1
|
Pinto Coelho Santos R, da Silva Oliveira B, Katley Oliveira N, Cristina de Brito Toscano E, Leandro Marciano Vieira É, da Silva Barcelos L, Simões E Silva AC, Lúcio Teixeira A, Silva de Miranda A, Alvarenga Rachid M. Absence of TNFR1 promotes a protective response in the early phase of hepatic encephalopathy induced by thioacetamide in mice. Neurosci Lett 2024; 842:137987. [PMID: 39276845 DOI: 10.1016/j.neulet.2024.137987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome with a wide spectrum of cognitive deficits, motor impairment, and psychiatric disturbances resulting from liver damage. The cytokine TNF has been considered the main cytokine in the development and progression of HE, with a pivotal role in the initiation and amplification of the inflammatory cascade. The aim of the present study was to evaluate the involvement of TNF type 1 receptor (TNFR1) in locomotor deficits and in the levels of TNF, IFN-γ, IL-6, IL-10, IL-12p70, CCL2, CX3CL1 and BDNF from the frontal cortex and hippocampus of TNFR1 knockout mice (TNFR1-/-) mice with HE induced by thioacetamide. Wild-type (WT) animals with HE developed locomotor deficit. The absence of TNFR1 absence of TNFR1 in HE animals attenuated the locomotor activity impairment in parallel with a balanced neuroinflammatory environment 24 h after the administration of thioacetamide. Taken together, the data suggests that the absence of TNFR1 promoted a protective response in the early phase of hepatic encephalopathy induced by thioacetamide in mice.
Collapse
Affiliation(s)
- Rafaela Pinto Coelho Santos
- Departamento de Patologia Geral, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna da Silva Oliveira
- Departamento de Morfologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natália Katley Oliveira
- Departamento de Patologia Geral, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliana Cristina de Brito Toscano
- Laboratory of Research in Pathology, Department of Pathology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucíola da Silva Barcelos
- Departamento de Fisiologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio Lúcio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aline Silva de Miranda
- Departamento de Morfologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Milene Alvarenga Rachid
- Departamento de Patologia Geral, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Suo Q, Deng L, Chen T, Wu S, Qi L, Liu Z, He T, Tian HL, Li W, Tang Y, Yang GY, Zhang Z. Optogenetic Activation of Astrocytes Reduces Blood-Brain Barrier Disruption via IL-10 In Stroke. Aging Dis 2023; 14:1870-1886. [PMID: 37196130 PMCID: PMC10529757 DOI: 10.14336/ad.2023.0226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/26/2023] [Indexed: 05/19/2023] Open
Abstract
Optogenetics has been used to regulate astrocyte activity and modulate neuronal function after brain injury. Activated astrocytes regulate blood-brain barrier functions and are thereby involved in brain repair. However, the effect and molecular mechanism of optogenetic-activated astrocytes on the change in barrier function in ischemic stroke remain obscure. In this study, adult male GFAP-ChR2-EYFP transgenic Sprague-Dawley rats were stimulated by optogenetics at 24, 36, 48, and 60 h after photothrombotic stroke to activate ipsilateral cortical astrocytes. The effects of activated astrocytes on barrier integrity and the underlying mechanisms were explored using immunostaining, western blotting, RT-qPCR, and shRNA interference. Neurobehavioral tests were performed to evaluate therapeutic efficacy. The results demonstrated that IgG leakage, gap formation of tight junction proteins, and matrix metallopeptidase 2 expression were reduced after optogenetic activation of astrocytes (p<0.05). Moreover, photo-stimulation of astrocytes protected neurons against apoptosis and improved neurobehavioral outcomes in stroke rats compared to controls (p<0.05). Notably, interleukin-10 expression in optogenetic-activated astrocytes significantly increased after ischemic stroke in rats. Inhibition of interleukin-10 in astrocytes compromised the protective effects of optogenetic-activated astrocytes (p<0.05). We found for the first time that interleukin-10 derived from optogenetic-activated astrocytes protected blood-brain barrier integrity by decreasing the activity of matrix metallopeptidase 2 and attenuated neuronal apoptosis, which provided a novel therapeutic approach and target in the acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Qian Suo
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Lidong Deng
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Tingting Chen
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Shengju Wu
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Lin Qi
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Ze Liu
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Tingting He
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Wanlu Li
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Marquez-Ortiz RA, Tesic V, Hernandez DR, Akhter B, Aich N, Boudreaux PM, Clemons GA, Wu CYC, Lin HW, Rodgers KM. Neuroimmune Support of Neuronal Regeneration and Neuroplasticity following Cerebral Ischemia in Juvenile Mice. Brain Sci 2023; 13:1337. [PMID: 37759938 PMCID: PMC10526826 DOI: 10.3390/brainsci13091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic damage to the brain and loss of neurons contribute to functional disabilities in many stroke survivors. Recovery of neuroplasticity is critical to restoration of function and improved quality of life. Stroke and neurological deficits occur in both adults and children, and yet it is well documented that the developing brain has remarkable plasticity which promotes increased post-ischemic functional recovery compared with adults. However, the mechanisms underlying post-stroke recovery in the young brain have not been fully explored. We observed opposing responses to experimental cerebral ischemia in juvenile and adult mice, with substantial neural regeneration and enhanced neuroplasticity detected in the juvenile brain that was not found in adults. We demonstrate strikingly different stroke-induced neuroimmune responses that are deleterious in adults and protective in juveniles, supporting neural regeneration and plasticity. Understanding age-related differences in neuronal repair and regeneration, restoration of neural network function, and neuroimmune signaling in the stroke-injured brain may offer new insights for the development of novel therapeutic strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Ricaurte A. Marquez-Ortiz
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Vesna Tesic
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Daniel R. Hernandez
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Bilkis Akhter
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Nibedita Aich
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Porter M. Boudreaux
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Garrett A. Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Hung Wen Lin
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Krista M. Rodgers
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| |
Collapse
|
4
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Li J, Wang P, Zhou T, Jiang W, Wu H, Zhang S, Deng L, Wang H. Neuroprotective effects of interleukin 10 in spinal cord injury. Front Mol Neurosci 2023; 16:1214294. [PMID: 37492521 PMCID: PMC10363608 DOI: 10.3389/fnmol.2023.1214294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Spinal cord injury (SCI) starts with a mechanical and/or bio-chemical insult, followed by a secondary phase, leading progressively to severe collapse of the nerve tissue. Compared to the peripheral nervous system, injured spinal cord is characterized by weak axonal regeneration, which leaves most patients impaired or paralyzed throughout lifetime. Therefore, confining, alleviating, or reducing the expansion of secondary injuries and promoting functional connections between rostral and caudal regions of lesion are the main goals of SCI therapy. Interleukin 10 (IL-10), as a pivotal anti-inflammatory and immunomodulatory cytokine, exerts a wide spectrum of positive effects in the treatment of SCI. The mechanisms underlying therapeutic effects mainly include anti-oxidative stress, limiting excessive inflammation, anti-apoptosis, antinociceptive effects, etc. Furthermore, IL-10 displays synergistic effects when combined with cell transplantation or neurotrophic factor, enhancing treatment outcomes. This review lists pleiotropic mechanisms underlying IL-10-mediated neuroprotection after SCI, which may offer fresh perspectives for clinical translation.
Collapse
Affiliation(s)
- Juan Li
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Pei Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Wenwen Jiang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Shengqi Zhang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lingxiao Deng
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
6
|
Choudhary RC, Shoaib M, Hayashida K, Yin T, Miyara SJ, d’Abramo C, Heuser WG, Shinozaki K, Kim N, Takegawa R, Nishikimi M, Li T, Owens C, Molmenti EP, He M, Vanpatten S, Al-Abed Y, Kim J, Becker LB. Multi-Drug Cocktail Therapy Improves Survival and Neurological Function after Asphyxial Cardiac Arrest in Rodents. Cells 2023; 12:1548. [PMID: 37296668 PMCID: PMC10253071 DOI: 10.3390/cells12111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Cardiac arrest (CA) can lead to neuronal degeneration and death through various pathways, including oxidative, inflammatory, and metabolic stress. However, current neuroprotective drug therapies will typically target only one of these pathways, and most single drug attempts to correct the multiple dysregulated metabolic pathways elicited following cardiac arrest have failed to demonstrate clear benefit. Many scientists have opined on the need for novel, multidimensional approaches to the multiple metabolic disturbances after cardiac arrest. In the current study, we have developed a therapeutic cocktail that includes ten drugs capable of targeting multiple pathways of ischemia-reperfusion injury after CA. We then evaluated its effectiveness in improving neurologically favorable survival through a randomized, blind, and placebo-controlled study in rats subjected to 12 min of asphyxial CA, a severe injury model. RESULTS 14 rats were given the cocktail and 14 received the vehicle after resuscitation. At 72 h post-resuscitation, the survival rate was 78.6% among cocktail-treated rats, which was significantly higher than the 28.6% survival rate among vehicle-treated rats (log-rank test; p = 0.006). Moreover, in cocktail-treated rats, neurological deficit scores were also improved. These survival and neurological function data suggest that our multi-drug cocktail may be a potential post-CA therapy that deserves clinical translation. CONCLUSIONS Our findings demonstrate that, with its ability to target multiple damaging pathways, a multi-drug therapeutic cocktail offers promise both as a conceptual advance and as a specific multi-drug formulation capable of combatting neuronal degeneration and death following cardiac arrest. Clinical implementation of this therapy may improve neurologically favorable survival rates and neurological deficits in patients suffering from cardiac arrest.
Collapse
Affiliation(s)
- Rishabh C. Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Santiago J. Miyara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| | - Cristina d’Abramo
- Litwin-Zucker Center for Research in Alzheimer’s Disease, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - William G. Heuser
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Nancy Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Timmy Li
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Casey Owens
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Mingzhu He
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Sonya Vanpatten
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (R.C.C.)
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Emergency Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY 11030, USA
| |
Collapse
|
7
|
Shichita T, Ooboshi H, Yoshimura A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat Rev Neurosci 2023; 24:299-312. [PMID: 36973481 DOI: 10.1038/s41583-023-00690-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The nervous and immune systems control whole-body homeostasis and respond to various types of tissue injury, including stroke, in a coordinated manner. Cerebral ischaemia and subsequent neuronal cell death activate resident or infiltrating immune cells, which trigger neuroinflammation that affects functional prognosis after stroke. Inflammatory immune cells exacerbate ischaemic neuronal injury after the onset of brain ischaemia; however, some of the immune cells thereafter change their function to neural repair. The recovery processes after ischaemic brain injury require additional and close interactions between the nervous and immune systems through various mechanisms. Thus, the brain controls its own inflammation and repair processes after injury via the immune system, which provides a promising therapeutic opportunity for stroke recovery.
Collapse
Affiliation(s)
- Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Hiroaki Ooboshi
- Section of Internal Medicine, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Li W, Yang X, Ding M, Shi W, Huang Y, An Q, Qi Z, Zhao Y. Zinc accumulation aggravates cerebral ischemia/reperfusion injury by promoting inflammation. Front Cell Neurosci 2023; 17:1065873. [PMID: 36970418 PMCID: PMC10030816 DOI: 10.3389/fncel.2023.1065873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Intracellular zinc accumulation has been shown to be associated with neuronal death after cerebral ischemia. However, the mechanism of zinc accumulation leading to neuronal death in ischemia/reperfusion (I/R) is still unclear. Intracellular zinc signals are required for the production of proinflammatory cytokines. The present study investigated whether intracellular accumulated zinc aggravates I/R injury through inflammatory response, and inflammation-mediated neuronal apoptosis. Male Sprague-Dawley rats were treated with vehicle or zinc chelator TPEN 15 mg/kg before a 90-min middle cerebral artery occlusion (MCAO). The expressions of proinflammatory cytokines TNF-α, IL-6, NF-κB p65, and NF-κB inhibitory protein IκB-α, as well as anti-inflammatory cytokine IL-10 were assessed at 6 or 24 h after reperfusion. Our results demonstrated that the expression of TNF-α, IL-6, and NF-κB p65 increased after reperfusion, while the expression of IκB-α and IL-10 decreased, suggesting that cerebral ischemia triggers inflammatory response. Furthermore, TNF-α, NF-κB p65, and IL-10 were all colocalized with the neuron-specific nuclear protein (NeuN), suggesting that the ischemia-induced inflammatory response occurs in neurons. Moreover, TNF-α was also colocalized with the zinc-specific dyes Newport Green (NG), suggesting that intracellular accumulated zinc might be associated with neuronal inflammation following cerebral I/R. Chelating zinc with TPEN reversed the expression of TNF-α, NF-κB p65, IκB-α, IL-6, and IL-10 in ischemic rats. Besides, IL-6-positive cells were colocalized with TUNEL-positive cells in the ischemic penumbra of MCAO rats at 24 h after reperfusion, indicating that zinc accumulation following I/R might induce inflammation and inflammation-associated neuronal apoptosis. Taken together, this study demonstrates that excessive zinc activates inflammation and that the brain injury caused by zinc accumulation is at least partially due to specific neuronal apoptosis induced by inflammation, which may provide an important mechanism of cerebral I/R injury.
Collapse
Affiliation(s)
- Wei Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Xueqi Yang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Mao Ding
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenjuan Shi
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Yuyou Huang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi An
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Zhifeng Qi
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- *Correspondence: Zhifeng Qi Yongmei Zhao
| | - Yongmei Zhao
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- *Correspondence: Zhifeng Qi Yongmei Zhao
| |
Collapse
|
9
|
Ye Z, Hu T, Wang J, Xiao R, Liao X, Liu M, Sun Z. Systemic immune-inflammation index as a potential biomarker of cardiovascular diseases: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:933913. [PMID: 36003917 PMCID: PMC9393310 DOI: 10.3389/fcvm.2022.933913] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Several studies have investigated the value of the systemic immune-inflammation index (SII) for predicting cardiovascular disease (CVD), but the results were inconsistent. Therefore, a meta-analysis and systematic review were conducted to assess the correlation between SII and risk of CVD. Materials and methods Two investigators systematically searched PubMed, Embase, Web of Science, Cochrane library, and CINAHL databases to identify all studies that examined the association between SII levels and CVD. The risk estimates of CVD for people with high SII compared to those with low SII levels and the weighted mean difference (WMD) between the CVD and control groups were pooled using fixed- or random-effects models based on the heterogeneity test. We used the Newcastle-Ottawa Scale to assess the risk of bias in eligible studies, and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system was applied to rate the certainty of evidence. Results A total of 13 studies with 152,996 participants were included for analysis. The overall pooled results showed that higher SII was significantly associated with an increased risk of CVD (HR = 1.39, 95%CI: 1.20–1.61, P < 0.001). This increased risk could be observed in almost all CVD subtypes, including ischemic stroke (HR = 1.31, 95%CI: 1.06–1.63, P = 0.013), hemorrhagic stroke (HR = 1.22, 95%CI: 1.10–1.37, P < 0.001), myocardial infarction (HR = 1.11, 95%CI: 1.01–1.23, P = 0.027), and peripheral arterial disease (HR = 1.51, 95%CI: 1.18–1.93, P = 0.001). There were no significant but still similar trends in venous thrombosis (HR = 4.65, 95%CI: 0.66–32.71, P = 0.122), cerebral small vessel disease (HR = 1.09, 95%CI: 0.95–1.25, P = 0.233), and acute coronary syndrome (HR = 1.08, 95%CI: 0.96–1.22, P = 0.200). Furthermore, the pooled results showed that SII levels at the onset of CVD were significantly higher than that in the general population (WMD = 355.2, 95%CI: 234.8–475.6, P < 0.001), which was consistent across different CVD subtypes. The GRADE assessment suggested that the quality of current evidence from observational studies was low or very low. Conclusion This study indicated that SII may be a potential biomarker for CVD development and elevated SII is associated with an increased risk of CVD. However, the quality of evidence is generally low. Additional well-designed studies are necessary to determine the optimal cutoff value and to characterize the benefited population.
Collapse
Affiliation(s)
- Zhen Ye
- Hengyang Medical School, University of South China, Hengyang, China
| | - Tingyi Hu
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jin Wang
- Hengyang Medical School, University of South China, Hengyang, China
| | - Ruoyi Xiao
- Hengyang Medical School, University of South China, Hengyang, China
| | - Xibei Liao
- Hengyang Medical School, University of South China, Hengyang, China
| | - Mengsi Liu
- Hengyang Medical School, University of South China, Hengyang, China
| | - Zhen Sun
- Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
10
|
The Association between Systemic Immune-Inflammation Index and All-Cause Mortality in Acute Ischemic Stroke Patients: Analysis from the MIMIC-IV Database. Emerg Med Int 2022; 2022:4156489. [PMID: 35959219 PMCID: PMC9363175 DOI: 10.1155/2022/4156489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose. Acute ischemic stroke (AIS) is a devastating disease and remains the leading cause of death and disability. This retrospective study aims to investigate associations between systemic immune-inflammation index (SII) and all-cause mortality in patients with AIS. Patients and Methods. We used the data from Medical Information Mart for Intensive Care IV. A total of 1,181 patients with acute ischemic stroke (AIS) were included. Systemic immune-inflammation index (SII) was calculated as platelet count (/L) × neutrophil count (/L)/lymphocyte count (/L). The main outcomes were 30-day all-cause mortality. The association between SII with mortality was evaluated using the Cox proportional hazards regression model. Results. After adjusting for potential covariates, the highest quartiles of SII versus the lowest quartiles of SII, the HR was 2.74 (CI 1.79–4.19,
). Log-transformed SII was significantly associated with 30-day all-cause mortality (HR 2.44; CI 1.72–3.46,
). Furthermore, we found that there is a nearly linear relationship (
) between logarithmic transformed SII with all-cause mortality. Conclusion. Elevated SII of patients with acute ischemic stroke increased the risk of 30-day all-cause mortality. SII may serve as a useful marker to elucidate the role of thrombocytosis, inflammation, and immunity interaction in the development of AIS.
Collapse
|
11
|
Hur HJ, Lee JY, Kim DH, Cho MS, Lee S, Kim HS, Kim DW. Conditioned Medium of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Exerts Neurorestorative Effects against Ischemic Stroke Model. Int J Mol Sci 2022; 23:7787. [PMID: 35887140 PMCID: PMC9319001 DOI: 10.3390/ijms23147787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that early therapeutic events of neural precursor cells (NPCs) transplantation to animals with acute ischemic stroke readily protected neuronal cell damage and improved behavioral recovery through paracrine mechanisms. In this study, we tested the hypothesis that administration of conditioned medium from NPCs (NPC-CMs) could recapitulate the beneficial effects of cell transplantation. Rats with permanent middle cerebral artery occlusion (pMCAO) were randomly assigned to one of the following groups: PBS control, Vehicle (medium) controls, single (NPC-CM(S)) or multiple injections of NPC-CM(NPC-CM(M)) groups. A single intravenous injection of NPC-CM exhibited strong neuroregenerative potential to induce behavioral recovery, and multiple injections enhanced this activity further by suppressing inflammatory damage and inducing endogenous neurogenesis leading to histopathological and functional recovery. Proteome analysis of NPC-CM identified a number of proteins that are known to be associated with nervous system development, neurogenesis, and angiogenesis. In addition, transcriptome analysis revealed the importance of the inflammatory response during stroke recovery and some of the key hub genes in the interaction network were validated. Thus, our findings demonstrated that NPC-CM promoted functional recovery and reduced cerebral infarct and inflammation with enhanced endogenous neurogenesis, and the results highlighted the potency of NPC-CM in stroke therapy.
Collapse
Affiliation(s)
- Hye-Jin Hur
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Yong Lee
- Research Institute of Hyperbaric Medicine and Science, Yonsei University Wonju College of Medicine, Wonju-si 26426, Korea;
| | - Do-Hun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- S. Biomedics Co., Ltd., Seoul 04979, Korea;
| | | | - Sangsik Lee
- Department of Biomedical Engineering, College of Medical Convergence, Catholic Kwandong University, Gangneung-si 25601, Korea;
| | - Han-Soo Kim
- Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, Gangneung-si 25601, Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-J.H.); (D.-H.K.)
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
12
|
Shanaki-Barvasad M, Almolda B, González B, Castellano B. Astrocyte-targeted Overproduction of IL-10 Reduces Neurodegeneration after TBI. Exp Neurobiol 2022; 31:173-195. [PMID: 35786640 PMCID: PMC9272120 DOI: 10.5607/en21035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury is the greatest cause of disability and death in young adults in the developed world. The outcome for a TBI patient is determined by the severity of the injury, not only from the initial insult but, especially, as a product of the secondary injury. It is proposed that this secondary injury is directly linked to neuro-inflammation, with the production of pro-inflammatory mediators, activation of resident glial cells and infiltration of peripheral immune cells. In this context, anti-inflammatory treatments are one of the most promising therapies to dampen the inflammatory response associated with TBI and to reduce secondary injury. In this sense, the main objective of the present study is to elucidate the effect of local production of IL-10 in the neurological outcome after TBI. For this purpose, a cryogenic lesion was caused in transgenic animals overproducing IL-10 under the GFAP promoter on astrocytes (GFAP-IL10Tg mice) and the neuro-protection, microglial activation and leukocyte recruitment were evaluated. Our results showed a protective effect of IL-10 on neurons at early time-points after TBI, in correlation with a shift in the microglial activation profile towards a down-regulating phenotype and lower production of pro-inflammatory cytokines. Concomitantly, we observed a reduction in the BBB leakage together with modifications in leukocyte infiltration into the affected area. In conclusion, local IL-10 production modifies the neuro-inflammatory response after TBI, shifting it to anti-inflammatory and neuro-protective conditions. These results point to IL-10 as a promising candidate to improve neuro-inflammation associated with TBI.
Collapse
Affiliation(s)
- Mahsa Shanaki-Barvasad
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Beatriz Almolda
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,To whom correspondence should be addressed. TEL: 34935811826, FAX: 34935812392, e-mail:
| | - Berta González
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Bernardo Castellano
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
13
|
Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke 2022; 53:1473-1486. [PMID: 35387495 PMCID: PMC9038693 DOI: 10.1161/strokeaha.122.036946] [Citation(s) in RCA: 260] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining blood-brain barrier (BBB) integrity is crucial for the homeostasis of the central nervous system. Structurally comprising the BBB, brain endothelial cells interact with pericytes, astrocytes, neurons, microglia, and perivascular macrophages in the neurovascular unit. Brain ischemia unleashes a profound neuroinflammatory response to remove the damaged tissue and prepare the brain for repair. However, the intense neuroinflammation occurring during the acute phase of stroke is associated with BBB breakdown, neuronal injury, and worse neurological outcomes. Here, we critically discuss the role of neuroinflammation in ischemic stroke pathology, focusing on the BBB and the interactions between central nervous system and peripheral immune responses. We highlight inflammation-driven injury mechanisms in stroke, including oxidative stress, increased MMP (matrix metalloproteinase) production, microglial activation, and infiltration of peripheral immune cells into the ischemic tissue. We provide an updated overview of imaging techniques for in vivo detection of BBB permeability, leukocyte infiltration, microglial activation, and upregulation of cell adhesion molecules following ischemic brain injury. We discuss the possibility of clinical implementation of imaging modalities to assess stroke-associated neuroinflammation with the potential to provide image-guided diagnosis and treatment. We summarize the results from several clinical studies evaluating the efficacy of anti-inflammatory interventions in stroke. Although convincing preclinical evidence suggests that neuroinflammation is a promising target for ischemic stroke, thus far, translating these results into the clinical setting has proved difficult. Due to the dual role of inflammation in the progression of ischemic damage, more research is needed to mechanistically understand when the neuroinflammatory response begins the transition from injury to repair. This could have important implications for ischemic stroke treatment by informing time- and context-specific therapeutic interventions.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville (E.C-J)
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, the Netherlands (R.M.D.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (T.M.)
| |
Collapse
|
14
|
Could the systemic immune-inflammation index be a predictor to estimate cerebrovascular events in hypertensive patients? Blood Press Monit 2022; 27:33-38. [PMID: 34992205 DOI: 10.1097/mbp.0000000000000560] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Hypertension is one of the most important risk factors for cardiovascular and cerebrovascular events. Inflammatory processes occupy an important place in the pathogenesis of hypertension. Many studies have studied inflammatory markers responsible for the onset of hypertension and organ damage. In this study, we investigated whether the systemic immune-inflammation index (SII) (platelet × neutrophil/lymphocyte), - one of the new inflammatory markers - can be used to predict cerebrovascular events in hypertensive patients. METHODS Ambulatory blood pressure monitoring results between January 2019 and June 2020 of approximately 379 patients followed up with hypertension were retrospectively analyzed. These patients were divided into two groups as with or without a previous cerebrovascular event in the analyzed database. In all patients, complete blood count and biochemistry test results just before the cerebrovascular event were found from the database. SII, atherogenic index, neutrophil-lymphocyte ratio were calculated from the complete blood count. Forty-nine patients with stroke (group 1: 12.9%; mean age: 64.3 ± 14.6) and 330 patients without stroke (group 2: 87.1%; mean age: 50.8 ± 14.4). RESULTS Ambulatory blood pressure measurements were lower in group 1. Lipid parameters were also lower in this group. Receiver operating characteristic curve analysis showed that SII had a sensitivity of 85.7% and specificity of 84.8 % for stroke in individuals who participated in the study when the cutoff value of SII was 633.26 × 103 (P = 0.0001) area under curve (95%); 0.898 (0.856-0.941). In multivariate logistic regression analysis, age and SII were significantly associated with a higher risk of stroke. Age, (hazard ratio:1.067; 95% CI, 1.021-1.115), SII (hazard ratio:1.009; 95% CI, 1.000-1.009), respectively. CONCLUSIONS In conclusion, SII is a simple, useful new inflammatory parameter for predicting stroke from hypertension. We found that the high SII levels increase the risk of stroke in hypertensive patients.
Collapse
|
15
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
16
|
CSF and serum inflammatory response and association with outcomes in spontaneous intracerebral hemorrhage with intraventricular extension: an analysis of the CLEAR-III Trial. J Neuroinflammation 2021; 18:179. [PMID: 34419101 PMCID: PMC8380363 DOI: 10.1186/s12974-021-02224-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) results in a cascade of inflammatory cell activation with recruitment of peripheral leukocytes to the brain parenchyma and surrounding the hematoma. We hypothesized that in patients with ICH and intraventricular hemorrhage (IVH), a robust cerebrospinal fluid (CSF) inflammatory response occurs with leukocyte subtypes being affected by alteplase treatment and contributing to outcomes. Methods Serum and CSF cell counts from patients in the phase 3 Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage (CLEAR III) trial were analyzed. CSF leukocytes were corrected for the presence of red blood cells. Trends in cell counts were plotted chronologically. Associations were evaluated between serum and CSF leukocyte subtypes and adjudicated functional outcome (modified Rankin Scale; mRS) at 30 and 180 days and bacterial infection according to treatment with intraventricular alteplase versus saline. Results A total of 279 and 292 patients had ≥3 differential cell counts from serum and CSF, respectively. CSF leukocyte subtypes evolved during IVH resolution with a significantly augmented inflammatory response for all subtypes in alteplase- compared to saline-treated patients. CSF leukocyte subtypes were not associated with detrimental effect on functional outcomes in the full cohort, but all were associated with poor 30-day outcome in saline-treated patients with IVH volume ≥20 mL. Higher serum lymphocytes were associated with good functional outcomes (mRS 0–3) in the entire cohort and saline-treated but not alteplase-treated group. Conversely, increased serum neutrophil-to-lymphocyte ratio (NLR) in the entire cohort and saline group was associated with worse functional outcomes. Higher median serum lymphocytes were associated with the absence of infection at 7 days. Conclusions Aseptic CSF inflammation after IVH involves all leukocyte subtypes. Serum lymphocytes may be associated with better outcomes by mitigating infection. Alteplase augments the inflammatory response without affecting outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02224-w.
Collapse
|
17
|
Gusdon AM, Savarraj JPJ, Shihabeddin E, Paz A, Assing A, Ko SB, McCullough LD, Choi HA. Time Course of Peripheral Leukocytosis and Clinical Outcomes After Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2021; 12:694996. [PMID: 34381415 PMCID: PMC8350167 DOI: 10.3389/fneur.2021.694996] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: Systemic inflammation after subarachnoid hemorrhage (SAH) is implicated in delayed cerebral ischemia (DCI) and adverse clinical outcomes. We hypothesize that early changes in peripheral leukocytes will be associated with outcomes after SAH. Methods: SAH patients admitted between January 2009 and December 2016 were enrolled into a prospective observational study and were assessed for Hunt Hess Scale (HHS) at admission, DCI, and modified Ranked Scale (mRS) at discharge. Total white blood cell (WBC) counts and each component of the differential cell count were determined on the day of admission (day 0) to 8 days after bleed (day 8). Global cerebral edema (GCE) was assessed on admission CT, and presence of any infection was determined. Statistical tests included student's t-test, Chi-square test, and multivariate logistic regression (MLR) models. Results: A total of 451 subjects were analyzed. Total WBCs and neutrophils decreased initially reaching a minimum at day 4–5 after SAH. Monocyte count increased gradually after SAH and peaked between day 6–8, while basophils and lymphocytes decreased initially from day 0 to 1 and steadily increased thereafter. Neutrophil to lymphocyte ratio (NLR) reached a peak on day 1 and decreased thereafter. WBCs, neutrophils, monocytes, and NLR were higher in patients with DCI and poor functional outcomes. WBCs, neutrophils, and NLR were higher in subjects who developed infections. In MLR models, neutrophils and monocytes were associated with DCI and worse functional outcomes, while NLR was only associated with worse functional outcomes. Occurrence of infection was associated with poor outcome. Neutrophils and NLR were associated with infection, while monocytes were not. Monocytes were higher in males, and ROC curve analysis revealed improved ability of monocytes to predict DCI and poor functional outcomes in male subjects. Conclusions: Monocytosis was associated with DCI and poor functional outcomes after SAH. The association between neutrophils and NLR and infection may impact outcomes. Early elevation in monocytes had an improved ability to predict DCI and poor functional outcomes in males, which was independent of the occurrence of infection.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Jude P J Savarraj
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Eyad Shihabeddin
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Atzhiry Paz
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Andres Assing
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Huimahn Alex Choi
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
18
|
Zare Rafie M, Esmaeilzadeh A, Ghoreishi A, Tahmasebi S, Faghihzadeh E, Elahi R. IL-38 as an early predictor of the ischemic stroke prognosis. Cytokine 2021; 146:155626. [PMID: 34157522 DOI: 10.1016/j.cyto.2021.155626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ischemic stroke is caused by a sudden neurological defect following a vascular occlusion and elicits a local and systemic inflammation in brain tissue. Interleukin-38 is an anti-inflammatory cytokine associated with ischemic and inflammatory diseases. This study was designed to analyze the effect of tPA therapy on interleukin-38 serum level changes and the serum level of IL-38 in the prognosis of ischemic stroke patients in the next three months. METHODS We enrolled 29 ischemic stroke patients confirmed by a neurologist based on radiologic and clinical manifestation between 2019 September to 2020 February. The patients who had NIHSS more than 6 with no underlying inflammatory diseases were selected for tPA therapy. On admission and 24 h after tPA therapy, the IL-38 serum level was measured by ELISA kit. RESULTS The results showed that serum levels of IL-38 were significantly increased after tPA therapy (P < 0.001). A remarkable relationship was observed between the modified Rankin Score (mRS) and IL-38 serum changes in response to tPA therapy (P < 0.001). Besides, IL-38 serum changes following tPA were dramatically related to NIHSS at hospitalization (P = 0.007). Also, our analysis posed a positive relation between NIHSS at hospitalization and mRs criteria (P = 0.023). No notable relation has been observed between IL-38 serum levels before and after tPA and mRs (P = 0.601 and P = 0.074, respectively). Furthermore, there was no evidence for the relation between NIHSS at hospitalization and IL-38 levels before and after tPA (P = 0.457 and P = 0.105, respectively). CONCLUSION The results indicate that tPA could meaningfully increase the IL-38 serum level. Also, a negative correlation has been found between IL-38 serum changes in response to tPA and mRS. Since the lower changes in IL-38 serum level result in a poorer prognosis, we conclude that IL-38 serum changes might be a novel early predictor factor for ischemic stroke prognosis.
Collapse
Affiliation(s)
- Maryam Zare Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Abdolreza Ghoreishi
- Stroke Research Group, Head of Stroke Care Unit, Department of Neurology, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Faghihzadeh
- Department of Biostatistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
19
|
Bai X, Xiong LL, Fang CL, Zhou HL, Xue LL, Hu Y, Xia QJ, Liu J, Zhang JY, Wang TH, Yang SJ. Interleukin 10 Plays an Important Role in Neonatal Rats with Hypoxic-Ischemia Associated with B-Cell Lymphoma 2 and Endoplasmic Reticulum Protein 29. Anal Cell Pathol (Amst) 2021; 2021:6622713. [PMID: 34123712 PMCID: PMC8189815 DOI: 10.1155/2021/6622713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Interleukin 10 (IL-10) is a synthetic inhibitor of human cytokines with immunomodulatory and anti-inflammatory effects. This study was designed to investigate the expression variation of IL-10 in the multiple sites including cortex, hippocampus, and lung tissues of neonatal hypoxic-ischemic (HI) rats and explore the crucial role of IL-10 in alleviating HI brain damage. In this study, neonatal Sprague-Dawley rats were subjected to the right common carotid artery ligation, followed by 2 h of hypoxia. The expression of IL-10 in the cortex, hippocampus, and lung tissues was measured with immunohistochemistry, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot (WB). Immunofluorescence double staining was performed to observe the localization of IL-10 in neurons and astrocytes. Moreover, not-targeting and targeting IL-10 siRNA lentivirus vectors were injected into the rats of the negative control (NC) and IL-10 group, respectively, and the mRNA levels of B-cell lymphoma 2 (Bcl-2) and endoplasmic reticulum protein 29 (ERp29) were detected by RT-qPCR following IL-10 silence. The results demonstrated that the IL-10 expression was markedly increased after HI and IL-10 were colocalized with neurons and astrocytes which were badly injured by HI insult. In addition, Bcl-2 and ERp29 were remarkably decreased following IL-10 mRNA interference compared with the NC group. Our findings revealed that IL-10 exerted its antiapoptotic and neuroprotective effects by regulating the expression of Bcl-2 and ERp29, indicating that IL-10 may be a promising molecule target for HIE treatment.
Collapse
Affiliation(s)
- Xue Bai
- Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Liu-Lin Xiong
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Chang-Le Fang
- Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hao-Li Zhou
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu-Lu Xue
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming 650031, China
| | - Yue Hu
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia Liu
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming 650031, China
| | - Jun-Yan Zhang
- Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming 650031, China
| | - Si-Jin Yang
- Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
20
|
Guo YS, Yuan M, Han Y, Shen XY, Gao ZK, Bi X. Therapeutic Potential of Cytokines in Demyelinating Lesions After Stroke. J Mol Neurosci 2021; 71:2035-2052. [PMID: 33970426 DOI: 10.1007/s12031-021-01851-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
White matter damage is a component of most human stroke and usually accounts for at least half of the lesion volume. Subcortical white matter stroke (WMS) accounts for 25% of all strokes and causes severe motor and cognitive dysfunction. The adult brain has a very limited ability to repair white matter damage. Pathological analysis shows that demyelination or myelin loss is the main feature of white matter injury and plays an important role in long-term sensorimotor and cognitive dysfunction. This suggests that demyelination is a major therapeutic target for ischemic stroke injury. An acute inflammatory reaction is triggered by brain ischemia, which is accompanied by cytokine production. The production of cytokines is an important factor affecting demyelination and myelin regeneration. Different cytokines have different effects on myelin damage and myelin regeneration. Exploring the role of cytokines in demyelination and remyelination after stroke and the underlying molecular mechanisms of demyelination and myelin regeneration after ischemic injury is very important for the development of rehabilitation treatment strategies. This review focuses on recent findings on the effects of cytokines on myelin damage and remyelination as well as the progress of research on the role of cytokines in ischemic stroke prognosis to provide a new treatment approach for amelioration of white matter damage after stroke.
Collapse
Affiliation(s)
- Yi-Sha Guo
- Shanghai University of Sport, Shanghai, 200438, China
| | - Mei Yuan
- Shanghai University of Sport, Shanghai, 200438, China
| | - Yu Han
- Shanghai University of Sport, Shanghai, 200438, China
| | - Xin-Ya Shen
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200438, China
| | - Zhen-Kun Gao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200438, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| |
Collapse
|
21
|
Liberale L, Ministrini S, Carbone F, Camici GG, Montecucco F. Cytokines as therapeutic targets for cardio- and cerebrovascular diseases. Basic Res Cardiol 2021; 116:23. [PMID: 33770265 PMCID: PMC7997823 DOI: 10.1007/s00395-021-00863-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Despite major advances in prevention and treatment, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. In this context, inflammation is involved in the chronic process leading atherosclerotic plaque formation and its complications, as well as in the maladaptive response to acute ischemic events. For this reason, modulation of inflammation is nowadays seen as a promising therapeutic strategy to counteract the burden of cardio- and cerebrovascular disease. Being produced and recognized by both inflammatory and vascular cells, the complex network of cytokines holds key functions in the crosstalk of these two systems and orchestrates the progression of atherothrombosis. By binding to membrane receptors, these soluble mediators trigger specific intracellular signaling pathways eventually leading to the activation of transcription factors and a deep modulation of cell function. Both stimulatory and inhibitory cytokines have been described and progressively reported as markers of disease or interesting therapeutic targets in the cardiovascular field. Nevertheless, cytokine inhibition is burdened by harmful side effects that will most likely prevent its chronic use in favor of acute administrations in well-selected subjects at high risk. Here, we summarize the current state of knowledge regarding the modulatory role of cytokines on atherosclerosis, myocardial infarction, and stroke. Then, we discuss evidence from clinical trials specifically targeting cytokines and the potential implication of these advances into daily clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland. .,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Stefano Ministrini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
22
|
Zhang L, Yang X, Yin M, Yang H, Li L, Parashos A, Alawieh A, Feng W, Zheng H, Hu X. An Animal Trial on the Optimal Time and Intensity of Exercise after Stroke. Med Sci Sports Exerc 2021; 52:1699-1709. [PMID: 32102062 DOI: 10.1249/mss.0000000000002318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Although exercise is a safe, cost-effective, and therapeutic poststroke therapy, the proper time window and dosage of exercise are still unknown. We aim to determine the optimal combination of time window and intensity of exercise by assessing infarct volume, neurological recovery, and underlying mechanisms in middle cerebral artery occlusion rats. METHODS The study contains two parts: the time-window and the dosage experiments. The time-window experiment assessed the effects of moderate-intensity exercise that was initiated at 24, 48, 72, 96 h and the control. In the dosage experiment, moderate and another two intensity exercise groups (low, high) were assessed. Forced wheel running was the exercise technique used. Infarct volume and neurological function (modified neurological severity scores [mNSS]) were measured. Inflammatory cytokines, cell death, and proliferation were further detected in the ischemic penumbra. RESULTS The time window part revealed that neither infarct volume nor mNSS was reduced in the exercise group initiated at 24 h. The other three groups with exercise initiated after 24 h had reduced infarct volume and reduced mNSS but those outcomes do not differ from each other. In the dosage part, the low- and moderate-intensity groups with exercise initiated at 48 h were both better than the high-intensity group in terms of infarct volume and mNSS at 14 d; however, there was no statistical difference between these low and moderate groups. Exercise initiated at 24 h or high-intensity promoted proinflammatory cytokines and cell death. CONCLUSIONS Exercise at 24 h is harmful. Low- and moderate-intensity exercise initiated at 48 h poststroke appears to be the optimal combination for maximal functional recovery.
Collapse
Affiliation(s)
- Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, CHINA
| | - Xiaofeng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, CHINA
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, CHINA
| | - Huaichun Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, CHINA
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, CHINA
| | - Alexandra Parashos
- Department of Neurology, Medical University of South Carolina, Charleston, SC
| | - Ali Alawieh
- Department of Neurology, Medical University of South Carolina, Charleston, SC
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, CHINA
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, CHINA
| |
Collapse
|
23
|
Sleep deprivation aggravates brain injury after experimental subarachnoid hemorrhage via TLR4-MyD88 pathway. Aging (Albany NY) 2021; 13:3101-3111. [PMID: 33479186 PMCID: PMC7880348 DOI: 10.18632/aging.202503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening cerebrovascular disease, and most of the SAH patients experience sleep deprivation during their hospital stay. It is well-known that sleep deprivation is one of the key components of developing several neurological disorders, but its effect on brain damage after SAH has not been determined. Therefore, this study was designed to evaluate the effect of sleep deprivation using an experimental SAH model in rats. Induction of sleep deprivation for 24 h aggravated the SAH-induced brain damage, as evidenced by brain edema, neuronal apoptosis and activation of caspase-3. Sleep deprivation also worsened the neurological impairment and cognitive deficits after SAH. The results of immunostaining and western blot showed that sleep deprivation increased the activation of microglial cells. In addition, sleep deprivation differently regulated the expression of anti-inflammatory and pro-inflammatory cytokines. The results of immunofluorescence staining and western blot showed that sleep deprivation markedly increased the activation of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88). Mechanically, treatment with the TLR4 inhibitor TAK-242 or the MyD88 inhibitor ST2825 significantly attenuated the brain damage and neuroinflammation induced by sleep deprivation after SAH. In conclusion, our results indicate that sleep deprivation aggravates brain damage and neurological dysfunction following experimental SAH in rats. These effects were mediated by the activation of the TLR4-MyD88 cascades and regulation of neuroinflammation.
Collapse
|
24
|
δ-Opioid receptor activation ameliorates lipopolysaccharide-induced inflammation and apoptosis by inhibiting the MAPK/caspase-3 pathway in BV2 microglial cells. Exp Brain Res 2020; 239:401-412. [PMID: 33206235 DOI: 10.1007/s00221-020-05983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Delta-opioid receptor (DOR) is widely distributed in the central nervous system, and its activation protects against ischaemic/hypoxic brain injury. However, the role of DOR in microglia in ischaemic stroke has not yet been fully investigated. We found that DOR was expressed in both human and mouse cerebral microglia, besides, it was upregulated in activated BV2 microglial cells by immunofluorescence staining and Western blot. DOR activation by the specific agonist TAN-67 significantly enhanced BV2 microglial cell viability and reduced apoptosis, as evidenced by decreased cleaved caspase-3 levels and TdT-mediated aUTP-X nick end labelling (TUNEL) staining after LPS stimulation. Furthermore, activation of DOR significantly inhibited inducible nitric oxide synthase (iNOS) production and dose-dependently inhibited the mRNA and protein expression levels of other pro-inflammatory cytokines, including IL-1β and IL-6, whereas it increased the expression of the anti-inflammatory cytokine IL-10 in LPS-stimulated BV2 microglial cells; these effects were correlated with diminished phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. Moreover, these effects could be reversed by the DOR antagonist naltrindole. DOR activation can activate microglia to switch to the beneficial phenotype and inhibit LPS-induced inflammation and apoptosis via the mitogen-activated protein kinase (MAPK)/caspase-3 pathway in BV2 microglial cells. This study provides new insight into neuroprotection against and treatment of ischaemic stroke.
Collapse
|
25
|
McKay EC, Counts SE. Oxytocin Receptor Signaling in Vascular Function and Stroke. Front Neurosci 2020; 14:574499. [PMID: 33071746 PMCID: PMC7544744 DOI: 10.3389/fnins.2020.574499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
The oxytocin receptor (OXTR) is a G protein-coupled receptor with a diverse repertoire of intracellular signaling pathways, which are activated in response to binding oxytocin (OXT) and a similar nonapeptide, vasopressin. This review summarizes the cell and molecular biology of the OXTR and its downstream signaling cascades, particularly focusing on the vasoactive functions of OXTR signaling in humans and animal models, as well as the clinical applications of OXTR targeting cerebrovascular accidents.
Collapse
Affiliation(s)
- Erin C McKay
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, East Lansing, MI, United States.,Department of Family Medicine, Michigan State University, Grand Rapids, MI, United States.,Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States.,Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, United States
| |
Collapse
|
26
|
Hou D, Wang C, Luo Y, Ye X, Han X, Feng Y, Zhong P, Wu D. Systemic immune-inflammation index (SII) but not platelet-albumin-bilirubin (PALBI) grade is associated with severity of acute ischemic stroke (AIS). Int J Neurosci 2020; 131:1203-1208. [PMID: 32546038 DOI: 10.1080/00207454.2020.1784166] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Inflammation plays an important role in stroke. Many inflammatory markers in peripheral blood are proved to be associated with stroke severity or prognosis. But few comprehensive models or scales to evaluate the severity of stroke have been reported. Systemic immune-inflammation index (SII) and platelet-albumin-bilirubin (PALBI) grade as new markers of inflammation have shown their positive association with liver cancer. The relation between SII, or PALBI and stroke remains uncertain.Objective: To investigate the relationship between SII, PALBI grade and stroke severity.Methods: Patients with ischemic stroke with hospital admission <24 h after symptom onset were prospectively included in a stroke registry. Demographic, clinical, and laboratory data were collected immediately after admission in all patients. The National Institutes of Health Stroke Scale (NIHSS) was used to assess stroke severity upon admission. Minor stroke was defined as NIHSS score < =5, moderate-to-severe stroke as NIHSS score >5. SII, calculated as platelet × neutrophil/lymphocyte was divided into four groups according to interquartile range: lowest SII (SII < 353.9 × 109/L), low SII (353.9-532.8 × 109/L), high SII (532.8-783.9 × 109/L), and highest SII (>783.9 × 109/L) group.Results: A total of 362 patients with ischemic stroke were included, and between minor and moderate-to-severe stroke significant difference was found in SII (p < 0.0001), NLR (p < 0.0001), and PLR (p = 0.001), respectively. After multivariate regression analyses, SII groups (Odd ratio = 1.351, 95% confidence interval 1.084-1.684, p = 0.007) not PALBI was an independent risk factor for stroke severity.Conclusion: We found that SII but not PALBI, which both are markers of inflammation, was independently associated with stroke severity.
Collapse
Affiliation(s)
- Duanlu Hou
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Chunjie Wang
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Jiangchuan Community Health Service Center of Minhang District, Shanghai, China
| | - Yufan Luo
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Xiang Han
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanhua Feng
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Department of Neurology, Shangri-La People's Hospital, Shangri-La, Yunnan, China
| | - Ping Zhong
- Department of Neurology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Chinese Medicine, Shanghai, China
| | - Danhong Wu
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Sun P, Zhou W, Yue H, Zhang C, Ou Y, Yang Z, Hu W. Compound AD110 Acts as Therapeutic Management for Alzheimer's Disease and Stroke in Mouse and Rat Models. ACS Chem Neurosci 2020; 11:929-938. [PMID: 32105445 DOI: 10.1021/acschemneuro.9b00651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anti-inflammatory therapy may be an effective therapeutic intervention for neurological diseases, such as Alzheimer's disease (AD) and stroke. As an important anti-inflammatory cytokine, interleukin-10 (IL-10) inhibits proinflammatory responses of both innate and adaptive immune cells. We tested the hypothesis that drug-induced promotion of IL-10 expression is effective in improving cognitive abilities and neurologic outcomes of AD and stroke. An orally small molecule AD110 was synthesized and subjected to in vitro and in vivo analyses. We found that AD110 enhanced IL-10 release in lipopolysaccharide (LPS)-activated BV2 microglial cells. Y-Maze and Morris water maze tests showed improved cognitive abilities in AD mice treated with AD110. Moreover, AD110 attenuated cerebral ischemic injury in a transient middle cerebral artery occlusion (tMCAO) rat model. This study not only provides a promising lead compound with IL-10-promoting activity, but also supports the hypothesis that promoting IL-10 expression is a potential therapeutic strategy for AD and stroke.
Collapse
Affiliation(s)
- Ping Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hu Yue
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Cheng Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yitao Ou
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhongjin Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wenhui Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
28
|
Liu X, Hu R, Pei L, Si P, Wang C, Tian X, Wang X, Liu H, Wang B, Xia Z, Xu Y, Song B. Regulatory T cell is critical for interleukin-33-mediated neuroprotection against stroke. Exp Neurol 2020; 328:113233. [PMID: 32044328 DOI: 10.1016/j.expneurol.2020.113233] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
Interleukin-33 (IL-33) is known to activate the regulatory T lymphocytes (Tregs), which are negatively correlated with brain damage after ischemic stroke. In this study, we aimed to investigate the role of Tregs in IL-33-mediated neuroprotection and elucidate the underlying mechanisms. In vivo, male C57BL/6 N mice were subjected to 60 min of transient middle cerebral artery occlusion (tMCAO), followed by daily administration of vehicle or IL-33 immediately after injury. Tregs were depleted by intraperitoneal administration of anti-CD25 antibody (anti-CD25Ab). Behavioral changes, brain edema, neuronal injury, Treg percentages, and cytokine expression levels were investigated in each group. In vitro experiments, primary mouse neuronal cells were subjected to oxygen-glucose deprivation (OGD) for 3 h. Vehicle- or drug-conditioned Tregs were applied to the neurons at the time of induction of hypoxia. Neuronal apoptosis and cytokine expression were measured in each group. The results indicate that intraperitoneal administration of anti-CD25Ab reduced CD4 + CD25 + Foxp3+ Tregs, increased infarct volume, enhanced stroke-induced cell death, and decreased sensorimotor functions. Notably, IL-33 increased CD4 + CD25 + Foxp3+ Tregs in the spleen and brain. However, blockading ST2 attenuated these effects of IL-33. The supernatant of the IL-33-treated Treg culture reduced neuronal apoptosis and elevated the production of the Treg cytokines IL-10, IL-35, and transforming growth factor-β (TGF-β). Anti-CD25Ab abrogated the neuroprotective effect of IL-33. Mechanistically, the neuroprotective effects of IL-33 were associated with reduction in apoptosis-related proteins and production of Tregs related cytokines. Overall, these findings showed that IL-33 afforded neuroprotection against ischemic brain injury by enhancing ST2-dependent regulatory T-cell expansion and activation via a mechanism involving anti-apoptosis proteins and cytokines, representing a promising immune modulatory target for the treatment of stroke.
Collapse
Affiliation(s)
- Xinjing Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Ruiyao Hu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Lulu Pei
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Pan Si
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Chunhui Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Xuan Tian
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Xiao Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Han Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Beng Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Zongping Xia
- The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Bo Song
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
29
|
Coco G, Foulsham W, Nakao T, Yin J, Amouzegar A, Taketani Y, Chauhan SK, Dana R. Regulatory T cells promote corneal endothelial cell survival following transplantation via interleukin-10. Am J Transplant 2020; 20:389-398. [PMID: 31587452 PMCID: PMC6984989 DOI: 10.1111/ajt.15631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/25/2023]
Abstract
The functional competence of corneal endothelial cells (CEnCs) is critical for survival of corneal allografts, but these cells are often targets of the immune response mediated by graft-attacking effector T cells. Although regulatory T cells (Tregs) have been studied for their role in regulating the host's alloimmune response towards the graft, the cytoprotective function of these cells on CEnCs has not been investigated. The aim of this study was to determine whether Tregs suppress effector T cell-mediated and inflammatory cytokine-induced CEnC death, and to elucidate the mechanism by which this cytoprotection occurs. Using 2 well-established models of corneal transplantation (low-risk and high-risk models), we show that Tregs derived from low-risk graft recipients have a superior capacity in protecting CEnCs against effector T cell-mediated and interferon-γ and tumor necrosis factor-α-induced cell death compared to Tregs derived from high-risk hosts. We further demonstrate that the cytoprotective function of Tregs derived from low-risk hosts occurs independently of direct cell-cell contact and is mediated by the immunoregulatory cytokine IL-10. Our study is the first to report that Tregs provide cytoprotection for CEnCs through secretion of IL-10, indicating potentially novel therapeutic targets for enhancing CEnC survival following corneal transplantation.
Collapse
Affiliation(s)
- Giulia Coco
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Institute of Ophthalmology, University College London, London, UK
| | - Takeshi Nakao
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jia Yin
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Yukako Taketani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Chen H, Lin W, Lin P, Zheng M, Lai Y, Chen M, Zhang Y, Chen J, Lin X, Lin L, Lan Q, Yuan Q, Chen R, Jiang X, Xiao Y, Liu N. IL-10 produces a dual effect on OGD-induced neuronal apoptosis of cultured cortical neurons via the NF-κB pathway. Aging (Albany NY) 2019; 11:10796-10813. [PMID: 31801113 PMCID: PMC6932931 DOI: 10.18632/aging.102411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
As a classic immunoregulatory cytokine, interleukin-10 (IL-10) can provide in vivo and in vitro neuroprotection respectively during cerebral ischemia and after the oxygen-glucose deprivation (OGD)-induced injury. However, its role in cortical neuronal survival at different post-ischemic phases remains unclear. The current study found that IL-10 had distinct effects on the neuronal apoptosis at different OGD stages: at an early stage after OGD, IL-10 promoted the OGD-induced neuronal apoptosis in the cultured primary cortical neurons by activating p65 subunit, which up-regulated Bax expression and down-regulated Bcl-xL expression; at a late OGD stage, however, it attenuated the OGD-induced neuronal apoptosis by activating c-Rel, which up-regulated Bcl-xL expression and down-regulated Bax expression. The early-stage pro-apoptosis and late-stage anti-apoptosis were both partly abolished by PDTC, an NF-κB inhibitor, and promoted by PMA, an NF-κB activator. The optimal anti-apoptotic effect appeared when the cultured neurons were treated with IL-10 at 9-24 h after OGD. Taken together, our findings suggest that IL-10 exerts a dual effect on the survival of the cultured neurons by activating the NF-κB pathway at different stages after OGD injury and that PMA treatment at a late stage can facilitate the IL-10-conferred neuroprotection against OGD-induced neuronal injury.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yixian Zhang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Longzai Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Quan Lan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qilin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinhong Jiang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yingchun Xiao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Kolosowska N, Keuters MH, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, Goldsteins G, Koistinaho J, Dhungana H. Peripheral Administration of IL-13 Induces Anti-inflammatory Microglial/Macrophage Responses and Provides Neuroprotection in Ischemic Stroke. Neurotherapeutics 2019; 16:1304-1319. [PMID: 31372938 PMCID: PMC6985054 DOI: 10.1007/s13311-019-00761-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation is strongly induced by cerebral ischemia. The early phase after the onset of ischemic stroke is characterized by acute neuronal injury, microglial activation, and subsequent infiltration of blood-derived inflammatory cells, including macrophages. Therefore, modulation of the microglial/macrophage responses has increasingly gained interest as a potential therapeutic approach for the ischemic stroke. In our study, we investigated the effects of peripherally administered interleukin 13 (IL-13) in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Systemic administration of IL-13 immediately after the ischemic insult significantly reduced the lesion volume, alleviated the infiltration of CD45+ leukocytes, and promoted the microglia/macrophage alternative activation within the ischemic region, as determined by arginase 1 (Arg1) immunoreactivity at 3 days post-ischemia (dpi). Moreover, IL-13 enhanced the expression of M2a alternative activation markers Arg1 and Ym1 in the peri-ischemic (PI) area, as well as increased plasma IL-6 and IL-10 levels at 3 dpi. Furthermore, IL-13 treatment ameliorated gait disturbances at day 7 and 14 and sensorimotor deficits at day 14 post-ischemia, as analyzed by the CatWalk gait analysis system and adhesive removal test, respectively. Finally, IL-13 treatment decreased neuronal cell death in a coculture model of neuroinflammation with RAW 264.7 macrophages. Taken together, delivery of IL-13 enhances microglial/macrophage anti-inflammatory responses in vivo and in vitro, decreases ischemia-induced brain cell death, and improves sensory and motor functions in the pMCAo mouse model of cerebral ischemia.
Collapse
Affiliation(s)
- Natalia Kolosowska
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Meike H. Keuters
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Velta Keksa-Goldsteine
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mika Laine
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290 Finland
| | - Hiramani Dhungana
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Sotomayor-Sobrino M, Ochoa-Aguilar A, Méndez-Cuesta L, Gómez-Acevedo C. Neuroimmunological interactions in stroke. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
33
|
Jiang T, Wu M, Zhang Z, Yan C, Ma Z, He S, Yuan W, Pu K, Wang Q. Electroacupuncture attenuated cerebral ischemic injury and neuroinflammation through α7nAChR-mediated inhibition of NLRP3 inflammasome in stroke rats. Mol Med 2019; 25:22. [PMID: 31117961 PMCID: PMC6530013 DOI: 10.1186/s10020-019-0091-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Our previous research confirmed that electroacupuncture (EA) stimulus elicits neuroprotective effects against cerebral ischemic injury through α7 nicotinic acetylcholine receptor (α7nAChR)-mediated inhibition of high-mobility group box 1 release mechanism. This study investigated whether the signal transducer of α7nAChR and inhibition of NLRP3 inflammasome are involved in the neuroprotective effects of EA stimulus. METHODS In adult male Sprague-Dawley rats, the focal cerebral ischemic injury was induced by middle cerebral artery occlusion (MCAO) models for 1.5 h. The expression of NLRP3 inflammasome in the penumbral tissue following reperfusion was assessed by western blotting and immunoflourescent staining. The infarct size, neurological deficit score, TUNEL staining and the expression of proinflammatory factors or anti-inflammatory cytokines were evaluated at 72 h after reperfusion in the presence or absence of either α7nAChR antagonist (α-BGT) or agonist (PHA-543,613). RESULTS The contents of inflammasome proteins were gradually increased after cerebral ischemia/reperfusion (I/R). EA stimulus attenuated NLRP3 inflammasome mediated inflammatory reaction and regulated the balance between proinflammatory factors and anti-inflammatory cytokines. The agonist of α7nAChR induced similar neuroprotective effects as EA stimulus. In contrast, α7nAChR antagonist reversed not only the neuroprotective effects, but also the inhibitory effects of NLRP3 inflammasome and the regulatory effects on the balance between proinflammatory factors and anti-inflammatory cytokines. CONCLUSIONS These results provided compelling evidence that α7nAChR played a pivotal role in regulating the activation and expression of NLRP3 inflammasome in neurons after cerebral I/R. These findings highlighted a novel anti-inflammatory mechanism of EA stimulus by α7nAChR modulating the inhibition of NLRP3 inflammasome, suggesting that α7nAChR-dependent cholinergic anti-inflammatory system and NLRP3 inflammasome in neurons might act as potential therapeutic targets in EA induced neuroprotection against cerebral ischemic injury.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Meiyan Wu
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Zhanqin Zhang
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Chaoying Yan
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Zhi Ma
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Shan He
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Wei Yuan
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Kairui Pu
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Qiang Wang
- Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
34
|
Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation-target or tool for therapy? Acta Neuropathol 2019; 137:693-714. [PMID: 30483945 PMCID: PMC6482288 DOI: 10.1007/s00401-018-1930-z] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/22/2022]
Abstract
Inflammation is currently considered a prime target for the development of new stroke therapies. In the acute phase of ischemic stroke, microglia are activated and then circulating immune cells invade the peri-infarct and infarct core. Resident and infiltrating cells together orchestrate the post-stroke inflammatory response, communicating with each other and the ischemic neurons, through soluble and membrane-bound signaling molecules, including cytokines. Inflammation can be both detrimental and beneficial at particular stages after a stroke. While it can contribute to expansion of the infarct, it is also responsible for infarct resolution, and influences remodeling and repair. Several pre-clinical and clinical proof-of-concept studies have suggested the effectiveness of pharmacological interventions that target inflammation post-stroke. Experimental evidence shows that targeting certain inflammatory cytokines, such as tumor necrosis factor, interleukin (IL)-1, IL-6, and IL-10, holds promise. However, as these cytokines possess non-redundant protective and immunoregulatory functions, their neutralization or augmentation carries a risk of unwanted side effects, and clinical translation is, therefore, challenging. This review summarizes the cell biology of the post-stroke inflammatory response and discusses pharmacological interventions targeting inflammation in the acute phase after a stroke that may be used alone or in combination with recanalization therapies. Development of next-generation immune therapies should ideally aim at selectively neutralizing pathogenic immune signaling, enhancing tissue preservation, promoting neurological recovery and leaving normal function intact.
Collapse
Affiliation(s)
- Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark.
- Department of Clinical Research, BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, 5000, Odense C, Denmark.
- Department of Neurology, Odense University Hospital, 5000, Odense, Denmark.
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, 5000, Odense C, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, 5000, Odense C, Denmark
| |
Collapse
|
35
|
Peng T, Jiang Y, Farhan M, Lazarovici P, Chen L, Zheng W. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10:204. [PMID: 30930774 PMCID: PMC6423897 DOI: 10.3389/fphar.2019.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China’s clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients’ neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China’s efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM’s mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.
Collapse
Affiliation(s)
- Tangming Peng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Yizhou Jiang
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mohd Farhan
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
36
|
Shin JE, Han J, Lim JH, Eun HS, Park KI. Human Neural Stem Cells: Translational Research for Neonatal Hypoxic-Ischemic Brain Injury. NEONATAL MEDICINE 2019. [DOI: 10.5385/nm.2019.26.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
37
|
Safety and efficacy evaluations of an adeno-associated virus variant for preparing IL10-secreting human neural stem cell-based therapeutics. Gene Ther 2019; 26:135-150. [PMID: 30692604 DOI: 10.1038/s41434-019-0057-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Abstract
Gene therapy technologies are inevitably required to boost the therapeutic performance of cell therapies; thus, validating the efficacy of gene carriers specifically used for preparing cellular therapeutics is a prerequisite for evaluating the therapeutic capabilities of gene and cell combinatorial therapies. Herein, the efficacy of a recombinant adeno-associated virus derivative (rAAVr3.45) was examined to evaluate its potential as a gene carrier for genetically manipulating interleukin-10 (IL10)-secreting human neural stem cells (hNSCs) that can potentially treat ischemic injuries or neurological disorders. Safety issues that could arise during the virus preparation or viral infection were investigated; no replication-competent AAVs were detected in the final cell suspensions, transgene expression was mostly transient, and no severe interference on endogenous gene expression by viral infection occurred. IL10 secretion from hNSCs infected by rAAVr3.45 encoding IL10 did not alter the transcriptional profile of any gene by more than threefold, but the exogenously boosted IL10 was sufficient to provoke immunomodulatory effects in an ischemic brain injury animal model, thereby accelerating the recovery of neurological deficits and the reduction of brain infarction volume. This study presents evidence that rAAVr3.45 can be potentially used as a gene carrier to prepare stem cell therapeutics.
Collapse
|
38
|
Almutairi MMA, Xu G, Shi H. Iron Pathophysiology in Stroke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:105-123. [PMID: 31456207 DOI: 10.1007/978-981-13-9589-5_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemic and hemorrhagic stroke are the common types of stroke that lead to brain injury neurological deficits and mortality. All forms of stroke remain a serious health issue, and there is little successful development of drugs for treating stroke. Incomplete understanding of stroke pathophysiology is considered the main barrier that limits this research progress. Besides mitochondria and free radical-producing enzymes, labile iron is an important contributor to oxidative stress. Although iron regulation and metabolism in cerebral stroke are not fully understood, much progress has been achieved in recent years. For example, hepcidin has recently been recognized as the principal regulator of systemic iron homeostasis and a bridge between inflammation and iron regulation. This review discusses recent research progress in iron pathophysiology following cerebral stroke, focusing molecular regulation of iron metabolism and potential treatment targets.
Collapse
Affiliation(s)
- Mohammed M A Almutairi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA.,Department of Pharmacology and Toxicology, School of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Grace Xu
- Department of Anesthesiology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
39
|
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 2018; 316:C135-C153. [PMID: 30379577 DOI: 10.1152/ajpcell.00136.2018] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As part of the neurovascular unit, the blood-brain barrier (BBB) is a unique, dynamic regulatory boundary that limits and regulates the exchange of molecules, ions, and cells between the blood and the central nervous system. Disruption of the BBB plays an important role in the development of neurological dysfunction in ischemic stroke. Blood-borne substances and cells have restricted access to the brain due to the presence of tight junctions between the endothelial cells of the BBB. Following stroke, there is loss of BBB tight junction integrity, leading to increased paracellular permeability, which results in vasogenic edema, hemorrhagic transformation, and increased mortality. Thus, understanding principal mediators and molecular mechanisms involved in BBB disruption is critical for the development of novel therapeutics to treat ischemic stroke. This review discusses the current knowledge of how neuroinflammation contributes to BBB damage in ischemic stroke. Specifically, we provide an updated overview of the role of cytokines, chemokines, oxidative and nitrosative stress, adhesion molecules, matrix metalloproteinases, and vascular endothelial growth factor as well as the role of different cell types in the regulation of BBB permeability in ischemic stroke.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,Departments of Anesthesiology, Neurology, Psychiatry, Psychology, and Pharmaceutics, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
40
|
Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid. Life Sci 2018; 211:126-132. [PMID: 30195619 DOI: 10.1016/j.lfs.2018.08.065] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 11/20/2022]
Abstract
Ischemic stroke is one of the leading causes of neurological deterioration and mortality worldwide. Neuroprotective strategies are being investigated to minimize cognitive deficits after ischemic events. Here we investigated the neuroprotective potential of vanillic acid (VA) in an animal model of transient bilateral common carotid artery occlusion and reperfusion (BCCAO/R). Adult male Wistar rats (250-300 g) were randomly divided in 4 groups and submitted to either cerebral hypoperfusion-reperfusion or a sham surgery after two-weeks of pretreatment with VA and/or normal saline. To induce the animal model of hypoperfusion, bilateral common carotid arteries were occluded (2VO model) for 30 min, followed by 72 h of reperfusion. Subsequently, their cognitive performance was evaluated in a Morris water maze (MWM) test, and also hippocampi were removed for ELISA assays and TUNEL staining test. The results showed that 2VO significantly reduced the spatial memory performance in MWM. As well as, BCCAO/R increased the level of IL-6, TNF-α and TUNEL positive cells, and also decreased the contents of IL-10 in the hippocampus of vehicle- pretreated groups as compared to the sham-operated groups. Furthermore, 14 consecutive days pretreatment with VA significantly restored the spatial memory, decreased the levels of IL-6, TNF-α and TUNEL positive cells and also increased the IL-10 levels in the hippocampi of the BCCAO/R rats. VA alone did not show any change neither in the status of various cytokines nor behavioral and TUNEL staining tests over sham values. Our data confirm that VA could potentially serve as a novel, promising, and accessible neuroprotective agent against cerebrovascular insufficiency states and vascular dementia.
Collapse
|
41
|
Wu HY, Mao XF, Tang XQ, Ali U, Apryani E, Liu H, Li XY, Wang YX. Spinal interleukin-10 produces antinociception in neuropathy through microglial β-endorphin expression, separated from antineuroinflammation. Brain Behav Immun 2018; 73:504-519. [PMID: 29928964 DOI: 10.1016/j.bbi.2018.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin 10 (IL-10) is antinociceptive in various animal models of pain without induction of tolerance, and its mechanism of action was generally believed to be mediated by inhibition of neuroinflammation. Here we reported that intrathecal IL-10 injection dose dependently attenuated mechanical allodynia and thermal hyperalgesiain male and female neuropathic rats, with ED50 values of 40.8 ng and 24 ng, and Emax values of 61.5% MPE and 100% MPE in male rats. Treatment with IL-10 specifically increased expression of the β-endorphin (but not prodynorphin) gene and protein in primary cultures of spinal microglia but not in astrocytes or neurons. Intrathecal injection of IL-10 stimulated β-endorphin expression from microglia but not neurons or astrocytes in both contralateral and ipsilateral spinal cords of neuropathic rats. However, intrathecal injection of the β-endorphin neutralizing antibody, opioid receptor antagonist naloxone, or μ-opioid receptor antagonist CTAP completely blocked spinal IL-10-induced mechanical antiallodynia, while the microglial inhibitor minocycline and specific microglia depletor reversed spinal IL-10-induced β-endorphin overexpression and mechanical antiallodynia. IL-10 treatment increased spinal microglial STAT3 phosphorylation, and the STAT3 inhibitor NSC74859 completely reversed IL-10-increased spinal expression of β-endorphin and neuroinflammatory cytokines and mechanical antiallodynia. Silence of the Bcl3 and Socs3 genes nearly fully reversed IL-10-induced suppression of neuroinflammatory cytokines (but not expression of β-endorphin), although it had no effect on mechanical allodynia. In contrast, disruption of the POMC gene completely blocked IL-10-stimulated β-endorphin expression and mechanical antiallodynia, but had no effect on IL-10 inhibited expression of neuroinflammatory cytokines. Thus this study revealed that IL-10 produced antinociception through spinal microglial β-endorphin expression, but not inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xue-Qi Tang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Usman Ali
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Evhy Apryani
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|
42
|
Zhang SR, Piepke M, Chu HX, Broughton BR, Shim R, Wong CH, Lee S, Evans MA, Vinh A, Sakkal S, Arumugam TV, Magnus T, Huber S, Gelderblom M, Drummond GR, Sobey CG, Kim HA. IL-33 modulates inflammatory brain injury but exacerbates systemic immunosuppression following ischemic stroke. JCI Insight 2018; 3:121560. [PMID: 30232272 DOI: 10.1172/jci.insight.121560] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Stroke triggers a complex inflammatory process in which the balance between pro- and antiinflammatory mediators is critical for the development of the brain infarct. However, systemic changes may also occur in parallel with brain inflammation. Here we demonstrate that administration of recombinant IL-33, a recently described member of the IL-1 superfamily of cytokines, promotes Th2-type effects following focal ischemic stroke, resulting in increased plasma levels of Th2-type cytokines and fewer proinflammatory (3-nitrotyrosine+F4/80+) microglia/macrophages in the brain. These effects of IL-33 were associated with reduced infarct size, fewer activated microglia and infiltrating cytotoxic (natural killer-like) T cells, and more IL-10-expressing regulatory T cells. Despite these neuroprotective effects, mice treated with IL-33 displayed exacerbated post-stroke lung bacterial infection in association with greater functional deficits and mortality at 24 hours. Supplementary antibiotics (gentamicin and ampicillin) mitigated these systemic effects of IL-33 after stroke. Our findings highlight the complex nature of the inflammatory mechanisms differentially activated in the brain and periphery during the acute phase after ischemic stroke. The data indicate that a Th2-promoting agent can provide neuroprotection without adverse systemic effects when given in combination with antibiotics.
Collapse
Affiliation(s)
- Shenpeng R Zhang
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Marius Piepke
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah X Chu
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Brad Rs Broughton
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Raymond Shim
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - Connie Hy Wong
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - Seyoung Lee
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Megan A Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St. Albans, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Tim Magnus
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Grant R Drummond
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Hyun Ah Kim
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
43
|
Ramiro L, Simats A, García-Berrocoso T, Montaner J. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disord 2018; 11:1756286418789340. [PMID: 30093920 PMCID: PMC6080077 DOI: 10.1177/1756286418789340] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
Stroke is the fifth leading cause of death and the most frequent cause of disability worldwide. Currently, stroke diagnosis is based on neuroimaging; therefore, the lack of a rapid tool to diagnose stroke is still a major concern. In addition, therapeutic approaches to combat ischemic stroke are still scarce, since the only approved therapies are directed toward restoring blood flow to the affected brain area. However, due to the reduced time window during which these therapies are effective, few patients benefit from them; therefore, alternative treatments are urgently needed to reduce stroke brain damage in order to improve patients' outcome. The inflammatory response triggered after the ischemic event plays an important role in the progression of stroke; consequently, the study of inflammatory molecules in the acute phase of stroke has attracted increasing interest in recent decades. Here, we provide an overview of the inflammatory processes occurring during ischemic stroke, as well as the potential for these inflammatory molecules to become stroke biomarkers and the possibility that these candidates will become interesting neuroprotective therapeutic targets to be blocked or stimulated in order to modulate inflammation after stroke.
Collapse
Affiliation(s)
- Laura Ramiro
- Neurovascular Research Laboratory, Vall d’Hebron
Institute of Research, Universitat Autònoma de Barcelona, Barcelona,
Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d’Hebron
Institute of Research, Universitat Autònoma de Barcelona, Barcelona,
Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d’Hebron
Institute of Research, Universitat Autònoma de Barcelona, Barcelona,
Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron
Institute of Research, Pg. Vall d’Hebron 119–129, Hospital Universitari Vall
d’Hebron, 08035 Barcelona, Spain
| |
Collapse
|
44
|
Cunningham CJ, Redondo-Castro E, Allan SM. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J Cereb Blood Flow Metab 2018; 38:1276-1292. [PMID: 29768965 PMCID: PMC6077926 DOI: 10.1177/0271678x18776802] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) hold great potential as a regenerative therapy for stroke, leading to increased repair and functional recovery in animal models of cerebral ischaemia. While it was initially hypothesised that cell replacement was an important mechanism of action of MSCs, focus has shifted to their paracrine actions or the so called "bystander" effect. MSCs secrete a wide array of growth factors, chemokines, cytokines and extracellular vesicles, commonly referred to as the MSC secretome. There is evidence suggesting the MSC secretome can promote repair through a number of mechanisms including preventing cell apoptosis, modulating the inflammatory response and promoting endogenous repair mechanisms such as angiogenesis and neurogenesis. In this review, we will discuss the in vitro approaches currently being employed to drive the MSC secretome towards a more anti-inflammatory and regenerative phenotype. We will then examine the role of the secretome in promoting repair and improving recovery in preclinical models of cerebral ischaemia.
Collapse
Affiliation(s)
- Catriona J Cunningham
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elena Redondo-Castro
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
45
|
Wang N, Che D, Zeng Y, Cao J, Wang J, Zhang T. The anti-inflammation effect of Baige capsule and its principal components mixture in MCAO rats. Immunopharmacol Immunotoxicol 2018; 40:327-332. [PMID: 29944037 DOI: 10.1080/08923973.2018.1485026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Baige (BG) is a compound Chinese herbal preparation, constituted of different position extracts (ethanol extracts from Pueraria lobate and SFE-CO2 extracts from Radix Angelicae dahuricae) of P. lobata and A. dahurica to treat the brain injury in patients. AIM The goal of this study was to identify the neuroprotective properties of BG and its principal component mixture (PCM) and verify whether the material basis for BG is its PCM. METHODS Middle cerebral artery occlusion (MCAO) was operated on male Sprague-Dawley rat for 2 h, different doses of BG or PCM or vehicle were gavaged after 3 h of MCAO. Rats were sacrificed after 30 days treatment. Blood serum inflammation factors and NGF were detected by ELISA. RESULTS After 30 days of treatment, both BG and PCM interventions reduced the infarct volume, modified neurological severity score (mNSS) in rats, declined IL-1β and IL-6 levels in the serum, increased NGF level in the serum and recovered the number of Nissl body in injured brain. CONCLUSIONS Both BG and PCM exert equivalent levels of recovery effect in MCAO on rats; and PCM is the material foundation of BG. This recovery effect is associated with inflammatory inhibition and NGF production.
Collapse
Affiliation(s)
- Nan Wang
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , China.,b National-Provincial Joint Engineering Research Center for Natural Vascular Medicine Screening & Analysis , Xi'an , China
| | - Delu Che
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , China.,b National-Provincial Joint Engineering Research Center for Natural Vascular Medicine Screening & Analysis , Xi'an , China
| | - Yingnan Zeng
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , China.,b National-Provincial Joint Engineering Research Center for Natural Vascular Medicine Screening & Analysis , Xi'an , China
| | - Jiao Cao
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , China.,b National-Provincial Joint Engineering Research Center for Natural Vascular Medicine Screening & Analysis , Xi'an , China
| | - Jue Wang
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , China.,b National-Provincial Joint Engineering Research Center for Natural Vascular Medicine Screening & Analysis , Xi'an , China
| | - Tao Zhang
- a School of Pharmacy , Xi'an Jiaotong University , Xi'an , China.,b National-Provincial Joint Engineering Research Center for Natural Vascular Medicine Screening & Analysis , Xi'an , China
| |
Collapse
|
46
|
Tahsili-Fahadan P, Farrokh S, Geocadin RG. Hypothermia and brain inflammation after cardiac arrest. Brain Circ 2018; 4:1-13. [PMID: 30276330 PMCID: PMC6057700 DOI: 10.4103/bc.bc_4_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 12/14/2022] Open
Abstract
The cessation (ischemia) and restoration (reperfusion) of cerebral blood flow after cardiac arrest (CA) induce inflammatory processes that can result in additional brain injury. Therapeutic hypothermia (TH) has been proven as a brain protective strategy after CA. In this article, the underlying pathophysiology of ischemia-reperfusion brain injury with emphasis on the role of inflammatory mechanisms is reviewed. Potential targets for immunomodulatory treatments and relevant effects of TH are also discussed. Further studies are needed to delineate the complex pathophysiology and interactions among different components of immune response after CA and identify appropriate targets for clinical investigations.
Collapse
Affiliation(s)
- Pouya Tahsili-Fahadan
- Department of Medicine, Virginia Commonwealth University, Falls Church, Virginia, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Salia Farrokh
- Department of Pharmacy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Romergryko G Geocadin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Li T, Liu Y, Yu L, Lao J, Zhang M, Jin J, Lu Z, Liu Z, Xu Y. Human Umbilical Cord Mesenchymal Stem Cells Protect Against SCA3 by Modulating the Level of 70 kD Heat Shock Protein. Cell Mol Neurobiol 2018; 38:641-655. [PMID: 28667374 DOI: 10.1007/s10571-017-0513-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/17/2017] [Indexed: 02/06/2023]
Abstract
Spinocerebellar ataxia 3 (SCA3), which is a progressive neurodegenerative disease, is currently incurable. Emerging studies have reported that human umbilical cord mesenchymal stem cells (HUC-MSCs) transplantation could be a promising therapeutic strategy for cerebellar ataxias. However, few studies have evaluated the effects of HUC-MSCs on SCA3 transgenic mouse. Thus, we investigated the effects of HUC-MSCs on SCA3 mice and the underlying mechanisms in this study. SCA3 transgenic mice received systematic administration of 2 × 106 HUC-MSCs once per week for 12 continuous weeks. Motor coordination was measured blindly by open field tests and footprint tests. Immunohistochemistry and Nissl staining were applied to detect neuropathological alternations. Neurotrophic factors in the cerebellum were assessed by ELISA. We used western blotting to detect the alternations of heat shock protein 70 (HSP70), IGF-1, mutant ataxin-3, and apoptosis-associated proteins. Tunel staining was also used to detect apoptosis of affected cells. The distribution and differentiation of HUC-MSCs were determined by immunofluorescence. Our results exhibited that HUC-MSCs transplantation significantly alleviated motor impairments, corresponding to a reduction of cerebellar atrophy, preservation of neurons, decreased expression of mutant ataxin-3, and increased expression of HSP70. Implanted HUC-MSCs were mainly distributed in the cerebellum and pons with no obvious differentiation, and the expressions of IGF-1, VEGF, and NGF in the cerebellum were significantly elevated. Furthermore, with the use of HSP70 analogy quercetin injection, it demonstrated that HSP70 is involved in mutant ataxin-3 reduction. These results showed that HUC-MSCs implantation is a potential treatment for SCA3, likely through upregulating the IGF-1/HSP70 pathway and subsequently inhibiting mutant ataxin-3 toxicity.
Collapse
Affiliation(s)
- Tan Li
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Yi Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Jiamin Lao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Meijuan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiali Jin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhengjuan Lu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhuo Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China.
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
48
|
Seifert HA, Vandenbark AA, Offner H. Regulatory B cells in experimental stroke. Immunology 2018; 154:169-177. [PMID: 29313944 DOI: 10.1111/imm.12887] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/30/2022] Open
Abstract
Current treatment options for human stroke are limited mainly to the modestly effective infusion of tissue plasminogen activator (tPA), with additional improvement of functional independence and higher rates of angiographic revascularization observed after mechanical thrombectomy. However, new therapeutic strategies that address post-stroke immune-mediated inflammatory responses are urgently needed. Recent studies in experimental stroke have firmly implicated immune mechanisms in the propagation and partial resolution of central nervous system damage after the ischaemic event. A new-found anti-inflammatory role for regulatory B (Breg) cells in autoimmune diseases sparked interest in these cells as potential immunomodulators in stroke. Subsequent studies identified interleukin-10 as a common regulatory cytokine among all five of the currently recognized Breg cell subsets, several of which can be found in the affected brain hemisphere after induction of experimental stroke in mice. Transfer of enriched Breg cell subpopulations into both B-cell-depleted and wild-type mice confirmed their potent immunosuppressive activities in vivo, including recruitment and potentiation of regulatory T cells. Moreover, Breg cell therapy strongly reduced stroke volumes and treatment outcomes in ischaemic mice even when administered 24 hr after induction of experimental stroke, a treatment window far exceeding that of tPA. These striking results suggest that transfer of enriched Breg cell populations could have therapeutic value in human stroke, although considerable clinical challenges remain.
Collapse
Affiliation(s)
- Hilary A Seifert
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
49
|
Interleukin-6 is increased in plasma and cerebrospinal fluid of community-dwelling domestic dogs with acute ischaemic stroke. Neuroreport 2018; 28:134-140. [PMID: 28079628 PMCID: PMC5287423 DOI: 10.1097/wnr.0000000000000728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inflammatory cytokines are potential modulators of infarct progression in acute ischaemic stroke, and are therefore possible targets for future treatment strategies. Cytokine studies in animal models of surgically induced stroke may, however, be influenced by the fact that the surgical intervention itself contributes towards the cytokine response. Community-dwelling domestic dogs suffer from spontaneous ischaemic stroke, and therefore, offer the opportunity to study the cytokine response in a noninvasive set-up. The aims of this study were to investigate cytokine concentrations in plasma and cerebrospinal fluid (CSF) in dogs with acute ischaemic stroke and to search for correlations between infarct volume and cytokine concentrations. Blood and CSF were collected from dogs less than 72 h after a spontaneous ischaemic stroke. Infarct volumes were estimated on MRIs. Interleukin (IL)-2, IL-6, IL-8, IL-10 and tumour necrosis factor in the plasma, CSF and brain homogenates were measured using a canine-specific multiplex immunoassay. IL-6 was significantly increased in plasma (P=0.04) and CSF (P=0.04) in stroke dogs compared with healthy controls. The concentrations of other cytokines, such as tumour necrosis factor and IL-2, were unchanged. Plasma IL-8 levels correlated significantly with infarct volume (Spearman’s r=0.8, P=0.013). The findings showed increased concentrations of IL-6 in the plasma and CSF of dogs with acute ischaemic stroke comparable to humans. We believe that dogs with spontaneous stroke offer a unique, noninvasive means of studying the inflammatory processes that accompany stroke while reducing confounds that are unavoidable in experimental models.
Collapse
|
50
|
Hwang SA, Kim CD, Lee WS. Caffeic acid phenethyl ester protects against photothrombotic cortical ischemic injury in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 22:101-110. [PMID: 29302217 PMCID: PMC5746507 DOI: 10.4196/kjpp.2018.22.1.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/29/2022]
Abstract
In this study, we aimed to investigate the neuroprotective effects of caffeic acid phenethyl ester (CAPE), an active component of propolis purified from honeybee hives, on photothrombotic cortical ischemic injury in mice. Permanent focal ischemia was achieved in the medial frontal and somatosensory cortices of anesthetized male C57BL/6 mice by irradiation of the skull with cold light laser in combination with systemic administration of rose bengal. The animals were treated with CAPE (0.5–5 mg/kg, i.p.) twice 1 and 6 h after ischemic insult. CAPE significantly reduced the infarct size as well as the expression of tumor necrosis factor-α, hypoxiainducible factor-1α, monocyte chemoattractant protein-1, interleukin-1α, and indoleamine 2,3-dioxygenase in the cerebral cortex ipsilateral to the photothrombosis. Moreover, it induced an increase in heme oxygenase-1 immunoreactivity and interleukin-10 expression. These results suggest that CAPE exerts a remarkable neuroprotective effect on ischemic brain injury via its anti-inflammatory properties, thereby providing a benefit to the therapy of cerebral infarction.
Collapse
Affiliation(s)
- Sun Ae Hwang
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Chi Dae Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Won Suk Lee
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea
| |
Collapse
|