1
|
Cromb D, Wilson S, Bonthrone AF, Chew A, Kelly C, Kumar M, Cawley P, Dimitrova R, Arichi T, Tournier JD, Pushparajah K, Simpson J, Rutherford M, Hajnal JV, Edwards AD, Nosarti C, O’Muircheartaigh J, Counsell SJ. Individualized cortical gyrification in neonates with congenital heart disease. Brain Commun 2024; 6:fcae356. [PMID: 39429246 PMCID: PMC11487749 DOI: 10.1093/braincomms/fcae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/08/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Congenital heart disease is associated with impaired early brain development and adverse neurodevelopmental outcomes. This study investigated how individualized measures of preoperative cortical gyrification index differ in 142 infants with congenital heart disease, using a normative modelling approach with reference data from 320 typically developing infants. Gyrification index Z-scores for the whole brain and six major cortical areas were generated using two different normative models: one accounting for post-menstrual age at scan, post-natal age at scan and sex, and another additionally accounting for supratentorial brain volume. These Z-scores were compared between congenital heart disease and control groups to test the hypothesis that cortical folding in infants with congenital heart disease deviates from the normal developmental trajectory. The relationships between whole-brain gyrification index Z-scores from the two normative models and both cerebral oxygen delivery and neurodevelopmental outcomes were also investigated. Global and regional brain gyrification was significantly reduced in neonates with congenital heart disease, but not when supratentorial brain volume was accounted for. This finding suggests that whilst cortical folding is reduced in congenital heart disease, it is primarily driven by a reduction in brain size. There was a significant positive correlation between cerebral oxygen delivery and whole-brain gyrification index Z-scores in congenital heart disease, but not when supratentorial brain volume was accounted for. Cerebral oxygen delivery is therefore likely to play a more important role in the biological processes underlying volumetric brain growth than cortical folding. No significant associations between whole-brain gyrification index Z-scores and motor/cognitive outcomes or autism traits were identified in the 70 infants with congenital heart disease who underwent neurodevelopmental assessment at 22-months. Our results suggest that chronic in utero and early post-natal hypoxia in congenital heart disease is associated with reductions in cortical folding that are proportional to reductions in supratentorial brain volume.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Siân Wilson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Manu Kumar
- GKT Medical School, King’s College London, London SE1 7EH, UK
| | - Paul Cawley
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, London SE1 7EH, UK
| | - J Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Kuberan Pushparajah
- Department of Cardiovascular Imaging, King’s College London, London SE1 7EH, UK
- Department of Fetal and Paediatric Cardiology, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - John Simpson
- Department of Cardiovascular Imaging, King’s College London, London SE1 7EH, UK
- Department of Fetal and Paediatric Cardiology, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Paediatric Neurosciences, Evelina London Children's Hospital, London SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
2
|
Kobayashi K, Kobayashi K, Liu C, Ryan J, Zurakowski D, Ishibashi N. Establishing Optimal Control Cohorts for Phase 1 Trials: Retrospective Analysis of Clinical and Biological Outcomes in Neonates and Infants Undergoing Two-Ventricle Repair. Pediatr Cardiol 2024:10.1007/s00246-024-03550-5. [PMID: 38918239 DOI: 10.1007/s00246-024-03550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Phase 1 trials are primarily conducted to evaluate the safety and feasibility of new interventions, usually without recruiting control patients. This retrospective study aims to characterize clinical and biological outcomes in historical and contemporary cases of neonates and infants undergoing two-ventricle repair to facilitate future secondary endpoint analyses for such trials. This retrospective study included neonates/infants (ages ≤ 6 months) who underwent two-ventricle repair between 2015 and 2021 using the same criteria as our phase 1 trial (n = 199). Patients were allocated into the ventricular septal defect (n = 61), the Tetralogy of Fallot (TOF, n = 88), and the transposition of the great arteries (n = 50) groups with an additional comparison between two eras (2015-2019 vs. 2020-2021). Patient characteristics and most variables assessed were different between the three diagnostic groups indicating the importance of diagnostic matching for secondary analyses. Although the era did not alter cerebral/somatic oxygenation, ventricular function, neuroimaging findings, and complication rates, we observed improvement of inotropic and/or vasoactive-inotropic scores in all groups during the more recent era. In 2020-2021, the age and the body weight at the operation were higher, and hospital stay was shorter in the TOF group, suggesting the possible impact of the pandemic. Results also indicated that matching altered characteristics such as age at operation that may limit the temporal effects and optimize secondary analyses. Using optimal contemporary cases and historical data based on this study will assist in developing a comprehensive study design for a future efficacy/effectiveness trial.
Collapse
Affiliation(s)
- Kumi Kobayashi
- Center for Neuroscience Research and Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Children's National Heart Center, Children's National Hospital, Washington, DC, 20010, USA
| | - Kei Kobayashi
- Center for Neuroscience Research and Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Children's National Heart Center, Children's National Hospital, Washington, DC, 20010, USA
| | - Christopher Liu
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Julia Ryan
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - David Zurakowski
- Departments of Anesthesiology and Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research and Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.
- Children's National Heart Center, Children's National Hospital, Washington, DC, 20010, USA.
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA.
| |
Collapse
|
3
|
Juergensen S, Liu J, Xu D, Zhao Y, Moon-Grady AJ, Glenn O, McQuillen P, Peyvandi S. Fetal circulatory physiology and brain development in complex congenital heart disease: A multi-modal imaging study. Prenat Diagn 2024; 44:856-864. [PMID: 37817395 PMCID: PMC11004088 DOI: 10.1002/pd.6450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Fetuses with complex congenital heart disease have altered physiology, contributing to abnormal neurodevelopment. The effects of altered physiology on brain development have not been well studied. We used multi-modal imaging to study fetal circulatory physiology and brain development in hypoplastic left heart syndrome (HLHS) and d-transposition of the great arteries (TGA). METHODS This prospective, cross-sectional study investigated individuals with fetal congenital heart disease and controls undergoing fetal echocardiography and fetal brain MRI. MRI measured total brain volume and cerebral oxygenation by the MRI quantification method T2*. Indexed cardiac outputs (CCOi) and vascular impedances were calculated by fetal echocardiography. Descriptive statistics assessed MRI and echocardiogram measurement relationships by physiology. RESULTS Sixty-six participants enrolled (control = 20; HLHS = 25; TGA = 21), mean gestational age 33.8 weeks (95% CI: 33.3-34.2). Total brain volume and T2* were significantly lower in fetuses with cardiac disease. CCOi was lower in HLHS, correlating with total brain volume - for every 10% CCOi increase, volume increased 8 mm3 (95% CI: 1.78-14.1; p = 0.012). Echocardiography parameters and cerebral oxygenation showed no correlation. TGA showed no CCOi or aortic output correlation with MRI measures. CONCLUSIONS In HLHS, lower cardiac output is deleterious to brain development. Our findings provide insight into the role of fetal cardiovascular physiology in brain health.
Collapse
Affiliation(s)
- Stephan Juergensen
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Yili Zhao
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Anita J Moon-Grady
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| | - Orit Glenn
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Patrick McQuillen
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, California, USA
| | - Shabnam Peyvandi
- Department of Pediatrics, Division of Pediatric Cardiology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Vu EL, Brown CH, Brady KM, Hogue CW. Monitoring of cerebral blood flow autoregulation: physiologic basis, measurement, and clinical implications. Br J Anaesth 2024; 132:1260-1273. [PMID: 38471987 DOI: 10.1016/j.bja.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
Cerebral blood flow (CBF) autoregulation is the physiologic process whereby blood supply to the brain is kept constant over a range of cerebral perfusion pressures ensuring a constant supply of metabolic substrate. Clinical methods for monitoring CBF autoregulation were first developed for neurocritically ill patients and have been extended to surgical patients. These methods are based on measuring the relationship between cerebral perfusion pressure and surrogates of CBF or cerebral blood volume (CBV) at low frequencies (<0.05 Hz) of autoregulation using time or frequency domain analyses. Initially intracranial pressure monitoring or transcranial Doppler assessment of CBF velocity was utilised relative to changes in cerebral perfusion pressure or mean arterial pressure. A more clinically practical approach utilising filtered signals from near infrared spectroscopy monitors as an estimate of CBF has been validated. In contrast to the traditional teaching that 50 mm Hg is the autoregulation threshold, these investigations have found wide interindividual variability of the lower limit of autoregulation ranging from 40 to 90 mm Hg in adults and 20-55 mm Hg in children. Observational data have linked impaired CBF autoregulation metrics to adverse outcomes in patients with traumatic brain injury, ischaemic stroke, subarachnoid haemorrhage, intracerebral haemorrhage, and in surgical patients. CBF autoregulation monitoring has been described in both cardiac and noncardiac surgery. Data from a single-centre randomised study in adults found that targeting arterial pressure during cardiopulmonary bypass to above the lower limit of autoregulation led to a reduction of postoperative delirium and improved memory 1 month after surgery compared with usual care. Together, the growing body of evidence suggests that monitoring CBF autoregulation provides prognostic information on eventual patient outcomes and offers potential for therapeutic intervention. For surgical patients, personalised blood pressure management based on CBF autoregulation data holds promise as a strategy to improve patient neurocognitive outcomes.
Collapse
Affiliation(s)
- Eric L Vu
- Department of Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Charles H Brown
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth M Brady
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Charles W Hogue
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Padiyar S, Friedman N, Pestana-Knight E, Franic L, Worley S, Aly H. Continuous Electroencephalogram (cEEG) Findings and Neurodevelopmental Outcomes in Neonates with Congenital Heart Disease (CHD) at 12-24 Months of Age. J Autism Dev Disord 2024:10.1007/s10803-024-06418-y. [PMID: 38819704 DOI: 10.1007/s10803-024-06418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE This study aims to assess the role of continuous EEG (cEEG) background patterns and duration of cross-clamp time and cardiopulmonary bypass (CPB) in children with congenital heart disease (CHD) undergoing cardiac surgery and its correlation with abnormal neurodevelopmental outcomes at 12-24 months on Bayley Scales of Infant and Toddler Development (BSID-III). METHODS This retrospective cohort study included infants with CHD and cEEG monitoring, who underwent surgery by 44 weeks gestational age. RESULTS 34 patients were included, who were operated at median age - 7 days. Longer duration of cross- camp time was associated with poor language composite scores (LCS) (p value = 0.036). A significant association existed between severity of encephalopathy in 24-hour post-operative period and poor LCS (p value = 0.026). CONCLUSION Majority of neonates with CHD have below average cognitive, language and motor composite scores on BSID-III. Longer duration of cross-clamp time and severity of encephalopathy during 24-hour post-operative EEG monitoring are associated with poor LCS.
Collapse
Affiliation(s)
- Swetha Padiyar
- Department of Neonatology, Cleveland Clinic Children's Hospital, 9500 Euclid Ave, M-31, Cleveland, OH, 44195, USA.
| | - Neil Friedman
- Department of Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | | | - Linda Franic
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Worley
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, 9500 Euclid Ave, M-31, Cleveland, OH, 44195, USA
| |
Collapse
|
6
|
Yan Y, Zheng X, Liu G, Shi G, Li C, Chen H, He X, Lin K, Deng Z, Zhang H, Li WG, Chen H, Tong X, Zhu Z. Gut microbiota-derived cholic acid mediates neonatal brain immaturity and white matter injury under chronic hypoxia. iScience 2024; 27:109633. [PMID: 38638560 PMCID: PMC11025012 DOI: 10.1016/j.isci.2024.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Chronic hypoxia, common in neonates, disrupts gut microbiota balance, which is crucial for brain development. This study utilized cyanotic congenital heart disease (CCHD) patients and a neonatal hypoxic rat model to explore the association. Both hypoxic rats and CCHD infants exhibited brain immaturity, white matter injury (WMI), brain inflammation, and motor/learning deficits. Through 16s rRNA sequencing and metabolomic analysis, a reduction in B. thetaiotaomicron and P. distasonis was identified, leading to cholic acid accumulation. This accumulation triggered M1 microglial activation and inflammation-induced WMI. Administration of these bacteria rescued cholic acid-induced WMI in hypoxic rats. These findings suggest that gut microbiota-derived cholic acid mediates neonatal WMI and brain inflammation, contributing to brain immaturity under chronic hypoxia. Therapeutic targeting of these bacteria provides a non-invasive intervention for chronic hypoxia patients.
Collapse
Affiliation(s)
- Yichen Yan
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Zheng
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Liu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Li
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtong Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kana Lin
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Deng
- Department of Gastroenterology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guang Li
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Neukomm A, Claessens NHP, Bonthrone AF, Stegeman R, Feldmann M, Nijman M, Jansen NJG, Nijman J, Groenendaal F, de Vries LS, Benders MJNL, Breur JMPJ, Haas F, Bekker MN, Logeswaran T, Reich B, Kottke R, Dave H, Simpson J, Pushparajah K, Kelly CJ, Arulkumaran S, Rutherford MA, Counsell SJ, Chew A, Knirsch W, Sprong MCA, van Schooneveld MM, Hagmann C, Latal B. Perioperative Brain Injury in Relation to Early Neurodevelopment Among Children with Severe Congenital Heart Disease: Results from a European Collaboration. J Pediatr 2024; 266:113838. [PMID: 37995930 DOI: 10.1016/j.jpeds.2023.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD). STUDY DESIGN One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores. Motor and cognitive outcomes were assessed with the Bayley Scales of Infant and Toddler Development Third Edition at 12 to 30 months of age. The relationship between brain injury score and clinical outcome was assessed using multiple linear regression analysis, adjusting for CHD severity, length of hospital stay (LOS), socioeconomic status (SES), and age at follow-up. RESULTS Neither the overall brain injury score nor any of the brain injury subscores correlated with motor or cognitive outcome. The number of preoperative white matter lesions was significantly associated with gross motor outcome after correction for multiple testing (P = .013, β = -0.50). SES was independently associated with cognitive outcome (P < .001, β = 0.26), and LOS with motor outcome (P < .001, β = -0.35). CONCLUSION Preoperative white matter lesions appear to be the most predictive MRI marker for adverse early childhood gross motor outcome in this large European cohort of infants with severe CHD. LOS as a marker of disease severity, and SES influence outcome and future intervention trials need to address these risk factors.
Collapse
Affiliation(s)
- Astrid Neukomm
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nathalie H P Claessens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Raymond Stegeman
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria Feldmann
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Maaike Nijman
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Joppe Nijman
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Felix Haas
- Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Mireille N Bekker
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thushiha Logeswaran
- Pediatric Heart Center, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bettina Reich
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | - Hitendu Dave
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - John Simpson
- Pediatric Cardiology Department, Evelina Children's Hospital London, London, United Kingdom
| | - Kuberan Pushparajah
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Pediatric Cardiology Department, Evelina Children's Hospital London, London, United Kingdom
| | - Christopher J Kelly
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Maaike C A Sprong
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique M van Schooneveld
- Department of Pediatric Psychology, Neuropsychology Section, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Sánchez O, Ribera I, Ruiz A, Eixarch E, Antolín E, Cruz-Lemini M, Dominguez C, Arévalo S, Ferrer Q, Rodríguez-Sureda V, Crispi F, Llurba E. Angiogenic imbalance in maternal and cord blood is associated with neonatal birth weight and head circumference in pregnancies with major fetal congenital heart defect. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:214-221. [PMID: 37519145 DOI: 10.1002/uog.27441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES To ascertain whether abnormalities in neonatal head circumference and/or body weight are associated with levels of angiogenic/antiangiogenic factors in the maternal and cord blood of pregnancies with a congenital heart defect (CHD) and to assess whether the specific type of CHD influences this association. METHODS This was a multicenter case-control study of women carrying a fetus with major CHD. Recruitment was carried out between June 2010 and July 2018 at four tertiary care hospitals in Spain. Maternal venous blood was drawn at study inclusion and at delivery. Cord blood samples were obtained at birth when possible. Placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng) were measured in maternal and cord blood. Biomarker concentrations in the maternal blood were expressed as multiples of the median (MoM). RESULTS PlGF, sFlt-1 and sEng levels were measured in the maternal blood in 237 cases with CHD and 260 healthy controls, and in the cord blood in 150 cases and 56 controls. Compared with controls, median PlGF MoM in maternal blood was significantly lower in the CHD group (0.959 vs 1.022; P < 0.0001), while median sFlt-1/PlGF ratio MoM was significantly higher (1.032 vs 0.974; P = 0.0085) and no difference was observed in sEng MoM (0.981 vs 1.011; P = 0.4673). Levels of sFlt-1 and sEng were significantly higher in cord blood obtained from fetuses with CHD compared to controls (mean ± standard error of the mean, 447 ± 51 vs 264 ± 20 pg/mL; P = 0.0470 and 8.30 ± 0.92 vs 5.69 ± 0.34 ng/mL; P = 0.0430, respectively). Concentrations of sFlt-1 and the sFlt-1/PlGF ratio in the maternal blood at study inclusion were associated negatively with birth weight and head circumference in the CHD group. The type of CHD anomaly (valvular, conotruncal or left ventricular outflow tract obstruction) did not appear to alter these findings. CONCLUSIONS Pregnancies with fetal CHD have an antiangiogenic profile in maternal and cord blood. This imbalance is adversely associated with neonatal head circumference and birth weight. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- O Sánchez
- Women and Perinatal Health Research Group, Institut de Recerca (IR SANT PAU), Barcelona, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012), Instituto de Salud Carlos III, Madrid, Spain
| | - I Ribera
- Department of Obstetrics and Gynaecology, Fetal Medicine Unit, Vic Hospitalary Consortium, Vic, Spain
| | - A Ruiz
- Department of Obstetrics and Gynaecology, Hospital Universitari Son Llàtzer, Palma de Mallorca, Spain
| | - E Eixarch
- BCNatal, Hospital Clínic of Barcelona and Hospital Sant Joan de Déu, Fetal Medicine Unit, Barcelona, Spain
| | - E Antolín
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012), Instituto de Salud Carlos III, Madrid, Spain
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynaecology, Hospital Universitario La Paz, Madrid, Spain
| | - M Cruz-Lemini
- Women and Perinatal Health Research Group, Institut de Recerca (IR SANT PAU), Barcelona, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012), Instituto de Salud Carlos III, Madrid, Spain
- Department of Obstetrics and Gynaecology, Fetal Medicine Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - C Dominguez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - S Arévalo
- Department of Obstetrics, Fetal Medicine Unit, Vall d'Hebron University Hospital, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Q Ferrer
- Department of Paediatric Cardiology, Vall d'Hebron University Hospital, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - V Rodríguez-Sureda
- BCNatal, Hospital Clínic of Barcelona and Hospital Sant Joan de Déu, Fetal Medicine Unit, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - F Crispi
- BCNatal, Hospital Clínic of Barcelona and Hospital Sant Joan de Déu, Fetal Medicine Unit, Barcelona, Spain
| | - E Llurba
- Women and Perinatal Health Research Group, Institut de Recerca (IR SANT PAU), Barcelona, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012), Instituto de Salud Carlos III, Madrid, Spain
- Department of Obstetrics and Gynaecology, Fetal Medicine Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
9
|
Garne E, Goldsmith S, Barisic I, Braz P, Dakovic I, Gibson C, Hansen M, Hoei-Hansen CE, Hollung SJ, Klungsøyr K, Smithers-Sheedy H, Virella D, Badawi N, Watson L, McIntyre S. Severe Congenital Heart Defects and Cerebral Palsy. J Pediatr 2023; 262:113617. [PMID: 37473991 DOI: 10.1016/j.jpeds.2023.113617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE To report the prevalence of cerebral palsy (CP) in children with severe congenital heart defects (sCHD) and the outcome/severity of the CP. METHODS Population-based, data linkage study between CP and congenital anomaly registers in Europe and Australia. The EUROCAT definition of severe CHD (sCHD) was used. Linked data from 4 regions in Europe and 2 in Australia were included. All children born in the regions from 1991 through 2009 diagnosed with CP and/or sCHD were included. Linkage was completed locally. Deidentified linked data were pooled for analyses. RESULTS The study sample included 4989 children with CP and 3684 children with sCHD. The total number of livebirths in the population was 1 734 612. The prevalence of CP was 2.9 per 1000 births (95% CI, 2.8-3.0) and the prevalence of sCHD was 2.1 per 1000 births (95% CI, 2.1-2.2). Of children with sCHD, 1.5% (n = 57) had a diagnosis of CP, of which 35 (61%) children had prenatally or perinatally acquired CP (resulting from a brain injury at ≤28 days of life) and 22 (39%) children had a postneonatal cause (a brain injury between 28 days and 2 years). Children with CP and sCHD more often had unilateral spastic CP and more intellectual impairments than children with CP without congenital anomalies. CONCLUSIONS In high-income countries, the proportion of children with CP is much higher in children with sCHD than in the background population. The severity of disease in children with CP and sCHD is milder compared with children with CP without congenital anomalies.
Collapse
Affiliation(s)
- Ester Garne
- Department of Pediatrics and Adolescent Medicine, Lillebaelt Hospital, University Hospital of Southern Denmark, Kolding, Denmark.
| | - Shona Goldsmith
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, Australia
| | - Ingeborg Barisic
- Children's Hospital Zagreb, Center of Excellence for Reproductive and Regenerative Medicine, Medical School University of Zagreb, Zagreb, Croatia
| | - Paula Braz
- National Registry of Congenital Anomalies, Department of Epidemiology, National Health Institute Dr Richardo Jorge, Lisbon, Portugal
| | - Ivana Dakovic
- Children's Hospital, Medical School, University of Zagreb, Zagreb, Croatia
| | - Catherine Gibson
- South Australian Birth Defects Register, Women's and Children's Hospital, Women's and Children's Health Network, Adelaide, South Australia, Australia
| | - Michele Hansen
- Western Australian Register of Developmental Anomalies, Department of Health Western Australia, Perth, Australia; Telethon Kids Institute, the University of Western Australia, Perth, Australia
| | - Christina E Hoei-Hansen
- Department of Pediatrics, University Hospital Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Julsen Hollung
- Norwegian Quality and Surveillance Registry for Cerebral Palsy, Vestfold Hospital Trust, Tønsberg, Norway
| | - Kari Klungsøyr
- Department of Global Public Health and Primary Care, University of Bergen, Norway, and Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Hayley Smithers-Sheedy
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, Australia
| | - Daniel Virella
- National Registry for Surveillance of Cerebral Palsy, Department of Epidemiology, National Health Institute Dr Richardo Jorge, Lisbon, Portugal
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, Australia; Grace Center for Newborn Intensive Care, Children's Hospital at Westmead, Sydney, Australia
| | - Linda Watson
- Western Australian Register of Developmental Anomalies, Department of Health Western Australia, Perth, Australia
| | - Sarah McIntyre
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Fourdain S, Provost S, Tremblay J, Vannasing P, Doussau A, Caron-Desrochers L, Gaudet I, Roger K, Hüsser A, Dehaes M, Martinez-Montes E, Poirier N, Gallagher A. Functional brain connectivity after corrective cardiac surgery for critical congenital heart disease: a preliminary near-infrared spectroscopy (NIRS) report. Child Neuropsychol 2023; 29:1088-1108. [PMID: 36718095 DOI: 10.1080/09297049.2023.2170340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
Patients with congenital heart disease (CHD) requiring cardiac surgery in infancy are at high risk for neurodevelopmental impairments. Neonatal imaging studies have reported disruptions of brain functional organization before surgery. Yet, the extent to which functional network alterations are present after cardiac repair remains unexplored. This preliminary study aimed at investigating cortical functional connectivity in 4-month-old infants with repaired CHD, using resting-state functional near-infrared spectroscopy (fNIRS). After fNIRS signal frequency decomposition, we compared values of magnitude-squared coherence as a measure of connectivity strength, between 21 infants with corrected CHD and 31 healthy controls. We identified a subset of connections with differences between groups at an uncorrected statistical level of p < .05 while controlling for sex and maternal socioeconomic status, with most of these connections showing reduced connectivity in infants with CHD. Although none of these differences reach statistical significance after FDR correction, likely due to the small sample size, moderate to large effect sizes were found for group-differences. If replicated, these results would therefore suggest preliminary evidence that alterations of brain functional connectivity are present in the months after cardiac surgery. Additional studies involving larger sample size are needed to replicate our data, and comparisons between pre- and postoperative findings would allow to further delineate alterations of functional brain connectivity in this population.
Collapse
Affiliation(s)
- Solène Fourdain
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Sarah Provost
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Julie Tremblay
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | | | - Amélie Doussau
- Clinique d'investigation neurocardiaque (CINC), Sainte-Justine, Montreal University Hospital Center, Montreal, QC, Canada
| | - Laura Caron-Desrochers
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Isabelle Gaudet
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Kassandra Roger
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Alejandra Hüsser
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| | - Mathieu Dehaes
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
- Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Nancy Poirier
- Clinique d'investigation neurocardiaque (CINC), Sainte-Justine, Montreal University Hospital Center, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
| | - Anne Gallagher
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine University Hospital Research Center, Montreal, QC, Canada
| |
Collapse
|
11
|
Andescavage NN, Pradhan S, Gimovsky AC, Kapse K, Donofrio MT, Cheng JJ, Sharker Y, Wessel D, du Plessis AJ, Limperopoulos C. Magnetic Resonance Spectroscopy of Brain Metabolism in Fetuses With Congenital Heart Disease. J Am Coll Cardiol 2023; 82:1614-1623. [PMID: 37821172 DOI: 10.1016/j.jacc.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Congenital heart disease (CHD) remains a significant risk factor for neurologic injury because altered fetal hemodynamics may be unable to support typical brain development during critical periods of growth and maturation. OBJECTIVES The primary objective was to assess differences in the cerebral biochemical profile between healthy fetuses and fetuses with complex CHD and to relate these with infant outcomes. METHODS Pregnant participants underwent fetal magnetic resonance imaging with cerebral proton magnetic resonance spectroscopy acquisitions as part of a prospective observational study. Cerebral metabolites of N-acetyl aspartate, creatine, choline, myo-inositol, scyllo-inositol, lactate, and relevant ratios were quantified using LCModel. RESULTS We acquired 503 proton magnetic resonance spectroscopy images (controls = 333; CHD = 170) from 333 participants (controls = 221; CHD = 112). Mean choline levels were higher in CHD compared with controls (CHD 2.47 IU [Institutional Units] ± 0.44 and Controls 2.35 IU ± 0.45; P = 0.02), whereas N-acetyl aspartate:choline ratios were lower among CHD fetuses compared with controls (CHD 1.34 ± 0.40 IU vs controls 1.44 ± 0.48 IU; P = 0.001). Cerebral lactate was detected in all cohorts but increased in fetuses with transposition of the great arteries and single-ventricle CHD (median: 1.63 [IQR: 0.56-3.27] in transposition of the great arteries and median: 1.28 [IQR: 0-2.42] in single-ventricle CHD) compared with 2-ventricle CHD (median: 0.79 [IQR: 0-1.45]). Cerebral lactate also was associated with increased odds of death before discharge (OR: 1.75; P = 0.04). CONCLUSIONS CHD is associated with altered cerebral metabolites in utero, particularly in the third trimester period of pregnancy, which is characterized by exponential brain growth and maturation, and is associated with survival to hospital discharge. The long-term neurodevelopmental consequences of these findings warrant further study.
Collapse
Affiliation(s)
- Nickie N Andescavage
- Department of Neonatology, Children's National Hospital, Washington, DC, USA; Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Subechhya Pradhan
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Alexis C Gimovsky
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Mary T Donofrio
- Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Department of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Jenhao Jacob Cheng
- Department of Biostatistics, Children's National Hospital, Washington, DC, USA
| | - Yushuf Sharker
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - David Wessel
- Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Department of Critical Care Medicine, Children's National Hospital, Washington, DC, USA
| | - Adre J du Plessis
- Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Prenatal Pediatric Institute, Children's National Hospital, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Department of Radiology, Children's National Hospital, Washington, DC, USA; Department of Radiology, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
| |
Collapse
|
12
|
Katz JA, Levy PT, Butler SC, Sadhwani A, Lakshminrusimha S, Morton SU, Newburger JW. Preterm congenital heart disease and neurodevelopment: the importance of looking beyond the initial hospitalization. J Perinatol 2023; 43:958-962. [PMID: 37179381 DOI: 10.1038/s41372-023-01687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Congenital heart disease (CHD) and prematurity are leading causes of infant mortality in the United States. Infants with CHD born prematurely are often described as facing "double jeopardy" with vulnerability from their underlying heart disease and from organ immaturity. They endure additional complications of developing in the extrauterine environment while healing from interventions for heart disease. While morbidity and mortality for neonates with CHD have declined over the past decade, preterm neonates with CHD remain at higher risk for adverse outcomes. Less is known about their neurodevelopmental and functional outcomes. In this perspective paper, we review the prevalence of preterm birth among infants with CHD, highlight the medical complexity of these infants, and emphasize the importance of exploring outcomes beyond survival. We focus on current knowledge regarding overlaps in the mechanisms of neurodevelopmental impairment associated with CHD and prematurity and discuss future directions for improving neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jenna A Katz
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Philip T Levy
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Samantha C Butler
- Departments of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Anjali Sadhwani
- Departments of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Lin R, Du N, Feng J, Li J, Li L, Cui Y, Ning S, Zhang M, Huang G, Wang H, Zou M, Ma L, Chen X, Li J. Perioperative EEG background and discharge abnormalities in children undergoing cardiac surgery: a prospective single-centre observational study. Br J Anaesth 2023:S0007-0912(23)00240-4. [PMID: 37328305 DOI: 10.1016/j.bja.2023.04.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND We analysed the characteristics of abnormal electroencephalogram (EEG) patterns before, during, and 48 h after cardiac surgery in patients with heterogeneous congenital heart disease to assess their relationship to demographic and perioperative variables and to early patient outcomes. METHODS In 437 patients enrolled in a single centre, EEG was evaluated for background (including sleep-wake cycle) and discharge (seizures, spikes/sharp waves, pathological delta brushes) abnormalities. Clinical data (arterial blood pressure, doses of inotropic drugs, and serum lactate concentrations) were recorded every 3 h. Postoperative brain MRI was performed before discharge. RESULTS Preoperative, intraoperative, and postoperative EEG was monitored in 139, 215, and 437 patients, respectively. Patients with a degree of preoperative background abnormalities (n=40) had more severe intraoperative and postoperative EEG abnormalities (P<0.0001). Intraoperatively, 106/215 (49.3%) patients progressed into an isoelectric EEG. Longer durations of isoelectric EEG were associated with more severe postoperative EEG abnormalities and brain injury on MRI (Ps≤0.003). Postoperative background abnormalities occurred in 218/437 (49.9%) patients, and 119 (54.6%) of them had not recovered after surgery. Seizures occurred in 36/437 (8.2%) patients, spikes/sharp waves in 359/437 (82.2%), and pathological delta brushes in 9/437 (2.0%). Postoperative EEG abnormalities correlated with degree of brain injury on MRI (Ps≤0.02). Demographic and perioperative variables were significantly correlated with postoperative EEG abnormalities, which in turn correlated with adverse clinical outcomes. CONCLUSIONS Perioperative EEG abnormalities occurred frequently and correlated with numerous demographic and perioperative variables and adversely correlated with postoperative EEG abnormalities and early outcomes. The relation of EEG background and discharge abnormalities with long-term neurodevelopmental outcomes remains to be explored.
Collapse
Affiliation(s)
- Rouyi Lin
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Na Du
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Jinqing Feng
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Jianbin Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Lijuan Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Yanqin Cui
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Shuyao Ning
- Department of Electroneurophysiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Province, China
| | - Mingjie Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Province, China
| | - Guodong Huang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Huaizhen Wang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Minghui Zou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Li Ma
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Xinxin Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China; Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China.
| |
Collapse
|
14
|
Zou M, Yu L, Lin R, Feng J, Zhang M, Ning S, Cui Y, Li J, Li L, Ma L, Huang G, Wang H, Chen X, Li J. Cerebral Autoregulation Status in Relation to Brain Injury on Electroencephalogram and Magnetic Resonance Imaging in Children Following Cardiac Surgery. J Am Heart Assoc 2023:e028147. [PMID: 37301753 DOI: 10.1161/jaha.122.028147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/06/2023] [Indexed: 06/12/2023]
Abstract
Background Disturbed cerebral autoregulation has been reported in children with congenital heart disease before and during cardiopulmonary bypass surgery, but not after. We sought to characterize the cerebral autoregulation status in the early postoperative period in relation to perioperative variables and brain injuries. Methods and Results A prospective and observational study was conducted in 80 patients in the first 48 hours following cardiac surgery. Cerebral oximetry/pressure index (COPI) was retrospectively calculated as a moving linear correlation coefficient between mean arterial blood pressure and cerebral oxygen saturation. Disturbed autoregulation was defined as COPI >0.3. Correlations of COPI with demographic and perioperative variables as well as brain injuries on electroencephalogram and magnetic resonance imaging and early outcomes were analyzed. Thirty-six (45%) patients had periods of abnormal COPI for 7.81 hours (3.38 hours) either at hypotension (median <45 mm Hg) or hypertension (median >90 mm Hg) or both. Overall, COPI became significantly lower over time, suggesting improved autoregulatory status during the 48 postoperative hours. All of the demographic and perioperative variables were significantly associated with COPI, which in turn was associated with the degree of brain injuries and early outcomes. Conclusions Children with congenital heart disease following cardiac surgery often have disturbed autoregulation. Cerebral autoregulation is at least partly the underlying mechanism of brain injury in those children. Careful clinical management to manipulate the related and modifiable factors, particularly arterial blood pressure, may help to maintain adequate cerebral perfusion and reduce brain injury early after cardiopulmonary bypass surgery. Further studies are warranted to determine the significance of impaired cerebral autoregulation in relation to long-term neurodevelopment outcomes.
Collapse
Affiliation(s)
- Minghui Zou
- Heart Center, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Linyang Yu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Rouyi Lin
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Jinqing Feng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Mingjie Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong Province China
| | - Shuyao Ning
- Department of Electroneurophysiology, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong Province China
| | - Yanqin Cui
- Heart Center, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Jianbin Li
- Heart Center, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Lijuan Li
- Heart Center, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Li Ma
- Heart Center, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Guodong Huang
- Heart Center, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Huaizhen Wang
- Heart Center, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Xinxin Chen
- Heart Center, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| | - Jia Li
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
- Clinical Physiology Laboratory, Institute of Pediatrics, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangdong China
| |
Collapse
|
15
|
Licht DJ, Jacobwitz M, Lynch JM, Ko T, Boorady T, Devarajan M, Heye KN, Mensah‐Brown K, Newland JJ, Schmidt A, Schwab P, Winters M, Nicolson SC, Montenegro LM, Fuller S, Mascio C, Gaynor JW, Yodh AG, Gebb J, Vossough A, Choi GH, Putt ME. Impaired Maternal-Fetal Environment and Risk for Preoperative Focal White Matter Injury in Neonates With Complex Congenital Heart Disease. J Am Heart Assoc 2023; 12:e025516. [PMID: 36974759 PMCID: PMC10122900 DOI: 10.1161/jaha.122.025516] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Background Infants with congenital heart disease (CHD) are at risk for white matter injury (WMI) before neonatal heart surgery. Better knowledge of the causes of preoperative WMI may provide insights into interventions that improve neurodevelopmental outcomes in these patients. Methods and Results A prospective single-center study of preoperative WMI in neonates with CHD recorded data on primary cardiac diagnosis, maternal-fetal environment (MFE), delivery type, subject anthropometrics, and preoperative care. Total maturation score and WMI were assessed, and stepwise logistic regression modeling selected risk factors for WMI. Among subjects with severe CHD (n=183) who received a preoperative brain magnetic resonance imaging, WMI occurred in 40 (21.9%) patients. WMI prevalence (21.4%-22.1%) and mean volumes (119.7-160.4 mm3) were similar across CHD diagnoses. Stepwise logistic regression selected impaired MFE (odds ratio [OR], 2.85 [95% CI, 1.29-6.30]), male sex (OR, 2.27 [95% CI, 1.03-5.36]), and older age at surgery/magnetic resonance imaging (OR, 1.20 per day [95% CI, 1.03-1.41]) as risk factors for preoperative WMI and higher total maturation score values (OR, 0.65 per unit increase [95% CI, 0.43-0.95]) as protective. A quarter (24.6%; n=45) of subjects had ≥1 components of impaired MFE (gestational diabetes [n=12; 6.6%], gestational hypertension [n=11; 6.0%], preeclampsia [n=2; 1.1%], tobacco use [n=9; 4.9%], hypothyroidism [n=6; 3.3%], and other [n=16; 8.7%]). In a subset of 138 subjects, an exploratory analysis of additional MFE-related factors disclosed other potential risk factors for WMI. Conclusions This study is the first to identify impaired MFE as an important risk factor for preoperative WMI. Vulnerability to preoperative WMI was shared across CHD diagnoses.
Collapse
Affiliation(s)
- Daniel J. Licht
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Marin Jacobwitz
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Jennifer M. Lynch
- Department of Anesthesia and Critical Care, Division of Cardiac AnesthesiaThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Tiffany Ko
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Timothy Boorady
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Mahima Devarajan
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Kristina N. Heye
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Kobina Mensah‐Brown
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - John J. Newland
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Alexander Schmidt
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Peter Schwab
- Department of NeurologyThe University of PennsylvaniaPennsylvaniaPA
| | - Madeline Winters
- Department of Pediatrics, Division of NeurologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Susan C. Nicolson
- Department of Anesthesia and Critical Care, Division of Cardiac AnesthesiaThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Lisa M. Montenegro
- Department of Anesthesia and Critical Care, Division of Cardiac AnesthesiaThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Stephanie Fuller
- Department of Surgery, Division of Cardiothoracic SurgeryThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Christopher Mascio
- Department of Surgery, Division of Cardiothoracic SurgeryThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - J. William Gaynor
- Department of Surgery, Division of Cardiothoracic SurgeryThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Arjun G. Yodh
- Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaPA
| | - Juliana Gebb
- Department of Surgery, Richard D. Wood Jr Center for Fetal Diagnosis & Treatment in the Division of Pediatric General, Thoracic and Fetal SurgeryThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Arastoo Vossough
- Department of RadiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Grace H. Choi
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPA
- CHOP/Penn Intellectual and Developmental Disabilities Research CenterPhiladelphiaPA
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPA
- CHOP/Penn Intellectual and Developmental Disabilities Research CenterPhiladelphiaPA
| |
Collapse
|
16
|
Radiographic and histologic characterisation of white matter injury in a sheep model of CHD. Cardiol Young 2023; 33:432-436. [PMID: 35438073 DOI: 10.1017/s104795112200107x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nearly one in five children with CHD is born with white matter injury that can be recognised on postnatal MRI by the presence of T1 hyperintense lesions. This pattern of white matter injury is known to portend poor neurodevelopmental outcomes, but the exact aetiology and histologic characterisation of these lesions have never been described. A fetal sheep was cannulated at gestational age 110 days onto a pumpless extracorporeal oxygenator via the umbilical vessels and supported in a fluid environment for 14.5 days. The fetus was supported under hypoxic conditions (mean oxygen delivery 16 ml/kg/day) to simulate the in utero conditions of CHD. At necropsy, the brain was fixed, imaged with MRI, and then stained to histologically identify areas of injury. Under hypoxemic in utero conditions, the fetus developed a T1 hyperintense lesion in its right frontal lobe. Histologically, this lesion was characterised by microvascular proliferation and astrocytosis without gliosis. These findings may provide valuable insight into the aetiology of white matter injury in neonates with CHD.
Collapse
|
17
|
Continuous electroencephalography (cEEG) in infants with congenital heart disease (CHD). Pediatr Res 2023:10.1038/s41390-023-02520-6. [PMID: 36792651 DOI: 10.1038/s41390-023-02520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Neonates with congenital heart disease (CHD) undergoing cardiopulmonary bypass (CPB) surgery have increased risk of impaired neurodevelopmental outcomes secondary to brain injury. This study aims to characterize pre- and post-operative continuous EEG (cEEG) patterns to detect abnormal cerebral activity in infants with CHD and investigate whether an association exists between the degree of encephalopathy in pre- and post-operative cEEG. METHODS This retrospective cohort study conducted between 2010 and 2018 at a tertiary hospital in Cleveland, OH included infants with CHD with cEEG monitoring, who underwent CPB surgery within first 6 months of life. RESULTS Study included 77 patients, of which 61% were males who were operated at median age 6 days. Pre-operatively, 69% and 87% had normal cEEG and sleep-wake cycles, respectively. Post-operatively, 80% had abnormal cEEG. Longer circulatory arrest time and CPB were associated with lack of continuity (p 0.011), excessive discontinuity (p 0.007) and prolonged inter-burst interval (IBI) duration (p value < 0.001). A significant association existed between severity of encephalopathy in immediate and 24-h post-operative period (p value < 0.001). CONCLUSIONS More than 80% of neonates with CHD have abnormal post-operative EEG. Longer circulatory arrest time and CPB were associated with lack of continuity, excessive discontinuity, and prolonged IBI duration on post-operative EEG. IMPACT This study shows that majority of neonates with congenital heart disease (CHD) have normal pre-operative EEG with a continuous background and normal sleep-wake cycles. Also, 80% of neonates had abnormal post-operative EEG. Longer duration of arrest time and bypass time was associated with lack of continuity, excessive discontinuity, and prolonged IBI duration during post-operative EEG monitoring. These findings will help clinicians when counseling parents in the intensive care unit, risk stratification, and long-term neurodevelopmental monitoring in these high-risk patients.
Collapse
|
18
|
Feldmann M, Hagmann C, de Vries L, Disselhoff V, Pushparajah K, Logeswaran T, Jansen NJG, Breur JMPJ, Knirsch W, Benders M, Counsell S, Reich B, Latal B. Neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices in neonatal congenital heart disease: a European survey. Pediatr Res 2023; 93:168-175. [PMID: 35414671 PMCID: PMC9876786 DOI: 10.1038/s41390-022-02063-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Brain injury and neurodevelopmental impairment remain a concern in children with complex congenital heart disease (CHD). A practice guideline on neuromonitoring, neuroimaging, and neurodevelopmental follow-up in CHD patients undergoing cardiopulmonary bypass surgery is lacking. The aim of this survey was to systematically evaluate the current practice in centers across Europe. METHODS An online-based structured survey was sent to pediatric cardiac surgical centers across Europe between April 2019 and June 2020. Results were summarized by descriptive statistics. RESULTS Valid responses were received by 25 European centers, of which 23 completed the questionnaire to the last page. Near-infrared spectroscopy was the most commonly used neuromonitoring modality used in 64, 80, and 72% preoperatively, intraoperatively, and postoperatively, respectively. Neuroimaging was most commonly performed by means of cranial ultrasound in 96 and 84% preoperatively and postoperatively, respectively. Magnetic resonance imaging was obtained in 72 and 44% preoperatively and postoperatively, respectively, but was predominantly reserved for clinically symptomatic patients (preoperatively 67%, postoperatively 64%). Neurodevelopmental follow-up was implemented in 40% of centers and planned in 24%. CONCLUSIONS Heterogeneity in perioperative neuromonitoring and neuroimaging practice in CHD in centers across Europe is large. The need for neurodevelopmental follow-up has been recognized. A clear practice guideline is urgently needed. IMPACT There is large heterogeneity in neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices among European centers caring for neonates with complex congenital heart disease. This study provides a systematic evaluation of the current neuromonitoring, neuroimaging, and neurodevelopmental follow-up practice in Europe. The results of this survey may serve as the basis for developing a clear practice guideline that could help to early detect and prevent neurological and neurodevelopmental sequelae in neonates with complex congenital heart disease.
Collapse
Affiliation(s)
- Maria Feldmann
- Child Development Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Cornelia Hagmann
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
| | - Linda de Vries
- Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Vera Disselhoff
- Child Development Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Kuberan Pushparajah
- Pediatric Cardiology Department, Evelina Children's Hospital London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Thushiha Logeswaran
- Pediatric Heart Center, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Manon Benders
- Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Neonatology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands
| | - Serena Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Bettina Reich
- Pediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Munich, Germany
| | - Beatrice Latal
- Child Development Centre, University Children's Hospital Zurich, Zurich, Switzerland.
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Neukomm A, Ehrler M, Feldmann M, Chaouch A, Knirsch W, Hagmann C, Jakab A, Latal B. Perioperative Course and Socioeconomic Status Predict Long-Term Neurodevelopment Better Than Perioperative Conventional Neuroimaging in Children with Congenital Heart Disease. J Pediatr 2022; 251:140-148.e3. [PMID: 35948191 DOI: 10.1016/j.jpeds.2022.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE The objective of the study was to compare the use of neonatal conventional brain magnetic resonance imaging (MRI) with that of clinical factors and socioeconomic status (SES) to predict long-term neurodevelopment in children with severe congenital heart disease (CHD). STUDY DESIGN In this prospective cohort study, perioperative MRIs were acquired in 57 term-born infants with CHD undergoing cardiopulmonary bypass surgery during their first year of life. Total brain volume (TBV) was measured using an automated method. Brain injury severity (BIS) was assessed by an established scoring system. The neurodevelopmental outcome was assessed at 6 years using standardized test batteries. A multiple linear regression model was used for cognitive and motor outcomes with postoperative TBV, perioperative BIS, CHD complexity, length of hospital stay, and SES as covariates. RESULTS CHD diagnoses included univentricular heart defect (n = 15), transposition of the great arteries (n = 33), and acyanotic CHD (n = 9). Perioperative moderate-to-severe brain injury was detected in 15 (26%) patients. The total IQ was similar to test norms (P = .11), whereas the total motor score (P < .001) was lower. Neither postoperative TBV nor perioperative BIS predicted the total IQ, but SES (P < .001) and longer hospital stay (P = .004) did. No factor predicted the motor outcome. CONCLUSION Although the predictive value of neonatal conventional MRIs for long-term neurodevelopment is low, duration of hospital stay and SES better predict the outcome in this CHD sample. These findings should be considered in initiating early therapeutic support.
Collapse
Affiliation(s)
- Astrid Neukomm
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Melanie Ehrler
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Maria Feldmann
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Aziz Chaouch
- Division of Biostatistics, Center of Primary Care and Public Health (Unisanté) Lausanne, Lausanne, Switzerland
| | - Walter Knirsch
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland; Pediatric Cardiology, Department of Surgery, Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Cornelia Hagmann
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Neonatology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andras Jakab
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Votava-Smith JK, Gaesser J, Harbison AL, Lee V, Tran N, Rajagopalan V, del Castillo S, Kumar SR, Herrup E, Baust T, Johnson JA, Gabriel GC, Reynolds WT, Wallace J, Meyers B, Ceschin R, Lo CW, Schmithorst VJ, Panigrahy A. Clinical factors associated with microstructural connectome related brain dysmaturation in term neonates with congenital heart disease. Front Neurosci 2022; 16:952355. [PMID: 36466162 PMCID: PMC9717392 DOI: 10.3389/fnins.2022.952355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Term congenital heart disease (CHD) neonates display abnormalities of brain structure and maturation, which are possibly related to underlying patient factors, abnormal physiology and perioperative insults. Our primary goal was to delineate associations between clinical factors and postnatal brain microstructure in term CHD neonates using diffusion tensor imaging (DTI) magnetic resonance (MR) acquisition combined with complementary data-driven connectome and seed-based tractography quantitative analyses. Our secondary goal was to delineate associations between mild dysplastic structural brain abnormalities and connectome and seed-base tractography quantitative analyses. These mild dysplastic structural abnormalities have been derived from prior human infant CHD MR studies and neonatal mouse models of CHD that were collectively used to calculate to calculate a brain dysplasia score (BDS) that included assessment of subcortical structures including the olfactory bulb, the cerebellum and the hippocampus. Methods Neonates undergoing cardiac surgery for CHD were prospectively recruited from two large centers. Both pre- and postoperative MR brain scans were obtained. DTI in 42 directions was segmented into 90 regions using a neonatal brain template and three weighted methods. Clinical data collection included 18 patient-specific and 9 preoperative variables associated with preoperative scan and 6 intraoperative (e.g., cardiopulmonary bypass and deep hypothermic circulatory arrest times) and 12 postoperative variables associated with postoperative scan. We compared patient specific and preoperative clinical factors to network topology and tractography alterations on a preoperative neonatal brain MRI, and intra and postoperative clinical factors to network topology alterations on postoperative neonatal brain MRI. A composite BDS was created to score abnormal findings involving the cerebellar hemispheres and vermis, supratentorial extra-axial fluid, olfactory bulbs and sulci, hippocampus, choroid plexus, corpus callosum, and brainstem. The neuroimaging outcomes of this study included (1) connectome metrics: cost (number of connections) and global/nodal efficiency (network integration); (2) seed based tractography methods of fractional anisotropy (FA), radial diffusivity, and axial diffusivity. Statistics consisted of multiple regression with false discovery rate correction (FDR) comparing the clinical risk factors and BDS (including subcortical components) as predictors/exposures and the global connectome metrics, nodal efficiency, and seed based- tractography (FA, radial diffusivity, and axial diffusivity) as neuroimaging outcome measures. Results A total of 133 term neonates with complex CHD were prospectively enrolled and 110 had analyzable DTI. Multiple patient-specific factors including d-transposition of the great arteries (d-TGA) physiology and severity of impairment of fetal cerebral substrate delivery (i.e., how much the CHD lesion alters typical fetal circulation such that the highest oxygen and nutrient rich blood from the placenta are not directed toward the fetal brain) were predictive of preoperative reduced cost (p < 0.0073) and reduced global/nodal efficiency (p < 0.03). Cardiopulmonary bypass time predicted postoperative reduced cost (p < 0.04) and multiple postoperative factors [extracorporeal membrane oxygenation (ECMO), seizures and cardiopulmonary resuscitation (CPR)] were predictive of postoperative reduced cost and reduced global/nodal efficiency (p < 0.05). Anthropometric measurements (weight, length, and head size) predicted tractography outcomes. Total BDS was not predictive of brain network topology. However, key subcortical components of the BDS score did predict key global and nodal network topology: abnormalities of the cerebellum predicted reduced cost (p < 0.0417) and of the hippocampus predicted reduced global efficiency (p < 0.0126). All three subcortical structures predicted unique alterations of nodal efficiency (p < 0.05), including hippocampal abnormalities predicting widespread reduced nodal efficiency in all lobes of the brain, cerebellar abnormalities predicting increased prefrontal nodal efficiency, and olfactory bulb abnormalities predicting posterior parietal-occipital nodal efficiency. Conclusion Patient-specific (d-TGA anatomy, preoperative impairment of fetal cerebral substrate delivery) and postoperative (e.g., seizures, need for ECMO, or CPR) clinical factors were most predictive of diffuse postnatal microstructural dysmaturation in term CHD neonates. Anthropometric measurements (weight, length, and head size) predicted tractography outcomes. In contrast, subcortical components (cerebellum, hippocampus, olfactory) of a structurally based BDS (derived from CHD mouse mutants), predicted more localized and regional postnatal microstructural differences. Collectively, these findings suggest that brain DTI connectome and seed-based tractography are complementary techniques which may facilitate deciphering the mechanistic relative contribution of clinical and genetic risk factors related to poor neurodevelopmental outcomes in CHD.
Collapse
Affiliation(s)
- Jodie K. Votava-Smith
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Jenna Gaesser
- Department of Neurology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Vince Lee
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nhu Tran
- Division of Neonatology, Department of Pediatrics, Keck School of Medicine of USC, Children’s Hospital Los Angeles, Fetal and Neonatal Institute, Los Angeles, CA, United States
| | - Vidya Rajagopalan
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Sylvia del Castillo
- Department of Anesthesiology Critical Care Medicine Anesthesiology, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - S. Ram Kumar
- Division of Cardiothoracic Surgery, Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Elizabeth Herrup
- Division of Pediatric Cardiac Intensive Care, Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tracy Baust
- Division of Pediatric Cardiac Intensive Care, Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jennifer A. Johnson
- Division of Pediatric Cardiology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - George C. Gabriel
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - William T. Reynolds
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Julia Wallace
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Benjamin Meyers
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rafael Ceschin
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vanessa J. Schmithorst
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ashok Panigrahy
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Ashok Panigrahy,
| |
Collapse
|
21
|
Vena F, Manganaro L, D’Ambrosio V, Masciullo L, Ventriglia F, Ercolani G, Bertolini C, Catalano C, Di Mascio D, D’Alberti E, Signore F, Pizzuti A, Giancotti A. Neuroimaging and Cerebrovascular Changes in Fetuses with Complex Congenital Heart Disease. J Clin Med 2022; 11:jcm11226740. [PMID: 36431217 PMCID: PMC9699105 DOI: 10.3390/jcm11226740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Congenital heart diseases (CHDs) are often associated with significant neurocognitive impairment and neurological delay. This study aims to elucidate the correlation between type of CHD and Doppler velocimetry and to investigate the possible presence of fetal brain abnormalities identified by magnetic resonance imaging (MRI). Methods: From July 2010 to July 2020, we carried out a cross-sectional study of 63 singleton pregnancies with a diagnosis of different types of complex CHD: LSOL (left-sided obstructive lesions; RSOL (right-sided obstructive lesions) and MTC (mixed type of CHD). All patients underwent fetal echocardiography, ultrasound evaluation, a magnetic resonance of the fetal brain, and genetic counseling. Results: The analysis of 63 fetuses shows statistically significant results in Doppler velocimetry among the different CHD groups. The RSOL group leads to higher umbilical artery (UA-PI) pressure indexes values, whereas the LSOL group correlates with significantly lower values of the middle cerebral artery (MCA-PI) compared to the other subgroups (p = 0.036), whereas the RSOL group shows a tendency to higher pulsatility indexes in the umbilical artery (UA-PI). A significant correlation has been found between a reduced head circumference (HC) and the presence of brain injury at MRI (p = 0.003). Conclusions: Congenital left- and right-sided cardiac obstructive lesions are responsible for fetal hemodynamic changes and brain growth impairment. The correct evaluation of the central nervous system (CNS) in fetuses affected by CHD could be essential as prenatal screening and the prediction of postnatal abnormalities.
Collapse
Affiliation(s)
- Flaminia Vena
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Department of Experimental Medicine, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence:
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Valentina D’Ambrosio
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Luisa Masciullo
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Flavia Ventriglia
- Pediatric and Neonatology Unit, Maternal and Child Department, Sapienza University of Rome (Polo Pontino), 4100 Latina, Italy
| | - Giada Ercolani
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Camilla Bertolini
- Department of Radiology and Imaging Sciences, Santo Spirito Hospital, Lungotevere in Sassia 1, 00193 Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Elena D’Alberti
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Fabrizio Signore
- Obsetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
22
|
Chowdhury D, Toms R, Brumbaugh JE, Bindom S, Ather M, Jaquiss R, Johnson JN. Evaluation and Management of Noncardiac Comorbidities in Children With Congenital Heart Disease. Pediatrics 2022; 150:189884. [PMID: 36317973 DOI: 10.1542/peds.2022-056415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 02/25/2023] Open
Abstract
Outcomes for patients with neonatal heart disease are affected by numerous noncardiac and genetic factors. These can include neonatal concerns, such as prematurity and low birth weight, and congenital anomalies, such as airway, pulmonary, gastrointestinal, and genitourinary anomalies, and genetic syndromes. This section will serve as a summary of these issues and how they may affect the evaluation and management of a neonate with heart disease. These noncardiac factors are heavily influenced by conditions common to neonatologists, making a strong argument for multidisciplinary care with neonatologists, cardiologists, surgeons, anesthesiologists, and cardiovascular intensivists. Through this section and this project, we aim to facilitate a comprehensive approach to the care of neonates with congenital heart disease.
Collapse
Affiliation(s)
- Devyani Chowdhury
- Cardiology Care for Children, Lancaster, Pennsylvania Nemours Cardiac Center.,These two co-first authors contributed equally to this manuscript
| | - Rune Toms
- Division of Neonatal-Perinatal Medicine, Joe DiMaggio Children's Hospital, Hollywood, Florida.,These two co-first authors contributed equally to this manuscript
| | | | - Sharell Bindom
- Division of Neonatal-Perinatal Medicine, Joe DiMaggio Children's Hospital, Hollywood, Florida
| | - Mishaal Ather
- Cardiology Care for Children, Lancaster, Pennsylvania Nemours Cardiac Center
| | - Robert Jaquiss
- Division of Pediatric and Congenital Cardiothoracic Surgery, Children's Medical Center, Dallas, Texas
| | - Jonathan N Johnson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic Children's Center, Rochester, Minnesota
| |
Collapse
|
23
|
Spielman DM, Gu M, Hurd RE, Riemer RK, Okamura K, Hanley FL. Proton magnetic resonance spectroscopy assessment of neonatal brain metabolism during cardiopulmonary bypass surgery. NMR IN BIOMEDICINE 2022; 35:e4752. [PMID: 35483967 PMCID: PMC9484292 DOI: 10.1002/nbm.4752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Here, we report on the development and performance of a robust 3-T single-voxel proton magnetic resonance spectroscopy (1 H MRS) experimental protocol and data analysis pipeline for quantifying brain metabolism during cardiopulmonary bypass (CPB) surgery in a neonatal porcine model, with the overall goal of elucidating primary mechanisms of brain injury associated with these procedures. The specific aims were to assess which metabolic processes can be reliably interrogated by 1 H MRS on a 3-T clinical scanner and to provide an initial assessment of brain metabolism during deep hypothermia cardiac arrest (DHCA) surgery and recovery. Fourteen neonatal pigs underwent CPB surgery while placed in a 3-T MRI scanner for 18, 28, and 37°C DHCA studies under hyperglycemic, euglycemic, and hypoglycemic conditions. Total imaging times, including baseline measurements, circulatory arrest (CA), and recovery averaged 3 h/animal, during which 30-40 single-voxel 1 H MRS spectra (sLASER pulse sequence, TR/TE = 2000/30 ms, 64 or 128 averages) were acquired from a 2.2-cc right midbrain voxel. 1 H MRS at 3 T was able to reliably quantify (1) anaerobic metabolism via depletion of brain glucose and the associated build-up of lactate during CA, (2) phosphocreatine (PCr) to creatine (Cr) conversion during CA and subsequent recovery upon reperfusion, (3) a robust increase in the glutamine-to-glutamate (Gln/Glu) ratio during the post-CA recovery period, and (4) a broadening of the water peak during CA. In vivo 1 H MRS at 3 T can reliably quantify subtle metabolic brain changes previously deemed challenging to interrogate, including brain glucose concentrations even under hypoglycemic conditions, ATP usage via the conversion of PCr to Cr, and differential changes in Glu and Gln. Observed metabolic changes during CPB surgery of a neonatal porcine model provide new insights into possible mechanisms for prevention of neuronal injury.
Collapse
Affiliation(s)
- Daniel M. Spielman
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Meng Gu
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Ralph E. Hurd
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - R. Kirk Riemer
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kenichi Okamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Frank L. Hanley
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
24
|
Analyzing Continuous Physiologic Data to Find Hemodynamic Signatures Associated With New Brain Injury After Congenital Heart Surgery. Crit Care Explor 2022; 4:e0751. [PMID: 36082376 PMCID: PMC9444411 DOI: 10.1097/cce.0000000000000751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Continuous data capture technology is becoming more common. Establishing analytic approaches for continuous data could aid in understanding the relationship between physiology and clinical outcomes.
Collapse
|
25
|
Alablani FJ, Chan HSA, Beishon L, Patel N, Almudayni A, Bu'Lock F, Chung EML. Paediatric brain MRI findings following congenital heart surgery: a systematic review. Arch Dis Child 2022; 107:818-825. [PMID: 35318194 PMCID: PMC9411899 DOI: 10.1136/archdischild-2021-323132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This systematic review aimed to establish the relative incidence of new postoperative brain MRI findings following paediatric congenital cardiac surgery. DESIGN To distinguish perioperative changes from pre-existing MR findings, our systematic search strategy focused on identifying original research studies reporting both presurgery and postsurgery brain MRI scans. Patient demographics, study methods and brain MR findings were extracted. RESULTS Twenty-one eligible publications, including two case-control and one randomised controlled trial, were identified. Pre-existing brain MRI findings were noted in 43% (513/1205) of neonates prior to surgery, mainly white matter injuries (WMI). Surgery was performed at a median age of 8 days with comparison of preoperative and postoperative MR scans revealing additional new postoperative findings in 51% (550/1075) of patients, mainly WMI. Four studies adopted a brain injury scoring system, but the majority did not indicate the severity or time course of findings. In a subgroup analysis, approximately 32% of patients with pre-existing lesions went on to develop additional new lesions postsurgery. Pre-existing findings were not found to confer a higher risk of acquiring brain lesions postoperatively. No evidence was identified linking new MR findings with later neurodevelopmental delay. CONCLUSION This systematic review suggests that surgery approximately doubles the number of patients with new brain lesions.
Collapse
Affiliation(s)
- Fatmah Jamal Alablani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK,College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hoi Shan Asia Chan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Nikil Patel
- Department of Clinical Neuroscience, St George's University of London, London, UK
| | - Alanoud Almudayni
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK,College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Frances Bu'Lock
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | - Emma ML Chung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK,Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
26
|
Reduced Cerebellar Volume in Term Infants with Complex Congenital Heart Disease: Correlation with Postnatal Growth Measurements. Diagnostics (Basel) 2022; 12:diagnostics12071644. [PMID: 35885549 PMCID: PMC9321214 DOI: 10.3390/diagnostics12071644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
Aberrant cerebellar development and the associated neurocognitive deficits has been postulated in infants with congenital heart disease (CHD). Our objective is to investigate the effect of postnatal head and somatic growth on cerebellar development in neonates with CHD. We compared term-born neonates with a history of CHD with a cohort of preterm-born neonates, two cohorts at similar risk for neurodevelopment impairment, in order to determine if they are similarly affected in the early developmental period. Study Design: 51 preterms-born healthy neonates, 62 term-born CHD neonates, and 54 term-born healthy neonates underwent a brain MRI with volumetric imaging. Cerebellar volumes were extracted through an automated segmentation pipeline that was developed in-house. Volumes were correlated with clinical growth parameters at both the birth and time of MRI. Results: The CHD cohort showed significantly lower cerebellar volumes when compared with both the control (p < 0.015) and preterm (p < 0.004) groups. Change in weight from birth to time of MRI showed a moderately strong correlation with cerebellar volume at time of MRI (r = 0.437, p < 0.002) in the preterms, but not in the CHD neonates (r = 0.205, p < 0.116). Changes in birth length and head circumference showed no significant correlation with cerebellar volume at time of MRI in either cohort. Conclusions: Cerebellar development in premature-born infants is associated with change in birth weight in the early post-natal period. This association is not observed in term-born neonates with CHD, suggesting differential mechanisms of aberrant cerebellar development in these perinatal at-risk populations.
Collapse
|
27
|
Leth-Olsen M, Døhlen G, Torp H, Nyrnes SA. Detection of Cerebral High-Intensity Transient Signals by NeoDoppler during Cardiac Catheterization and Cardiac Surgery in Infants. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1256-1267. [PMID: 35410742 DOI: 10.1016/j.ultrasmedbio.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
There is a risk of gaseous and solid micro-embolus formation during transcatheter cardiac interventions and surgery in children with congenital heart disease (CHD). Our aim was to study the burden of high-intensity transient signals (HITS) during these procedures in infants. We used a novel color M-mode Doppler (CMD) technique by NeoDoppler, a non-invasive ultrasound system based on plane wave transmissions for transfontanellar continuous monitoring of cerebral blood flow in infants. The system displays CMD with 24 sample volumes and a Doppler spectrogram. Infants with CHD undergoing transcatheter interventions (n = 15) and surgery (n = 13) were included. HITS were manually detected based on an "embolic signature" in the CMD with corresponding intensity increase in the Doppler spectrogram. Embolus-to-blood ratio (EBR) defined HITS size. A total of 1169 HITS with a median EBR of 9.74 dB (interquartile range [IQR]: 5.10-15.80 dB) were detected. The median number of HITS in the surgery group was 45 (IQR: 11-150), while in the transcatheter group the median number was 12 (IQR: 7-24). During cardiac surgery, the highest number of HITS per hour was seen from initiation of cardiopulmonary bypass to aortic X-clamp. In this study we detected frequent HITS and determined the feasibility of using NeoDoppler monitoring for HITS detection.
Collapse
Affiliation(s)
- Martin Leth-Olsen
- Department of Circulation and Medical Imaging (ISB), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Children's Clinic, St. Olav's University Hospital, Trondheim, Norway.
| | - Gaute Døhlen
- Department of Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Hans Torp
- Department of Circulation and Medical Imaging (ISB), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Ann Nyrnes
- Department of Circulation and Medical Imaging (ISB), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Children's Clinic, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
28
|
In infants with congenital heart disease autonomic dysfunction is associated with pre-operative brain injury. Pediatr Res 2022; 91:1723-1729. [PMID: 34963700 PMCID: PMC9237187 DOI: 10.1038/s41390-021-01931-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Brain injury is a serious and common complication of critical congenital heart disease (CHD). Impaired autonomic development (assessed by heart rate variability (HRV)) is associated with brain injury in other high-risk neonatal populations. OBJECTIVE To determine whether impaired early neonatal HRV is associated with pre-operative brain injury in CHD. METHODS In infants with critical CHD, we evaluated HRV during the first 24 h of cardiac ICU (CICU) admission using time-domain (RMS 1, RMS 2, and alpha 1) and frequency-domain metrics (LF, nLF, HF, nHF). Pre-operative brain magnetic resonance imaging (MRI) was scored for injury using an established system. Spearman's correlation coefficient was used to determine the association between HRV and pre-operative brain injury. RESULTS We enrolled 34 infants with median birth gestational age of 38.8 weeks (IQR 38.1-39.1). Median postnatal age at pre-operative brain MRI was 2 days (IQR 1-3 days). Thirteen infants had MRI evidence of brain injury. RMS 1 and RMS 2 were inversely correlated with pre-operative brain injury. CONCLUSIONS Time-domain metrics of autonomic function measured within the first 24 h of admission to the CICU are associated with pre-operative brain injury, and may perform better than frequency-domain metrics under non-stationary conditions such as critical illness. IMPACT Autonomic dysfunction, measured by heart rate variability (HRV), in early transition is associated with pre-operative brain injury in neonates with critical congenital heart disease. These data extend our earlier findings by providing further evidence for (i) autonomic dysfunction in infants with CHD, and (ii) an association between autonomic dysfunction and brain injury in critically ill neonates. These data support the notion that further investigation of HRV as a biomarker for brain injury risk is warranted in infants with critical CHD.
Collapse
|
29
|
Easson K, Gilbert G, Rohlicek CV, Saint-Martin C, Descoteaux M, Deoni SCL, Brossard-Racine M. Altered myelination in youth born with congenital heart disease. Hum Brain Mapp 2022; 43:3545-3558. [PMID: 35411995 PMCID: PMC9248320 DOI: 10.1002/hbm.25866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022] Open
Abstract
Brain injury and dysmaturation is common in fetuses and neonates with congenital heart disease (CHD) and is hypothesized to result in persistent myelination deficits. This study aimed to quantify and compare myelin content in vivo between youth born with CHD and healthy controls. Youth aged 16 to 24 years born with CHD and healthy age‐ and sex‐matched controls underwent brain magnetic resonance imaging including multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT). Average myelin water fraction (MWF) values for 33 white matter tracts, as well as a summary measure of average white matter MWF, the White Matter Myelination Index, were calculated and compared between groups. Tract‐average MWF was lower throughout the corpus callosum and in many bilateral association tracts and left hemispheric projection tracts in youth with CHD (N = 44) as compared to controls (N = 45). The White Matter Myelination Index was also lower in the CHD group. As such, this study provides specific evidence of widespread myelination deficits in youth with CHD, likely representing a long‐lasting consequence of early‐life brain dysmaturation in this population. This deficient myelination may underlie the frequent neurodevelopmental impairments experienced by CHD survivors and could eventually serve as a biomarker of neuropsychological function.
Collapse
Affiliation(s)
- Kaitlyn Easson
- Advances in Brain & Child Development (ABCD) Research Laboratory, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Neurology & Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare, Mississauga, Ontario, Canada
| | - Charles V Rohlicek
- Department of Pediatrics, Division of Cardiology, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Christine Saint-Martin
- Department of Medical Imaging, Division of Pediatric Radiology, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sean C L Deoni
- Advanced Baby Imaging Lab, Brown University, Providence, Rhode Island, USA
| | - Marie Brossard-Racine
- Advances in Brain & Child Development (ABCD) Research Laboratory, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Neurology & Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, Division of Neonatology, Montreal Children's Hospital, Montreal, Quebec, Canada.,School of Physical & Occupational Therapy, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Dextro-Transposition of Great Arteries and Neurodevelopmental Outcomes: A Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040502. [PMID: 35455546 PMCID: PMC9027469 DOI: 10.3390/children9040502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022]
Abstract
Background: Arterial switch operation (ASO) is the gold-standard surgical approach for dextro-transposition of the great arteries (D-TGA). It is performed during the neonatal period and has almost diminished the previously high mortality rate (from 90% if left untreated to <0.5%). Despite the impressively high survival rates, the surgical procedure itself—along with the chronic post-operative complications and the perinatal impaired cerebral oxygen delivery—introduces multiple and cumulative risk factors for neurodevelopmental impairment. Method: This study is a review of English articles, using PUBMED and applying the following search terms, “transposition of the great arteries”, “neurodevelopment”, “autism”, “cerebral palsy”, and “attention-deficit hyperactivity disorder”. Data were extracted by two authors. Results: Even though general IQ is mainly found within the normal range, D-TGA children and adolescents display reduced performance in the assignments of executive functions, fine motor functions, attention, working memory, visual−spatial skills, and higher-order language skills. Moreover, D-TGA survivors may eventually struggle with inferior academic achievements and psychiatric disorders such as depression, anxiety, and ADHD. Conclusions: The existing literature concerning the neurodevelopment of D-TGA patients suggests impairment occurring during their lifespan. These findings underline the importance of close developmental surveillance so that D-TGA patients can better reach their full potential.
Collapse
|
31
|
Lynch JM, Mavroudis CD, Ko TS, Jacobwitz M, Busch DR, Xiao R, Nicolson SC, Montenegro LM, Gaynor JW, Yodh AG, Licht DJ. Association of Ongoing Cerebral Oxygen Extraction During Deep Hypothermic Circulatory Arrest With Postoperative Brain Injury. Semin Thorac Cardiovasc Surg 2022; 34:1275-1284. [PMID: 34508811 PMCID: PMC8901799 DOI: 10.1053/j.semtcvs.2021.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023]
Abstract
Cardiac surgery utilizing circulatory arrest is most commonly performed under deep hypothermia (∼18°C) to suppress tissue oxygen demand and provide neuroprotection during operative circulatory arrest. Studies investigating the effects of deep hypothermic circulatory arrest (DHCA) on neurodevelopmental outcomes of patients with congenital heart disease give conflicting results. Here, we address these issues by quantifying changes in cerebral oxygen saturation, blood flow, and oxygen metabolism in neonates during DHCA and investigating the association of these changes with postoperative brain injury. Neonates with critical congenital heart disease undergoing DHCA were recruited for continuous intraoperative monitoring of cerebral oxygen saturation (ScO2) and an index of cerebral blood flow (CBFi) using 2 noninvasive optical techniques, diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS). Pre- and postoperative brain magnetic resonance imaging (MRI) was performed to detect white matter injury (WMI). Fifteen neonates were studied, and 11/15 underwent brain MRI. During DHCA, ScO2 decreased exponentially in time with a median decay rate of -0.04 min-1. This decay rate was highly variable between subjects. Subjects who had larger decreases in ScO2 during DHCA were more likely to have postoperative WMI (P = 0.02). Cerebral oxygen extraction persists during DHCA and varies widely from patient-to-patient. Patients with a higher degree of oxygen extraction during DHCA were more likely to show new WMI in postoperative MRI. These findings suggest cerebral oxygen extraction should be monitored during DHCA to identify patients at risk for hypoxic-ischemic injury, and that current commercial cerebral oximeters may underestimate cerebral oxygen extraction.
Collapse
Affiliation(s)
- Jennifer M. Lynch
- The Children’s Hospital of Philadelphia, Department of Anesthesiology and Critical Care Medicine, Philadelphia, Pennsylvania 19104
| | - Constantine D. Mavroudis
- The Children’s Hospital of Philadelphia, Division of Cardiothoracic Surgery, Philadelphia, Pennsylvania 19104
| | - Tiffany S. Ko
- The Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania 19104
| | - Marin Jacobwitz
- The Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania 19104
| | - David R. Busch
- Departments of Anesthesiology and Pain Management and Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rui Xiao
- University of Pennsylvania, Department of Biostatistics and Epidemiology, Philadelphia, Pennsylvania 19104
| | - Susan C. Nicolson
- The Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesia, Philadelphia, Pennsylvania 19104
| | - Lisa M. Montenegro
- The Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesia, Philadelphia, Pennsylvania 19104
| | - J. William Gaynor
- The Children’s Hospital of Philadelphia, Division of Cardiothoracic Surgery, Philadelphia, Pennsylvania 19104
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104
| | - Daniel J. Licht
- The Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania 19104
| |
Collapse
|
32
|
Brain MRI Radiomics Analysis of School-Aged Children with Tetralogy of Fallot. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2380346. [PMID: 34745322 PMCID: PMC8570890 DOI: 10.1155/2021/2380346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022]
Abstract
Introduction Radiomics could be potential imaging biomarkers by capturing and analyzing the features. Children and adolescents with CHD have worse neurodevelopmental and functional outcomes compared with their peers. Early diagnosis and intervention are the necessity to improve neurological outcomes in CHD patients. Methods School-aged TOF patients and their healthy peers were recruited for MRI and neurodevelopmental assessment. LASSO regression was used for dimension reduction. ROC curve graph showed the performance of the model. Results Six related features were finally selected for modeling. The final model AUC was 0.750. The radiomics features can be potential significant predictors for neurodevelopmental diagnoses. Conclusion The radiomics on the conventional MRI can help predict the neurodevelopment of school-aged children and provide parents with rehabilitation advice as early as possible.
Collapse
|
33
|
Stegeman R, Feldmann M, Claessens NHP, Jansen NJG, Breur JMPJ, de Vries LS, Logeswaran T, Reich B, Knirsch W, Kottke R, Hagmann C, Latal B, Simpson J, Pushparajah K, Bonthrone AF, Kelly CJ, Arulkumaran S, Rutherford MA, Counsell SJ, Benders MJNL. A Uniform Description of Perioperative Brain MRI Findings in Infants with Severe Congenital Heart Disease: Results of a European Collaboration. AJNR Am J Neuroradiol 2021; 42:2034-2039. [PMID: 34674999 PMCID: PMC8583253 DOI: 10.3174/ajnr.a7328] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE A uniform description of brain MR imaging findings in infants with severe congenital heart disease to assess risk factors, predict outcome, and compare centers is lacking. Our objective was to uniformly describe the spectrum of perioperative brain MR imaging findings in infants with congenital heart disease. MATERIALS AND METHODS Prospective observational studies were performed at 3 European centers between 2009 and 2019. Brain MR imaging was performed preoperatively and/or postoperatively in infants with transposition of the great arteries, single-ventricle physiology, or left ventricular outflow tract obstruction undergoing cardiac surgery within the first 6 weeks of life. Brain injury was assessed on T1, T2, DWI, SWI, and MRV. A subsample of images was assessed jointly to reach a consensus. RESULTS A total of 348 MR imaging scans (180 preoperatively, 168 postoperatively, 146 pre- and postoperatively) were obtained in 202 infants. Preoperative, new postoperative, and cumulative postoperative white matter injury was identified in 25%, 30%, and 36%; arterial ischemic stroke, in 6%, 10%, and 14%; hypoxic-ischemic watershed injury in 2%, 1%, and 1%; intraparenchymal cerebral hemorrhage, in 0%, 4%, and 5%; cerebellar hemorrhage, in 6%, 2%, and 6%; intraventricular hemorrhage, in 14%, 6%, and 13%; subdural hemorrhage, in 29%, 17%, and 29%; and cerebral sinovenous thrombosis, in 0%, 10%, and 10%, respectively. CONCLUSIONS A broad spectrum of perioperative brain MR imaging findings was found in infants with severe congenital heart disease. We propose an MR imaging protocol including T1-, T2-, diffusion-, and susceptibility-weighted imaging, and MRV to identify ischemic, hemorrhagic, and thrombotic lesions observed in this patient group.
Collapse
Affiliation(s)
- R Stegeman
- From the Departments of Neonatology (R.S., N.H.P.C., L.S.d.V., M.J.N.L.B.)
- Pediatric Intensive Care (R.S., N.H.P.C., N.J.G.J.)
- Pediatric Cardiology (R.S., N.H.P.C., J.M.P.J.B.), Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, the Netherlands
- Utrecht Brain Center (R.S., L.S.d.V., M.J.N.L.B.), UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - N H P Claessens
- From the Departments of Neonatology (R.S., N.H.P.C., L.S.d.V., M.J.N.L.B.)
- Pediatric Intensive Care (R.S., N.H.P.C., N.J.G.J.)
- Pediatric Cardiology (R.S., N.H.P.C., J.M.P.J.B.), Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, the Netherlands
| | - N J G Jansen
- Pediatric Intensive Care (R.S., N.H.P.C., N.J.G.J.)
- Department of Pediatrics (N.J.G.J.), Beatrix Children's Hospital, UMC Groningen, Groningen, the Netherlands
| | - J M P J Breur
- Pediatric Cardiology (R.S., N.H.P.C., J.M.P.J.B.), Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, the Netherlands
| | - L S de Vries
- From the Departments of Neonatology (R.S., N.H.P.C., L.S.d.V., M.J.N.L.B.)
- Utrecht Brain Center (R.S., L.S.d.V., M.J.N.L.B.), UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T Logeswaran
- Pediatric Heart Center (T.L., B.R.), University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - B Reich
- Pediatric Heart Center (T.L., B.R.), University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - W Knirsch
- Division of Pediatric Cardiology (W.K.), Pediatric Heart Center
| | - R Kottke
- Department of Diagnostic Imaging (R.K.)
| | - C Hagmann
- Department of Neonatology and Pediatric Intensive Care (C.H.), University Children's Hospital Zurich, Zurich, Switzerland
| | - B Latal
- Child Development Center (M.F., B.L.)
| | - J Simpson
- Department of Pediatric Cardiology (J.S., K.P.), Evelina Children's Hospital London, London, UK
| | - K Pushparajah
- Department of Pediatric Cardiology (J.S., K.P.), Evelina Children's Hospital London, London, UK
- Centre for the Developing Brain (K.P., A.F.B., C.J.K., S.A., M.A.R., S.J.C.), School of Biomedical Engineering and Imaging Sciences, King.s College London, London, UK
| | - A F Bonthrone
- Centre for the Developing Brain (K.P., A.F.B., C.J.K., S.A., M.A.R., S.J.C.), School of Biomedical Engineering and Imaging Sciences, King.s College London, London, UK
| | - C J Kelly
- Centre for the Developing Brain (K.P., A.F.B., C.J.K., S.A., M.A.R., S.J.C.), School of Biomedical Engineering and Imaging Sciences, King.s College London, London, UK
| | - S Arulkumaran
- Centre for the Developing Brain (K.P., A.F.B., C.J.K., S.A., M.A.R., S.J.C.), School of Biomedical Engineering and Imaging Sciences, King.s College London, London, UK
| | - M A Rutherford
- Centre for the Developing Brain (K.P., A.F.B., C.J.K., S.A., M.A.R., S.J.C.), School of Biomedical Engineering and Imaging Sciences, King.s College London, London, UK
| | - S J Counsell
- Centre for the Developing Brain (K.P., A.F.B., C.J.K., S.A., M.A.R., S.J.C.), School of Biomedical Engineering and Imaging Sciences, King.s College London, London, UK
| | - M J N L Benders
- From the Departments of Neonatology (R.S., N.H.P.C., L.S.d.V., M.J.N.L.B.)
- Utrecht Brain Center (R.S., L.S.d.V., M.J.N.L.B.), UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
34
|
Hwang M, Barnewolt CE, Jüngert J, Prada F, Sridharan A, Didier RA. Contrast-enhanced ultrasound of the pediatric brain. Pediatr Radiol 2021; 51:2270-2283. [PMID: 33599780 PMCID: PMC11458139 DOI: 10.1007/s00247-021-04974-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Brain contrast-enhanced ultrasound (CEUS) is an emerging application that can complement gray-scale US and yield additional insights into cerebral flow dynamics. CEUS uses intravenous injection of ultrasound contrast agents (UCAs) to highlight tissue perfusion and thus more clearly delineate cerebral pathologies including stroke, hypoxic-ischemic injury and focal lesions such as tumors and vascular malformations. It can be applied not only in infants with open fontanelles but also in older children and adults via a transtemporal window or surgically created acoustic window. Advancements in CEUS technology and post-processing methods for quantitative analysis of UCA kinetics further elucidate cerebral microcirculation. In this review article we discuss the CEUS examination protocol for brain imaging in children, current clinical applications and future directions for research and clinical uses of brain CEUS.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carol E Barnewolt
- Department of Radiology, Boston Children's Hospital, Harvard University, Boston, MA, USA
| | - Jörg Jüngert
- Department of Pediatrics, Friedrich-Alexander University Erlangen - Nürnberg, Erlangen, Germany
| | - Francesco Prada
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Anush Sridharan
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Ryne A Didier
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Abdelghani E, Cua CL, Giver J, Rodriguez V. Thrombosis Prevention and Anticoagulation Management in the Pediatric Patient with Congenital Heart Disease. Cardiol Ther 2021; 10:325-348. [PMID: 34184214 PMCID: PMC8555036 DOI: 10.1007/s40119-021-00228-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 01/19/2023] Open
Abstract
Thrombosis is one of the most frequent complications affecting children with congenital heart disease (CHD). Palliative and reparative cardiac surgeries are some of the main players contributing to the thrombosis risk in this patient population. Additional risk factors related to the CHD itself (e.g., cardiac dysfunction, arrhythmias, and polycythemia in cyanotic cardiac disorders) can contribute to thrombogenicity alone or combined with other factors. Thrombotic complications have been recognized as a significant cause of morbidity and mortality in this patient population. Here, we provide an overview of the pathophysiology and risk factors for thrombosis as well as the indications for and use of different anticoagulation, antiplatelet, and thrombolytic agents. In addition, we describe some of most common thrombotic complications and their management in the pediatric CHD population.
Collapse
Affiliation(s)
- Eman Abdelghani
- Division of Pediatric Hematology/Oncology, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Clifford L Cua
- Heart Center, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA. .,Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Jean Giver
- Division of Pediatric Hematology/Oncology, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vilmarie Rodriguez
- Division of Pediatric Hematology/Oncology, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
36
|
Asschenfeldt B, Evald L, Yun HJ, Heiberg J, Østergaard L, Grant PE, Hjortdal VE, Im K, Eskildsen SF. Abnormal Left-Hemispheric Sulcal Patterns in Adults With Simple Congenital Heart Defects Repaired in Childhood. J Am Heart Assoc 2021; 10:e018580. [PMID: 33745293 PMCID: PMC8174332 DOI: 10.1161/jaha.120.018580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Children operated on for a simple congenital heart defect (CHD) are at risk of neurodevelopmental abnormalities. Abnormal cortical development and folding have been observed in fetuses with CHD. We examined whether sulcal folding patterns in adults operated on for simple CHD in childhood differ from those of healthy controls, and whether such differences are associated with neuropsychological outcomes. Methods and Results Patients (mean age, 24.5 years) who underwent childhood surgery for isolated atrial septal defect (ASD; n=33) or ventricular septal defect (VSD; n=30) and healthy controls (n=37) were enrolled. Sulcal pattern similarity to healthy controls was determined using magnetic resonance imaging and looking at features of sulcal folds, their intersulcal relationships, and sulcal graph topology. The sulcal pattern similarity values were tested for associations with comprehensive neuropsychological scores. Patients with both ASD and VSD had decreased sulcal pattern similarity in the left hemisphere compared with controls. The differences were found in the left temporal lobe in the ASD group and in the whole left hemisphere in the VSD group (P=0.033 and P=0.039, respectively). The extent of abnormal left hemispheric sulcal pattern similarity was associated with worse neuropsychological scores (intelligence, executive function, and visuospatial abilities) in the VSD group, and special educational support in the ASD group. Conclusions Adults who underwent surgery for simple CHD in childhood display altered left hemisphere sulcal folding patterns, commensurate with neuropsychological scores for patients with VSD and special educational support for ASD. This may indicate that simple CHD affects early brain development. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871881.
Collapse
Affiliation(s)
- Benjamin Asschenfeldt
- Department of Cardiothoracic and Vascular Surgery Aarhus University Hospital Aarhus N Denmark.,Department of Clinical Medicine Aarhus University Aarhus N Denmark
| | - Lars Evald
- Department of Clinical Medicine Aarhus University Aarhus N Denmark.,Hammel Neurorehabilitation Centre and University Research Clinic Hammel Denmark
| | - Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center Boston Children's Hospital Boston MA.,Division of Newborn Medicine Boston Children's Hospital Boston MA.,Harvard Medical School Boston MA
| | - Johan Heiberg
- Department of Cardiothoracic and Vascular Surgery Aarhus University Hospital Aarhus N Denmark.,Department of Clinical Medicine Aarhus University Aarhus N Denmark
| | - Leif Østergaard
- Department of Clinical Medicine Aarhus University Aarhus N Denmark.,Center of Functionally Integrative Neuroscience Aarhus University Aarhus C Denmark
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center Boston Children's Hospital Boston MA.,Division of Newborn Medicine Boston Children's Hospital Boston MA.,Department of Radiology Boston Children's Hospital Boston MA.,Harvard Medical School Boston MA
| | - Vibeke Elisabeth Hjortdal
- Department of Clinical Medicine Aarhus University Aarhus N Denmark.,Department of Cardiothoracic Surgery RigshospitaletCopenhagen Denmark.,Institute of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center Boston Children's Hospital Boston MA.,Division of Newborn Medicine Boston Children's Hospital Boston MA.,Harvard Medical School Boston MA
| | - Simon Fristed Eskildsen
- Department of Clinical Medicine Aarhus University Aarhus N Denmark.,Center of Functionally Integrative Neuroscience Aarhus University Aarhus C Denmark
| |
Collapse
|
37
|
Graupner O, Koch J, Enzensberger C, Götte M, Wolter A, Müller V, Kawecki A, Herrmann J, Axt-Fliedner R. Cerebroplacental and Uterine Doppler Indices in Pregnancies Complicated by Congenital Heart Disease of the Fetus. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2021; 42:48-55. [PMID: 31200391 DOI: 10.1055/a-0900-4021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PURPOSE Children with congenital heart disease (CHD) are known to have impaired neurodevelopment possibly influenced by altered cerebroplacental hemodynamics antenatally. We compared fetomaternal Doppler patterns in different CHD groups with published normative values during gestation. MATERIALS AND METHODS Retrospective cohort study consisting of 248 CHD fetuses. Subgroups were generated according to the expected ascending aorta oxygen saturation: low portion of high oxygenated umbilical venous (UV) blood (group 1: n = 108), intermediate portion of UV blood due to intracardiac mixing with oxygen poor systemic blood (group 2: n = 103), high (group 3: n = 13) and low portion of UV blood without mixing of blood (group 4: n = 24). Doppler examination included umbilical artery and middle cerebral artery pulsatility index (UA-PI, MCA-PI), cerebroplacental ratio (CPR) and mean uterine artery (mUtA) PI. For mean comparisons at different gestational ages (GA), estimated marginal means from regression models are reported for GA 22 weeks (wks), GA 30 wks and GA 38 wks. RESULTS Z-score transformed values of MCA-PI (zMCA-PI) were significantly lower in group 1 compared to all other subgroups at GA 30 wks (p < 0.05). At 38 wks, group 1 had significantly lower values of zMCA-PI and zCPR compared to groups 2 and 4. Group 1 fetuses showed a significant association between zMCA-PI and zCPR (negative) and GA as well as zmUtA-PI (positive) and GA compared to reference values. CONCLUSION Our data confirm that CHD fetuses have a higher rate of cerebral redistribution in the third trimester. Changes in Doppler patterns were mainly observed in CHD with a low portion of UV blood in the ascending aorta.
Collapse
Affiliation(s)
- Oliver Graupner
- Department of Obstetrics and Gynecology, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jessica Koch
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| | - Christian Enzensberger
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| | - Malena Götte
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| | - Aline Wolter
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| | - Vera Müller
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| | - Andreea Kawecki
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| | | | - Roland Axt-Fliedner
- Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University Hospital UKGM, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
38
|
Neurodevelopmental Outcomes in Congenital Heart Disease: A Review. CURRENT PEDIATRICS REPORTS 2020. [DOI: 10.1007/s40124-020-00229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Ortinau CM, Rollins CK, Gholipour A, Yun HJ, Marshall M, Gagoski B, Afacan O, Friedman K, Tworetzky W, Warfield SK, Newburger JW, Inder TE, Grant PE, Im K. Early-Emerging Sulcal Patterns Are Atypical in Fetuses with Congenital Heart Disease. Cereb Cortex 2020; 29:3605-3616. [PMID: 30272144 DOI: 10.1093/cercor/bhy235] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/28/2018] [Indexed: 12/30/2022] Open
Abstract
Fetuses with congenital heart disease (CHD) have third trimester alterations in cortical development on brain magnetic resonance imaging (MRI). However, the intersulcal relationships contributing to global sulcal pattern remain unknown. This study applied a novel method for examining the geometric and topological relationships between sulci to fetal brain MRIs from 21-30 gestational weeks in CHD fetuses (n = 19) and typically developing (TD) fetuses (n = 17). Sulcal pattern similarity index (SI) to template fetal brain MRIs was determined for the position, area, and depth for corresponding sulcal basins and intersulcal relationships for each subject. CHD fetuses demonstrated altered global sulcal patterns in the left hemisphere compared with TD fetuses (TD [SI, mean ± SD]: 0.822 ± 0.023, CHD: 0.795 ± 0.030, P = 0.002). These differences were present in the earliest emerging sulci and were driven by differences in the position of corresponding sulcal basins (TD: 0.897 ± 0.024, CHD: 0.878 ± 0.019, P = 0.006) and intersulcal relationships (TD: 0.876 ± 0.031, CHD: 0.857 ± 0.018, P = 0.033). No differences in cortical gyrification index, mean curvature, or surface area were present. These data suggest our methods may be more sensitive than traditional measures for evaluating cortical developmental alterations early in gestation.
Collapse
Affiliation(s)
- Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital Boston, MA, USA
| | - Mackenzie Marshall
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Kevin Friedman
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, Boston Children's Hospital Boston, MA, USA
| | - Wayne Tworetzky
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, Boston Children's Hospital Boston, MA, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, Boston Children's Hospital Boston, MA, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - P Ellen Grant
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital Boston, MA, USA
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital Boston, MA, USA
| |
Collapse
|
40
|
Kelly CJ, Christiaens D, Batalle D, Makropoulos A, Cordero-Grande L, Steinweg JK, O'Muircheartaigh J, Khan H, Lee G, Victor S, Alexander DC, Zhang H, Simpson J, Hajnal JV, Edwards AD, Rutherford MA, Counsell SJ. Abnormal Microstructural Development of the Cerebral Cortex in Neonates With Congenital Heart Disease Is Associated With Impaired Cerebral Oxygen Delivery. J Am Heart Assoc 2020; 8:e009893. [PMID: 30821171 PMCID: PMC6474935 DOI: 10.1161/jaha.118.009893] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Abnormal macrostructural development of the cerebral cortex has been associated with hypoxia in infants with congenital heart disease ( CHD ). Animal studies have suggested that hypoxia results in cortical dysmaturation at the cellular level. New magnetic resonance imaging techniques offer the potential to investigate the relationship between cerebral oxygen delivery and cortical microstructural development in newborn infants with CHD . Methods and Results We measured cortical macrostructural and microstructural properties in 48 newborn infants with serious or critical CHD and 48 age-matched healthy controls. Cortical volume and gyrification index were calculated from high-resolution structural magnetic resonance imaging. Neurite density and orientation dispersion indices were modeled using high-angular-resolution diffusion magnetic resonance imaging. Cerebral oxygen delivery was estimated in infants with CHD using phase contrast magnetic resonance imaging and preductal pulse oximetry. We used gray matter-based spatial statistics to examine voxel-wise group differences in cortical microstructure. Microstructural development of the cortex was abnormal in 48 infants with CHD , with regions of increased fractional anisotropy and reduced orientation dispersion index compared with 48 healthy controls, correcting for gestational age at birth and scan (family-wise error corrected for multiple comparisons at P<0.05). Regions of reduced cortical orientation dispersion index in infants with CHD were related to impaired cerebral oxygen delivery ( R2=0.637; n=39). Cortical orientation dispersion index was associated with the gyrification index ( R2=0.589; P<0.001; n=48). Conclusions This study suggests that the primary component of cerebral cortex dysmaturation in CHD is impaired dendritic arborization, which may underlie abnormal macrostructural findings reported in this population, and that the degree of impairment is related to reduced cerebral oxygen delivery.
Collapse
Affiliation(s)
- Christopher J Kelly
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Daan Christiaens
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Dafnis Batalle
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Antonios Makropoulos
- 2 Biomedical Image Analysis Group Department of Computing Imperial College London London United Kingdom
| | - Lucilio Cordero-Grande
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Johannes K Steinweg
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Jonathan O'Muircheartaigh
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom.,3 Department of Forensic and Neurodevelopmental Sciences King's College London Institute of Psychiatry, Psychology and Neuroscience London United Kingdom.,4 Department of Neuroimaging King's College London Institute of Psychiatry, Psychology and Neuroscience London United Kingdom.,5 MRC Centre for Neurodevelopmental Disorders King's College London London United Kingdom
| | - Hammad Khan
- 6 Neonatal Intensive Care Unit St Thomas' Hospital London United Kingdom
| | - Geraint Lee
- 6 Neonatal Intensive Care Unit St Thomas' Hospital London United Kingdom
| | - Suresh Victor
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Daniel C Alexander
- 7 Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom
| | - Hui Zhang
- 7 Department of Computer Science and Centre for Medical Image Computing University College London London United Kingdom
| | - John Simpson
- 8 Paediatric Cardiology Department Evelina London Children's Hospital St Thomas' Hospital London United Kingdom
| | - Joseph V Hajnal
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - A David Edwards
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom.,5 MRC Centre for Neurodevelopmental Disorders King's College London London United Kingdom
| | - Mary A Rutherford
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| | - Serena J Counsell
- 1 Centre for the Developing Brain School of Biomedical Engineering and Imaging Sciences King's College London St Thomas' Hospital London United Kingdom
| |
Collapse
|
41
|
Benefits of progesterone on brain immaturity and white matter injury induced by chronic hypoxia in neonatal rats. J Thorac Cardiovasc Surg 2020; 160:e55-e66. [PMID: 32689704 DOI: 10.1016/j.jtcvs.2020.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study aims to evaluate the protective effects of progesterone on white matter injury and brain immaturity in neonatal rats with chronic hypoxia. METHODS Three-day old Sprague-Dawley rats were randomly divided into 3 groups: (1) control (n = 48), rats were exposed to normoxia (fraction of inspired oxygen: 21% ± 0%); (2) chronic hypoxia (n = 48), rats were exposed to hypoxia (fraction of inspired oxygen: 10.5% ± 1.0%); and (3) progesterone (n = 48), rats were exposed to hypoxia and administrated with progesterone (8 mg/kg/d). Hematoxylin-eosin staining, immunohistochemistry, real-time quantitative polymerase chain reaction, and Western blot analyses were compared on postnatal day 14 in different groups. Motor skill and coordination abilities of rats were assessed via rotation experiments. RESULTS Increased brain weights (P < .05), narrowed ventricular sizes (P < .01), and rotarod experiment scores (P < .01) were better in the progesterone group than in the chronic hypoxia group. The number of mature oligodendrocytes and myelin basic protein expression increased in the progesterone group compared with the chronic hypoxia group (P < .01). The polarization of M1 microglia cells in the corpus callosum of chronic hypoxia-induced hypomyelination rats was significantly increased, whereas there were fewer M2 microglia cells. Conversely, progesterone therapy had an opposite effect and caused an increase in M2 microglia polarization versus a reduction in M1 microglia cells. CONCLUSIONS Progesterone could prevent white matter injury and improve brain maturation in a neonatal hypoxic rat model; this may be associated with inducing a switch from M1 to M2 in microglia.
Collapse
|
42
|
Morton SU, Maleyeff L, Wypij D, Yun HJ, Newburger JW, Bellinger DC, Roberts AE, Rivkin MJ, Seidman JG, Seidman CE, Grant PE, Im K. Abnormal Left-Hemispheric Sulcal Patterns Correlate with Neurodevelopmental Outcomes in Subjects with Single Ventricular Congenital Heart Disease. Cereb Cortex 2020; 30:476-487. [PMID: 31216004 PMCID: PMC7306172 DOI: 10.1093/cercor/bhz101] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental abnormalities are the most common noncardiac complications in patients with congenital heart disease (CHD). Prenatal brain abnormalities may be due to reduced oxygenation, genetic factors, or less commonly, teratogens. Understanding the contribution of these factors is essential to improve outcomes. Because primary sulcal patterns are prenatally determined and under strong genetic control, we hypothesized that they are influenced by genetic variants in CHD. In this study, we reveal significant alterations in sulcal patterns among subjects with single ventricle CHD (n = 115, 14.7 ± 2.9 years [mean ± standard deviation]) compared with controls (n = 45, 15.5 ± 2.4 years) using a graph-based pattern-analysis technique. Among patients with CHD, the left hemisphere demonstrated decreased sulcal pattern similarity to controls in the left temporal and parietal lobes, as well as the bilateral frontal lobes. Temporal and parietal lobes demonstrated an abnormally asymmetric left-right pattern of sulcal basin area in CHD subjects. Sulcal pattern similarity to control was positively correlated with working memory, processing speed, and executive function. Exome analysis identified damaging de novo variants only in CHD subjects with more atypical sulcal patterns. Together, these findings suggest that sulcal pattern analysis may be useful in characterizing genetically influenced, atypical early brain development and neurodevelopmental risk in subjects with CHD.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lara Maleyeff
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Wypij
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David C Bellinger
- Department of Neurology
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Amy E Roberts
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Michael J Rivkin
- Department of Neurology
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Radiology
- Stroke and Cerebrovascular Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - P Ellen Grant
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Radiology
| | - Kiho Im
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
43
|
Abstract
Neurodevelopmental outcomes after neonatal congenital heart surgery are significantly influenced by brain injury detectable by MRI imaging techniques. This brain injury can occur in the prenatal and postnatal periods even before cardiac surgery. Given the significant incidence of new MRI brain injury after cardiac surgery, much work is yet to be done on strategies to detect, prevent, and treat brain injury in the neonatal period in order to optimize longer-term neurodevelopmental outcomes.
Collapse
|
44
|
Moran MM, Gunn-Charlton JK, Walsh JM, Cheong JLY, Anderson PJ, Doyle LW, Greaves S, Hunt RW. Associations of Neonatal Noncardiac Surgery with Brain Structure and Neurodevelopment: A Prospective Case-Control Study. J Pediatr 2019; 212:93-101.e2. [PMID: 31235385 DOI: 10.1016/j.jpeds.2019.05.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/18/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To examine the associations of neonatal noncardiac surgery with newborn brain structure and neurodevelopment at 2 years of age. STUDY DESIGN Infants requiring neonatal noncardiac surgery for congenital diaphragmatic hernia, esophageal atresia, or anterior abdominal wall defect were compared with infants who did not require surgery, matched for sex, gestation at birth, and postmenstrual age at magnetic resonance imaging. Cerebral magnetic resonance imaging was performed at a mean (SD) postmenstrual age of 41.6 (1.7) weeks. Images were assessed qualitatively for brain maturation and injury and quantitatively for measures of brain size, cerebrospinal fluid spaces, and global abnormality. Neurodevelopment was then assessed at 2 years using the Bayley Scales of Infant and Toddler Development, 3rd edition. RESULTS Infants requiring surgery (n = 39) were 5.9 times (95% CI, 1.9-19.5; P < .01) more likely to have delayed gyral maturation and 9.8 times (95% CI, 1.2-446; P = .01) more likely to have white matter signal abnormalities compared with controls (n = 39). Cases were more likely to have higher global abnormality scores, smaller biparietal diameters, and larger ventricular sizes than controls. Infants who had surgery had lower mean composite scores in the language (mean difference, -12.5; 95% CI, -22.4 to -2.7) and motor domains (mean difference, -13.4; 95% CI, -21.1 to -5.6) compared with controls. CONCLUSIONS Infants requiring neonatal noncardiac surgery have smaller brains with more abnormalities compared with matched controls and have associated neurodevelopmental impairment at 2 years of age. Prospective studies with preoperative and postoperative imaging would assist in determining the timing of brain injury.
Collapse
Affiliation(s)
- Margaret M Moran
- Department of Neonatology, Children's University Hospital, Dublin, Ireland; Department of Neonatology, The Rotunda Hospital, Dublin, Ireland; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Julia K Gunn-Charlton
- Department of Pediatrics, University of Melbourne, Melbourne, Australia; Neonatal Medicine, The Royal Children's Hospital, Melbourne, Australia; Newborn Services, The Royal Women's Hospital, Melbourne, Australia
| | - Jennifer M Walsh
- Newborn Services, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynecology, The University of Melbourne, Melbourne, Australia
| | - Jeanie L Y Cheong
- Newborn Services, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynecology, The University of Melbourne, Melbourne, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Peter J Anderson
- Newborn Services, The Royal Women's Hospital, Melbourne, Australia; Turner Institute of Brain and Mental Health, Monash University, Melbourne, Australia
| | - Lex W Doyle
- Department of Pediatrics, University of Melbourne, Melbourne, Australia; Newborn Services, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynecology, The University of Melbourne, Melbourne, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Susan Greaves
- Department of Occupational Therapy, The Royal Children's Hospital, Melbourne, Australia
| | - Rod W Hunt
- Department of Pediatrics, University of Melbourne, Melbourne, Australia; Neonatal Medicine, The Royal Children's Hospital, Melbourne, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
45
|
Therapeutic Hypothermia After Perinatal Asphyxia in Infants With Severe, Ductal-Dependent Congenital Heart Disease. Pediatr Crit Care Med 2019; 20:457-465. [PMID: 30676491 DOI: 10.1097/pcc.0000000000001878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Patients with severe congenital heart disease and cardiac anomalies such as restrictive foramen ovale, intact atrial septum, or narrowing of ductus arteriosus are at risk for perinatal asphyxia, leading to hypoxic-ischemic encephalopathy. We hypothesize that therapeutic hypothermia can be applied to these patients and seek to investigate feasibility and safety of this method. DESIGN A retrospective observational study. SETTING The Department of Neonatology of Charité, University Hospital, Berlin, Germany. PATIENTS Newborns with severe congenital heart disease and perinatal asphyxia were retrospectively analyzed over a 6-year period. INTERVENTIONS Application of therapeutic hypothermia. MEASUREMENTS AND MAIN RESULTS Ten patients with perinatal asphyxia were enrolled in this study. All patients received low-dose prostaglandin E1 for ductal maintenance. Three patients without evidence for hypoxic-ischemic encephalopathy did not receive therapeutic hypothermia. One patient died at the age of 15 hours, and therapeutic hypothermia was discontinued after 19 hours in another patient with severe arterial hypotension. Adverse effects during hypothermia included respiratory insufficiency (100%), arterial hypotension (71%), the need for inotropic support (71%), and pulmonary hypertension (43%), the latter associated with prolonged postoperative inotropic support. No neurologic complications occurred before or after the surgery. Operative outcome of surviving patients was excellent. Early brain MRI scans were suggestive of good neurodevelopmental prognosis for most patients. CONCLUSIONS Therapeutic hypothermia can be applied to patients with severe congenital heart disease and hypoxic-ischemic encephalopathy. Low-dose prostaglandin E1 infusions are safe for ductal maintenance during cooling, but cardiopulmonary adverse effects should be anticipated.
Collapse
|
46
|
Cole AR, Perry DA, Raza A, Nedder AP, Pollack E, Regan WL, van den Bosch SJ, Polizzotti BD, Yang E, Davila D, Afacan O, Warfield SK, Ou Y, Sefton B, Everett AD, Neil JJ, Lidov HG, Mayer JE, Kheir JN. Perioperatively Inhaled Hydrogen Gas Diminishes Neurologic Injury Following Experimental Circulatory Arrest in Swine. JACC Basic Transl Sci 2019; 4:176-187. [PMID: 31061920 PMCID: PMC6488769 DOI: 10.1016/j.jacbts.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
Abstract
This study used a swine model of mildly hypothermic prolonged circulatory arrest and found that the addition of 2.4% inhaled hydrogen gas to inspiratory gases during and after the ischemic insult significantly decreased neurologic and renal injury compared with controls. With proper precautions, inhalational hydrogen may be administered safely through conventional ventilators and may represent a complementary therapy that can be easily incorporated into current workflows. In the future, inhaled hydrogen may diminish the sequelae of ischemia that occurs in congenital heart surgery, cardiac arrest, extracorporeal life-support events, acute myocardial infarction, stroke, and organ transplantation.
Collapse
Affiliation(s)
- Alexis R. Cole
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
| | - Dorothy A. Perry
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Ali Raza
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Arthur P. Nedder
- Animal Resources at Children’s Hospital, Boston Children’s Hospital, Boston, Massachusetts
| | - Elizabeth Pollack
- Animal Resources at Children’s Hospital, Boston Children’s Hospital, Boston, Massachusetts
| | - William L. Regan
- Department of Cardiovascular Surgery, Boston Children’s Hospital, Boston, Massachusetts
| | | | - Brian D. Polizzotti
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Daniel Davila
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Yangming Ou
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Brenda Sefton
- Department of Cardiovascular Surgery, Boston Children’s Hospital, Boston, Massachusetts
| | - Allen D. Everett
- Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey J. Neil
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Hart G.W. Lidov
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - John E. Mayer
- Department of Cardiovascular Surgery, Boston Children’s Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - John N. Kheir
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Hybrid procedure of right ventricle outflow tract stenting in small infants with pulmonary atresia and ventricular septal defect: early and mid-term results from a single centre. Cardiol Young 2019; 29:375-379. [PMID: 30724146 DOI: 10.1017/s1047951118002482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED IntroductionPulmonary atresia, ventricular septal defect, major aorto-pulmonary collateral arteries, and pulmonary arteries hypoplasia are rare and complex congenital defects that require early interventions to relieve cyanosis and enhance the growth of native pulmonary arteries. The treatment of these patients is still controversial. Surgical techniques require cardiopulmonary bypass which is poorly tolerated by small infants. Percutaneous techniques such as radiofrequency perforation can be challenging. The hybrid technique consists of perventricular stenting of the right ventricle outflow tract through medial sternotomy, to restore native pulmonary flow. METHODS We retrospectively reviewed the cardiovascular database of our centre in order to analyse our experience in hybrid procedure. We detected six patients who underwent hybrid first approach between November 2007 and December 2015. We report our early results and mid-term outcomes. RESULTS Median age at the procedure was 26 days, median weight was 3150 g, and median Nakata index was 52 mm2/m2. All procedures were successful except for one: this patient underwent a surgical shunt. No immediate and early deaths or major complications occurred and oxygen saturation levels increased in all the patients. Patients were followed up for a period of 12-103 months, and four of them underwent a procedure of unifocalisation at the mean age of 12.5 months. CONCLUSIONS We reported data from the largest series of patients who underwent this hybrid procedure. Our experience demonstrated encouraging results to expand the use of this approach to bridge high-risk patients with diminutive pulmonary arteries to a second step of surgical repair.
Collapse
|
48
|
Yoshitani K, Kawaguchi M, Ishida K, Maekawa K, Miyawaki H, Tanaka S, Uchino H, Kakinohana M, Koide Y, Yokota M, Okamoto H, Nomura M. Guidelines for the use of cerebral oximetry by near-infrared spectroscopy in cardiovascular anesthesia: a report by the cerebrospinal Division of the Academic Committee of the Japanese Society of Cardiovascular Anesthesiologists (JSCVA). J Anesth 2019; 33:167-196. [DOI: 10.1007/s00540-019-02610-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
|
49
|
Guo T, Chau V, Peyvandi S, Latal B, McQuillen PS, Knirsch W, Synnes A, Feldmann M, Naef N, Chakravarty MM, De Petrillo A, Duerden EG, Barkovich AJ, Miller SP. White matter injury in term neonates with congenital heart diseases: Topology & comparison with preterm newborns. Neuroimage 2019; 185:742-749. [PMID: 29890324 PMCID: PMC6289608 DOI: 10.1016/j.neuroimage.2018.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neonates with congenital heart disease (CHD) are at high risk of punctate white matter injury (WMI) and impaired brain development. We hypothesized that WMI in CHD neonates occurs in a characteristic distribution that shares topology with preterm WMI and that lower birth gestational age (GA) is associated with larger WMI volume. OBJECTIVE (1) To quantitatively assess the volume and location of WMI in CHD neonates across three centres. (2) To compare the volume and spatial distribution of WMI between term CHD neonates and preterm neonates using lesion mapping. METHODS In 216 term born CHD neonates from three prospective cohorts (mean birth GA: 39 weeks), WMI was identified in 86 neonates (UBC: 29; UCSF: 43; UCZ: 14) on pre- and/or post-operative T1 weighted MRI. WMI was manually segmented and volumes were calculated. A standard brain template was generated. Probabilistic WMI maps (total, pre- and post-operative) were developed in this common space. Using these maps, WMI in the term CHD neonates was compared with that in preterm neonates: 58 at early-in-life (mean postmenstrual age at scan 32.2 weeks); 41 at term-equivalent age (mean postmenstrual age at scan 40.1 weeks). RESULTS The total WMI volumes of CHD neonates across centres did not differ (p = 0.068): UBC (median = 84.6 mm3, IQR = 26-174.7 mm3); UCSF (median = 104 mm3, IQR = 44-243 mm3); UCZ (median = 121 mm3, IQR = 68-200.8 mm3). The spatial distribution of WMI in CHD neonates showed strong concordance across centres with predilection for anterior and posterior rather than central lesions. Predominance of anterior lesions was apparent on the post-operative WMI map relative to the pre-operative map. Lower GA at birth predicted an increasing volume of WMI across the full cohort (41.1 mm3 increase of WMI per week decrease in gestational age; 95% CI 11.5-70.8; p = 0.007), when accounting for centre and heart lesion. While WMI in term CHD and preterm neonates occurs most commonly in the intermediate zone/outer subventricular zone there is a paucity of central lesions in the CHD neonates relative to preterms. CONCLUSIONS WMI in term neonates with CHD occurs in a characteristic topology. The spatial distribution of WMI in term neonates with CHD reflects the expected maturation of pre-oligodendrocytes such that the central regions are less vulnerable than in the preterm neonates.
Collapse
Affiliation(s)
- Ting Guo
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Vann Chau
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Shabnam Peyvandi
- Department of Pediatric Cardiology, Benioff Children's Hospital and University of California, San Francisco, CA, USA
| | - Beatrice Latal
- Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - Patrick S McQuillen
- Department of Pediatrics, Benioff Children's Hospital and University of California, San Francisco, CA, USA
| | - Walter Knirsch
- Department of Pediatric Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Maria Feldmann
- Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - Nadja Naef
- Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health Research Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Alessandra De Petrillo
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Emma G Duerden
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - A James Barkovich
- Department of Radiology, Benioff Children's Hospital and University of California, San Francisco, CA, USA
| | - Steven P Miller
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
50
|
Hansen JH, Kissner L, Logoteta J, Jung O, Dütschke P, Attmann T, Scheewe J, Kramer HH. S100B and its relation to cerebral oxygenation in neonates and infants undergoing surgery for congenital heart disease. CONGENIT HEART DIS 2019; 14:427-437. [PMID: 30604917 DOI: 10.1111/chd.12741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/03/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Neonates and infants undergoing surgery for congenital heart disease are at risk for developmental impairment. Hypoxic-ischemic brain injury might be one contributing factor. We aimed to investigate the perioperative release of the astrocyte protein S100B and its relation to cerebral oxygenation. METHODS Serum S100B was measured before and 0, 12, 24, and 48 hours after surgery. Cerebral oxygen saturation was derived by near-infrared spectroscopy. S100B reference values based on preoperative samples; concentrations above the 75th percentile were defined as elevated. Patients with elevated S100B at 24 or 48 hours were compared to cases with S100B in the normal range. Neonates (≤28 days) and infants (>28 and ≤365 days) were analyzed separately due to age-dependent release of S100B. RESULTS Seventy-four patients underwent 94 surgical procedures (neonates, n = 38; infants, n = 56). S100B concentrations were higher in neonates before and after surgery at all time points (P ≤ .015). Highest values were noticed immediately after surgery. Postoperative S100B was elevated after 15 (40.5%) surgeries in neonates. There was no difference in pre-, intra-, or postoperative cerebral oxygenation. In infants, postoperative S100B was elevated after 23 (41.8%) procedures. Preoperative cerebral oxygen saturations tended to be lower (53 ± 12% vs 59 ± 12%, P = .069) and arterial-cerebral oxygen saturation difference was higher (35 ± 11% vs 28 ± 11%, P = .018) in infants with elevated postoperative S100B. In the early postoperative course, cerebral oxygen saturation was lower (54 ± 13% vs 63 ± 12%, P = .011) and arterial-cerebral oxygen saturation difference was wider (38 ± 11% vs 30 ± 10%, P = .008). Cerebral oxygen saturation was also lower for the entire postoperative course (62 ± 18% vs 67 ± 9%, P = .047). CONCLUSIONS Postoperative S100B was elevated in about 40% of neonates and infants undergoing cardiac surgery. Infants with elevated postoperative S100B had impaired perioperative cerebral tissue oxygenation. No relation between S100B and cerebral oxygenation could be demonstrated in neonates.
Collapse
Affiliation(s)
- Jan Hinnerk Hansen
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lydia Kissner
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jana Logoteta
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Olaf Jung
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Peter Dütschke
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tim Attmann
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jens Scheewe
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hans-Heiner Kramer
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|