1
|
Luo L, Cai Y, Zhang Y, Hsu CG, Korshunov VA, Long X, Knight PA, Berk BC, Yan C. Role of PDE10A in vascular smooth muscle cell hyperplasia and pathological vascular remodelling. Cardiovasc Res 2022; 118:2703-2717. [PMID: 34550322 PMCID: PMC9890476 DOI: 10.1093/cvr/cvab304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS Intimal hyperplasia is a common feature of vascular remodelling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. METHODS AND RESULTS RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodelling of cultured human saphenous vein segments. CONCLUSIONS Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signalling and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease.
Collapse
Affiliation(s)
- Lingfeng Luo
- Department of Biochemistry and Biophysics, University of Rochester School
of Medicine and Dentistry, Rochester, NY,
USA
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yujun Cai
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yishuai Zhang
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chia G Hsu
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Vyacheslav A Korshunov
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Xiaochun Long
- Department of Vascular Biology Center and Medicine, Medical College of
Georgia, Augusta, GA, USA
| | - Peter A Knight
- Department of Surgery, University of Rochester School of Medicine and
Dentistry, Rochester, NY, USA
| | - Bradford C Berk
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chen Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| |
Collapse
|
2
|
Hildebrand S, Ibrahim M, Schlitzer A, Maegdefessel L, Röll W, Pfeifer A. PDGF regulates guanylate cyclase expression and cGMP signaling in vascular smooth muscle. Commun Biol 2022; 5:197. [PMID: 35241778 PMCID: PMC8894477 DOI: 10.1038/s42003-022-03140-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
The nitric oxide-cGMP (NO-cGMP) pathway is of outstanding importance for vascular homeostasis and has multiple beneficial effects in vascular disease. Neointimal hyperplasia after vascular injury is caused by increased proliferation and migration of vascular smooth muscle cells (VSMCs). However, the role of NO-cGMP signaling in human VSMCs in this process is still not fully understood. Here, we investigate the interaction between platelet derived growth factor (PDGF)-signaling, one of the major contributors to neointimal hyperplasia, and the cGMP pathway in vascular smooth muscle, focusing on NO-sensitive soluble guanylyl cyclase (sGC). We show that PDGF reduces sGC expression by activating PI3K and Rac1, which in turn alters Notch ligand signaling. These data are corroborated by gene expression analysis in human atheromas, as well as immunohistological analysis of diseased and injured arteries. Collectively, our data identify the crosstalk between PDGF and NO/sGC signaling pathway in human VSMCs as a potential target to tackle neointimal hyperplasia. PDGF reduces expression of nitric oxide-sensitive soluble guanylyl cyclase (NO-sGC) through PI3K-P-Rex1-Rac1 signaling in vascular smooth muscle cells. These insights provide possible avenues to prevent dysregulation of NO/cGMP signaling in vascular disease.
Collapse
Affiliation(s)
- Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
| | - Mohamed Ibrahim
- Quantitative Systems Biology, LIMES-Institute (Life and Medical Sciences Bonn), University of Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, LIMES-Institute (Life and Medical Sciences Bonn), University of Bonn, Bonn, Germany
| | - Lars Maegdefessel
- Experimental Vascular Surgery and Medicine, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar - Technical University Munich, Munich, Germany.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wilhelm Röll
- Department of Cardiac Surgery, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Längst N, Adler J, Schweigert O, Kleusberg F, Cruz Santos M, Knauer A, Sausbier M, Zeller T, Ruth P, Lukowski R. Cyclic GMP-Dependent Regulation of Vascular Tone and Blood Pressure Involves Cysteine-Rich LIM-Only Protein 4 (CRP4). Int J Mol Sci 2021; 22:9925. [PMID: 34576086 PMCID: PMC8466836 DOI: 10.3390/ijms22189925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023] Open
Abstract
The cysteine-rich LIM-only protein 4 (CRP4), a LIM-domain and zinc finger containing adapter protein, has been implicated as a downstream effector of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) pathway in multiple cell types, including vascular smooth muscle cells (VSMCs). VSMCs and nitric oxide (NO)-induced cGMP signaling through cGMP-dependent protein kinase type I (cGKI) play fundamental roles in the physiological regulation of vascular tone and arterial blood pressure (BP). However, it remains unclear whether the vasorelaxant actions attributed to the NO/cGMP axis require CRP4. This study uses mice with a targeted deletion of the CRP4 gene (CRP4 KO) to elucidate whether cGMP-elevating agents, which are well known for their vasorelaxant properties, affect vessel tone, and thus, BP through CRP4. Cinaciguat, a NO- and heme-independent activator of the NO-sensitive (soluble) guanylyl cyclase (NO-GC) and NO-releasing agents, relaxed both CRP4-proficient and -deficient aortic ring segments pre-contracted with prostaglandin F2α. However, the magnitude of relaxation was slightly, but significantly, increased in vessels lacking CRP4. Accordingly, CRP4 KO mice presented with hypotonia at baseline, as well as a greater drop in systolic BP in response to the acute administration of cinaciguat, sodium nitroprusside, and carbachol. Mechanistically, loss of CRP4 in VSMCs reduced the Ca2+-sensitivity of the contractile apparatus, possibly involving regulatory proteins, such as myosin phosphatase targeting subunit 1 (MYPT1) and the regulatory light chain of myosin (RLC). In conclusion, the present findings confirm that the adapter protein CRP4 interacts with the NO-GC/cGMP/cGKI pathway in the vasculature. CRP4 seems to be part of a negative feedback loop that eventually fine-tunes the NO-GC/cGMP axis in VSMCs to increase myofilament Ca2+ desensitization and thereby the maximal vasorelaxant effects attained by (selected) cGMP-elevating agents.
Collapse
Affiliation(s)
- Natalie Längst
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Julia Adler
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Olga Schweigert
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Felicia Kleusberg
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Amelie Knauer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Matthias Sausbier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Tanja Zeller
- Cardiovascular Systems Medicine and Molecular Translation, University Center of Cardiovascular Science, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (O.S.); (T.Z.)
- DZHK, German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany; (N.L.); (J.A.); (F.K.); (M.C.S.); (A.K.); (M.S.)
| |
Collapse
|
4
|
Remes A, Basha DI, Puehler T, Borowski C, Hille S, Kummer L, Wagner AH, Hecker M, Soethoff J, Lutter G, Frank D, Arif R, Frey N, Zaradzki M, Müller OJ. Alginate hydrogel polymers enable efficient delivery of a vascular-targeted AAV vector into aortic tissue. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:83-93. [PMID: 33768132 PMCID: PMC7973147 DOI: 10.1016/j.omtm.2021.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
Gene therapeutic approaches to aortic diseases require efficient vectors and delivery systems for transduction of endothelial cells (ECs) and smooth muscle cells (SMCs). Here, we developed a novel strategy to efficiently deliver a previously described vascular-specific adeno-associated viral (AAV) vector to the abdominal aorta by application of alginate hydrogels. To efficiently transduce ECs and SMCs, we used AAV9 vectors with a modified capsid (AAV9SLR) encoding enhanced green fluorescent protein (EGFP), as wild-type AAV vectors do not transduce ECs and SMCs well. AAV9SLR vectors were embedded into a solution containing sodium alginate and polymerized into hydrogels. Gels were surgically implanted around the adventitia of the infrarenal abdominal aorta of adult mice. Three weeks after surgery, an almost complete transduction of both the endothelium and tunica media adjacent to the gel was demonstrated in tissue sections. Hydrogel-mediated delivery resulted in induction of neutralizing antibodies but did not cause inflammatory responses in serum or the aortic wall. To further determine the translational potential, aortic tissue from patients was embedded ex vivo into AAV9SLR-containing hydrogel, and efficient transduction could be confirmed. These findings demonstrate that alginate hydrogel harboring a vascular-targeting AAV9SLR vector allows efficient local transduction of the aortic wall.
Collapse
Affiliation(s)
- Anca Remes
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Dima Ibrahim Basha
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Puehler
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- Department of Cardiac and Vascular Surgery, University of Kiel, Kiel, Germany
| | - Christopher Borowski
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Laura Kummer
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas H. Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Jasmin Soethoff
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg Lutter
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- Department of Cardiac and Vascular Surgery, University of Kiel, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
- Corresponding author: Oliver J. Müller, Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany.
| |
Collapse
|
5
|
NF-κB-responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Exp Mol Med 2019; 51:1-12. [PMID: 30765689 PMCID: PMC6376011 DOI: 10.1038/s12276-019-0212-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) play an important role in maintaining vascular function. Inflammation-mediated VSMC dysfunction leads to atherosclerotic intimal hyperplasia and preeclamptic hypertension; however, the underlying mechanisms are not clearly understood. We analyzed the expression levels of microRNA-155 (miR-155) in cultured VSMCs, mouse vessels, and clinical specimens and then assessed its role in VSMC function. Treatment with tumor necrosis factor-α (TNF-α) elevated miR-155 biogenesis in cultured VSMCs and vessel segments, which was prevented by NF-κB inhibition. MiR-155 expression was also increased in high-fat diet-fed ApoE−/− mice and in patients with atherosclerosis and preeclampsia. The miR-155 levels were inversely correlated with soluble guanylyl cyclase β1 (sGCβ1) expression and nitric oxide (NO)-dependent cGMP production through targeting the sGCβ1 transcript. TNF-α-induced miR-155 caused VSMC phenotypic switching, which was confirmed by the downregulation of VSMC-specific marker genes, suppression of cell proliferation and migration, alterations in cell morphology, and NO-induced vasorelaxation. These events were mitigated by miR-155 inhibition. Moreover, TNF-α did not cause VSMC phenotypic modulation and limit NO-induced vasodilation in aortic vessels of miR-155−/− mice. These findings suggest that NF-κB-induced miR-155 impairs the VSMC contractile phenotype and NO-mediated vasorelaxation by downregulating sGCβ1 expression. These data suggest that NF-κB-responsive miR-155 is a novel negative regulator of VSMC functions by impairing the sGC/cGMP pathway, which is essential for maintaining the VSMC contractile phenotype and vasorelaxation, offering a new therapeutic target for the treatment of atherosclerosis and preeclampsia. The overexpression of a microRNA molecule adversely affects the functioning of vascular smooth muscle cells (VSMCs) and may contribute to the development of artherosclerosis and preeclampsia. The interactions between VSMCs and the cells lining blood vessels (endothelium) are crucial for maintaining the healthy phenotype and relaxation of blood vessels. Disruption to these interactions via inflammation, for example, can trigger serious vascular diseases. Young-Myeong Kim at Kangwon National University, Chungcheon, South Korea, and co-workers demonstrated that expression levels of a microRNA-155 are elevated in patients with artherosclerosis and preeclampsia, while an enzyme found in VSMCs called soluble guanylyl cyclase is considerably reduced. Using human and mice tissues, the team showed that miR-155 impairs the contractile phenotype and relaxation of VSMCs by reducing guanylyl cyclase expression. Their findings may inform new therapies for vascular diseases.
Collapse
|
6
|
Choi S, Park M, Kim J, Park W, Kim S, Lee DK, Hwang JY, Choe J, Won MH, Ryoo S, Ha KS, Kwon YG, Kim YM. TNF-α elicits phenotypic and functional alterations of vascular smooth muscle cells by miR-155-5p-dependent down-regulation of cGMP-dependent kinase 1. J Biol Chem 2018; 293:14812-14822. [PMID: 30104414 DOI: 10.1074/jbc.ra118.004220] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
cGMP-dependent protein kinase 1 (PKG1) plays an important role in nitric oxide (NO)/cGMP-mediated maintenance of vascular smooth muscle cell (VSMC) phenotype and vasorelaxation. Inflammatory cytokines, including tumor necrosis factor-α (TNFα), have long been understood to mediate several inflammatory vascular diseases. However, the underlying mechanism of TNFα-dependent inflammatory vascular disease is unclear. Here, we found that TNFα treatment decreased PKG1 expression in cultured VSMCs, which correlated with NF-κB-dependent biogenesis of miR-155-5p that targeted the 3'-UTR of PKG1 mRNA. TNFα induced VSMC phenotypic switching from a contractile to a synthetic state through the down-regulation of VSMC marker genes, suppression of actin polymerization, alteration of cell morphology, and elevation of cell proliferation and migration. All of these events were blocked by treatment with an inhibitor of miR-155-5p or PKG1, whereas transfection with miR-155-5p mimic or PKG1 siRNA promoted phenotypic modulation, similar to the response to TNFα. In addition, TNFα-induced miR-155-5p inhibited the vasorelaxant response of de-endothelialized mouse aortic vessels to 8-Br-cGMP by suppressing phosphorylation of myosin phosphatase and myosin light chain, both of which are downstream signal modulators of PKG1. Moreover, TNFα-induced VSMC phenotypic alteration and vasodilatory dysfunction were blocked by NF-κB inhibition. These results suggest that TNFα impairs NO/cGMP-mediated maintenance of the VSMC contractile phenotype and vascular relaxation by down-regulating PKG1 through NF-κB-dependent biogenesis of miR-155-5p. Thus, the NF-κB/miR-155-5p/PKG1 axis may be crucial in the pathogenesis of inflammatory vascular diseases, such as atherosclerotic intimal hyperplasia and preeclamptic hypertension.
Collapse
Affiliation(s)
- Seunghwan Choi
- From the Departments of Molecular and Cellular Biochemistry
| | - Minsik Park
- From the Departments of Molecular and Cellular Biochemistry
| | - Joohwan Kim
- From the Departments of Molecular and Cellular Biochemistry
| | - Wonjin Park
- From the Departments of Molecular and Cellular Biochemistry
| | - Suji Kim
- From the Departments of Molecular and Cellular Biochemistry
| | - Dong-Keon Lee
- From the Departments of Molecular and Cellular Biochemistry
| | | | | | - Moo-Ho Won
- Neurobiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341
| | - Sungwoo Ryoo
- the Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, and
| | - Kwon-Soo Ha
- From the Departments of Molecular and Cellular Biochemistry
| | - Young-Guen Kwon
- the Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | | |
Collapse
|
7
|
Lehners M, Dobrowinski H, Feil S, Feil R. cGMP Signaling and Vascular Smooth Muscle Cell Plasticity. J Cardiovasc Dev Dis 2018; 5:jcdd5020020. [PMID: 29671769 PMCID: PMC6023364 DOI: 10.3390/jcdd5020020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclic GMP regulates multiple cell types and functions of the cardiovascular system. This review summarizes the effects of cGMP on the growth and survival of vascular smooth muscle cells (VSMCs), which display remarkable phenotypic plasticity during the development of vascular diseases, such as atherosclerosis. Recent studies have shown that VSMCs contribute to the development of atherosclerotic plaques by clonal expansion and transdifferentiation to macrophage-like cells. VSMCs express a variety of cGMP generators and effectors, including NO-sensitive guanylyl cyclase (NO-GC) and cGMP-dependent protein kinase type I (cGKI), respectively. According to the traditional view, cGMP inhibits VSMC proliferation, but this concept has been challenged by recent findings supporting a stimulatory effect of the NO-cGMP-cGKI axis on VSMC growth. Here, we summarize the relevant studies with a focus on VSMC growth regulation by the NO-cGMP-cGKI pathway in cultured VSMCs and mouse models of atherosclerosis, restenosis, and angiogenesis. We discuss potential reasons for inconsistent results, such as the use of genetic versus pharmacological approaches and primary versus subcultured cells. We also explore how modern methods for cGMP imaging and cell tracking could help to improve our understanding of cGMP’s role in vascular plasticity. We present a revised model proposing that cGMP promotes phenotypic switching of contractile VSMCs to VSMC-derived plaque cells in atherosclerotic lesions. Regulation of vascular remodeling by cGMP is not only an interesting new therapeutic strategy, but could also result in side effects of clinically used cGMP-elevating drugs.
Collapse
Affiliation(s)
- Moritz Lehners
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Hyazinth Dobrowinski
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Bueno H, de Graeff P, Richard-Lordereau I, Emmerich J, Fox KA, Friedman CP, Gaudin C, El-Gazayerly A, Goldman S, Hemmrich M, Henderson RA, Himmelmann A, Irs A, Jackson N, James SK, Katus HA, Laslop A, Laws I, Mehran R, Ong S, Prasad K, Roffi M, Rosano GM, Rose M, Sinnaeve PR, Stough WG, Thygesen K, Van de Werf F, Varin C, Verheugt FW, de Los Angeles Alonso García M. Report of the European Society of Cardiology Cardiovascular Round Table regulatory workshop update of the evaluation of new agents for the treatment of acute coronary syndrome: Executive summary. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2016; 8:745-754. [PMID: 27357206 DOI: 10.1177/2048872616649859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Regulatory authorities interpret the results of randomized controlled trials according to published principles. The European Medicines Agency (EMA) is planning a revision of the 2000 and 2003 guidance documents on clinical investigation of new medicinal products for the treatment of acute coronary syndrome (ACS) to achieve consistency with current knowledge in the field. This manuscript summarizes the key output from a collaborative workshop, organized by the Cardiovascular Round Table and the European Affairs Committee of the European Society of Cardiology, involving clinicians, academic researchers, trialists, European and US regulators, and pharmaceutical industry researchers. Specific questions in four key areas were selected as priorities for changes in regulatory guidance: patient selection, endpoints, methodologic issues and issues related to the research for novel agents. Patients with ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) should be studied separately for therapies aimed at the specific pathophysiology of either condition, particularly for treatment of the acute phase, but can be studied together for other treatments, especially long-term therapy. Unstable angina patients should be excluded from acute phase ACS trials. In general, cardiovascular death and reinfarction are recommended for primary efficacy endpoints; other endpoints may be considered if specifically relevant for the therapy under study. New agents or interventions should be tested against a background of evidence-based therapy with expanded follow-up for safety assessment. In conclusion, new guidance documents for randomized controlled trials in ACS should consider changes regarding patient and endpoint selection and definitions, and trial designs. Specific requirements for the evaluation of novel pharmacological therapies need further clarification.
Collapse
Affiliation(s)
- Héctor Bueno
- Centro Nacional de Investigaciones Cardiovasculares, Spain.,Cardiology Department, Hospital Universitario 12 de Octubre, Spain.,Universidad Complutense de Madrid, Spain
| | - Pieter de Graeff
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, The Netherlands.,Dutch Medicines Evaluation Board, The Netherlands
| | | | - Joseph Emmerich
- Université Paris-Descartes Cochin-Hôtel Dieu Hospital, French National Agency for Medicines and Health Products Safety, France
| | - Keith Aa Fox
- Centre for Cardiovascular Science, University and Royal Infirmary of Edinburgh, UK
| | | | | | | | | | | | | | | | - Alar Irs
- Department of Cardiology, University of Tartu, Estonia.,Estonian State Agency of Medicines, Estonia
| | | | - Stefan K James
- Department of Medical Sciences, Uppsala University, Sweden
| | - Hugo A Katus
- Medizinische Klinik, Universitätsklinikum Heidelberg, Germany
| | | | | | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute, USA
| | | | - Krishna Prasad
- Medicines and Healthcare Products Regulatory Agency, UK.,St Thomas Hospital, University of London, UK
| | - Marco Roffi
- Department of Cardiology, University Hospital, Switzerland
| | - Giuseppe Mc Rosano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Hospital Roma, Italy.,Cardiovascular and Cell Sciences Institute, University of London, UK
| | | | - Peter R Sinnaeve
- Department of Cardiovascular Sciencies, University of Leuven, Belgium
| | | | | | - Frans Van de Werf
- Department of Cardiovascular Sciencies, University of Leuven, Belgium
| | - Claire Varin
- Institut de Recherches Internationales Servier, France
| | | | | |
Collapse
|
9
|
Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation. Cell Signal 2016; 28:1364-1379. [PMID: 27302407 DOI: 10.1016/j.cellsig.2016.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls. Intriguingly, FL-VASP/239D abrogated the stimulatory effects of FL-VASP/WT and FL-VASP/239A cells on PKG activity. In turn, pharmacologic blockade of PKG in the presence of BAY60 reversed the inhibitory effect of BAY60 on naïve ASM cell migration. Taken together, we demonstrate for the first time that BAY60 inhibits ASM cell migration through cGMP/PKG/VASP signaling yet through mechanisms independent of pVASP·S239 and that FL-VASP overexpression regulates PKG activity in rat ASM cells. These findings implicate BAY60 as a potential pharmacotherapeutic agent against aberrant ASM growth disorders such as CAD and also establish a unique mechanism through which VASP controls PKG activity.
Collapse
|
10
|
Guo J, Breen DM, Pereira TJ, Dalvi PS, Zhang H, Mori Y, Ghanim H, Tumiati L, Fantus IG, Bendeck MP, Dandona P, Rao V, Dolinsky VW, Heximer SP, Giacca A. The effect of insulin to decrease neointimal growth after arterial injury is endothelial nitric oxide synthase-dependent. Atherosclerosis 2015; 241:111-20. [DOI: 10.1016/j.atherosclerosis.2015.04.799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/01/2022]
|
11
|
Chen J, Roberts JD. cGMP-dependent protein kinase I gamma encodes a nuclear localization signal that regulates nuclear compartmentation and function. Cell Signal 2014; 26:2633-44. [PMID: 25172423 PMCID: PMC4254301 DOI: 10.1016/j.cellsig.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
cGMP-dependent protein kinase I (PKGI) plays an important role in regulating how cGMP specifies vascular smooth muscle cell (SMC) phenotype. Although studies indicate that PKGI nuclear localization controls how cGMP regulates gene expression in SMC, information about the mechanisms that regulate PKGI nuclear compartmentation and its role in directly regulating cell phenotype is limited. Here we characterize a nuclear localization signal sequence (NLS) in PKGIγ, a proteolytically cleaved PKGI kinase fragment that translocates to the nucleus of SMC. Immuno-localization studies using cells expressing native and NLS-mutant PKGIγ, and treated with a small molecule nuclear transport inhibitor, indicated that PKGIγ encodes a constitutively active NLS that requires importin α and β for regulation of its compartmentation. Moreover, studies utilizing a genetically encoded nuclear phospho-CREB biosensor probe and fluorescence lifetime imaging microscopy demonstrated that this NLS controls PKGIγ nuclear function. In addition, although cytosolic PKGIγ-activity was observed to stimulate MAPK/ERK-mediated nuclear CREB signaling in SMC, NLS-mediated PKGIγ nuclear activity alone was determined to increase the expression of differentiation marker proteins in these cells. These results indicate that NLS-mediated nuclear PKGIγ localization plays an important role in how PKGI regulates vascular SMC phenotype.
Collapse
Affiliation(s)
- Jingsi Chen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA
| | - Jesse D Roberts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA; Departments of Anesthesia, Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics 2014; 4:175-200. [PMID: 24465275 PMCID: PMC3900802 DOI: 10.7150/thno.7210] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/23/2013] [Indexed: 01/16/2023] Open
Abstract
Percutaneous coronary intervention (PCI) has become the most common revascularization procedure for coronary artery disease. The use of stents has reduced the rate of restenosis by preventing elastic recoil and negative remodeling. However, in-stent restenosis remains one of the major drawbacks of this procedure. Drug-eluting stents (DESs) have proven to be effective in reducing the risk of late restenosis, but the use of currently marketed DESs presents safety concerns, including the non-specificity of therapeutics, incomplete endothelialization leading to late thrombosis, the need for long-term anti-platelet agents, and local hypersensitivity to polymer delivery matrices. In addition, the current DESs lack the capacity for adjustment of the drug dose and release kinetics appropriate to the disease status of the treated vessel. The development of efficacious therapeutic strategies to prevent and inhibit restenosis after PCI is critical for the treatment of coronary artery disease. The administration of drugs using biodegradable polymer nanoparticles as carriers has generated immense interest due to their excellent biocompatibility and ability to facilitate prolonged drug release. Despite the potential benefits of nanoparticles as smart drug delivery and diagnostic systems, much research is still required to evaluate potential toxicity issues related to the chemical properties of nanoparticle materials, as well as to their size and shape. This review describes the molecular mechanism of coronary restenosis, the use of DESs, and progress in nanoparticle drug- or gene-eluting stents for the prevention and treatment of coronary restenosis.
Collapse
|
13
|
Yang HM, Kim BK, Kim JY, Kwon YW, Jin S, Lee JE, Cho HJ, Lee HY, Kang HJ, Oh BH, Park YB, Kim HS. PPARγ modulates vascular smooth muscle cell phenotype via a protein kinase G-dependent pathway and reduces neointimal hyperplasia after vascular injury. Exp Mol Med 2013; 45:e65. [PMID: 24287871 PMCID: PMC3849568 DOI: 10.1038/emm.2013.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/01/2013] [Indexed: 01/28/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) undergo phenotypic changes in response to vascular injury such as angioplasty. Protein kinase G (PKG) has an important role in the process of VSMC phenotype switching. In this study, we examined whether rosiglitazone, a peroxisome proliferator-activated receptor (PPAR)-γ agonist, could modulate VSMC phenotype through the PKG pathway to reduce neointimal hyperplasia after angioplasty. In vitro experiments showed that rosiglitazone inhibited the phenotype change of VSMCs from a contractile to a synthetic form. The platelet-derived growth factor (PDGF)-induced reduction of PKG level was reversed by rosiglitazone treatment, resulting in increased PKG activity. This increased activity of PKG resulted in phosphorylation of vasodilator-stimulated phosphoprotein at serine 239, leading to inhibited proliferation of VSMCs. Interestingly, rosiglitazone did not change the level of nitric oxide (NO) or cyclic guanosine monophosphate (cGMP), which are upstream of PKG, suggesting that rosiglitazone influences PKG itself. Chromatin immunoprecipitation assays for the PKG promoter showed that the activation of PKG by rosiglitazone was mediated by the increased binding of Sp1 on the promoter region of PKG. In vivo experiments showed that rosiglitazone significantly inhibited neointimal formation after balloon injury. Immunohistochemistry staining for calponin and thrombospondin showed that this effect of rosiglitazone was mediated by modulating VSMC phenotype. Our findings demonstrate that rosiglitazone is a potent modulator of VSMC phenotype, which is regulated by PKG. This activation of PKG by rosiglitazone results in reduced neointimal hyperplasia after angioplasty. These results provide important mechanistic insight into the cardiovascular-protective effect of PPARγ.
Collapse
Affiliation(s)
- Han-Mo Yang
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Baek-Kyung Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Ju-Young Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Sooryeonhwa Jin
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Joo-Eun Lee
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Hyun-Jai Cho
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Hae-Young Lee
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Hyun-Jae Kang
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Byung-Hee Oh
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Young-Bae Park
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
14
|
Hirschberg K, Tarcea V, Páli S, Barnucz E, Gwanmesia P, Korkmaz S, Radovits T, Loganathan S, Merkely B, Karck M, Szabó G. Cinaciguat prevents neointima formation after arterial injury by decreasing vascular smooth muscle cell migration and proliferation. Int J Cardiol 2013; 167:470-7. [DOI: 10.1016/j.ijcard.2012.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/07/2012] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
|
15
|
Sellak H, Choi CS, Dey NB, Lincoln TM. Transcriptional and post-transcriptional regulation of cGMP-dependent protein kinase (PKG-I): pathophysiological significance. Cardiovasc Res 2013; 97:200-7. [PMID: 23139241 PMCID: PMC3543991 DOI: 10.1093/cvr/cvs327] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/26/2012] [Accepted: 10/26/2012] [Indexed: 12/29/2022] Open
Abstract
The ability of the endothelium to produce nitric oxide, which induces generation of cyclic guanosine monophosphate (cGMP) that activates cGMP-dependent protein kinase (PKG-I), in vascular smooth muscle cells (VSMCs), is essential for the maintenance of vascular homeostasis. Yet, disturbance of this nitric oxide/cGMP/PKG-I pathway has been shown to play an important role in many cardiovascular diseases. In the last two decades, in vitro and in vivo models of vascular injury have shown that PKG-I is suppressed following nitric oxide, cGMP, cytokine, and growth factor stimulation. The molecular basis for these changes in PKG-I expression is still poorly understood, and they are likely to be mediated by a number of processes, including changes in gene transcription, mRNA stability, protein synthesis, or protein degradation. Emerging studies have begun to define mechanisms responsible for changes in PKG-I expression and have identified cis- and trans-acting regulatory elements, with a plausible role being attributed to post-translational control of PKG-I protein levels. This review will focus mainly on recent advances in understanding of the regulation of PKG-I expression in VSMCs, with an emphasis on the physiological and pathological significance of PKG-I down-regulation in VSMCs in certain circumstances.
Collapse
Affiliation(s)
- Hassan Sellak
- Department of Physiology, College of Medicine, University of South Alabama, Medical Science Building Room 3103, Mobile, AL 36688, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
17
|
Kapakos G, Bouallegue A, Daou GB, Srivastava AK. Modulatory Role of Nitric Oxide/cGMP System in Endothelin-1-Induced Signaling Responses in Vascular Smooth Muscle Cells. Curr Cardiol Rev 2011; 6:247-54. [PMID: 22043200 PMCID: PMC3083805 DOI: 10.2174/157340310793566055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 01/23/2023] Open
Abstract
Nitric oxide (NO) is an important vasoprotective molecule that serves not only as a vasodilator but also exerts antihypertrophic and antiproliferative effects in vascular smooth muscle cells (VSMC). The precise mechanism by which the antihypertrophic and antiproliferative responses of NO are mediated remains obscure. However, recent studies have suggested that one of the mechanisms by which this may be achieved includes the attenuation of signal transduction pathways responsible for inducing the hypertrophic and proliferative program in VSMC. Endothelin-1 is a powerful vasoconstrictor peptide with mitogenic and growth stimulatory properties and exerts its effects by activating multiple signaling pathways which include ERK 1/2, PKB and Rho-ROCK. Both cGMP-dependent and independent events have been reported to mediate the effect of NO on these pathways leading to its vasoprotective response. This review briefly summarizes some key studies on the modulatory effect of NO on these signaling pathways and discusses the possible role of cGMP system in this process.
Collapse
Affiliation(s)
- Georgia Kapakos
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) - Technopole Angus and Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
18
|
Chen WJ, Chen YH, Lin KH, Ting CH, Yeh YH. Cilostazol promotes vascular smooth muscles cell differentiation through the cAMP response element-binding protein-dependent pathway. Arterioscler Thromb Vasc Biol 2011; 31:2106-13. [PMID: 21680899 DOI: 10.1161/atvbaha.111.230987] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Cilostazol, a potent type 3 phosphodiesterase inhibitor, has recently been found to reduce neointimal formation by inhibiting vascular smooth muscle cell (VSMC) proliferation. The aim of this study is to investigate whether cilostazol exerts an action on phenotypic modulation of VSMCs, another important process in the pathogenesis of neointimal formation. METHODS AND RESULTS Cilostazol may convert VSMCs from a serum-induced dedifferentiation state to a differentiated state, as indicated by a spindle-shaped morphology and an increase in the expression of smooth muscle cell differentiation marker contractile proteins. The upregulation of contractile proteins by cilostazol involves the cAMP/protein kinase A (PKA) signaling pathway, because the cAMP analog mimicked and specific cAMP/PKA inhibitors opposed the effect of cilostazol. Furthermore, cilostazol-activated cAMP response element (CRE)-binding protein (CREB), including phosphorylation at Ser133 and its nuclear translocation. Deletion and mutational analysis of the contractile protein promoters along with chromatin immunoprecipitation using anti-CREB antibody showed that CRE is essential for cilostazol-induced contractile protein expression. Transfection of dominant-negative CREB (mutated Ser133) plasmid in VSMCs blocked cilostazol-stimulated contractile protein expression. In vivo, cilostazol upregulated contractile proteins and induced the activation of CREB in the neointima of balloon-injured arteries. CONCLUSIONS Cilostazol promotes VSMC differentiation through the cAMP/PKA/CREB signaling cascade.
Collapse
Affiliation(s)
- Wei-Jan Chen
- First Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.
| | | | | | | | | |
Collapse
|
19
|
Hara Y, Sassi Y, Guibert C, Gambaryan N, Dorfmüller P, Eddahibi S, Lompré AM, Humbert M, Hulot JS. Inhibition of MRP4 prevents and reverses pulmonary hypertension in mice. J Clin Invest 2011; 121:2888-97. [PMID: 21670499 DOI: 10.1172/jci45023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 04/27/2011] [Indexed: 01/21/2023] Open
Abstract
Multidrug resistance-associated protein 4 (MRP4, also known as Abcc4) regulates intracellular levels of cAMP and cGMP in arterial SMCs. Here, we report our studies of the role of MRP4 in the development and progression of pulmonary arterial hypertension (PAH), a severe vascular disease characterized by chronically elevated pulmonary artery pressure and accompanied by remodeling of the small pulmonary arteries as a prelude to right heart failure and premature death. MRP4 expression was increased in pulmonary arteries from patients with idiopathic PAH as well as in WT mice exposed to hypoxic conditions. Consistent with a pathogenic role for MRP4 in PAH, WT mice exposed to hypoxia for 3 weeks showed reversal of hypoxic pulmonary hypertension (PH) following oral administration of the MRP4 inhibitor MK571, and Mrp4-/- mice were protected from hypoxic PH. Inhibition of MRP4 in vitro was accompanied by increased intracellular cAMP and cGMP levels and PKA and PKG activities, implicating cyclic nucleotide-related signaling pathways in the mechanism underlying the protective effects of MRP4 inhibition. Our data suggest that MRP4 could represent a potential target for therapeutic intervention in PAH.
Collapse
|
20
|
Routray C, Liu C, Yaqoob U, Billadeau DD, Bloch KD, Kaibuchi K, Shah VH, Kang N. Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes. Am J Physiol Cell Physiol 2011; 301:C66-74. [PMID: 21451103 DOI: 10.1152/ajpcell.00038.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nitric oxide (NO) regulates the function of perivascular cells (pericytes), including hepatic stellate cells (HSC), mainly by activating cGMP and cGMP-dependent kinase (PKG) via NO/cGMP paracrine signaling. Although PKG is implicated in integrin-mediated cell adhesion to extracellular matrix, whether or how PKG signaling regulates the assembly of focal adhesion complexes (FA) and migration of HSC is not known. With the help of complementary molecular and cell biological approaches, we demonstrate here that activation of PKG signaling in HSC inhibits vascular tubulogenesis, migration/chemotaxis, and assembly of mature FA plaques, as assessed by vascular tubulogenesis assays and immunofluorescence localization of FA markers such as vinculin and vasodilator-stimulated phosphoprotein (VASP). To determine whether PKG inhibits FA assembly by phosphorylation of VASP at Ser-157, Ser-239, and Thr-278, we mutated these putative phosphorylation sites to alanine (VASP3A, phosphoresistant mutant) or aspartic acid (VASP3D, phosphomimetic), respectively. Data generated from these two mutants suggest that the effect of PKG on FA is independent of these three phosphorylation sites. In contrast, activation of PKG inhibits the activity of small GTPase Rac1 and its association with the effector protein IQGAP1. Moreover, PKG activation inhibits the formation of a trimeric protein complex containing Rac1, IQGAP1, and VASP. Finally, we found that expression of a constitutively active Rac1 mutant abolishes the inhibitory effects of PKG on FA formation. In summary, our data suggest that activation of PKG signaling in pericytes inhibits FA formation by inhibiting Rac1.
Collapse
Affiliation(s)
- Chittaranjan Routray
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pallero MA, Talbert Roden M, Chen YF, Anderson PG, Lemons J, Brott BC, Murphy-Ullrich JE. Stainless steel ions stimulate increased thrombospondin-1-dependent TGF-beta activation by vascular smooth muscle cells: implications for in-stent restenosis. J Vasc Res 2009; 47:309-22. [PMID: 20016205 DOI: 10.1159/000265565] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Despite advances in stent design, in-stent restenosis (ISR) remains a significant clinical problem. All implant metals exhibit corrosion, which results in release of metal ions. Stainless steel (SS), a metal alloy widely used in stents, releases ions to the vessel wall and induces reactive oxygen species, inflammation and fibroproliferative responses. The molecular mechanisms are unknown. TGF-beta is known to be involved in the fibroproliferative responses of vascular smooth muscle cells (VSMCs) in restenosis, and TGF-beta antagonists attenuate ISR. We hypothesized that SS ions induce the latent TGF-beta activator, thrombospondin-1 (TSP1), through altered oxidative signaling to stimulate increased TGF-beta activation and VSMC phenotype change. METHODS VSMCs were treated with SS metal ion cocktails, and morphology, TSP1, extracellular matrix production, desmin and TGF-beta activity were assessed by immunoblotting. RESULTS SS ions stimulate the synthetic phenotype, increased TGF-beta activity, TSP1, increased extracellular matrix and downregulation of desmin in VSMCs. Furthermore, SS ions increase hydrogen peroxide and decrease cGMP-dependent protein kinase (PKG) signaling, a known repressor of TSP1 transcription. Catalase blocks SS ion attenuation of PKG signaling and increased TSP1 expression. CONCLUSIONS These data suggest that ions from stent alloy corrosion contribute to ISR through stimulation of TSP1-dependent TGF-beta activation.
Collapse
Affiliation(s)
- Manuel A Pallero
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang S, Li Y. Expression of constitutively active cGMP-dependent protein kinase inhibits glucose-induced vascular smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol 2009; 297:H2075-83. [PMID: 19717728 DOI: 10.1152/ajpheart.00521.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we have demonstrated that cGMP-dependent protein kinase (PKG) activity is downregulated in vessels from diabetic animals or in vascular smooth muscle cells (VSMCs) exposed to high-glucose conditions, contributing to diabetes-associated vessel dysfunction. However, whether decreased PKG activity plays a role in hyperglycemia-induced proliferation of VSMCs is unknown. In this report, high-glucose-mediated decreased PKG activity in VSMCs was restored by transfection of cells with expression vector for the catalytic domain of PKG-I (PKG-CD, constitutive active PKG). The effect of glucose on cell proliferation was determined. Our data demonstrated that high glucose exposure stimulated VSMC proliferation and G1 to S phase progression of the cell cycle, which was inhibited by restoration of PKG activity. Expression of constitutively active PKG inhibited G1 phase exit in VSMCs under high glucose conditions, which was accompanied by an inhibition of retinoblastoma protein (Rb) phosphorylation (a key switch for G1 to S phase cell cycle progression). Glucose-induced cyclin E expression and cyclin E-cyclin-dependent kinase 2 activity was also reduced by expression of PKG-CD in VSMCs. Moreover, expression of PKG-CD suppressed glucose-induced p27 degradation. These data demonstrate that restoring the high-glucose-mediated decrease in PKG activity in VSMCs inhibits glucose-induced abnormal VSMC proliferation occurring upstream of Rb phosphorylation. Our work provides the first direct evidence linking decreased PKG activity to high glucose-induced proliferation and cell cycle progression in VSMCs, suggesting that strategies to increase PKG activity might be useful in preventing abnormal VSMC proliferation in diabetic patients and might provide treatments for diabetes-associated proliferative vascular diseases.
Collapse
Affiliation(s)
- Shuxia Wang
- Graduate Center for Nutritional Sciences, University of Kentucky, Wethington Bldg, Rm. 517, 900 S. Limestone St, Lexington, KY, USA.
| | | |
Collapse
|
23
|
Hirschberg K, Radovits T, Loganathan S, Entz L, Beller CJ, Gross ML, Sandner P, Karck M, Szabó G. Selective phosphodiesterase-5 inhibition reduces neointimal hyperplasia in rat carotid arteries after surgical endarterectomy. J Thorac Cardiovasc Surg 2009; 137:1508-14. [PMID: 19464472 DOI: 10.1016/j.jtcvs.2008.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/16/2008] [Accepted: 10/13/2008] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Long-term results of surgical vessel reconstruction are compromised by restenosis caused by neointimal hyperplasia. Recent studies suggest that reduced cyclic guanosine monophosphate signaling is associated with neointima formation. In a rat model of endarterectomy, we investigated the effect of pharmacologic inhibition of cyclic guanosine monophosphate degradation on neointima formation by using the selective phosphodiesterase-5 inhibitor vardenafil. METHODS Carotid endarterectomy was performed in male Sprague-Dawley rats by means of incision of the right common carotid artery with removal of intima. Four groups were studied: unoperated control rats (n = 4), sham-operated rats (n = 9), control rats with endarterectomy (n = 9), or endarterectomized rats treated with vardenafil (10 mg/kg/day) postoperatively (n = 9). After 3 weeks, vessel compartment areas were measured by means of conventional microscopy with hematoxylin and eosin staining. Immunohistochemical analysis was performed to confirm neointima formation and the local cyclic guanosine monophosphate content. Plasma levels of cyclic guanosine monophosphate were determined by means of enzyme immunoassay. Student's t test was used for statistical evaluation. RESULTS Immunohistochemical analysis demonstrated intensive staining for transforming growth factor beta1 and alpha-smooth muscle actin in the control neointima. Vardenafil significantly reduced the stenosis grade (24.64% +/- 7.46% vs 54.12% +/- 10.30% in the control group, P < .05) and expression of transforming growth factor beta1, as well as alpha-smooth muscle actin, in the neointima. The immunohistochemical score for cyclic guanosine monophosphate was higher in the treated neointima (4.80 +/- 0.76 vs 2.84 +/- 0.40 in the control group, P < .05), and increased plasma cyclic guanosine monophosphate levels were found by means of enzyme immunoassay as well (84.65 +/- 12.77 pmol/mL vs 43.50 +/- 3.30 pmol/mL in the control group, P < .05). CONCLUSIONS Treatment with vardenafil can be considered a new possibility to prevent neointimal hyperplasia after endarterectomy.
Collapse
Affiliation(s)
- Kristóf Hirschberg
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hofmann F, Bernhard D, Lukowski R, Weinmeister P. cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 2008:137-62. [PMID: 19089329 DOI: 10.1007/978-3-540-68964-5_8] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes--prkg1 and prkg2--code for cGKs, namely cGKI and cGKII. In mammals, two isozymes, cGKIalpha and cGKIbeta, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxta-glomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondreal bone growth. cGKs are also modulators of cell growth and many other functions.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie der Technischen Universität, Biedersteiner Str. 29, München, 80802, Germany.
| | | | | | | |
Collapse
|
25
|
Sassi Y, Lipskaia L, Vandecasteele G, Nikolaev VO, Hatem SN, Cohen Aubart F, Russel FG, Mougenot N, Vrignaud C, Lechat P, Lompré AM, Hulot JS. Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J Clin Invest 2008; 118:2747-57. [PMID: 18636120 DOI: 10.1172/jci35067] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 06/11/2008] [Indexed: 01/19/2023] Open
Abstract
The second messengers cAMP and cGMP can be degraded by specific members of the phosphodiesterase superfamily or by active efflux transporters, namely the multidrug resistance-associated proteins (MRPs) MRP4 and MRP5. To determine the role of MRP4 and MRP5 in cell signaling, we studied arterial SMCs, in which the effects of cyclic nucleotide levels on SMC proliferation have been well established. We found that MRP4, but not MRP5, was upregulated during proliferation of isolated human coronary artery SMCs and following injury of rat carotid arteries in vivo. MRP4 inhibition significantly increased intracellular cAMP and cGMP levels and was sufficient to block proliferation and to prevent neointimal growth in injured rat carotid arteries. The antiproliferative effect of MRP4 inhibition was related to PKA/CREB pathway activation. Here we provide what we believe to be the first evidence that MRP4 acts as an independent endogenous regulator of intracellular cyclic nucleotide levels and as a mediator of cAMP-dependent signal transduction to the nucleus. We also identify MRP4 inhibition as a potentially new way of preventing abnormal VSMC proliferation.
Collapse
Affiliation(s)
- Yassine Sassi
- Université Pierre et Marie Curie-Paris 6, INSERM UMR S 621, Pharmacology Department, Pitié-Salpêtrière University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Weinmeister P, Lukowski R, Linder S, Traidl-Hoffmann C, Hengst L, Hofmann F, Feil R. Cyclic guanosine monophosphate-dependent protein kinase I promotes adhesion of primary vascular smooth muscle cells. Mol Biol Cell 2008; 19:4434-41. [PMID: 18685080 DOI: 10.1091/mbc.e08-04-0370] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase type I (cGKI) pathway regulates many cellular functions. The current study shows that 8-Br-cGMP stimulates the number of attached primary but not that of subcultured murine vascular smooth muscle cells (VSMCs). These effects of 8-Br-cGMP require the presence of cGKI. In agreement with previous studies, cGKI inhibited the number of cells in repeatedly passaged murine VSMCs. Activation of the cGMP/cGKI pathway in freshly isolated primary VSMCs slightly decreased apoptosis and strongly increased cell adhesion. The stimulation of cell adhesion by cGKI involves an inhibition of the RhoA/Rho kinase pathway and increased exposure of beta(1) and beta(3) integrins on the cell surface. Together, these results identify a novel proadhesive function of cGMP/cGKI signaling in primary VSMCs and suggest that the opposing effects of this pathway on VSMC number depend on the phenotypic context of the cells.
Collapse
Affiliation(s)
- Pascal Weinmeister
- Institut für Pharmakologie und Toxikologie, Technischen Universiät München, D-80802 München, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Schleicher M, Sessa WC. Are the mechanisms for NO-dependent vascular remodeling different from vasorelaxation in vivo? Arterioscler Thromb Vasc Biol 2008; 28:1207-8. [PMID: 18565841 DOI: 10.1161/atvbaha.108.167403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Sugiura T, Nakanishi H, Roberts JD. Proteolytic processing of cGMP-dependent protein kinase I mediates nuclear cGMP signaling in vascular smooth muscle cells. Circ Res 2008; 103:53-60. [PMID: 18535260 DOI: 10.1161/circresaha.108.176321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclic GMP modulates gene expression in vascular smooth muscle cells (SMCs) in part by stimulating cGMP-dependent protein kinase I (PKGI) and the phosphorylation of transcription factors. In some cells, cGMP increases nuclear translocation of PKGI and PKGI-dependent phosphorylation of transcription regulators; however, these observations have been variable, and the mechanisms mediating nuclear PKGI translocation are incompletely understood. We tested the hypothesis that proteolytic cleavage of PKGI is required for cGMP-stimulated nuclear compartmentation of PKGI and phosphorylation of transcription factors. We detected an NH(2)-terminal PKGI fragment with leucine zipper domain immunoreactivity in the cytosol and endoplasmic reticulum of SMCs, but only a COOH-terminal PKGI fragment containing the catalytic region (now termed PKGIgamma) was observed in the Golgi apparatus (GA) and nucleoplasm. Posttranslational PKGI processing in the GA was critical for nuclear compartmentation of PKGIgamma because GA disruption with nocodazol or brefeldin A inhibited PKGIgamma nuclear localization. PKGIgamma immunoreactivity was particularly abundant in the nucleolus of interphase SMCs where its colocalization with the nucleolar dense fibrillar component protein fibrillarin closely matched the level of nucleolar assembly. Purified nucleolar PKGIgamma enzyme activity was insensitive to cGMP stimulation, which is consistent with its lack of the NH(2)-terminal autoinhibitory domain. Mutation of a putative proteolytic cleavage region in PKGI inhibited cGMP-mediated phosphorylation of cAMP response element-binding protein, cAMP response element-dependent transcription, and nuclear localization of PKGIgamma. These observations suggest that posttranslational modification of PKGI critically influences the nuclear translocation of PKGI and activities of cGMP in SMCs.
Collapse
Affiliation(s)
- Takahiro Sugiura
- Cardiovascular Research Center, Departments of Anesthesia, Massachusetts General Hospital, Boston and Harvard Medical School, USA
| | | | | |
Collapse
|
29
|
Lukowski R, Weinmeister P, Bernhard D, Feil S, Gotthardt M, Herz J, Massberg S, Zernecke A, Weber C, Hofmann F, Feil R. Role of smooth muscle cGMP/cGKI signaling in murine vascular restenosis. Arterioscler Thromb Vasc Biol 2008; 28:1244-50. [PMID: 18420996 DOI: 10.1161/atvbaha.108.166405] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nitric oxide (NO) is of crucial importance for smooth muscle cell (SMC) function and exerts numerous, and sometimes opposing, effects on vascular restenosis. Although cGMP-dependent protein kinase type I (cGKI) is a principal effector of NO, the molecular pathway of vascular NO signaling in restenosis is unclear. The purpose of this study was to examine the functional role of the smooth muscle cGMP/cGKI signaling cascade in restenosis of vessels. METHODS AND RESULTS Tissue-specific mouse mutants were generated in which the cGKI protein was ablated in SMCs. We investigated whether the absence of cGKI in SMCs would affect vascular remodeling after carotid ligation or removal of the endothelium. No differences were detected between the tissue-specific cGKI mutants and control mice at different time points after vascular injury on a normolipidemic or apoE-deficient background. In line with these results, chronic drug treatment of injured control mice with the phosphodiesterase-5 inhibitor sildenafil elevated cGMP levels but had no influence on the ligation-induced remodeling. CONCLUSIONS The genetic and pharmacological manipulation of the cGMP/cGKI signaling indicates that this pathway is not involved in the protective effects of NO, suggesting that NO affects vascular remodeling during restenosis via alternative mechanisms.
Collapse
Affiliation(s)
- Robert Lukowski
- Institut für Pharmakologie und Toxikologie der TUM, Biedersteiner Str. 29, D-80802 München, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The actin cytoskeleton is required for many important processes during embryonic development. In later stages of life, important homeostatic processes depend on the actin cytoskeleton, such as immune response, haemostasis and blood vessel preservation. Therefore, the function of the actin cytoskeleton must be tightly regulated, and aberrant regulation may cause disease. A growing number of proteins have been described to bind and regulate the actin cytoskeleton. Amongst them, Ena/VASP proteins function as anti-capping proteins, thereby directly modulating the actin ultrastructure. Ena/VASP function is regulated by their recruitment into protein complexes downstream of plasma membrane receptors and by phosphorylation. As regulators of the actin ultrastructure, Ena/VASP proteins are involved in crucial cellular functions, such as shape change, adhesion, migration and cell-cell interaction and hence are important targets for therapeutic intervention. In this chapter, we will first describe the structure, function and regulation of Ena/VASP proteins. Then, we will review the involvement of Ena/VASP proteins in the development of human diseases. Growing evidence links Ena/VASP proteins to important human diseases, such as thrombosis, cancer, arteriosclerosis, cardiomyopathy and nephritis. Finally, present and future perspectives for the development of therapeutic molecules interfering with Ena/VASP-mediated protein-protein interactions are presented.
Collapse
Affiliation(s)
- G Pula
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | | |
Collapse
|
31
|
Batukan C, Ozgun MT, Basbug M, Muderris II. Sildenafil reduces postoperative adhesion formation in a rat uterine horn model. Eur J Obstet Gynecol Reprod Biol 2007; 135:183-7. [PMID: 16965850 DOI: 10.1016/j.ejogrb.2006.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/30/2006] [Accepted: 08/01/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The purpose of this experimental study was to evaluate the effect of oral sildenafil on postoperative adhesion formation in rats. STUDY DESIGN Thirty-two Wistar Albino rats were subjected to standardized lesion by cauterization of the uterine horn and abrasion of the adjacent parietal peritoneum. They were randomized to receive sildenafil at a daily dose of 15 mg/kg, 7.5mg/kg and 3.75 mg/kg or placebo. Sildenafil was administered by gavage 1h before the operation and daily for 5 days after the procedure. The extent and severity of adhesions were assessed on the 14th postoperative day. RESULT(S) The severity but not extent of adhesions in rats given 15 mg/kg sildenafil was significantly less when compared with the other groups (<0.001). CONCLUSION Sildenafil diminishes peritoneal adhesion formation in rat.
Collapse
Affiliation(s)
- Cem Batukan
- Erciyes University, School of Medicine, Department of Obstetrics and Gynecology, Gevher Neshibe Hospital, 38039 Kayseri, Turkey.
| | | | | | | |
Collapse
|
32
|
Zhang T, Zhuang S, Casteel DE, Looney DJ, Boss GR, Pilz RB. A cysteine-rich LIM-only protein mediates regulation of smooth muscle-specific gene expression by cGMP-dependent protein kinase. J Biol Chem 2007; 282:33367-33380. [PMID: 17878170 DOI: 10.1074/jbc.m707186200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) undergo phenotypic modulation, changing from a differentiated, contractile to a de-differentiated, synthetic phenotype; the change is associated with decreased expression of smooth muscle (SM)-specific genes and loss of cGMP-dependent protein kinase (PKG), but transfection of PKG into de-differentiated VSMCs restores SM-specific gene expression. We show that small interference RNA-mediated down-regulation or pharmacologic inhibition of PKG reduced SM-specific gene expression in differentiated VSMCs and provide a mechanism for cGMP/PKG regulation of SM-specific genes involving the cysteine-rich LIM-only protein CRP4. PKG associated with CRP4 and phosphorylated the protein in intact cells. CRP4 had no intrinsic transcriptional activity, but exhibited adaptor function, because it acted synergistically with serum response factor (SRF) and GATA6 to activate the SM-alpha-actin promoter. cGMP stimulation of the promoter required PKG and CRP4 co-expression with SRF and GATA6. A phosphorylation-deficient mutant CRP4 and a CRP4 deletion mutant deficient in PKG binding did not support cGMP/PKG stimulation of the SM-alpha-actin promoter. In the presence of wild-type but not mutant CRP4, cGMP/PKG enhanced SRF binding to a probe encoding the distal SM-alpha-actin promoter CArG (CC(AT)(6)GG) element. CRP4 and SRF associated with CArG elements of endogenous SM-specific genes in intact chromatin. Small interference RNA-mediated down-regulation of CRP4 prevented the positive effects of cGMP/PKG on SM-specific gene expression. In the presence of CRP4, cGMP/PKG increased SRF- and GATA6-dependent expression of endogenous SM-specific genes in pluripotent 10T1/2 cells. Thus, CRP4 mediates cGMP/PKG stimulation of SM-specific gene expression, and PKG plays an important role in regulating the phenotype of VSMCs.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Medicine, University of California, San Diego, California, 92093
| | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, California, 92093
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, California, 92093
| | - David J Looney
- Department of Medicine, University of California, San Diego, California, 92093; Veterans Administration Medical Center, La Jolla, California 92161
| | - Gerry R Boss
- Department of Medicine, University of California, San Diego, California, 92093; Cancer Center, University of California, San Diego, California 92093
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, California, 92093; Cancer Center, University of California, San Diego, California 92093.
| |
Collapse
|
33
|
Kishore R, Losordo DW. Gene therapy for restenosis: biological solution to a biological problem. J Mol Cell Cardiol 2007; 42:461-8. [PMID: 17222423 DOI: 10.1016/j.yjmcc.2006.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 11/16/2006] [Indexed: 11/28/2022]
Abstract
Coronary artery disease remains a significant health threat afflicting millions of individuals worldwide. Despite the development of a variety of technologies and catheter based interventions, post-procedure restenosis is still a significant concern. Gene therapy has emerged as a promising approach aimed at modification of cellular processes that give rise to restenosis. When juxtaposed alongside the failure of traditional pharmacotherapeutics to eliminate restenosis, gene therapy has engendered great expectations for cubing coronary restenosis. In this review we have discussed an overview of gene therapy approaches that hve been utilized to reduce restenosis in preclinical and clinical studies, current status of anti-restenosis gene therapy and perspectives on its future application. For brevity, we have limited our discussion on anti-restenosis gene therapy to the introduction of a nucleic acid to the cell, tissue, organ or organism in order to give rise to the expression of a protein, the function of which will confer therapeutic effect. For the purpose of this review, we have focused ou discussion on two relevant anti-restenosis strategies, anti-proliferative and pro-endothelialization.
Collapse
Affiliation(s)
- Raj Kishore
- Division of Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | |
Collapse
|
34
|
Zeng Y, Zhuang S, Gloddek J, Tseng CC, Boss GR, Pilz RB. Regulation of cGMP-dependent protein kinase expression by Rho and Kruppel-like transcription factor-4. J Biol Chem 2006; 281:16951-16961. [PMID: 16632465 DOI: 10.1074/jbc.m602099200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I cGMP-dependent protein kinase (PKG I) plays a major role in vascular homeostasis by mediating smooth muscle relaxation in response to nitric oxide, but little is known about the regulation of PKG I expression in smooth muscle cells. We found opposing effects of RhoA and Rac1 on cellular PKG I expression: (i) cell density-dependent changes in PKG I expression varied directly with Rac1 activity and inversely with RhoA activity; (ii) RhoA activation by calpeptin suppressed PKG I, whereas RhoA down-regulation by small interfering RNA increased PKG I expression; and (iii) PKG I promoter activity was suppressed in cells expressing active RhoA or Rho-kinase but was enhanced in cells expressing active Rac1 or a dominant negative RhoA. Sp1 consensus sequences in the PKG I promoter were required for Rho regulation and bound nuclear proteins in a cell density-dependent manner, including the Krüppel-like factor 4 (KLF4). KLF4 was identified as a major trans-acting factor at two proximal Sp1 sites; active RhoA suppressed KLF4 DNA binding and trans-activation potential on the PKG I promoter. Experiments with actin-binding agents suggested that RhoA could regulate KLF4 via its ability to induce actin polymerization. Regulation of PKG I expression by RhoA may explain decreased PKG I levels in vascular smooth muscle cells found in some models of hypertension and vascular injury.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Shunhui Zhuang
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Jutta Gloddek
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Chi-Chuan Tseng
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Gerry R Boss
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093
| | - Renate B Pilz
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093.
| |
Collapse
|
35
|
Hofmann F, Feil R, Kleppisch T, Schlossmann J. Function of cGMP-Dependent Protein Kinases as Revealed by Gene Deletion. Physiol Rev 2006; 86:1-23. [PMID: 16371594 DOI: 10.1152/physrev.00015.2005] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few years, a wealth of biochemical and functional data have been gathered on mammalian cGMP-dependent protein kinases (cGKs). In mammals, three different kinases are encoded by two genes. Mutant and chimeric cGK proteins generated by molecular biology techniques yielded important biochemical knowledge, such as the function of the NH2-terminal domains of cGKI and cGKII, the identity of the cGMP-binding sites of cGKI, and the substrate specificity of the enzymes. Genetic approaches have proven especially useful for the analysis of the biological functions of cGKs. Recently, some of the in vivo targets and mechanisms leading to changes in neuronal adaptation, smooth muscle relaxation and growth, intestinal water secretion, bone growth, renin secretion, and other important functions have been identified. These data show that cGKs are signaling molecules involved in many biological functions.
Collapse
Affiliation(s)
- F Hofmann
- Institut für Pharmakologie und Toxicologie, Technische Universität München, Biedersteiner Strasse 29, D-80802 Munich, Germany.
| | | | | | | |
Collapse
|
36
|
Feil R, Feil S, Hofmann F. A heretical view on the role of NO and cGMP in vascular proliferative diseases. Trends Mol Med 2005; 11:71-5. [PMID: 15694869 DOI: 10.1016/j.molmed.2004.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endogenous nitric oxide (NO), and possibly NO-releasing drugs, can both inhibit and promote vascular proliferative disorders, such as atherosclerosis and restenosis. The cell types and signaling pathways that mediate these opposing effects are controversial. It is widely assumed that the NO-mediated synthesis of the second messenger cGMP and the activation of cGMP-dependent protein kinase type I (cGKI) inhibits the proliferation of vascular smooth muscle cells and, thus, vascular remodeling. However, recent data from transgenic mouse models challenge this view. Here, we propose that cGMP signaling through cGKI might promote vasculoproliferative processes and their clinical complications. This new concept has important implications for the use of cGMP-elevating drugs in humans and might help to identify novel therapeutic strategies for vascular proliferative diseases.
Collapse
Affiliation(s)
- Robert Feil
- Institut für Pharmakologie und Toxikologie, Technische Universität, Biedersteiner Strasse 29, 80802 München, Germany.
| | | | | |
Collapse
|
37
|
Dey NB, Foley KF, Lincoln TM, Dostmann WR. Inhibition of cGMP-Dependent Protein Kinase Reverses Phenotypic Modulation of Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2005; 45:404-13. [PMID: 15821435 DOI: 10.1097/01.fjc.0000157455.38068.12] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that type I cGMP-dependent protein kinase (PKG) can alter the phenotype of cultured vascular smooth muscle cells (VSMCs). Although the expression of contractile proteins in VSMCs has been shown to be modulated with the induction of PKG, experiments in which PKG inhibition brings about reduced expression of contractile markers have not been performed. To more thoroughly examine the role of PKG in the expression of contractile proteins, recombinant adenovirus containing the PKG coding sequence (AD-PKG) was used to induce gene expression and morphologic changes in adult rat aortic VSMCs. Cells expressing PKG, but not control adenovirus-infected cells, began to express a specific marker protein for the contractile phenotype, smooth muscle myosin heavy chain (SMMHC), within 48 hours of PKG induction. The morphology of the AD-PKG-infected cells began to change from a fibroblastic phenotype to a spindle-shaped phenotype within 72 hours after PKG induction. The specific cell-permeable PKG inhibitory peptide DT-2, but not control peptides, reversed the biochemical and morphologic changes associated with PKG expression. These results suggest that PKG expression and activity in cultured VSMCs is capable of altering the VSMC phenotype. These data also verify the intracellular action of DT-2 and reveal uptake and dynamic properties of this PKG-inhibiting peptide.
Collapse
Affiliation(s)
- Nupur B Dey
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
38
|
Sellak H, Choi C, Browner N, Lincoln TM. Upstream stimulatory factors (USF-1/USF-2) regulate human cGMP-dependent protein kinase I gene expression in vascular smooth muscle cells. J Biol Chem 2005; 280:18425-33. [PMID: 15741164 DOI: 10.1074/jbc.m500775200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic GMP-dependent protein kinase I plays a pivotal role in regulating smooth muscle cell relaxation, growth, and differentiation. Expression of the enzyme varies greatly in smooth muscle and in other tissues and cell types, yet little is known regarding the mechanisms regulating cGMP-dependent protein kinase gene expression. The present work was undertaken to characterize the mechanisms controlling kinase gene expression in vascular smooth muscle cells. A 2-kb human cGMP-dependent protein kinase I 5'-noncoding promoter sequence was characterized by serial deletion, and functional studies demonstrated that a 591-bp 5'-promoter construct possessed the highest activity compared with all other constructs generated from the larger promoter. Analysis of the sequence between -472 and -591 bp from the transcriptional start site revealed the existence of two E-like boxes known to bind upstream stimulatory factors. Electrophoretic mobility shift assays and functional studies using luciferase reporter gene assays identified upstream stimulatory factors as the transcription factors bound to the E-boxes in the 591-bp promoter. Site-directed mutagenesis of the E-boxes abolished the binding of upstream stimulatory factor proteins and decreased the activity of the cGMP-dependent protein kinase I 591-bp promoter, thus confirming the involvement of these transcription factors in mediating gene expression. Cotransfection experiments demonstrated that overexpression of upstream stimulatory factors 1 and 2 increased cGMP-dependent protein kinase I promoter activity. Collectively, these data suggest that the human proximal cGMP-dependent protein kinase I promoter is regulated by tandem E-boxes that bind upstream stimulatory factors.
Collapse
Affiliation(s)
- Hassan Sellak
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
39
|
Valente EGA, Vernet D, Ferrini MG, Qian A, Rajfer J, Gonzalez-Cadavid NF. L-arginine and phosphodiesterase (PDE) inhibitors counteract fibrosis in the Peyronie's fibrotic plaque and related fibroblast cultures. Nitric Oxide 2004; 9:229-44. [PMID: 14996430 DOI: 10.1016/j.niox.2003.12.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Indexed: 10/26/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is expressed in both the fibrotic plaque of Peyronie's disease (PD) in the human, and in the PD-like plaque elicited by injection of TGFbeta1 into the penile tunica albuginea (TA) of the rat. Long-term inhibition of iNOS activity, presumably by blocking nitric oxide (NO)- and cGMP-mediated effects triggered by iNOS expression, exacerbates tissue fibrosis through an increase in: (a) collagen synthesis, (b) levels of reactive oxygen species (ROS), and (c) the differentiation of fibroblasts into myofibroblasts. We have now investigated whether: (a) phosphodiesterase (PDE) isoforms, that regulate the interplay of cGMP and cAMP pathways, are expressed in both the human and rat TA; and (b) L-arginine, that stimulates NOS activity and hence NO synthesis, and PDE inhibitors, that increase the levels of cGMP and/or cAMP, can inhibit collagen synthesis and induce fibroblast/myofibroblast apoptosis, thus acting as antifibrotic agents. We have found by immunohistochemistry, RT/PCR, and Western blot that PDE5A-3 and PDE4A, B, and D variants are indeed expressed in human and rat normal TA and PD plaque tissue, as well as in their respective fibroblast cultures. As expected, in the PD fibroblast cultures, pentoxifylline (non-specific cAMP-PDE inhibitor) increased cAMP levels without affecting cGMP levels, whereas sildenafil (PDE5A inhibitor) raised cGMP levels. Both agents and L-arginine reduced the expression of collagen I (but not collagen III) and the myofibroblast marker, alpha-smooth muscle actin, as determined by immunocytochemistry and quantitative image analysis. These effects were mimicked by incubation with 8-Br-cGMP, which in addition increased apoptosis, as measured by TUNEL. When L-arginine (2.25 g/kg/day), pentoxifylline (10 mg/kg/day), or sildenafil (10 mg/kg/day) was given individually in the drinking water for 45 days to rats with a PD-like plaque induced by TGF beta1, each treatment resulted in a 80-95% reduction in both plaque size and in the collagen/fibroblast ratio, as determined by Masson trichrome staining. Both sildenafil and pentoxiphylline stimulated fibroblast apoptosis within the TA. Our results support the hypothesis that the increase in NO and/or cGMP/cAMP levels by long-term administration of nitrergic agents or inhibitors of PDE, may be effective in reversing the fibrosis of PD, and more speculatively, other fibrotic conditions.
Collapse
Affiliation(s)
- Eliane G A Valente
- Division of Urology, Research and Education Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Browner NC, Dey NB, Bloch KD, Lincoln TM. Regulation of cGMP-dependent protein kinase expression by soluble guanylyl cyclase in vascular smooth muscle cells. J Biol Chem 2004; 279:46631-6. [PMID: 15337747 DOI: 10.1074/jbc.m408518200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) undergo many phenotypic changes when placed in culture. Several studies have shown that the levels of expression of soluble guanylyl cyclase (sGC) or cGMP-dependent protein kinase (PKG) are altered in cultured VSMC. In this study the mechanisms involved in the coordinated expression of sGC and PKG were examined. Pro-inflammatory cytokines that increase the expression of type II NO synthase (inducible NO synthase, or iNOS) decreased PKG expression in freshly isolated, non-passaged bovine aortic SMC. However, in several passaged VSMC lines (i.e. bovine aortic SMC, human aortic SMC, and A7r5 cells), PKG protein expression was not suppressed by cytokines or NO. sGC was highly expressed in non-passaged bovine aortic SMC but not in passaged cell lines. Restoration of expression of sGC to passaged bovine SMC using adenovirus encoding the alpha1 and beta1 subunits of sGC restored the capacity of the cells to increase cGMP in response to NO. Furthermore, treatment of these sGC-transduced cells with NO donors for 48 h resulted in decreased PKG protein expression. In contrast, passaged rat aortic SMC expressed high levels of NO-responsive sGC but demonstrated reduced expression of PKG. Adenovirus-mediated expression of the PKG catalytically active domain in rat aortic SMC caused a reduction in the expression of sGC in these cells. These results suggest that there is a mechanism for the coordinated expression of sGC and PKG in VSMC and that prolonged activation of sGC down-regulates PKG expression. Likewise, the loss of PKG expression appears to increase sGC expression. These effects may be an adaptive mechanism allowing growth and survival of VSMC in vitro.
Collapse
Affiliation(s)
- Natasha C Browner
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
41
|
Deguchi A, Thompson WJ, Weinstein IB. Activation of protein kinase G is sufficient to induce apoptosis and inhibit cell migration in colon cancer cells. Cancer Res 2004; 64:3966-73. [PMID: 15173009 DOI: 10.1158/0008-5472.can-03-3740] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activation of protein kinase G (PKG) by cGMP has become of considerable interest as a novel molecular mechanism for the induction of apoptosis in cancer cells, because sulindac sulfone (exisulind, Aptosyn) and certain derivatives that inhibit cGMP-phosphodiesterases and thereby increase cellular levels of cGMP appear to induce apoptosis via this mechanism. However, other effects of these compounds have not been excluded, and the precise mechanism by which PKG activation induces apoptosis has not been elucidated in detail. To directly examine the effects of PKG on cell growth and apoptosis, we generated a series of mutants of PKG Ialpha: PKG IalphaS65D, a constitutively activated point mutant; PKG IalphaDelta, a constitutively activated N-terminal truncated mutant; and PKG IalphaK390R, a dominant-negative point mutant. A similar series of mutants of PKG Ibeta were also constructed (Deguchi et al., Mol. Cancer Ther., 1: 803-809, 2002). The present study demonstrates that when transiently expressed in SW480 colon cancer, the constitutively activated mutants of PKG Ibeta, and to a lesser extent PKG Ialpha, inhibit colony formation and induce apoptosis. We were not able to obtain derivatives of SW480 cells that stably expressed these constitutively activated mutants, presumably because of toxicity. However, derivatives that stably overexpressed wild-type PKG Ibeta displayed growth inhibition, whereas derivatives that stably expressed the dominant-negative mutant (KR) of PKG Ibeta grew more rapidly and were more resistant to Aptosyn-induced growth inhibition than vector control cells. Stable overexpression of PKG Ibeta was associated with decreased cellular levels of beta-catenin and cyclin D1 and increased levels of p21(CIP1). Reporter assays indicated that activation of PKG Ibeta inhibits the transcriptional activity of the cyclin D1 promoter. We also found that transient expression of the constitutively activated mutants of PKG Ibeta inhibited cell migration. Taken together, these results indicate that activation of PKG Ibeta is sufficient to inhibit growth and cell migration and induce apoptosis in human colon cancer cells and that these effects are associated with inhibition of the transcription of cyclin D1 and an increase in the expression of p21(CIP1).
Collapse
Affiliation(s)
- Atsuko Deguchi
- Herbert Irving Comprehensive Cancer Center, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032-2704, USA
| | | | | |
Collapse
|
42
|
Wang Y, El-Zaru MR, Surks HK, Mendelsohn ME. Formin homology domain protein (FHOD1) is a cyclic GMP-dependent protein kinase I-binding protein and substrate in vascular smooth muscle cells. J Biol Chem 2004; 279:24420-6. [PMID: 15051728 DOI: 10.1074/jbc.m313823200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic GMP-dependent protein kinase I (PKGI) mediates vascular relaxation by nitric oxide and related nitrovasodilators and inhibits vascular smooth muscle cell (VSMC) migration. To identify VSMC proteins that interact with PKGI, the N-terminal protein interaction domain of PKGIalpha was used to screen a yeast two-hybrid human aortic cDNA library. The formin homology (FH) domain-containing protein, FHOD1, was found to interact with PKGIalpha in this screen. FH domain-containing proteins bind Rho-family GTPases and regulate actin cytoskeletal dynamics, cell migration, and gene expression. Antisera to FHOD1 were raised and used to characterize FHOD1 expression and distribution in vascular cells. FHOD1 is highly expressed in human coronary artery, aortic smooth muscle cells, and in human arterial and venous endothelial cells. In glutathione S-transferase pull-down experiments, the FHOD1 C terminus (amino acids 964-1165) binds full-length PKGI. Both in vitro and intact cell studies demonstrate that the interaction between FHOD1 and PKGI is decreased 3- to 5-fold in the presence of the PKG activator, 8Br-cGMP. Immunofluorescence studies of human VSMC show that FHOD1 is cytoplasmic and is concentrated in the perinuclear region. PKGI also directly phosphorylates FHOD1, and studies with wild-type and mutant FHOD1-derived peptides identify Ser-1131 in the FHOD1 C terminus as the unique PKGI phosphorylation site in FHOD1. These studies demonstrate that FHOD1 is a PKGI-interacting protein and substrate in VSMCs and show that cyclic GMP negatively regulates the FHOD1-PKGI interaction. Based on the known functions of FHOD1, the data are consistent with a role for FHOD1 in cyclic GMP-dependent inhibition of VSMC stress fiber formation and/or migration.
Collapse
MESH Headings
- Actins/chemistry
- Animals
- Blotting, Western
- COS Cells
- Cell Movement
- Cells, Cultured
- Centrifugation
- Cloning, Molecular
- Cyclic GMP/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I
- Cyclic GMP-Dependent Protein Kinases/chemistry
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Cytoplasm/metabolism
- Cytoskeleton/metabolism
- DNA, Complementary/metabolism
- Endothelium, Vascular/metabolism
- Fetal Proteins/chemistry
- Fetal Proteins/physiology
- Formins
- Gene Expression
- Gene Library
- Glutathione Transferase/metabolism
- Humans
- Microscopy, Confocal
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Nuclear Proteins/chemistry
- Nuclear Proteins/physiology
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Serine/chemistry
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Yuepeng Wang
- Molecular Cardiology Research Institute, Department of Medicine and Division of Cardiology, New England Medical Center Hospitals and Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
43
|
Browner NC, Sellak H, Lincoln TM. Downregulation of cGMP-dependent protein kinase expression by inflammatory cytokines in vascular smooth muscle cells. Am J Physiol Cell Physiol 2004; 287:C88-96. [PMID: 14985234 DOI: 10.1152/ajpcell.00039.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NO and cGMP have antigrowth and anti-inflammatory effects on the vessel wall in response to injury. It is well established that after vascular injury proinflammatory cytokines are involved in vascular wall remodeling. The purpose of this study was to ascertain the signaling mechanisms involved in cGMP-dependent protein kinase (PKG) suppression by inflammatory cytokines in primary bovine aortic vascular smooth muscle cells (VSMC). Interleukin (IL)-Ibeta, tumor necrosis factor (TNF)-alpha, and LPS decreased the mRNA and protein levels of PKG in VSMC. IL-Ibeta, TNF-alpha, and LPS increased inducible nitric oxide synthase (iNOS) expression and cGMP production. Treatment of cells with selective inhibitors of iNOS or soluble guanylate cyclase (sGC) reversed the downregulation of PKG expression induced by cytokines and LPS. The NO donor (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA NONOate) and 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole (YC-1), a NO-independent sGC activator, decreased PKG mRNA and protein expression in bovine aortic VSMC. Cyclic nucleotide analogs [8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (CPT-cGMP) and 8-(4-chlorophenylthio)adenosine 3,5'-cyclic monophosphate (CPT-cAMP)] also suppressed PKG mRNA and protein expression. However, CPT-cAMP was more effective than CPT-cGMP in decreasing PKG mRNA levels. Selective inhibition of PKA with the Rp isomer of 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphorothioate (Rp-8p-CPT cAMPS) prevented the downregulation of PKG by LPS. In contrast, the Rp isomer of 8-(4-chlorophenylthio)guanosine 3,5'-cyclic monophosphorothioate (Rp-8p-CPT cGMPS; inhibitor of PKG) had no effect on LPS-induced inhibition of PKG mRNA and protein expression. These studies suggest that cross-activation of PKA in response to iNOS expression by inflammatory mediators downregulates PKG expression in bovine aortic VSMC.
Collapse
MESH Headings
- Animals
- Aorta
- Cattle
- Cells, Cultured
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Down-Regulation
- Enzyme Activators/pharmacology
- Enzyme Inhibitors/pharmacology
- Humans
- Indazoles/pharmacology
- Interleukin-1/metabolism
- Interleukin-1/pharmacology
- Lipopolysaccharides/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide Donors/pharmacology
- Nitroso Compounds/pharmacology
- Nucleotides, Cyclic/pharmacology
- Oxadiazoles/pharmacology
- Quinoxalines/pharmacology
- Recombinant Proteins/pharmacology
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Natasha C Browner
- Department of Physiology, University of South Alabama, Mobile, AL 36688, USA
| | | | | |
Collapse
|
44
|
Taylor AM, McNamara CA. Regulation of vascular smooth muscle cell growth: targeting the final common pathway. Arterioscler Thromb Vasc Biol 2004; 23:1717-20. [PMID: 14555641 PMCID: PMC2952500 DOI: 10.1161/01.atv.0000094396.24766.dd] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Abstract
Cyclic GMP, produced in response to nitric oxide and natriuretic peptides, is a key regulator of vascular smooth muscle cell contractility, growth, and differentiation, and is implicated in opposing the pathophysiology of hypertension, cardiac hypertrophy, atherosclerosis, and vascular injury/restenosis. cGMP regulates gene expression both positively and negatively at transcriptional as well as at posttranscriptional levels. cGMP-regulated transcription factors include the cAMP-response element binding protein CREB, the serum response factor SRF, and the nuclear factor of activated T cells NF/AT. cGMP can regulate CREB directly, through phosphorylation by cGMP-dependent protein kinase, or indirectly, through activation of mitogen-activated protein kinase pathways; regulation of SRF and NF/AT by cGMP is indirect, through modulation of RhoA and calcineurin signaling, respectively. Downregulation of the RNA-binding protein HuR by cGMP leads to destabilization of guanylate cyclase mRNA, but this posttranscriptional mechanism may affect many more cGMP-regulated genes. In this review, we discuss the role of cGMP-regulated gene expression in (patho)physiological processes most relevant to the cardiovascular system, such as regulation of vascular tone, cardiac hypertrophy, phenotypic modulation of vascular smooth muscle cells, and regulation of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Renate B Pilz
- Department of Medicine and Cancer Center, University of California at San Diego, 9500 Gilman Dr, La Jolla, Calif 92093-0652, USA.
| | | |
Collapse
|
46
|
Münzel T, Feil R, Mülsch A, Lohmann SM, Hofmann F, Walter U. Physiology and pathophysiology of vascular signaling controlled by guanosine 3',5'-cyclic monophosphate-dependent protein kinase [corrected]. Circulation 2003; 108:2172-83. [PMID: 14597579 DOI: 10.1161/01.cir.0000094403.78467.c3] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas Münzel
- Division of Cardiology, University Hospital Eppendorf, Martinistr 52, 20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Signaling cascades initiated by nitric oxide (NO) and natriuretic peptides (NPs) play an important role in the maintenance of cardiovascular homeostasis. It is currently accepted that many effects of these endogenous signaling molecules are mediated via stimulation of guanylyl cyclases and intracellular production of the second messenger cGMP. Indeed, cGMP-elevating drugs like glyceryl trinitrate have been used for more than 100 years to treat cardiovascular diseases. However, the molecular mechanisms of NO/NP signaling downstream of cGMP are not completely understood. Recent in vitro and in vivo evidence identifies cGMP-dependent protein kinases (cGKs) as major mediators of cGMP signaling in the cardiovascular system. In particular, the analysis of conventional and conditional knockout mice indicates that cGKs are critically involved in regulating vascular remodeling and thrombosis. Thus, cGKs may represent novel drug targets for the treatment of human cardiovascular disorders.
Collapse
Affiliation(s)
- Robert Feil
- Institut für Pharmakologie und Toxikologie, Technische Universität, Biedersteiner Str. 29, D-80802 München, Germany
| | | | | | | | | |
Collapse
|
48
|
Wakeyama T, Ogawa H, Iida H, Takaki A, Iwami T, Mochizuki M, Tanaka T. Effects of candesartan and probucol on restenosis after coronary stenting: results of insight of stent intimal hyperplasia inhibition by new angiotensin II receptor antagonist (ISHIN) trial. Circ J 2003; 67:519-24. [PMID: 12808270 DOI: 10.1253/circj.67.519] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to determine whether candesartan and its combination with probucol reduce restenosis after coronary stenting. A total of 132 patients who successfully underwent stenting were randomly assigned to a control group (n=45), a candesartan group (8 mg daily, n=43), or a candesartan plus probucol group (+ probucol 500 mg daily, n=44). No differences in late loss were observed between the control and candesartan groups. In the candesartan plus probucol group, late loss was significantly smaller than in the control and candesartan groups (p=0.003, 0.015). The restenosis rate was 27% in the control group, 26% in the candesartan group (p>0.99), and 11% in the candesartan plus probucol group (p=0.104 vs the control group and p=0.103 vs the candesartan group). Intravascular ultrasound revealed no differences in stent area among the 3 groups, and no differences in lumen area or in intimal hyperplasia area between the control and candesartan groups. However, the intimal hyperplasia area in the candesartan plus probucol group was significantly less than that in the control and candesartan groups (p<0.001, p<0.001). This study demonstrated that candesartan failed to inhibit the neointimal hyperplasia and although the combination treatment did reduce neointimal hyperplasia, it did not statistically reduce the restenosis rate.
Collapse
|
49
|
Abstract
Atherosclerosis remains the major cause of morbidity and mortality in Western countries. Atherothrombotic complications, including vascular occlusions and severe narrowing of nutrient blood vessels in the cerebral, coronary, or peripheral circulation, usually require invasive revascularization strategies. As molecular mediators contributing to these complications are being identified in more representative experimental injury models, and as gene transfer platforms and vectors acquire improved safety and efficacy profiles, there is ground for cautious optimism that gene-based interventions will likely reduce the clinical burden of these diseases. Increased generation of reactive oxygen species in diseased atherosclerotic vessels has been implicated in vasospasm, exaggerated neointima formation, and enhanced thrombosis. Ex vivo pressurized vascular gene transfer in venous bypass grafts using antisense oligonucleotides directed against cell-cycle control genes can modify the venous graft's phenotype and confer clinical benefit with improved long-term graft survival. Alternatively, percutaneous intra-arterial gene transfer is feasible, but at relatively low transgene expression levels. Although this may suffice in the case of secreted gene products with marked paracrine or bystander effects, including nitric oxide synthase and heme oxygenase-1, drug- and gene-eluting stents may provide the preferred future vehicle for well-controlled, quantifiable, and safe vascular gene transfer. Continued efforts to improve gene transfer technology in diseased human vessels and to increase our understanding of molecular targets are required before the full therapeutic potential of vascular gene therapy can be realized.
Collapse
Affiliation(s)
- Stefan P Janssens
- Cardiac Unit and Center for Transgene Technology and Gene Therapy, Campus Gasthuisberg, 49 Herestraat, B-3000 Leuven, Belgium.
| |
Collapse
|