately dying. Genetic ablation of OPN in SOD1(G93A) mice delayed disease onset but then accelerated disease progression. OPN induced MMP-9 up-regulation via αvβ3 integrin in ChAT-expressing Neuro2a cells, and also induced CD44-mediated astrocyte migration and microglial phagocytosis in a non-cell-autonomous manner. Our results demonstrate that OPN expressed by FR/S MNs is involved in the second-wave neurodegeneration by up-regulating MMP-9 through αvβ3 integrin in the mouse model of ALS. The differences in OPN/MMP-9 expression profiles in MN subsets partially explain the selective MN vulnerability in ALS.
Collapse
Affiliation(s)
- Yuta Morisaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Mamiko Niikura
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Mizuho Watanabe
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Kosuke Onishi
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Shogo Tanabe
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Yasuhiro Moriwaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Takashi Okuda
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Chushin-Matsumoto Hospital, Matsumoto 399-0021, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masaki Takao
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Sae Uchida
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
16
|
Buko V, Belonovskaya E, Naruta E, Lukivskaya O, Kanyuka O, Zhuk O, Kranc R, Stoika R, Sybirna N. Pituitary tumor transforming gene as a novel regulatory factor of liver fibrosis. Life Sci 2015; 132:34-40. [PMID: 25936962 DOI: 10.1016/j.lfs.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/16/2015] [Accepted: 04/16/2015] [Indexed: 12/12/2022]
Abstract
AIMS Pituitary tumor-transforming gene (PTTG) is involved in multiple cellular pathways. We studied the development of liver fibrosis induced by thioacetamide (TAA) in knockout (PTTG-/-) and wildtype (PTTG+/+) mice. MAIN METHODS Liver fibrosis in PTTG+/+ and PTTG-/- mice was induced by escalating dose TAA treatment (50-400mg/kg, i.p.) for 12 weeks and assessed by histochemistry, immunohistochemistry, liver hydroxyproline, serum fibrosis markers and fibrosis-related mRNA expression by real-time PCR determination. KEY FINDINGS Both PTTG+/+ and PTTG-/- mice treated with TAA developed signs of fibrosis and inflammatory cell infiltration. However, histological signs of bridging fibrosis and connective tissue square morphometry were significantly attenuated in mice lacking PTTG. α-SMA immunohistochemistry revealed that hepatic stellate cell activation was markedly reduced in PTTG-/- mice compared to wildtype controls. Hepatic hydroxyproline levels were significantly lower in fibrotic PTTG-/- group. The serum TNFα and hepatic TNFα mRNA expression were significantly lower in fibrotic PTTG-/- animals, as well as hepatic TGFβ and VEGF mRNA levels compared to TAA-treated wildtype controls. Serum hyaluronate and TGFβ levels were markedly elevated in fibrotic mice of both genotypes, but were not altered by the absence of PTTG. SIGNIFICANCE TAA-induced fibrosis development is significantly ameliorated in PTTG-/- mice. These animals demonstrated diminished stellate cell activation, suppressed circulating serum markers of inflammation, fibrogenesis and angiogenesis. The presented findings suggest that PTTG is functionally required for hepatic fibrosis progression in an animal model of chronic liver injury. PTTG can be considered as a new important target for prevention and treatment of liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Vyacheslav Buko
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus; School of Medical Sciences, Bialystok, Poland.
| | - Elena Belonovskaya
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | - Elena Naruta
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | - Oxana Lukivskaya
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | | | - Olga Zhuk
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, Grodno, Belarus
| | | | - Rostislav Stoika
- Lviv National Ivan Franko University, Lviv, Ukraine; Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
| | | |
Collapse
|
17
|
Jiang H, Lun Y, Wu X, Xia Q, Zhang X, Xin S, Zhang J. Association between the hypomethylation of osteopontin and integrin β3 promoters and vascular smooth muscle cell phenotype switching in great saphenous varicose veins. Int J Mol Sci 2014; 15:18747-61. [PMID: 25329616 PMCID: PMC4227244 DOI: 10.3390/ijms151018747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/28/2014] [Accepted: 10/09/2014] [Indexed: 12/28/2022] Open
Abstract
Lower extremity varicose veins are a common condition in vascular surgery and proliferation of vascular smooth muscle cells (VSMCs) in the intima is a significant pathological feature of varicosity. However, the pathogenesis of varicose veins is not fully understood. Osteopontin (OPN) could promote the migration and adhesion of VSMCs through the cell surface receptor integrin β3 and the cooperation of OPN and integrin β3 is involved in many vascular diseases. However, the role of OPN and integrin β3 in varicosity remains unclear. In the current study, we found that the methylation levels in the promoter regions of OPN and integrin β3 genes in the VSMCs of varicose veins are reduced and the protein expression of OPN and integrin β3 are increased, compared with normal veins. Furthermore, it was observed that VSMCs in the neointima of varicose veins were transformed into the synthetic phenotype. Collectively, hypomethylation of the promoter regions for OPN and integrin β3 genes may increase the expression of these genes in varicosity, which is closely related to VSMC phenotype switching. Hypomethylation of the promoter regions for OPN and integrin β3 genes may be a key factor in the pathogenesis of varicosity.
Collapse
Affiliation(s)
- Han Jiang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Yu Lun
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Xiaoyu Wu
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Qian Xia
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Xiaoyu Zhang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Shijie Xin
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
18
|
Rechenmacher F, Steigerwald K, Laufer B, Neubauer S, Kapp TG, Li L, Mas-Moruno C, Joner M, Kessler H. The Integrin Ligandc(RGDf(NMe)Nal) Reduces Neointimal Hyperplasia in a Polymer-Free Drug-Eluting Stent System. ChemMedChem 2014; 9:1413-8. [DOI: 10.1002/cmdc.201400078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 01/28/2023]
|
19
|
Rogers NK, Clements D, Dongre A, Harrison TW, Shaw D, Johnson SR. Extra-cellular matrix proteins induce matrix metalloproteinase-1 (MMP-1) activity and increase airway smooth muscle contraction in asthma. PLoS One 2014; 9:e90565. [PMID: 24587395 PMCID: PMC3938782 DOI: 10.1371/journal.pone.0090565] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/03/2014] [Indexed: 01/14/2023] Open
Abstract
Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM) deposition. Matrix metalloproteinase-1 (MMP-1) is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM) and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms.
Collapse
Affiliation(s)
- Natasha K. Rogers
- Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, England, United Kingdom
| | - Debbie Clements
- Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, England, United Kingdom
| | - Arundhati Dongre
- Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, England, United Kingdom
| | - Tim W. Harrison
- Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, England, United Kingdom
| | - Dominic Shaw
- Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, England, United Kingdom
| | - Simon R. Johnson
- Division of Respiratory Medicine and Respiratory Research Unit, University of Nottingham, Nottingham, England, United Kingdom
| |
Collapse
|
20
|
Gómez-Florit M, Ramis JM, Xing R, Taxt-Lamolle S, Haugen HJ, Lyngstadaas SP, Monjo M. Differential response of human gingival fibroblasts to titanium- and titanium-zirconium-modified surfaces. J Periodontal Res 2013; 49:425-36. [PMID: 23919718 DOI: 10.1111/jre.12121] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Gingival fibroblasts are responsible for the constant adaptation, wound healing and regeneration of gingival connective tissue. New titanium-zirconium (TiZr) abutment surfaces have been designed to improve soft tissue integration and reduce implant failure compared with titanium (Ti). The aim of the present study was first to characterize a primary human gingival fibroblast (HGF) model and secondly to evaluate their differential response to Ti and TiZr polished (P), machined (M) and machined + acid-etched (modMA) surfaces, respectively. MATERIAL AND METHODS HGF were cultured on tissue culture plastic or on the different Ti and TiZr surfaces. Cell morphology was evaluated through confocal and scanning electron microscopy. A wound healing assay was performed to evaluate the capacity of HGF to close a scratch. The expression of genes was evaluated by real-time RT-PCR, addressing: (i) extracellular matrix organization and turnover; (ii) inflammation; (iii) cell adhesion and structure; and (iv) wound healing. Finally, cells on Ti/TiZr surfaces were immunostained with anti-ITGB3 antibodies to analyze integrin β3 production. Matrix metalloproteinase-1 (MMP1) and inhibitor of metallopeptidases-1 (TIMP1) production were analyzed by enzyme-linked immunosorbent assays. RESULTS On tissue culture plastic, HGF showed no differences between donors on cell proliferation and on the ability for wound closure; α-smooth muscle actin was overexpressed on scratched monolayers. The differentiation profile showed increased production of extracellular matrix components. Ti and TiZr showed similar biocompatibility with HGF. TiZr increased integrin-β3 mRNA and protein levels, compared with Ti. Cells on TiZr surfaces showed higher MMP1 protein than Ti surfaces, although similar TIMP1 protein production. In this in vitro experiment, P and M surfaces from both Ti and TiZr showed better HGF growth than modMA. CONCLUSION Taking into account the better mechanical properties and bioactivity of TiZr compared with Ti, the results of the present study show that TiZr is a potential clinical candidate for soft tissue integration and implant success.
Collapse
Affiliation(s)
- M Gómez-Florit
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Valentín A, Humphrey JD, Holzapfel GA. A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:822-49. [PMID: 23713058 PMCID: PMC3735847 DOI: 10.1002/cnm.2555] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 05/02/2023]
Abstract
We implemented a constrained mixture model of arterial growth and remodeling in a nonlinear finite element framework to facilitate numerical analyses of diverse cases of arterial adaptation and maladaptation, including disease progression, resulting in complex evolving geometries and compositions. This model enables hypothesis testing by predicting consequences of postulated characteristics of cell and matrix turnover, including evolving quantities and orientations of fibrillar constituents and nonhomogenous degradation of elastin or loss of smooth muscle function. The nonlinear finite element formulation is general within the context of arterial mechanics, but we restricted our present numerical verification to cylindrical geometries to allow comparisons with prior results for two special cases: uniform transmural changes in mass and differential growth and remodeling within a two-layered cylindrical model of the human aorta. The present finite element model recovers the results of these simplified semi-inverse analyses with good agreement.
Collapse
Affiliation(s)
- A. Valentín
- Institute of Biomechanics, Center of Biomedical Engineering, Graz University of Technology, Kronesgasse 5-I, 8010 Graz, Austria
| | - J. D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven CT 06520, USA
| | - G. A. Holzapfel
- Institute of Biomechanics, Center of Biomedical Engineering, Graz University of Technology, Kronesgasse 5-I, 8010 Graz, Austria
- Royal Institute of Technology (KTH), Department of Solid Mechanics, School of Engineering Sciences, Osquars Backe 1, 100 44 Stockholm, Sweden
- Corresponding author ()
| |
Collapse
|
22
|
Prevention of neointimal hyperplasia in balloon-injured rat carotid artery via small interference RNA mediated downregulation of osteopontin gene. Mol Cell Biochem 2013; 377:1-10. [DOI: 10.1007/s11010-012-1554-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
|
23
|
Yang G, Li H, Tang G, Wu L, Zhao K, Cao Q, Xu C, Wang R. Increased neointimal formation in cystathionine gamma-lyase deficient mice: role of hydrogen sulfide in α5β1-integrin and matrix metalloproteinase-2 expression in smooth muscle cells. J Mol Cell Cardiol 2011; 52:677-88. [PMID: 22200376 DOI: 10.1016/j.yjmcc.2011.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/05/2011] [Accepted: 12/10/2011] [Indexed: 01/22/2023]
Abstract
The physiological and pathological roles of hydrogen sulfide (H(2)S) in the regulation of cardiovacular functions have been recognized. Vascular smooth muscle cells (SMCs) express cystathionine gamma-lyase (CSE) and produce significant amount of H(2)S. Although growing evidence demonstated the anti-atherosclerotic effect of H(2)S, less is known about the contribution of the endogenous CSE/H(2)S pathway to the development of vascular remodeling. This study investigated the roles of the CSE/H(2)S pathway on SMC migration and neoimtimal formation by using CSE knockout (KO) mice. SMCs and aortic explants isolated from CSE KO mice exhibited more migration and outgrowth compared with that from wild-type (WT) mice, and exogenously applied NaHS (a H(2)S donor) at 100 μM significantly inhibited SMC migration and outgrowth. SMCs became more elongated and spread in the absence of CSE, and fibronectin significantly stimulated adhesion and migration of SMCs from CSE KO mice (KO-SMCs) in comparison with SMCs from WT mice (WT-SMCs). The expressions of α5- and β1-integrins were significantly higher in KO-SMCs, and functional blocking of α5β1-integrin effectively abrogated KO-SMC migration. CSE deficiency also enhanced matrix metalloproteinase-2 (MMP-2) expression, and the selective blocking of MMP-2 decreased KO-SMC migration. NaHS treatment decreased both the expressions of α5- and β1-integrins and MMP-2. We further found that the expressions of α5- and β1-integrins as well as MMP-2, were stimulated by fibronectin, and that the blockage of α5β1-integrin reduced but overexpression of α5β1-integrin induced MMP-2 expression in both WT-SMCs and KO-SMCs. We also noticed that CSE deficiency in mice led to increased neointima formation in carotid arteries 4 weeks after ligation, which were attenuated by NaHS administration. In conclusion, inhibition of SMC migration by H(2)S may be a novel target for the treatment of vascular occlusive disorder.
Collapse
Affiliation(s)
- Guangdong Yang
- The School of Kinesiology, Lakehead University, Thunder Bay, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ishigaki T, Imanaka-Yoshida K, Shimojo N, Matsushima S, Taki W, Yoshida T. Tenascin-C enhances crosstalk signaling of integrin αvβ3/PDGFR-β complex by SRC recruitment promoting PDGF-induced proliferation and migration in smooth muscle cells. J Cell Physiol 2011; 226:2617-24. [PMID: 21792920 DOI: 10.1002/jcp.22614] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Migration and proliferation of smooth muscle cells (SMCs) are key events during neointimal formation in pathological conditions of vessels. Tenascin-C (TNC) is upregulated in the developing neointima of lesions. We evaluated the effects of TNC on responses of SMCs against platelet-derived growth factor (PDGF) stimulation. TNC coated on substrate promoted PDGF-BB-induced proliferation and migration of rat SMC cell line A10 in BrdU incorporation and transwell assays, respectively. Immunoblotting showed that TNC substrate enhanced autophosphorylation of PDGFR-β after PDGF-BB stimulation. Integrin αvβ3 is known to be a receptor for TNC in SMCs. In immunofluorescence and immunoblot of integrin αv subunit, clustering of αv-positive focal adhesions and upregulated αv expression were observed in the cells on TNC substrate. Immunoprecipitation using anti-integrin αvβ3 antibody demonstrated that PDGFR-β and integrin αvβ3 were co-precipitated and that the relative amount of PDGFR-β after the stimulation was increased by TNC treatment. TNC also promoted phosphorylation of focal adhesion kinase (FAK) at tyrosine (Y) 397 and Y925. The phosphorylated FAK was localized at focal adhesions in immunofluorescence. Phosphorylated SRC at Y418 was also seen at focal adhesions. Immunoprecipitation with αv antibody showed increased SRC association with the integrin signaling complex in the cells on TNC after PDGF treatment. In the cells on TNC substrate, crosstalk signaling between integrin αvβ3 and PDGFR-β could be amplified by SRC and FAK recruited to focal adhesions, followed by enhanced proliferation and migration of A10 cells by PDGF-BB.
Collapse
Affiliation(s)
- Tomoki Ishigaki
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Integrins and other cell adhesion molecules regulate numerous physiological and pathological mechanisms by mediating the interaction between cells and their extracellular environment. Although the significance of integrins in the evolution and progression of certain cancers is well recognized, their involvement in nonmalignant processes, such as organ fibrosis or inflammation, is only beginning to emerge. However, accumulating evidence points to an instrumental role of integrin-mediated signaling in a variety of chronic and acute noncancerous diseases, particularly of the liver.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Switzerland.
| | | |
Collapse
|
26
|
Umesh A, Paudel O, Cao YN, Myers AC, Sham JSK. Alteration of pulmonary artery integrin levels in chronic hypoxia and monocrotaline-induced pulmonary hypertension. J Vasc Res 2011; 48:525-37. [PMID: 21829038 DOI: 10.1159/000329593] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 05/20/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pulmonary hypertension is associated with vascular remodeling and increased extracellular matrix (ECM) deposition. While the contribution of ECM in vascular remodeling is well documented, the roles played by their receptors, integrins, in pulmonary hypertension have received little attention. Here we characterized the changes of integrin expression in endothelium-denuded pulmonary arteries (PAs) and aorta of chronic hypoxia as well as monocrotaline-treated rats. METHODS AND RESULTS Immunoblot showed increased α(1)-, α(8)- and α(v)-integrins, and decreased α(5)-integrin levels in PAs of both models. β(1)- and β(3)-integrins were reduced in PAs of chronic hypoxia and monocrotaline-treated rats, respectively. Integrin expression in aorta was minimally affected. Differential expression of α(1)- and α(5)-integrins induced by chronic hypoxia was further examined. Immunostaining showed that they were expressed on the surface of PA smooth muscle cells (PASMCs), and their distribution was unaltered by chronic hypoxia. Phosphorylation of focal adhesion kinase was augmented in PAs of chronic hypoxia rats, and in chronic hypoxia PASMCs cultured on the α(1)-ligand collagen IV. Moreover, α(1)-integrin binding hexapeptide GRGDTP elicited an enhanced Ca(2+) response, whereas the response to α(5)-integrin binding peptide GRGDNP was reduced in CH-PASMCs. CONCLUSION Integrins in PASMCs are differentially regulated in pulmonary hypertension, and the dynamic integrin-ECM interactions may contribute to the vascular remodeling accompanying disease progression.
Collapse
Affiliation(s)
- Anita Umesh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
27
|
Saik JE, Gould DJ, Keswani AH, Dickinson ME, West JL. Biomimetic hydrogels with immobilized ephrinA1 for therapeutic angiogenesis. Biomacromolecules 2011; 12:2715-22. [PMID: 21639150 DOI: 10.1021/bm200492h] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation of a microvasculature is regulated in large part by cell-cell interactions. Ephrins and their Eph receptors mediate cell adhesion, repulsion, and migration, all critical processes in angiogenesis. (1) Here we use a covalently immobilized ephrinA1, conjugated to poly(ethylene glycol), to induce vessel formation both in vitro and in vivo in poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Human umbilical vein endothelial cell (HUVEC) tubulogenesis in matrix metalloproteinase-sensitive hydrogels was visualized from 6 h to 7 days in response to three different concentrations of PEG-ephrinA1. The deposition of extracellular matrix proteins collagen IV and laminin that stabilize tubule formation were imaged, quantified, and found to be dependent on PEG-ephrinA1 concentration. To confirm the importance of the EphA2-ephrinA1 interaction in tubule formation, soluble EphA2 was used to disrupt the EphA2-ephrinA1 interaction between a coculture of HUVEC and human brain vascular pericyte cells. HUVECs seeded onto PEGDA hydrogels displayed a dose-dependent reduction in tubule formation in response to the soluble EphA2. Finally, hydrogels with releasable platelet-derived growth factor (PDGF), immobilized RGDS, and covalently immobilized PEG-ephrinA1 were implanted into the mouse cornea micropocket. These hydrogels induced a more robust vascular response with an increase in vessel density as compared with hydrogels with releasable PDGF alone. As such, PEG-ephrinA1 may represent a promising molecule to regulate cell adhesion and migration for formation of a microvasculature in tissue-engineered constructs.
Collapse
Affiliation(s)
- Jennifer E Saik
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | | | | | | | | |
Collapse
|
28
|
Yang Q, Ye ZY, Zhang JX, Tao HQ, Li SG, Zhao ZS. Expression of matrix metalloproteinase-9 mRNA and vascular endothelial growth factor protein in gastric carcinoma and its relationship to its pathological features and prognosis. Anat Rec (Hoboken) 2011; 293:2012-9. [PMID: 21089052 DOI: 10.1002/ar.21071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate matrix metalloproteinase-9 (MMP-9) mRNA and vascular endothelial growth factor (VEGF) protein expression in gastric carcinoma and its correlation with microvascular density, growth-pattern, invasion, metastasis, and prognosis. In situ hybridization of MMP-9 mRNA and immunohistochemistry of VEGF and CD34 proteins were performed on surgical specimens of gastric cancers from 118 patients compared with 20 nonmalignant gastric mucosae. Their relationships to pathological parameters and survival times were determined by statistical analysis. The positive rate of MMP-9 in noncancerous gastric mucosae was significantly lower than that of gastric cancer tissue (60.17%, P < 0.01). In patients with cancers of the infiltrating type, at stage T3-T4, with vessel invasion, lymphatic metastasis, hepatic, or peritoneal metastasis, the positive expression rates of MMP-9 mRNA, VEGF protein, and CD34 were significantly higher than those for patients with tumors of the expanding type (P < 0.01), at stage T1-T2 (P < 0.01), with nonvessel invasion (P < 0.05), without lymphatic metastasis (P < 0.05), and without hepatic (P < 0.001) or peritoneal metastasis (P < 0.001), respectively. Expression of MMP-9 mRNA was positively related to that of VEGF protein (P < 0.001) and microvascular density (P < 0.001). Patients with higher MMP-9 mRNA and VEGF expression demonstrated vivid tumor angiogenesis and poor 5-year survival rate. MMP-9 and VEGF expression is associated with enhanced tumor angiogenesis and may play crucial roles in the invasion and metastasis of gastric carcinoma. Therefore, MMP-9 and VEGF may represent prognostic biomarkers and promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Qiong Yang
- Key Laboratory of Gastroenterology, Zhejiang Province, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
29
|
A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging. Ann Biomed Eng 2011; 39:2027-45. [PMID: 21380570 DOI: 10.1007/s10439-011-0287-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/21/2011] [Indexed: 02/07/2023]
Abstract
Arterial responses to diverse pathologies and insults likely occur via similar mechanisms. For example, many studies suggest that the natural process of aging and isolated systolic hypertension share many characteristics in arteries, including loss of functional elastin, decreased smooth muscle tone, and altered rates of deposition, and/or crosslinking of fibrillar collagen. Our aim is to show computationally how these coupled effects can impact evolving aortic geometry and mechanical behavior. Employing a thick-walled, multi-layered constrained mixture model, we suggest that a coupled loss of elastin and vasoactive function are fundamental mechanisms by which aortic aging occurs. Moreover, it is suggested that collagenous stiffening, although itself generally an undesirable process, can play a key role in attenuating excessive dilatation, perhaps including the enlargement of abdominal aortic aneurysms.
Collapse
|
30
|
Martinez-Lemus LA, Galiñanes EL. Matrix metalloproteinases and small artery remodeling. ACTA ACUST UNITED AC 2011; 8:21-28. [PMID: 22125568 DOI: 10.1016/j.ddmod.2011.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Inward eutrophic remodeling is a common structural change found in small resistance arteries that has been associated with an increased risk for life threatening cardiovascular events, the number one cause of death in industrialized societies. Because inward eutrophic remodeling is the most prevalent small artery structural change found in hypertension, hypertensive animals are the most common in vivo models used to study this particular remodeling process. In vitro, the isolated artery, pressure myograph has also been used as a model to study the mechanisms responsible for the development of small artery remodeling. Compelling recent evidence indicates that the matrix metalloproteinases (MMPs), a family of endopeptidases whose primary function is the cleavage and degradation of extracellular matrix components, are involved in vasoconstriction and the pathogenesis of hypertension. In this review we provide an overview of the known and potential roles that MMPs have on vascular remodeling, paying particular attention to their role on the inward eutrophic remodeling process of small resistance arteries that occurs in hypertension.
Collapse
|
31
|
Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 2010; 38:612-8. [PMID: 19851092 DOI: 10.1097/ccm.0b013e3181c027ae] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Accumulated evidence suggests that the primary cause of poor outcome after subarachnoid hemorrhage is not only cerebral arterial narrowing but also early brain injury. Our objective was to determine the effect of recombinant osteopontin, a pleiotropic extracellular matrix glycoprotein, on early brain injury after subarachnoid hemorrhage in rats. DESIGN Controlled in vivo laboratory study. SETTING Animal research laboratory. SUBJECTS One hundred seventy-seven male adult Sprague-Dawley rats weighing 300 to 370 g. INTERVENTIONS The endovascular perforation model of subarachnoid hemorrhage was produced. Subarachnoid hemorrhage or sham-operated rats were treated with an equal volume (1 microL) of pre-subarachnoid hemorrhage intracerebroventricular administration of two dosages (0.02 and 0.1 microg) of recombinant osteopontin, albumin, or vehicle. Body weight, neurologic scores, brain edema, and blood-brain barrier disruption were evaluated, and Western blot analyses were performed to determine the effect of recombinant osteopontin on matrix metalloproteinase-9, substrates of matrix metalloproteinase-9 (zona occludens-1, laminin), tissue inhibitor of matrix metalloproteinase-1, inflammation (interleukin-1beta), and nuclear factor-kappaB signaling pathways. MEASUREMENTS AND MAIN RESULTS Treatment with recombinant osteopontin prevented a significant loss in body weight, neurologic impairment, brain edema, and blood-brain barrier disruption after subarachnoid hemorrhage. These effects were associated with the deactivation of nuclear factor-kappaB activity, inhibition of matrix metalloproteinase-9 induction, the maintenance of tissue inhibitor of matrix metalloproteinase-1, the consequent preservation of the cerebral microvessel basal lamina protein laminin, and the tight junction protein zona occludens-1. CONCLUSIONS These results demonstrate that recombinant osteopontin treatment is effective for early brain injury after subarachnoid hemorrhage.
Collapse
|
32
|
Abstract
From the earliest studies with epithelial cells implanted into detrusor muscle to later experiments on smooth muscle in defined collagen gels, cell niche and extracellular matrix (ECM) have been clearly shown to orchestrate cellular behavior and fate whether quiescent, migratory, or proliferative. Normal matrix can revert transformed cells to quiescence, and damaged matrix can trigger malignancy or dedifferentiation. ECM influence in disease, development, healing and regeneration has been demonstrated in many other fields of study, but a thorough examination of the roles of ECM in bladder cell activity has not yet been undertaken. Structural ECM proteins, in concert with adhesive proteins, provide crucial structural support to the bladder. Both structural and nonstructural components of the bladder have major effects on smooth muscle function, through effects on matrix rigidity and signaling through ECM receptors. While many ECM components and receptors identified in the bladder have specific known functions in the vascular smooth musculature, their function in the bladder is often less well defined. In cancer and obstructive disease, the ECM has a critical role in pathogenesis. The challenge in these settings will be to find therapies that prevent hyperproliferation and encourage proper differentiation, through an understanding of matrix effects on cell biology and susceptibility to therapeutics.
Collapse
|
33
|
Valentín A, Humphrey JD. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling. J Biomech Eng 2010; 131:101006. [PMID: 19831476 DOI: 10.1115/1.3192144] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Computational models of arterial growth and remodeling promise to increase our understanding of basic biological processes, such as development, tissue maintenance, and aging, the biomechanics of functional adaptation, the progression and treatment of disease, responses to injuries, and even the design of improved replacement vessels and implanted medical devices. Ensuring reliability of and confidence in such models requires appropriate attention to verification and validation, including parameter sensitivity studies. In this paper, we classify different types of parameters within a constrained mixture model of arterial growth and remodeling; we then evaluate the sensitivity of model predictions to parameter values that are not known directly from experiments for cases of modest sustained alterations in blood flow and pressure as well as increased axial extension. Particular attention is directed toward complementary roles of smooth muscle vasoactivity and matrix turnover, with an emphasis on mechanosensitive changes in the rates of turnover of intramural fibrillar collagen and smooth muscle in maturity. It is shown that vasoactive changes influence the rapid change in caliber that is needed to maintain wall shear stress near its homeostatic level and the longer term changes in wall thickness that are needed to maintain circumferential wall stress near its homeostatic target. Moreover, it is shown that competing effects of intramural and wall shear stress-regulated rates of turnover can develop complex coupled responses. Finally, results demonstrate that the sensitivity to parameter values depends upon the type of perturbation from normalcy, with changes in axial stretch being most sensitive consistent with empirical reports.
Collapse
Affiliation(s)
- A Valentín
- Department of Biomedical Engineering, Texas A&M University, Zachry Engineering Center, TAMU, College Station, 77843-3120, USA
| | | |
Collapse
|
34
|
Patsenker E, Popov Y, Stickel F, Schneider V, Ledermann M, Sägesser H, Niedobitek G, Goodman SL, Schuppan D. Pharmacological inhibition of integrin alphavbeta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology 2009; 50:1501-11. [PMID: 19725105 PMCID: PMC2779730 DOI: 10.1002/hep.23144] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED The vitronectin receptor integrin alphavbeta3 promotes angiogenesis by mediating migration and proliferation of endothelial cells, but also drives fibrogenic activation of hepatic stellate cells (HSCs) in vitro. Expecting antifibrotic synergism, we studied the effect of alphavbeta3 inhibition in two in vivo models of liver fibrogenesis. Liver fibrosis was induced in rats by way of bile duct ligation (BDL) for 6 weeks or thioacetamide (TAA) injections for 12 weeks. A specific alphavbeta3 (alphavbeta5) inhibitor (Cilengitide) was given intraperitoneally twice daily at 15 mg/kg during BDL or after TAA administration. Liver collagen was determined as hydroxyproline, and gene expression was quantified by way of quantitative polymerase chain reaction. Liver angiogenesis, macrophage infiltration, and hypoxia were assessed by way of CD31, CD68 and hypoxia-inducible factor-1alpha immunostaining. Cilengitide decreased overall vessel formation. This was significant in portal areas of BDL and septal areas of TAA fibrotic rats and was associated with a significant increase of liver collagen by 31% (BDL) and 27% (TAA), and up-regulation of profibrogenic genes and matrix metalloproteinase-13. Treatment increased gamma glutamyl transpeptidase in both models, while other serum markers remained unchanged. alphavbeta3 inhibition resulted in mild liver hypoxia, as evidenced by up-regulation of hypoxia-inducible genes. Liver infiltration by macrophages/Kupffer cells was not affected, although increases in tumor necrosis factor alpha, interleukin-18, and cyclooxygenase-2 messenger RNA indicated modest macrophage activation. CONCLUSION Specific inhibition of integrin alphavbeta3 (alphavbeta5) in vivo decreased angiogenesis but worsened biliary (BDL) and septal (TAA) fibrosis, despite its antifibrogenic effect on HSCs in vitro. Angiogenesis inhibitors should be used with caution in patients with hepatic fibrosis.
Collapse
Affiliation(s)
- E. Patsenker
- Department of Medicine I, University of Erlangen-Nuernberg, Germany, Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - Y. Popov
- Department of Medicine I, University of Erlangen-Nuernberg, Germany, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA, USA
| | - F. Stickel
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - V. Schneider
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - M. Ledermann
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - H. Sägesser
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - G. Niedobitek
- Department of Medicine I, University of Erlangen-Nuernberg, Germany
| | - S. L. Goodman
- Therapeutic area oncology Research, Merck KG, Darmstadt, Germany
| | - D. Schuppan
- Department of Medicine I, University of Erlangen-Nuernberg, Germany, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA, USA
| |
Collapse
|
35
|
Shi ZD, Ji XY, Berardi DE, Qazi H, Tarbell JM. Interstitial flow induces MMP-1 expression and vascular SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism. Am J Physiol Heart Circ Physiol 2009; 298:H127-35. [PMID: 19880665 DOI: 10.1152/ajpheart.00732.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The migration of vascular smooth muscle cells (SMCs) and fibroblasts into the intima after vascular injury is a central process in vascular lesion formation. The elevation of transmural interstitial flow is also observed after damage to the vascular endothelium. We have previously shown that interstitial flow upregulates matrix metalloproteinase-1 (MMP-1) expression, which in turn promotes SMC and fibroblast migration in collagen I gels. In this study, we investigated further the mechanism of flow-induced MMP-1 expression. An ERK1/2 inhibitor PD-98059 completely abolished interstitial flow-induced SMC migration and MMP-1 expression. Interstitial flow promoted ERK1/2 phosphorylation, whereas PD-98059 abolished flow-induced activation. Silencing ERK1/2 completely abolished MMP-1 expression and SMC migration. In addition, interstitial flow increased the expression of activator protein-1 transcription factors (c-Jun and c-Fos), whereas PD-98059 attenuated flow-induced expression. Knocking down c-jun completely abolished flow-induced MMP-1 expression, whereas silencing c-fos did not affect MMP-1 expression. Taken together, our data indicate that interstitial flow induces MMP-1 expression and SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism and suggest that interstitial flow, ERK1/2 MAPK, c-Jun, and MMP-1 may play important roles in SMC migration and neointima formation after vascular injury.
Collapse
Affiliation(s)
- Zhong-Dong Shi
- City College of New York, City University of New York, Department of Biomedical Engineering, New York, NY 10031, USA.
| | | | | | | | | |
Collapse
|
36
|
Curci JA. Digging in the "soil" of the aorta to understand the growth of abdominal aortic aneurysms. Vascular 2009; 17 Suppl 1:S21-9. [PMID: 19426606 DOI: 10.2310/6670.2008.00085] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extensive studies into the etiology of aortic aneurysm disease have focused on the characteristic and unique inflammatory infiltration and elaboration of products of inflammatory cells which can result in matrix degradation. While these changes clearly have a significant impact on the development of aneurysm disease, little attention has been paid to the changes in the parenchymal cells of the aorta. Under normal conditions, the vascular smooth muscle cells which populate the aortic wall are responsible for the maintenance of the matrix components of the media, particularly the elastic fibers. As our understanding of the mechanisms of aneurysm formation and normal arterial anatomy become more sophisticated, it is clear that specific changes to these smooth muscle cells make them active participants in the medial matrix destruction characteristic of aneurysm disease. As others have described for intimal arterial disease, this is the "soil" from which aortic aneurysms grow.
Collapse
Affiliation(s)
- John A Curci
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
San José G, Bidegain J, Robador PA, Díez J, Fortuño A, Zalba G. Insulin-induced NADPH oxidase activation promotes proliferation and matrix metalloproteinase activation in monocytes/macrophages. Free Radic Biol Med 2009; 46:1058-67. [PMID: 19439231 DOI: 10.1016/j.freeradbiomed.2009.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/08/2008] [Accepted: 01/06/2009] [Indexed: 12/17/2022]
Abstract
Insulin stimulates superoxide (O(2)(-)) production in monocytes and macrophages. However, the mechanisms through which insulin induces O(2)(-) production are not completely understood. In this study, we (a) characterized the enzyme and the pathways involved in insulin-stimulated O(2)(-) production in human monocytes and murine macrophages, and (b) analyzed the consequences of insulin-stimulated O(2)(-) production on the cellular phenotype in these cells. We showed that insulin stimulated O(2)(-) production, and promoted p47(phox) translocation to the plasma membrane. Insulin-induced O(2)(-) production and p47(phox) translocation were prevented in the presence of specific inhibitors of PI3K and PKC. Insulin-mediated NADPH oxidase activation stimulated MMP-9 activation in monocytes and cell proliferation in macrophages. The effect of insulin on these phenotypic responses was mediated through NFkappaB, p38MAPK, and ERK 1/2 activation. Small-interfering RNA-specific gene silencing targeted specifically against Nox2 reduced the cognate protein expression, decreased insulin-induced O(2)(-) production, inhibited the turn on of NFkappaB, p38MAPK, and ERK 1/2, and reduced cell proliferation in macrophages. These findings suggest a pivotal role for NADPH oxidase in insulin-induced proliferation and proteolytic activation in monocytes and macrophages, respectively, and identify a pathway that may play a pathological role in hyperinsulinemic states.
Collapse
Affiliation(s)
- Gorka San José
- Division of Cardiovascular Sciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Martinez-Lemus LA, Hill MA, Meininger GA. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda) 2009; 24:45-57. [PMID: 19196651 DOI: 10.1152/physiol.00029.2008] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The diameter of resistance arteries has a profound effect on the distribution of microvascular blood flow and the control of systemic blood pressure. Here, we review mechanisms that contribute to the regulation of resistance artery diameter, both acutely and chronically, their temporal characteristics, and their interdependence. Furthermore, we hypothesize the existence of a remodeling continuum that allows for the vascular wall to rapidly modify its structural characteristics, specifically through the re-positioning of vascular smooth muscle cells. Importantly, the concepts presented more closely link acute vasoregulatory responses with adaptive changes in vessel wall structure. These rapid structural adaptations provide resistance vessels the ability to maintain a desired diameter under presumed optimal energetic and mechanical conditions.
Collapse
Affiliation(s)
- Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri, USA
| | | | | |
Collapse
|
39
|
Pathak A, Zhao R, Huang J, Stouffer GA. Eptifibatide and abciximab inhibit insulin-induced focal adhesion formation and proliferative responses in human aortic smooth muscle cells. Cardiovasc Diabetol 2008; 7:36. [PMID: 19108709 PMCID: PMC2628888 DOI: 10.1186/1475-2840-7-36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/23/2008] [Indexed: 01/08/2023] Open
Abstract
Background The use of abciximab (c7E3 Fab) or eptifibatide improves clinical outcomes in diabetics undergoing percutaneous coronary intervention. These β3 integrin inhibitors antagonize fibrinogen binding to αIIbβ3 integrins on platelets and ligand binding to αvβ3 integrins on vascular cells. αvβ3 integrins influence responses to insulin in various cell types but effects in human aortic smooth muscle cells (HASMC) are unknown. Results and discussion Insulin elicited a dose-dependent proliferative response in HASMC. Pretreatment with m7E3 (an anti-β3 integrin monoclonal antibody from which abciximab is derived), c7E3 or LM609 inhibited proliferative responses to insulin by 81%, 59% and 28%, respectively. Eptifibatide or cyclic RGD peptides completely abolished insulin-induced proliferation whereas tirofiban, which binds αIIbβ3 but not αvβ3, had no effect. Insulin-induced increases in c-Jun NH2-terminal kinase-1 (JNK1) activity were partially inhibited by m7E3 and eptifibatide whereas antagonism of αvβ3 integrins had no effect on insulin-induced increases in extracellular signal-regulated kinase (ERK) activity. Insulin stimulated a rapid increase in the number of vinculin-containing focal adhesions per cell and treatment with m7E3, c7E3 or eptifibatide inhibited insulin-induced increases in focal adhesions by 100%, 74% and 73%, respectively. Conclusion These results demonstrate that αvβ3 antagonists inhibit signaling, focal adhesion formation and proliferation of insulin-treated HASMC.
Collapse
Affiliation(s)
- Alokkumar Pathak
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | |
Collapse
|
40
|
Cai WJ, Li MB, Wu X, Wu S, Zhu W, Chen D, Luo M, Eitenmüller I, Kampmann A, Schaper J, Schaper W. Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis. Mol Cell Biochem 2008; 322:161-9. [PMID: 18998200 PMCID: PMC2758386 DOI: 10.1007/s11010-008-9953-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/22/2008] [Indexed: 12/02/2022]
Abstract
Migration and proliferation of smooth muscle cells (SMC) are important events during arteriogenesis, but the underlying mechanism is still only partially understood. The present study investigates the expression of integrins α5β1 and vβ3 as well as focal adhesion kinase (FAK) and phosphorylated FAK (pY397), key mediators for cell migration and proliferation, in collateral vessels (CV) in rabbit hind limbs induced by femoral ligation or an arteriovenous (AV) shunt created between the distal femoral artery stump and the accompanying femoral vein by confocal immunofluorescence. In addition, the effect of the extracellular matrix components fibronectin (FN), laminin (LN), and Matrigel on expression of these focal adhesion molecules proliferation was studied in cultured SMCs. We found that: (1) in normal vessels (NV), both integrins α5β1 and αvβ3 were mainly expressed in endothelial cells, very weak in smooth muscle cells (SMC); (2) in CVs, both α5β1 and αvβ3 were significantly upregulated (P < 0.05); this was more evident in the shunt-side CVs, 1.5 and 1.3 times higher than that in the ligation side, respectively; (3) FAK and FAK(py397) were expressed in NVs and CVs in a similar profile as was α5β1 and αvβ3; (4) in vitro SMCs cultured on fibronectin (overexpressed in collaterals) expressed higher levels of FAK, FAK (pY397), α5β1, and αvβ3 than on laminin, whereas SMCs growing inside Matrigel expressed little of these proteins and showed no proliferation. In conclusion, our data demonstrate for the first time that the integrin-FAK signaling axis is activated in collateral vessels and that altered expression of FN and LN may play a crucial role in mediating the integrin-FAK signaling pathway activation. These findings explain a large part of the positive remodeling that collateral vessels undergo under the influence of high fluid shear stress.
Collapse
Affiliation(s)
- Wei-Jun Cai
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, 172 Tong-Zhi-Po Road, Changsha, 410078, Hunan, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Terashima Y, Shimabukuro Y, Terashima H, Ozasa M, Terakura M, Ikezawa K, Hashikawa T, Takedachi M, Oohara H, Yamada S, Murakami S. Fibroblast growth factor‐2 regulates expression of osteopontin in periodontal ligament cells. J Cell Physiol 2008; 216:640-50. [DOI: 10.1002/jcp.21443] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials 2008; 29:314-26. [DOI: 10.1016/j.biomaterials.2007.09.036] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/23/2007] [Indexed: 11/17/2022]
|
43
|
Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mänsson H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:1087-97. [PMID: 17548669 DOI: 10.1158/1055-9965.epi-06-1008] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of cancer biomarkers to anticipate the outlines of disease has been an emerging issue, especially as cancer treatment has made such positive steps in the last few years. Progress in the development of consistent malignancy markers is imminent because advances in genomics and bioinformatics have allowed the examination of immense amounts of data. Osteopontin is a phosphorylated glycoprotein secreted by activated macrophages, leukocytes, and activated T lymphocytes, and is present in extracellular fluids, at sites of inflammation, and in the extracellular matrix of mineralized tissues. Several physiologic roles have been attributed to osteopontin, i.e., in inflammation and immune function, in mineralized tissues, in vascular tissue, and in kidney. Osteopontin interacts with a variety of cell surface receptors, including several integrins and CD44. Binding of osteopontin to these cell surface receptors stimulates cell adhesion, migration, and specific signaling functions. Overexpression of osteopontin has been found in a variety of cancers, including breast cancer, lung cancer, colorectal cancer, stomach cancer, ovarian cancer, and melanoma. Moreover, osteopontin is present in elevated levels in the blood and plasma of some patients with metastatic cancers. Therefore, suppression of the action of osteopontin may confer significant therapeutic activity, and several strategies for bringing about this suppression have been identified. This review looks at the recent advances in understanding the possible mechanisms by which osteopontin may contribute functionally to malignancy, particularly in breast cancer. Furthermore, the measurement of osteopontin in the blood or tumors of patients with cancer, as a way of providing valuable prognostic information, will be discussed based on emerging clinical data.
Collapse
Affiliation(s)
- Lígia R Rodrigues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
44
|
Han M, Wen JK, Zheng B, Liu Z, Chen Y. Blockade of integrin beta3-FAK signaling pathway activated by osteopontin inhibits neointimal formation after balloon injury. Cardiovasc Pathol 2007; 16:283-90. [PMID: 17868879 DOI: 10.1016/j.carpath.2007.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 03/09/2007] [Accepted: 04/02/2007] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Osteopontin (OPN) promotes the migration and adhesion of vascular smooth muscle cells (VSMCs) through cell surface receptor, integrin beta3. In order to elucidate the signaling pathway by which OPN is involved in neointimal formation, we focused on integrin beta3-focal adhesion kinase (FAK) upon VSMC migration. METHODS The integrin beta3 and FAK expression in VSMC and in neointima was detected by Western blot and immunohistochemistry staining. FAK phosphorylation induced by OPN was verified using a linear OPN 13 peptide containing RGD motif and anti-OPN antibody. The role of integrin beta3-FAK pathway in VSMC adhesion and migration induced with OPN was tested by the overexpression of FAK-related nonkinase and integrin beta3 cytoplasmic domain. RESULTS The results showed that OPN increased integrin beta3 expression and induced rapid and transient FAK phosphorylation. Inhibition of the phosphorylation of FAK significantly suppressed VSMC migration induced by OPN. Similarly, blockade of the interaction of integrin beta3 with OPN inhibited VSMC adhesion induced by OPN. The experiment, in vivo, demonstrated that OPN expression level was consistent with neointimal thickening. Administration of anti-OPN antibody for blocking OPN function suppressed integrin beta3 and FAK expression induced by balloon injury, and neointimal thickening was inhibited. CONCLUSIONS These data indicate that integrin beta3-FAK signaling modulates OPN-induced VSMC migration during neointimal formation.
Collapse
Affiliation(s)
- Mei Han
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
45
|
Hong H, McCullough CM, Stegemann JP. The role of ERK signaling in protein hydrogel remodeling by vascular smooth muscle cells. Biomaterials 2007; 28:3824-33. [PMID: 17544501 PMCID: PMC2001258 DOI: 10.1016/j.biomaterials.2007.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 05/04/2007] [Indexed: 01/02/2023]
Abstract
Collagen type I and fibrin hydrogels have been used for cell-based therapies and tissue engineering. These matrices can be broken down and remodeled by cells, but the effects that these proteins have on cell function are not completely understood. We examined activation of the extracellular signal-regulated kinase (ERK) signaling pathway by vascular smooth muscle cells (VSMC) in response to 2D and 3D matrices of type I collagen, fibrin, or a 1:1 composite mixture of these proteins. After 3 days of culture, ERK phosphorylation, osteopontin secretion, and MMP-2 activation were all markedly increased in 3D matrices, compared with 2D substrates. A strong positive correlation existed between these protein markers of the synthetic phenotype and phosphorylated ERK levels, and this relationship persisted across matrix geometries and compositions. Cell proliferation in 3D matrices was inversely correlated to ERK activation, while on 2D substrates a modest positive correlation was observed. Pharmacologic inhibition of ERK signaling confirmed that this pathway was involved in the observed phenotype shifts. This study suggests that contextual activation of the ERK pathway results in different effects on cell phenotype, depending on the geometry and composition of the ECM. These findings add to our understanding of cell function and remodeling in protein-based hydrogel biomaterials.
Collapse
MESH Headings
- Animals
- Cell Culture Techniques/methods
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen Type I/pharmacology
- Drug Combinations
- Fibrin/pharmacology
- Hydrogels/chemistry
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Rats
- Rats, Sprague-Dawley
- Tissue Engineering/methods
Collapse
Affiliation(s)
- Helen Hong
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | |
Collapse
|
46
|
Bezuidenhout L, Bracher M, Davison G, Zilla P, Davies N. Ang-2 and PDGF-BB cooperatively stimulate human peripheral blood monocyte fibrinolysis. J Leukoc Biol 2007; 81:1496-503. [PMID: 17395886 DOI: 10.1189/jlb.1106687] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Angiopoietin-2 (Ang-2) is a growth factor, which was identified originally as playing a critical role in vessel remodeling during angiogenesis. More recent evidence has indicated additional involvement in vascular homeostatic responses such as coagulation and inflammation, which are central to wound healing. We therefore determined whether a relationship existed between Ang-2 and monocytes, one of the initial cell types to be recruited to a wound, in the context of fibrin clot invasion. Ang-2 significantly increased monocyte invasion of fibrin in the presence of serum. In the absence of serum, it required a combination of Ang-2 and platelet-derived growth factor BB (PDGF-BB) to increase invasion by threefold. Furthermore, it was shown that the heightened invasion was dependent on serine proteases and matrix metalloproteinases (MMPs) and that the combination of Ang-2 and PDGF-BB increased urokinase plasminogen-activator receptor expression, as well as MMP-9 and membrane type 1 MMP expression. These data give further credence to the concept of Ang-2 as a key regulator of several essential phases of wound healing.
Collapse
Affiliation(s)
- Louise Bezuidenhout
- Cardiovascular Research Unit, University of Cape Town Medical School, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
47
|
Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 2007; 5:265-82. [PMID: 17338671 DOI: 10.1586/14779072.5.2.265] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atherosclerotic plaque rupture, with subsequent occlusive thrombosis, is the underlying cause of most cases of sudden cardiac death. Matrix metalloproteinases (MMPs) are thought to mediate the progression of stable atherosclerotic lesions to an unstable phenotype that is prone to rupture through the destruction of strength-giving extracellular matrix (ECM) proteins. Smooth muscle cells secrete and deposit ECM proteins and are, therefore, considered protective against atherosclerotic plaque destabilization. However, similar to inflammatory cells (e.g., macrophages), smooth muscle cells release numerous MMPs that are capable of digesting ECM proteins. Thus, the interaction of smooth muscle cells and MMPs in atherosclerotic plaques is complex and not fully understood. Recently, research into the roles of MMPs and their endogenous inhibitors (tissue inhibitors of metalloproteinases), and their effects on smooth muscle behavior during plaque destabilization has been aided by the development of reproducible animal models of plaque instability. A plethora of studies has demonstrated that MMPs directly modulate smooth muscle behavior with both beneficial and deleterious effects on atherosclerotic plaque stability, in addition to their canonical effects on ECM remodeling. Consequently, broad-spectrum MMP inhibition may inhibit plaque-stabilizing mechanisms, such as smooth muscle cell growth, while conversely retarding ECM destruction and subsequent rupture. Hence the development of selective MMP inhibitors, that spare inhibitory effects on smooth muscle cell function, may be useful therapies to prevent plaque rupture and in this regard MMP-12 appears to be a particularly attractive target.
Collapse
Affiliation(s)
- Jason Lee Johnson
- University of Bristol, Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
48
|
Desai B, Rogers MJ, Chellaiah MA. Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer 2007; 6:18. [PMID: 17343740 PMCID: PMC1828067 DOI: 10.1186/1476-4598-6-18] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 03/07/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expression level of osteopontin correlates with the metastatic potential of several tumors. Osteopontin is a well-characterized ligand for the alphavbeta3 integrin. The present study was undertaken to elucidate the possible role of osteopontin/alphavbeta3 signaling in prostate cancer cell migration. RESULTS We generated stable prostate cancer cell (PC3) lines that over-express osteopontin (PC3/OPN), mutant OPN in the integrin binding-site (PC3/RGDDeltaRGA), and null for OPN (PC3/SiRNA). The following observations were made in PC3/OPN cells as compared with PC3 cells: 1) an increase in multinucleated giant cells and RANKL expression; 2) an increase in CD44 surface expression, interaction of CD44/MMP-9 on the cell surface, MMP-9 activity in the conditioned medium, and cell migration; 3) western blot analysis of concentrated conditioned medium exhibited equal levels of MMP-9 protein in all PC3 cells. However, zymography analysis demonstrated that the levels of MMP-9 activity in the conditioned media reflect the CD44 surface expression pattern of the PC3 cell lines; 4) although MMP-9 and MMP-2 are secreted by PC3 cells, only the secretion of MMP-9 is regulated by OPN expression. A strong down regulation of the above-mentioned processes was observed in PC3/OPN (RGA) and PC3/SiRNA cells. PC3/OPN cells treated with bisphosphonate (BP) reproduce the down-regulation observed in PC3/OPN (RGA) and PC3/SiRNA cells. CONCLUSION Rho signaling plays a crucial role in CD44 surface expression. BPs inhibits the mevalonate pathway, which in turn, prevents the prenylation of a number of small GTPases. Attenuation of Rho GTPase activation by BPs may have contributed to the down regulation of cell surface CD44/MMP-9 interaction, MMP-9 activation/secretion, and cell migration. Taken together, these observations suggest that CD44 surface expression is an important event in the activation of MMP-9 and migration of prostate cancer cells. The various steps involved in the above mentioned signaling pathway and/or the molecules regulating the activation of MMP-9 are potential therapeutic target.
Collapse
Affiliation(s)
- Bhavik Desai
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, MD 21201, USA
| | - Michael J Rogers
- Bone Research Group, Institute of Medical Sciences, University of Aberdeen, AB252ZD, UK
| | - Meenakshi A Chellaiah
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
49
|
Liu Y, Huang B, Yuan Y, Gong W, Xiao H, Li D, Yu ZR, Wu FH, Zhang GM, Feng ZH. Inhibition of hepatocarcinoma and tumor metastasis to liver by gene therapy with recombinant CBD-HepII polypeptide of fibronectin. Int J Cancer 2007; 121:184-92. [PMID: 17330234 DOI: 10.1002/ijc.22644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Unlike the intact fibronectin (FN) molecule, some proteolytic or recombinant fragments of FN possess inhibitory activities on tumor, providing potential strategies in tumor therapeutics. Using the hydrodynamics-based gene delivery technique, we demonstrated that the treatment by in vivo expression of a recombinant CBD-HepII polypeptide of FN, designated as CH50, strongly inhibited the tumor growth, tumor invasion and angiogenesis. Such inhibitory effects of CH50 on tumor were partly ascribed to its influence on the activities of MMP-9 and alphavbeta3 integrin. The in vivo expressed CH50 decreased both the production and the activity of MMP-9 in tumor tissues. CH50 also down-regulated alphavbeta3 expression in tumor cells and endothelial cells in vitro. The decreased activity of alphavbeta3 integrin was proved by its reduced binding ability to fibrinogen and the down-regulation of cdc2 expression. The gene therapy with CH50 not only prolonged the survival of mice bearing hepatocarcinoma in the liver, but also suppressed the growth and invasive ability of tumor in spleen and its metastasis to liver. Taken together, these findings suggest a prospective utility of CH50 in the gene therapy of liver cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Serlin DM, Kuang PP, Subramanian M, O'Regan A, Li X, Berman JS, Goldstein RH. Interleukin-1beta induces osteopontin expression in pulmonary fibroblasts. J Cell Biochem 2006; 97:519-29. [PMID: 16211580 DOI: 10.1002/jcb.20661] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteopontin is a multifunctional matricellular protein identified as one of the most upregulated genes in pulmonary fibrosis. Experimental animal models have identified early pro-fibrotic cytokines as essential to the pathogenesis of inflammation-induced pulmonary fibrosis. However, the principal sources of osteopontin in the fibroproliferative lung, and the factors responsible for its induction, have not been fully defined. We isolated primary rat lung fibroblasts in culture to examine the expression and regulation of lung fibroblast-derived osteopontin. Our results demonstrate a potent and dramatic increase in osteopontin expression induced by interleukin-1beta (IL-1beta), whereas tumor necrosis factor-alpha, transforming growth factor-beta, and angiotensin II had minimal effect. Stimulation with IL-1beta resulted in the secretion of soluble osteopontin protein. We found that osteopontin expression by IL-1beta was regulated via signaling primarily through the mitogen-activated protein kinase member ERK1/2, partially by p38 MAPK, but not at all by JNK. Finally, the mechanism of IL-1beta increase in osteopontin mRNA requires de novo transcription and translation. In conclusion, we find that osteopontin is expressed by primary lung fibroblasts and is potently upregulated by the early inflammatory and pro-fibrotic cytokine IL-1beta. Activated fibroblasts may be a significant source of osteopontin production during lung fibrogenesis.
Collapse
Affiliation(s)
- David M Serlin
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, 715 Albany Street R304, Boston, MA 02118, USA.
| | | | | | | | | | | | | |
Collapse
|