1
|
Hanna P, Hoover DB, Kirkland LG, Smith EH, Poston MD, Peirce SG, Garbe CG, Cha S, Mori S, Brennan JA, Armour JA, Rytkin E, Efimov IR, Ajijola OA, Ardell JL, Shivkumar K. Noradrenergic and cholinergic innervation of the normal human heart and changes associated with cardiomyopathy. Anat Rec (Hoboken) 2025. [PMID: 40365781 DOI: 10.1002/ar.25686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/14/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Autonomic nerves are crucial in cardiac function and pathology. However, data on the distribution of cholinergic and noradrenergic nerves in normal and pathologic human hearts is lacking. Nonfailing donor hearts were pressure-perfusion fixed, imaged, and dissected. Left ventricular cardiomyopathy samples were also obtained. Fixed frozen sections were immunostained for nerves, and adjacent tissue underwent clearing for 3D visualization. Cholinergic and noradrenergic nerves were evenly abundant in both atria, except the sinoatrial node, where vesicular acetylcholine transporter (VAChT) nerves were dominant. Noradrenergic consistently outnumbered cholinergic nerves in right (RV) and left ventricular (LV) regions. Noradrenergic innervation of LV regions varied between donors. Cholinergic innervation was higher in RV compared to LV samples, which generally had reduced VAChT nerves. Marked neural remodeling occurred in three cardiomyopathy cases. Tyrosine hydroxylase (TH) nerve density was increased in the right atrial appendage, and all nerves showed a trend to decrease in the left atrial appendage. Cholinergic innervation was reduced in the LV, and TH innervation was heterogeneous. Noradrenergic nerves were present in granulation tissue but absent in regions of dense scar. Some border zone regions had reduced TH innervation but no hyperinnervation. Dual innervation of most atrial regions supports balanced regulation of atrial function. Higher cholinergic input to the sinoatrial node favors vagal dominance in heart rate regulation. Innervation patterns support a significant role of noradrenergic input to the ventricle, especially on the left. Both atrial and ventricular nerves remodel in cardiomyopathy, providing a foundation for asymmetric neural input and dysregulation of cardiac electromechanical function.
Collapse
Affiliation(s)
- Peter Hanna
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
- Molecular, Cellular, and Integrative Physiology Program, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Logan G Kirkland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elizabeth H Smith
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Megan D Poston
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Stanley G Peirce
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Chloe G Garbe
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Steven Cha
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Shumpei Mori
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - John Andrew Armour
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Eric Rytkin
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
- Department of Medicine (Cardiology), Northwestern University, Chicago, Illinois, USA
| | - Olujimi A Ajijola
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
- Molecular, Cellular, and Integrative Physiology Program, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Jeffrey L Ardell
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Kalyanam Shivkumar
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
- Molecular, Cellular, and Integrative Physiology Program, University of California Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
2
|
Koppel CJ, De Henau CMS, Vreeken D, DeRuiter MC, Jongbloed MRM, van Gils JM. The Role of the Axonal Guidance Cue Semaphorin 3A in Innervation of the Postnatal Heart in Health and Disease. Can J Cardiol 2025; 41:899-910. [PMID: 39746509 DOI: 10.1016/j.cjca.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
During cardiac development, the heart is innervated by the autonomous nervous system. After development, neurons of the autonomic nervous system have limited capacity for growth and regeneration. However, in recent decades, it has become clear that cardiac nerves can regenerate after cardiac damage. Excessive reinnervation, so-called sympathetic hyperinnervation, may render patients vulnerable to ventricular arrhythmias and heart failure. Several studies have investigated axonal guidance cues as mediators of cardiac innervation. Axonal guidance cues direct neuronal growth of the axon and play a significant role in the regeneration and remodelling of cardiac autonomic innervation after cardiac damage. This review focusses on the current literature regarding the axonal guidance cue group of semaphorins and their function in the healthy and diseased postnatal heart. In view of cardiac innervation, most studies have focussed on semaphorin 3A (SEMA3A), whereas less is known about the function of the other semaphorin classes. SEMA3A is a neuronal repellent and is associated with a decrease in the density of sympathetic neurons in the heart. Its decline in expression after myocardial infarction plays a role in the development of sympathetic hyperinnervation and the subsequent increased risk of ventricular arrhythmias. In congestive heart failure, the opposite occurs: an increase in SEMA3A expression underlies decreased nerve density that may also serve as a substrate for ventricular arrhythmias. Although the literature on their role in cardiac innervation is still relatively scarce, semaphorins, especially SEMA3A, seem worthwhile to consider when exploring options to modulate pathologic innervation patterns in cardiovascular disease.
Collapse
Affiliation(s)
- Claire J Koppel
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Charlotte M S De Henau
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dianne Vreeken
- Department of Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marco C DeRuiter
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Janine M van Gils
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
Vaseghi M, van Weperen V, Hoang J, Jani N, Atmani K, Chan C, Cao K, Avathi S, Lokhandwala Z, Emamimeybodi M. Sympathetic nociceptive afferent signaling drives the chronic structural and functional autonomic remodeling after myocardial infarction. RESEARCH SQUARE 2025:rs.3.rs-6247307. [PMID: 40235500 PMCID: PMC11998784 DOI: 10.21203/rs.3.rs-6247307/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
After myocardial infarction (MI), pathological autonomic remodeling, including vagal dysfunction and sympathoexcitation, occurs and predisposes to ventricular arrhythmias (VT/VF). The underlying factors that drive this remodeling, including the observed neuroinflammation and glial activation, remain unknown. We hypothesized that sympathetic nociceptive afferents underlie this remodeling post-MI. Epidural resiniferatoxin (RTX, to ablate sympathetic cardiac afferent neurons) vs. saline was administered in pigs prior to MI and autonomic and electrophysiological effects assessed four to six weeks post-infarction. Acute effects of afferent ablation after chronic MI were also assessed in a separate group of animals. Baroreflex sensitivity and vagal tone, as measured by parasympathetic neuronal activity and cardiac nociceptive responses, were improved in infarcted animals which received epidural RTX prior to MI. These animals also demonstrated reduced spinal cord inflammation and glial activation, downregulation of circulating stress and inflammatory pathways, and stabilization of electrophysiological parameters, with reduced VT/VF-inducibility. Epidural RTX after chronic MI also acutely restored vagal function and decreased VT/VF. These data suggest that cardiac spinal nociceptive afferents directly contribute to VT/VF susceptibility and MI-induced autonomic remodeling, including oxidative stress, inflammation, glial activation, and reduced vagal function, providing novel insights into the causal role of these afferents in driving sympathovagal imbalance after MI.
Collapse
|
4
|
van Weperen V, Hoang JD, Jani N, Atmani K, Chan CA, Cao K, Avasthi S, Lokhandwala ZA, Emamimeybodi M, Vaseghi M. Sympathetic nociceptive afferent signaling drives the chronic structural and functional autonomic remodeling after myocardial infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645120. [PMID: 40196476 PMCID: PMC11974784 DOI: 10.1101/2025.03.28.645120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
After myocardial infarction (MI), pathological autonomic remodeling, including vagal dysfunction and sympathoexcitation, occurs and predisposes to ventricular arrhythmias (VT/VF). The underlying factors that drive this remodeling, including the observed neuroinflammation and glial activation, remain unknown. We hypothesized that sympathetic nociceptive afferents underlie this remodeling post-MI. Epidural resiniferatoxin (RTX, to ablate sympathetic cardiac afferent neurons) vs. saline was administered in pigs prior to MI and autonomic and electrophysiological effects assessed four to six weeks post-infarction. Acute effects of afferent ablation after chronic MI were also assessed in a separate group of animals. Baroreflex sensitivity and vagal tone, as measured by parasympathetic neuronal activity and cardiac nociceptive responses, were improved in infarcted animals which received epidural RTX prior to MI. These animals also demonstrated reduced spinal cord inflammation and glial activation, downregulation of circulating stress and inflammatory pathways, and stabilization of electrophysiological parameters, with reduced VT/VF-inducibility. Epidural RTX after chronic MI also acutely restored vagal function and decreased VT/VF. These data suggest that cardiac spinal nociceptive afferents directly contribute to VT/VF susceptibility and MI-induced autonomic remodeling, including oxidative stress, inflammation, glial activation, and reduced vagal function, providing novel insights into the causal role of these afferents in driving sympathovagal imbalance after MI.
Collapse
|
5
|
Ajijola OA, Aksu T, Arora R, Biaggioni I, Chen PS, De Ferrari G, Dusi V, Fudim M, Goldberger JJ, Green AL, Herring N, Khalsa SS, Kumar R, Lakatta E, Mehra R, Meyer C, Po S, Stavrakis S, Somers VK, Tan AY, Valderrabano M, Shivkumar K. Clinical neurocardiology: defining the value of neuroscience-based cardiovascular therapeutics - 2024 update. J Physiol 2025; 603:1781-1839. [PMID: 40056025 DOI: 10.1113/jp284741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/28/2025] [Indexed: 04/01/2025] Open
Abstract
The intricate role of the autonomic nervous system (ANS) in regulating cardiac physiology has long been recognized. Aberrant function of the ANS is central to the pathophysiology of cardiovascular diseases. It stands to reason, therefore, that neuroscience-based cardiovascular therapeutics hold great promise in the treatment of cardiovascular diseases in humans. A decade after the inaugural edition, this White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology and pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tolga Aksu
- Division of Cardiology, Yeditepe University Hospital, Istanbul, Türkiye
| | - Rishi Arora
- Division of Cardiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Italo Biaggioni
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peng-Sheng Chen
- Department of Cardiology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Gaetano De Ferrari
- Department of Medical Sciences, University of Turin, Italy and Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Torino, Italy
| | - Veronica Dusi
- Department of Medical Sciences, University of Turin, Italy and Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Torino, Italy
| | - Marat Fudim
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey J Goldberger
- Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander L Green
- Department of Clinical Neurosciences, John Radcliffe Hospital, and Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Neil Herring
- Department for Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sahib S Khalsa
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rajesh Kumar
- Department of Neurobiology and the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Edward Lakatta
- National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Reena Mehra
- Division of Pulmonary Medicine, University of Washington, Seattle, WA, USA
| | - Christian Meyer
- Klinik für Kardiologie, Angiologie, Intensivmedizin, cNEP Research Consortium EVK, Düsseldorf, Germany
- Heart Rhythm Institute, Overland Park, KS, USA
| | - Sunny Po
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Virend K Somers
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Foundation, Rochester, MN, USA
| | - Alex Y Tan
- Division of Cardiology, Richmond Veterans Affairs Hospital, Richmond, VA, USA
| | - Miguel Valderrabano
- Methodist DeBakey Heart and Vascular Center and Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
6
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2025; 603:1689-1728. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Bussmann B, Ayagama T, Liu K, Li D, Herring N. Bayliss Starling Prize Lecture 2023: Neuropeptide-Y being 'unsympathetic' to the broken hearted. J Physiol 2025; 603:1841-1864. [PMID: 38847435 PMCID: PMC11955873 DOI: 10.1113/jp285370] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 04/01/2025] Open
Abstract
William Bayliss and Ernest Starling are not only famous as pioneers in cardiovascular physiology, but also responsible for the discovery of the first hormone (from the Greek 'excite or arouse'), the intestinal signalling molecule and neuropeptide secretin in 1902. Our research group focuses on neuropeptides and neuromodulators that influence cardiovascular autonomic control as potential biomarkers in disease and tractable targets for therapeutic intervention. Acute myocardial infarction (AMI) and chronic heart failure (CHF) result in high levels of cardiac sympathetic stimulation, which is a poor prognostic indicator. Although beta-blockers improve mortality in these conditions by preventing the action of the neurotransmitter noradrenaline, a substantial residual risk remains. Recently, we have identified the sympathetic co-transmitter neuropeptide-Y (NPY) as being released during AMI, leading to larger infarcts and life-threatening arrhythmia in both animal models and patients. Here, we discuss recently published data demonstrating that peripheral venous NPY levels are associated with heart failure hospitalisation and mortality after AMI, and all cause cardiovascular mortality in CHF, even when adjusting for known risk factors (including brain natriuretic peptide). We have investigated the mechanistic basis for these observations in human and rat stellate ganglia and cardiac tissue, manipulating NPY neurochemistry at the same time as using state-of-the-art imaging techniques, to establish the receptor pathways responsible for NPY signalling. We propose NPY as a new mechanistic biomarker in AMI and CHF patients and aim to determine whether specific NPY receptor blockers can prevent arrhythmia and attenuate the development of heart failure.
Collapse
Affiliation(s)
- Benjamin Bussmann
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Thamali Ayagama
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kun Liu
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Bianco M, Sollazzo F, Pella R, Vicentini S, Ciaffoni S, Modica G, Monti R, Cammarano M, Zeppilli P, Palmieri V. Differences in Arrhythmia Detection Between Harvard Step Test and Maximal Exercise Testing in a Paediatric Sports Population. J Cardiovasc Dev Dis 2025; 12:22. [PMID: 39852300 PMCID: PMC11765866 DOI: 10.3390/jcdd12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Sport practice may elevate the risk of cardiovascular events, including sudden cardiac death, in athletes with undiagnosed heart conditions. In Italy, pre-participation screening includes a resting ECG and either the Harvard Step Test (HST) or maximal exercise testing (MET), but the relative efficacy of the latter two tests for detecting arrhythmias and heart conditions remains unclear. METHODS This study examined 511 paediatric athletes (8-18 years, 76.3% male) without known cardiovascular, renal, or endocrine diseases. All athletes underwent both HST and MET within 30 days. Absolute data and data relative to theoretical peak heart rates, arrhythmias (supraventricular and ventricular) and cardiovascular diagnoses were collected. RESULTS HST resulted in a lower peak heart rate than MET (181.1 ± 9.8 vs. 187.5 ± 8.1 bpm, p < 0.001), but led to the detection of more supraventricular (18.6% vs. 13.1%, p < 0.001) and ventricular (30.5% vs. 22.7%, p < 0.001) arrhythmias, clustering during recovery (p = 0.014). This pattern was significant in males but not females. Among athletes diagnosed with cardiovascular diseases (22.3%), HST identified more ventricular arrhythmias (26.3% vs. 18.4%, p = 0.05), recovery-phase arrhythmias (20.2% vs. 14.0%, p = 0.035), and polymorphic arrhythmias (6.1% vs. 1.8%, p = 0.025). CONCLUSIONS HST detects arrhythmias more effectively than MET in young male athletes, especially during recovery. More ventricular arrhythmias were highlighted even in athletes with cardiovascular conditions.
Collapse
Affiliation(s)
- Massimiliano Bianco
- Unità Operativa Complessa di Medicina dello Sport e Rieducazione Funzionale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.B.); (R.P.); (S.V.); (S.C.); (R.M.); (M.C.); (P.Z.); (V.P.)
| | - Fabrizio Sollazzo
- Unità Operativa Complessa di Medicina dello Sport e Rieducazione Funzionale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.B.); (R.P.); (S.V.); (S.C.); (R.M.); (M.C.); (P.Z.); (V.P.)
| | - Riccardo Pella
- Unità Operativa Complessa di Medicina dello Sport e Rieducazione Funzionale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.B.); (R.P.); (S.V.); (S.C.); (R.M.); (M.C.); (P.Z.); (V.P.)
| | - Saverio Vicentini
- Unità Operativa Complessa di Medicina dello Sport e Rieducazione Funzionale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.B.); (R.P.); (S.V.); (S.C.); (R.M.); (M.C.); (P.Z.); (V.P.)
| | - Samuele Ciaffoni
- Unità Operativa Complessa di Medicina dello Sport e Rieducazione Funzionale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.B.); (R.P.); (S.V.); (S.C.); (R.M.); (M.C.); (P.Z.); (V.P.)
| | - Gloria Modica
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Riccardo Monti
- Unità Operativa Complessa di Medicina dello Sport e Rieducazione Funzionale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.B.); (R.P.); (S.V.); (S.C.); (R.M.); (M.C.); (P.Z.); (V.P.)
| | - Michela Cammarano
- Unità Operativa Complessa di Medicina dello Sport e Rieducazione Funzionale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.B.); (R.P.); (S.V.); (S.C.); (R.M.); (M.C.); (P.Z.); (V.P.)
| | - Paolo Zeppilli
- Unità Operativa Complessa di Medicina dello Sport e Rieducazione Funzionale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.B.); (R.P.); (S.V.); (S.C.); (R.M.); (M.C.); (P.Z.); (V.P.)
| | - Vincenzo Palmieri
- Unità Operativa Complessa di Medicina dello Sport e Rieducazione Funzionale, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.B.); (R.P.); (S.V.); (S.C.); (R.M.); (M.C.); (P.Z.); (V.P.)
| |
Collapse
|
9
|
Khan S, Abdo DBFK, Mushtaq V, Ahmed N, Bai K, Neelam F, Malik M, Malik J. Cardiac Implantable Electronic Devices in Cardiac Transplant Patients: A Comprehensive Review. Cardiol Rev 2024:00045415-990000000-00368. [PMID: 39707617 DOI: 10.1097/crd.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
A fraction of patients (approximately 10%) undergoing heart transplantation require permanent pacemaker (PPM) implantation due to sinus node dysfunction or atrioventricular block, occurring either shortly after surgery or later. The incidence of PPM implantation has declined to less than 5% with the introduction of bicaval anastomosis transplantation surgery. Pacing dependency during follow-up varies among recipients. A smaller subset (1.5-3.4%) receives implantable cardioverter-defibrillators (ICDs), but data on their use in transplant recipients are limited, primarily from cohort studies and case series. Sudden cardiac death affects around 10% of transplant recipients, attributed to various nonarrhythmic factors such as acute rejection, late graft failure, and cardiac allograft vasculopathy-induced ischemia. This review offers a comprehensive analysis of the existing data concerning the role of PPMs and ICDs in this population, encompassing leadless PPMs, subcutaneous ICDs, unique considerations, and future directions.
Collapse
Affiliation(s)
- Shayan Khan
- From the Department of Cardiology, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | | | - Varda Mushtaq
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Najeeb Ahmed
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Kajal Bai
- Department of Medicine, Chandka Medical College, Larkana, Pakistan
| | - Fnu Neelam
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Maria Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| |
Collapse
|
10
|
Tonko JB, Chow A, Lambiase PD. High-density isochronal repolarization mapping and re-entry vulnerability estimation for scar-related ventricular tachycardia ablation: mechanistic basis, clinical application, and challenges. Europace 2024; 26:euae271. [PMID: 39478673 PMCID: PMC11601750 DOI: 10.1093/europace/euae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Alterations in repolarization gradients and increased heterogeneity are key electrophysiological determinants of ventricular arrhythmogenesis across a variety of aetiologies with and without structural heart disease. High-density repolarization mapping to localize these repolarization abnormalities could improve characterization of the individual arrhythmogenic substrate and inform more targeted ablation. Yet, due to challenges posed by intrinsic features of human cardiac repolarization itself as well as technical and practical limitations, they are not routinely assessed, and traditional substrate mapping techniques remain strictly limited to determining conduction abnormalities. Here, we provide an overview of the mechanistic role of repolarization alterations in ventricular re-entry arrhythmias followed by a description of a clinical workflow that enables high-density repolarization mapping during ventricular tachycardia (VT) ablations using existing clinical tools. We describe step-by-step guidance of how-to set-up and generate repolarization maps illustrating the approach in case examples of structural normal and abnormal hearts. Furthermore, we discuss how repolarization mapping could be combined with existing substrate mapping approaches, including isochronal late activation mapping, to delineate sites of increased re-entry vulnerability, that may represent targets for ablation without the requirement for VT induction. Finally, we review challenges and pitfalls and ongoing controversies in relation to repolarization mapping and discuss the need for future technical and analytical improvements in repolarization mapping to integrate into ventricular substrate mapping strategies. Repolarization mapping remains investigational, and future research efforts need to be focused on prospective trials to establish the additional diagnostic value and its role in clinical ablation procedures.
Collapse
Affiliation(s)
- Johanna B Tonko
- Institute for Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, UK
- Barts Heart Centre, St Bartholomew’s Hospital, W Smithfield, London EC1A 7BE, UK
| | - Anthony Chow
- Barts Heart Centre, St Bartholomew’s Hospital, W Smithfield, London EC1A 7BE, UK
| | - Pier D Lambiase
- Institute for Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, UK
- Barts Heart Centre, St Bartholomew’s Hospital, W Smithfield, London EC1A 7BE, UK
| |
Collapse
|
11
|
Jing Y, Ding Y, Fu H, Li T, Long T, Ye Q. Empagliflozin ameliorates ventricular arrhythmias by inhibiting sympathetic remodeling via nerve growth factor/tyrosine kinase receptor A pathway inhibition. J Cardiovasc Med (Hagerstown) 2024; 25:664-673. [PMID: 38949125 PMCID: PMC11296263 DOI: 10.2459/jcm.0000000000001630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/02/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND AND AIMS Sodium-glucose cotransporter 2 inhibitors (SGLT2is) can ameliorate arrhythmias; however, the mechanisms underlying their antiarrhythmic effect remain unclear. Therefore, we aimed to test the hypothesis that the SGLT2i empagliflozin (EMPA) ameliorates ventricular arrhythmias caused by myocardial infarction (MI) by inhibiting sympathetic remodeling. METHODS Male nondiabetic Sprague-Dawley rats were divided into Sham ( n = 10), MI ( n = 13), low-EMPA (10 mg/kg/day; n = 13), and high-EMPA (30 mg/kg/day; n = 13) groups. Except for the Sham group, MI models were established by ligation of the left anterior descending coronary artery. After 4 weeks, the hearts were removed. Echocardiography, electrical stimulation, hematoxylin-eosin staining and Masson's staining, Western blotting, immunohistochemistry (IHC), and ELISA were performed. RESULTS Except for left ventricular posterior wall thickness (LVPWT), EMPA treatment significantly ameliorated the left ventricular anterior wall thickness (LVAWT), interventricular septum thickness (IVST), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), and left ventricular ejection fraction (LVEF) in MI rats; there was no statistical difference between the low-EMPA and high-EMPA groups. The threshold for ventricular fibrillation induction and myocardial fibrosis was significantly ameliorated in EMPA-treated rats, and there was no statistical difference between the high-EMPA and low-EMPA groups. EMPA decreased the expression of nerve growth factor (NGF), tyrosine kinase receptor A (TrkA), tyrosine hydroxylase, and growth-associated protein 43 (GAP43) in the left ventricular infarction margin myocardium of MI rats, especially in the high-EMPA group, with a statistically significant difference between the high-EMPA and low-EMPA groups. High-EMPA significantly decreased noradrenaline (NE) levels in the blood of MI rats; however, there was no statistical difference between the low-EMPA and MI groups. CONCLUSION EMPA ameliorated the occurrence of ventricular arrhythmias in MI rats, which may be related to a reduction in sympathetic activity, inhibition of the NGF/TrkA pathway, inhibition of sympathetic remodeling, and improvement in cardiac function and cardiac structural remodeling.
Collapse
Affiliation(s)
- Yuling Jing
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| | - Yanling Ding
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| | - Hengsong Fu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| | - Tao Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University
| | - Ting Long
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University
| |
Collapse
|
12
|
Hoang JD, van Weperen VYH, Kang KW, Jani NR, Swid MA, Chan CA, Lokhandwala ZA, Lux RL, Vaseghi M. Antiarrhythmic Mechanisms of Epidural Blockade After Myocardial Infarction. Circ Res 2024; 135:e57-e75. [PMID: 38939925 PMCID: PMC11257785 DOI: 10.1161/circresaha.123.324058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Thoracic epidural anesthesia (TEA) has been shown to reduce the burden of ventricular tachycardia in small case series of patients with refractory ventricular tachyarrhythmias and cardiomyopathy. However, its electrophysiological and autonomic effects in diseased hearts remain unclear, and its use after myocardial infarction is limited by concerns for potential right ventricular dysfunction. METHODS Myocardial infarction was created in Yorkshire pigs (N=22) by left anterior descending coronary artery occlusion. Approximately, six weeks after myocardial infarction, an epidural catheter was placed at the C7-T1 vertebral level for injection of 2% lidocaine. Right and left ventricular hemodynamics were recorded using Millar pressure-conductance catheters, and ventricular activation recovery intervals (ARIs), a surrogate of action potential durations, by a 56-electrode sock and 64-electrode basket catheter. Hemodynamics and ARIs, baroreflex sensitivity and intrinsic cardiac neural activity, and ventricular effective refractory periods and slope of restitution (Smax) were assessed before and after TEA. Ventricular tachyarrhythmia inducibility was assessed by programmed electrical stimulation. RESULTS TEA reduced inducibility of ventricular tachyarrhythmias by 70%. TEA did not affect right ventricular-systolic pressure or contractility, although left ventricular-systolic pressure and contractility decreased modestly. Global and regional ventricular ARIs increased, including in scar and border zone regions post-TEA. TEA reduced ARI dispersion specifically in border zone regions. Ventricular effective refractory periods prolonged significantly at critical sites of arrhythmogenesis, and Smax was reduced. Interestingly, TEA significantly improved cardiac vagal function, as measured by both baroreflex sensitivity and intrinsic cardiac neural activity. CONCLUSIONS TEA does not compromise right ventricular function in infarcted hearts. Its antiarrhythmic mechanisms are mediated by increases in ventricular effective refractory period and ARIs, decreases in Smax, and reductions in border zone electrophysiological heterogeneities. TEA improves parasympathetic function, which may independently underlie some of its observed antiarrhythmic mechanisms. This study provides novel insights into the antiarrhythmic mechanisms of TEA while highlighting its applicability to the clinical setting.
Collapse
Affiliation(s)
- Jonathan D Hoang
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
- UCLA Molecular Cellular and Integrative Physiology Interdepartmental Program, Los Angeles, CA
| | - Valerie YH van Weperen
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Ki-Woon Kang
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Neil R Jani
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Mohammed A Swid
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Christopher A Chan
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Zulfiqar Ali Lokhandwala
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Robert L Lux
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Marmar Vaseghi
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
- UCLA Molecular Cellular and Integrative Physiology Interdepartmental Program, Los Angeles, CA
| |
Collapse
|
13
|
Liu Z, Wang J, Guo F, Xu T, Yu F, Deng Q, Tan W, Duan S, Song L, Wang Y, Sun J, Zhou L, Wang Y, Zhou X, Xia H, Jiang H. Role of S100β in Unstable Angina Pectoris: Insights from Quantitative Flow Ratio. Arch Med Res 2024; 55:103034. [PMID: 38972195 DOI: 10.1016/j.arcmed.2024.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND OBJECTIVE Disturbed autonomic nervous system (ANS) may promote inflammatory, immune, and oxidative stress responses, which may increase the risk of acute coronary events. S100β has been proposed as a biomarker of neuronal injury that would provide an insightful understanding of the crosstalk between the ANS, immune-inflammatory cells, and plaques that drive atherosclerosis. This study investigates the correlation between S100β, and functional coronary stenosis as determined by quantitative flow ratio (QFR). METHODS Patients with unstable angina pectoris (UAP) scheduled for coronary angiography and QFR were retrospectively enrolled. Serum S100β levels were determined by enzyme-linked immunosorbent assay. The Gensini score was used to estimate the extent of atherosclerotic lesions and the cumulative sum of three-vessel QFR (3V-QFR) was calculated to estimate the total atherosclerotic burden. RESULTS Two hundred thirty-three patients were included in this study. Receiver operator characteristic (ROC) curve indicated that S100β>33.28 pg/mL predicted functional ischemia in patients with UAP. Multivariate logistic analyses showed that a higher level of S100β was independently correlated with a functional ischemia-driven target vessel (QFR ≤0.8). This was also closely correlated with the severity of coronary lesions, as measured by the Gensini score (OR = 5.058, 95% CI: 2.912-8.793, p <0.001). According to 3V-QFR, S100β is inversely associated with total atherosclerosis burden (B = -0.002, p <0.001). CONCLUSIONS S100β was elevated in the functional ischemia stages of UAP. It was independently associated with coronary lesion severity as assessed by Gensini score and total atherosclerosis burden as estimated by 3V-QFR in patients with UAP.
Collapse
Affiliation(s)
- Zhihao Liu
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Jun Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Fuding Guo
- Department of Cardiology, Yan'an Hospital, Kunming Medical University, Kunming, China
| | - Tianyou Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Fu Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Qiang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Shoupeng Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Lingpeng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yijun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, Hubei, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Depes D, Mennander A, Immonen P, Mäkinen A, Huhtala H, Paavonen T, Kholová I. The autonomic nerves around the vein of Marshall: a postmortem study with clinical implications. APMIS 2024; 132:430-443. [PMID: 38468591 DOI: 10.1111/apm.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
This study aims to analyze the vein of Marshall (VOM) in human autopsy hearts and its correlation with clinical data to elucidate the morphological substrates of atrial fibrillation (AF) and other cardiac diseases. Twenty-three adult autopsy hearts were studied, assessing autonomic nerves by immunohistochemistry with tyrosine hydroxylase (sympathetic nerves), choline acetyltransferase (parasympathetic nerves), growth-associated protein 43 (neural growth), and S100 (general neural marker) antibodies. Interstitial fibrosis was assessed by Masson trichrome staining. Measurements were conducted via morphometric software. The results were correlated with clinical data. Sympathetic innervation was abundant in all VOM-adjacent regions. Subjects with a history of AF, cardiovascular cause of death, and histologically verified myocardial infarction had increased sympathetic innervation and neural growth around the VOM at the mitral isthmus. Interstitial fibrosis increased with age and heart weight was associated with AF and cardiovascular cause of death. This study increases our understanding of the cardiac autonomic innervation in the VOM area in various diseases, offering implications for the development of new therapeutic approaches targeting the autonomic nervous system.
Collapse
Affiliation(s)
- Denis Depes
- Department of Pathology, Fimlab Laboratories, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ari Mennander
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Cardiothoracic Surgery, Tampere University Heart Hospital, Tampere, Finland
| | - Paavo Immonen
- Department of Pathology, Fimlab Laboratories, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Artturi Mäkinen
- Department of Pathology, Fimlab Laboratories, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Timo Paavonen
- Department of Pathology, Fimlab Laboratories, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ivana Kholová
- Department of Pathology, Fimlab Laboratories, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
15
|
Bauer J, Vlcek J, Pauly V, Hesse N, Xia R, Mo L, Chivukula AS, Villgrater H, Dressler M, Hildebrand B, Wolf E, Rizas KD, Bauer A, Kääb S, Tomsits P, Schüttler D, Clauss S. Biomarker Periodic Repolarization Dynamics Indicates Enhanced Risk for Arrhythmias and Sudden Cardiac Death in Myocardial Infarction in Pigs. J Am Heart Assoc 2024; 13:e032405. [PMID: 38639363 PMCID: PMC11179938 DOI: 10.1161/jaha.123.032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Periodic repolarization dynamics (PRD) is an electrocardiographic biomarker that captures repolarization instability in the low frequency spectrum and is believed to estimate the sympathetic effect on the ventricular myocardium. High PRD indicates an increased risk for postischemic sudden cardiac death (SCD). However, a direct link between PRD and proarrhythmogenic autonomic remodeling has not yet been shown. METHODS AND RESULTS We investigated autonomic remodeling in pigs with myocardial infarction (MI)-related ischemic heart failure induced by balloon occlusion of the left anterior descending artery (n=17) compared with pigs without MI (n=11). Thirty days after MI, pigs demonstrated enhanced sympathetic innervation in the infarct area, border zone, and remote left ventricle paralleled by altered expression of autonomic marker genes/proteins. PRD was enhanced 30 days after MI compared with baseline (pre-MI versus post-MI: 1.75±0.30 deg2 versus 3.29±0.79 deg2, P<0.05) reflecting pronounced autonomic alterations on the level of the ventricular myocardium. Pigs with MI-related ventricular fibrillation and SCD had significantly higher pre-MI PRD than pigs without tachyarrhythmias, suggesting a potential role for PRD as a predictive biomarker for ischemia-related arrhythmias (no ventricular fibrillation versus ventricular fibrillation: 1.50±0.39 deg2 versus 3.18±0.53 deg2 [P<0.05]; no SCD versus SCD: 1.67±0.32 deg2 versus 3.91±0.63 deg2 [P<0.01]). CONCLUSIONS We demonstrate that ischemic heart failure leads to significant proarrhythmogenic autonomic remodeling. The concomitant elevation of PRD levels in pigs with ischemic heart failure and pigs with MI-related ventricular fibrillation/SCD suggests PRD as a biomarker for autonomic remodeling and as a potential predictive biomarker for ventricular arrhythmias/survival in the context of MI.
Collapse
Affiliation(s)
- Julia Bauer
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Julia Vlcek
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Valerie Pauly
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Nora Hesse
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Ruibing Xia
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Li Mo
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Aparna Sharma Chivukula
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Hannes Villgrater
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Marie Dressler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Bianca Hildebrand
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Konstantinos D. Rizas
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
| | - Axel Bauer
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- University Hospital for Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Stefan Kääb
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Philipp Tomsits
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Dominik Schüttler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Sebastian Clauss
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| |
Collapse
|
16
|
XU JY, XUE ZK, ZHANG YR, LIU X, ZHANG X, YANG X, LIU T, CHEN KY. Atorvastatin, etanercept and the nephrogenic cardiac sympathetic remodeling in chronic renal failure rats. J Geriatr Cardiol 2024; 21:443-457. [PMID: 38800544 PMCID: PMC11112150 DOI: 10.26599/1671-5411.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Chronic renal failure (CRF) patients are predisposed to arrhythmias, while the detailed mechanisms are unclear. We hypothesized the chronic inflammatory state of CRF patients may lead to cardiac sympathetic remodeling, increasing the incidence of ventricular arrhythmia (VA) and sudden cardiac death. And explored the role of atorvastatin and etanercept in this process. METHODS A total of 48 rats were randomly divided into sham operation group (Sham group), CRF group, CRF + atorvastatin group (CRF + statin group), and CRF + etanercept group (CRF + rhTNFR-Fc group). Sympathetic nerve remodeling was assessed by immunofluorescence of growth-associated protein 43 (GAP-43) and tyrosine hydroxylase positive area fraction. Electrophysiological testing was performed to assess the incidence of VA by assessing the ventricular effective refractory period and ventricular fibrillation threshold. The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta were determined by Western blotting and enzyme-linked immunosorbent assay. RESULTS Echocardiogram showed that compared with the Sham group, left ventricular end-systolic diameter and ventricular weight/body weight ratio were significantly higher in the CRF group. Hematoxylin-eosin and Masson staining indicated that myocardial fibers were broken, disordered, and fibrotic in the CRF group. Western blotting, enzyme-linked immunosorbent assay, immunofluorescence and electrophysiological examination suggested that compared with the Sham group, GAP-43 and TNF-α proteins were significantly upregulated, GAP-43 and tyrosine hydroxylase positive nerve fiber area was increased, and ventricular fibrillation threshold was significantly decreased in the CRF group. The above effects were inhibited in the CRF + statin group and the CRF + rhTNFR-Fc group. CONCLUSIONS In CRF rats, TNF-α was upregulated, cardiac sympathetic remodeling was more severe, and the nephrogenic cardiac sympathetic remodeling existed. Atorvastatin and etanercept could downregulate the expression of TNF-α or inhibit its activity, thus inhibited the above effects, and reduced the occurrence of VA and sudden cardiac death.
Collapse
Affiliation(s)
- Jing-Yue XU
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheng-Kai XUE
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ya-Ru ZHANG
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xing LIU
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue ZHANG
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xi YANG
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong LIU
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kang-Yin CHEN
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Yoneda Z, Kanagasundram AN. Neuraxial Modulation for Refractory Ventricular Arrhythmias. JACC Clin Electrophysiol 2024; 10:759-761. [PMID: 38520439 DOI: 10.1016/j.jacep.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 03/25/2024]
Affiliation(s)
- Zachary Yoneda
- Cardiovascular Division, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Arvindh N Kanagasundram
- Cardiovascular Division, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
18
|
Lenarczyk R, Zeppenfeld K, Tfelt-Hansen J, Heinzel FR, Deneke T, Ene E, Meyer C, Wilde A, Arbelo E, Jędrzejczyk-Patej E, Sabbag A, Stühlinger M, di Biase L, Vaseghi M, Ziv O, Bautista-Vargas WF, Kumar S, Namboodiri N, Henz BD, Montero-Cabezas J, Dagres N. Management of patients with an electrical storm or clustered ventricular arrhythmias: a clinical consensus statement of the European Heart Rhythm Association of the ESC-endorsed by the Asia-Pacific Heart Rhythm Society, Heart Rhythm Society, and Latin-American Heart Rhythm Society. Europace 2024; 26:euae049. [PMID: 38584423 PMCID: PMC10999775 DOI: 10.1093/europace/euae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024] Open
Abstract
Electrical storm (ES) is a state of electrical instability, manifesting as recurrent ventricular arrhythmias (VAs) over a short period of time (three or more episodes of sustained VA within 24 h, separated by at least 5 min, requiring termination by an intervention). The clinical presentation can vary, but ES is usually a cardiac emergency. Electrical storm mainly affects patients with structural or primary electrical heart disease, often with an implantable cardioverter-defibrillator (ICD). Management of ES requires a multi-faceted approach and the involvement of multi-disciplinary teams, but despite advanced treatment and often invasive procedures, it is associated with high morbidity and mortality. With an ageing population, longer survival of heart failure patients, and an increasing number of patients with ICD, the incidence of ES is expected to increase. This European Heart Rhythm Association clinical consensus statement focuses on pathophysiology, clinical presentation, diagnostic evaluation, and acute and long-term management of patients presenting with ES or clustered VA.
Collapse
Affiliation(s)
- Radosław Lenarczyk
- Medical University of Silesia, Division of Medical Sciences, Department of Cardiology and Electrotherapy, Silesian Center for Heart Diseases, Skłodowskiej-Curie 9, 41-800 Zabrze, Poland
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Department of Forensic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frank R Heinzel
- Cardiology, Angiology, Intensive Care, Städtisches Klinikum Dresden Campus Friedrichstadt, Dresden, Germany
| | - Thomas Deneke
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
- Clinic for Electrophysiology, Klinikum Nuernberg, University Hospital of the Paracelsus Medical University, Nuernberg, Germany
| | - Elena Ene
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
| | - Christian Meyer
- Division of Cardiology/Angiology/Intensive Care, EVK Düsseldorf, Teaching Hospital University of Düsseldorf, Düsseldorf, Germany
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and arrhythmias, Amsterdam, the Netherlands
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ewa Jędrzejczyk-Patej
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Avi Sabbag
- The Davidai Center for Rhythm Disturbances and Pacing, Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Markus Stühlinger
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Luigi di Biase
- Albert Einstein College of Medicine at Montefiore Hospital, New York, NY, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrythmia Center, Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Ohad Ziv
- Case Western Reserve University, Cleveland, OH, USA
- The MetroHealth System Campus, Cleveland, OH, USA
| | | | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Sydney, Australia
| | | | - Benhur Davi Henz
- Instituto Brasilia de Arritmias-Hospital do Coração do Brasil-Rede Dor São Luiz, Brasilia, Brazil
| | - Jose Montero-Cabezas
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
19
|
Bai X, Wang N, Si Y, Liu Y, Yin P, Xu C. The Clinical Characteristics of Heart Rate Variability After Stroke: A Systematic Review. Neurologist 2024; 29:133-141. [PMID: 38042172 DOI: 10.1097/nrl.0000000000000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The autonomic nervous system dysfunction has been reported in up to 76% of stroke patients 7 days after an acute stroke. Heart rate variability (HRV) is one of the important indicators reflecting the balance of sympathetic and parasympathetic nerves. Therefore, we performed a systematic literature review of existing literature on the association between heart rate variability and the different types of stroke. We included studies published in the last 32 years (1990 to 2022). The electronic databases MEDLINE and PubMed were searched. We selected the research that met the inclusion or exclusion criteria. A narrative synthesis was performed. This review aimed to summarize evidence regarding the potential mechanism of heart rate variability among patients after stroke. In addition, the association of clinical characteristics of heart rate variability and stroke has been depicted. The review further discussed the relationship between post-stroke infection and heart rate variability, which could assist in curbing clinical infection in patients with stroke. HRVas a noninvasive clinical monitoring tool can quantitatively assess the changes in autonomic nervous system activity and further predict the outcome of stroke. HRV could play an important role in guiding the clinical practice for autonomic nervous system disorder after stroke.
Collapse
Affiliation(s)
- Xue Bai
- Department of Cardiov ascular Surgery
| | - Na Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Yueqiao Si
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Yunchang Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Ping Yin
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Chunmei Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| |
Collapse
|
20
|
Abstract
Cardiac arrest is the leading cause of death in the more economically developed countries. Ventricular tachycardia associated with myocardial infarct is a prominent cause of cardiac arrest. Ventricular arrhythmias occur in 3 phases of infarction: during the ischemic event, during the healing phase, and after the scar matures. Mechanisms of arrhythmias in these phases are distinct. This review focuses on arrhythmia mechanisms for ventricular tachycardia in mature myocardial scar. Available data have shown that postinfarct ventricular tachycardia is a reentrant arrhythmia occurring in circuits found in the surviving myocardial strands that traverse the scar. Electrical conduction follows a zigzag course through that area. Conduction velocity is impaired by decreased gap junction density and impaired myocyte excitability. Enhanced sympathetic tone decreases action potential duration and increases sarcoplasmic reticular calcium leak and triggered activity. These elements of the ventricular tachycardia mechanism are found diffusely throughout scar. A distinct myocyte repolarization pattern is unique to the ventricular tachycardia circuit, setting up conditions for classical reentry. Our understanding of ventricular tachycardia mechanisms continues to evolve as new data become available. The ultimate use of this information would be the development of novel diagnostics and therapeutics to reliably identify at-risk patients and prevent their ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| |
Collapse
|
21
|
Rast J, Sohinki D, Warner A. Non-invasive Neuromodulation of Arrhythmias. J Innov Card Rhythm Manag 2024; 15:5757-5766. [PMID: 38444451 PMCID: PMC10911637 DOI: 10.19102/icrm.2024.15022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 03/07/2024] Open
Abstract
Dysfunction of the cardiac autonomic nervous system (CANS) is associated with various cardiac arrhythmias. Subsequently, invasive techniques have successfully targeted the CANS for the treatment of certain arrhythmias, such as sympathetic denervation for ventricular tachycardia storm. Non-invasive strategies capable of modulating the CANS for arrhythmia treatment have begun to gain interest due to their low-risk profile and applicability as an adjuvant therapy. This review provides an evidence-based overview of the currently studied technologies capable of non-invasively modulating CANS for the suppression of atrial fibrillation and ventricular arrhythmias.
Collapse
|
22
|
Chen HS, van Roon L, Schoones J, Zeppenfeld K, DeRuiter MC, Jongbloed MRM. Cardiac sympathetic hyperinnervation after myocardial infarction: a systematic review and qualitative analysis. Ann Med 2023; 55:2283195. [PMID: 38065671 PMCID: PMC10836288 DOI: 10.1080/07853890.2023.2283195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cardiac sympathetic hyperinnervation after myocardial infarction (MI) is associated with arrhythmogenesis and sudden cardiac death. The characteristics of cardiac sympathetic hyperinnervation remain underexposed. OBJECTIVE To provide a systematic review on cardiac sympathetic hyperinnervation after MI, taking into account: (1) definition, experimental model and quantification method and (2) location, amount and timing, in order to obtain an overview of current knowledge and to expose gaps in literature. METHODS References on cardiac sympathetic hyperinnervation were screened for inclusion. The included studies received a full-text review and quality appraisal. Relevant data on hyperinnervation were collected and qualitatively analysed. RESULTS Our literature search identified 60 eligible studies performed between 2000 and 2022. Cardiac hyperinnervation is generally defined as an increased sympathetic nerve density or increased number of nerves compared to another control group (100%). Studies were performed in a multitude of experimental models, but most commonly in male rats with permanent left anterior descending (LAD) artery ligation (male: 63%, rat: 68%, permanent ligation: 93%, LAD: 97%). Hyperinnervation seems to occur mainly in the borderzone. Quantification after MI was performed in regions of interest in µm2/mm2 (41%) or in percentage of nerve fibres (46%) and the reported amount showed a great variation ranging from 439 to 126,718 µm2/mm2. Hyperinnervation seems to start from three days onwards to >3 months without an evident peak, although studies on structural evaluation over time and in the chronic phase were scarce. CONCLUSIONS Cardiac sympathetic hyperinnervation after MI occurs mainly in the borderzone from three days onwards and remains present at later timepoints, for at least 3 months. It is most commonly studied in male rats with permanent LAD ligation. The amount of hyperinnervation differs greatly between studies, possibly due to differential quantification methods. Further studies are required that evaluate cardiac sympathetic hyperinnervation over time and in the chronic phase, in transmural sections, in the female sex, and in MI with reperfusion.
Collapse
Affiliation(s)
- H. Sophia Chen
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lieke van Roon
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Schoones
- Dictorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C. DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R. M. Jongbloed
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Salamon RJ, Halbe P, Kasberg W, Bae J, Audhya A, Mahmoud AI. Parasympathetic and sympathetic axons are bundled in the cardiac ventricles and undergo physiological reinnervation during heart regeneration. iScience 2023; 26:107709. [PMID: 37674983 PMCID: PMC10477065 DOI: 10.1016/j.isci.2023.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Sympathetic innervation influences homeostasis, repair, and pathology in the cardiac ventricles; in contrast, parasympathetic innervation is considered to have minimal contribution and influence in the ventricles. Here, we use genetic models, whole-mount imaging, and three-dimensional modeling to define cardiac nerve architecture during development, disease, and regeneration. Our approach reveals that parasympathetic nerves extensively innervate the cardiac ventricles. Furthermore, we identify that parasympathetic and sympathetic axons develop synchronously and are bundled throughout the ventricles. We further investigate cardiac nerve remodeling in the regenerative neonatal and the non-regenerative postnatal mouse heart. Our results show that the regenerating myocardium undergoes a unique process of physiological reinnervation, where proper nerve distribution and architecture is reestablished, in stark contrast to the non-regenerating heart. Mechanistically, we demonstrate that physiological reinnervation during regeneration is dependent on collateral artery formation. Our results reveal clinically significant insights into cardiac nerve plasticity which can identify new therapies for cardiac disease.
Collapse
Affiliation(s)
- Rebecca J. Salamon
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Poorva Halbe
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jiyoung Bae
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
24
|
Sharma AK, Singh S, Bhat M, Gill K, Zaid M, Kumar S, Shakya A, Tantray J, Jose D, Gupta R, Yangzom T, Sharma RK, Sahu SK, Rathore G, Chandolia P, Singh M, Mishra A, Raj S, Gupta A, Agarwal M, Kifayat S, Gupta A, Gupta P, Vashist A, Vaibhav P, Kathuria N, Yadav V, Singh RP, Garg A. New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models. Sci Rep 2023; 13:16420. [PMID: 37775650 PMCID: PMC10541452 DOI: 10.1038/s41598-023-41942-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
- Ashish Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India.
| | - Shivam Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mehvish Bhat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Kartik Gill
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohammad Zaid
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anjali Shakya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Junaid Tantray
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Divyamol Jose
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rashmi Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Tsering Yangzom
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rajesh Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | | | - Gulshan Rathore
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Priyanka Chandolia
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Shobhit Raj
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Archita Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sumaiya Kifayat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anamika Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Prashant Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ankit Vashist
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Parth Vaibhav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Nancy Kathuria
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Vipin Yadav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Arun Garg
- MVN University, Palwal, Haryana, India
| |
Collapse
|
25
|
Sergienko VB, Ansheles AA. [Positron emission tomography in cardiological practice]. TERAPEVT ARKH 2023; 95:531-536. [PMID: 38159001 DOI: 10.26442/00403660.2023.07.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 01/03/2024]
Abstract
The utility of positron emission tomography in cardiology currently goes beyond the ischemic heart disease and covers an increasingly wider range of non-coronary pathology, which requires timely expert diagnostics, including chronic heart disease of any etiology, valvular and electrophysiology disorders, cardiooncology. Authors emphasize the importance of the development of positron emission tomography technologies in the Russian Federation. This includes the development and implementation of new radiopharmaceuticals for the diagnosis of pathological processes of the cardiovascular system, systemic and local inflammation, including atherosclerosis, impaired perfusion and myocardial metabolism, and also for solving specific diagnostic tasks in comorbid pathology.
Collapse
Affiliation(s)
- V B Sergienko
- Chazov National Medical Research Center of Cardiology
| | - A A Ansheles
- Chazov National Medical Research Center of Cardiology
| |
Collapse
|
26
|
Pauziene N, Ranceviene D, Rysevaite-Kyguoliene K, Inokaitis H, Saburkina I, Plekhanova K, Sabeckiene D, Sabeckis I, Martinaityte R, Pilnikovaite E, Pauza DH. Comparative analysis of intracardiac neural structures in the aged rats with essential hypertension. Anat Rec (Hoboken) 2023; 306:2313-2332. [PMID: 36342958 DOI: 10.1002/ar.25109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/16/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022]
Abstract
Persistent arterial hypertension initiates cardiac autonomic imbalance and alters cardiac tissues. Previous studies have shown that neural component contributes to arterial hypertension etiology, maintenance, and progression and leads to brain damage, peripheral neuropathy, and remodeling of intrinsic cardiac neural plexus. Recently, significant structural changes of the intracardiac neural plexus were demonstrated in young prehypertensive and adult hypertensive spontaneously hypertensive rats (SHR), yet structural alterations of intracardiac neural plexus that occur in the aged SHR remain undetermined. Thus, we analyzed the impact of uncontrolled arterial hypertension in old (48-52 weeks) SHR and the age-matched Wistar-Kyoto rats (WKY). Intrinsic cardiac neural plexus was examined using a combination of immunofluorescence confocal microscopy and transmission electron microscopy in cardiac sections and whole-mount preparations. Our findings demonstrate that structural changes of intrinsic cardiac neural plexus caused by arterial hypertension are heterogeneous and may support recent physiological implications about cardiac denervation occurring together with the hyperinnervation of the SHR heart. We conclude that arterial hypertension leads to (i) the decrease of the neuronal body area, the thickness of atrial nerves, the number of myelinated nerve fibers, unmyelinated axon area and cumulative axon area in the nerve, and the density of myocardial nerve fibers, and (ii) the increase in myelinated nerve fiber area and density of neuronal bodies within epicardiac ganglia. Despite neuropathic alterations of myelinated fibers were exposed within intracardiac nerves of both groups, SHR and WKY, we consider that the determined significant changes in structure of intrinsic cardiac neural plexus were predisposed by arterial hypertension.
Collapse
Affiliation(s)
| | | | | | | | - Inga Saburkina
- Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | - Ignas Sabeckis
- Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | | |
Collapse
|
27
|
Chen HS, Voortman LM, van Munsteren JC, Wisse LJ, Tofig BJ, Kristiansen SB, Glashan CA, DeRuiter MC, Zeppenfeld K, Jongbloed MRM. Quantification of Large Transmural Biopsies Reveals Heterogeneity in Innervation Patterns in Chronic Myocardial Infarction. JACC Clin Electrophysiol 2023; 9:1652-1664. [PMID: 37480856 DOI: 10.1016/j.jacep.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Abnormal cardiac innervation plays an important role in arrhythmogenicity after myocardial infarction (MI). Data regarding reperfusion models and innervation abnormalities in the medium to long term after MI are sparse. Histologic quantification of the small-sized cardiac nerves is challenging, and transmural analysis has not been performed. OBJECTIVES This study sought to assess cardiac innervation patterns in transmural biopsy sections in a porcine reperfusion model of MI (MI-R) using a novel method for nerve quantification. METHODS Transmural biopsy sections from 4 swine (n = 83) at 3 months after MI-R and 3 controls (n = 38) were stained with picrosirius red (fibrosis) and beta-III-tubulin (autonomic nerves). Biopsy sections were classified as infarct core, border zone, or remote zone. Each biopsy section was analyzed with a custom software pipeline, allowing calculation of nerve density and classification into innervation types at the 1 × 1-mm resolution level. Relocation of the classified squares to the original biopsy position enabled transmural quantification and innervation heterogeneity assessment. RESULTS Coexisting hyperinnervation, hypoinnervation, and denervation were present in all transmural MI-R biopsy sections. The innervation heterogeneity was greatest in the infarct core (median: 0.14; IQR: 0.12-0.15), followed by the border zone (median: 0.05; IQR: 0.04-0.07; P = 0.02) and remote zone (median: 0.02; IQR: 0.02-0.03; P < 0.0001). Only in the border zone was a positive linear relation between fibrosis and innervation heterogeneity observed (R = 0.79; P < 0.0001). CONCLUSIONS This novel method allows quantification of nerve density and heterogeneity in large transmural biopsy sections. In the chronic phase after MI-R, alternating innervation patterns were identified within the same biopsy section. Persistent innervation heterogeneity, in particular in the border zone biopsy sections, may contribute to late arrhythmogenicity.
Collapse
Affiliation(s)
- H Sophia Chen
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - J Conny van Munsteren
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lambertus J Wisse
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bawer J Tofig
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Aarhus University Hospital, Aarhus, Denmark
| | - Steen B Kristiansen
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Aarhus University Hospital, Aarhus, Denmark
| | - Claire A Glashan
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
28
|
Chen PS, Fishbein MC. Neural Remodeling After Myocardial Infarction: The Importance of Heterogeneity. JACC Clin Electrophysiol 2023; 9:1665-1667. [PMID: 37480865 DOI: 10.1016/j.jacep.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 07/24/2023]
Affiliation(s)
- Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
29
|
Roy S, Kloner RA, Salloum FN, Jovin IS. Cardiac Effects of Phosphodiesterase-5 Inhibitors: Efficacy and Safety. Cardiovasc Drugs Ther 2023; 37:793-806. [PMID: 34652581 PMCID: PMC9010479 DOI: 10.1007/s10557-021-07275-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/23/2023]
Abstract
The coexistence of cardiovascular disease and erectile dysfunction is widespread, possibly owing to underlying endothelial dysfunction in both diseases. Millions of patients with cardiovascular disease are prescribed phosphodiesterase-5 (PDE5) inhibitors for the management of erectile dysfunction. Although the role of PDE5 inhibitors in erectile dysfunction therapy is well established, their effects on the cardiovascular system are unclear. Preclinical studies investigating the effect of PDE5 inhibitors on ischemia-reperfusion injury, pressure overload-induced hypertrophy, and chemotoxicity suggested a possible clinical role for each of these medications; however, attempts to translate these findings to the bedside have resulted in mixed outcomes. In this review, we explore the biologic preclinical effects of PDE5 inhibitors in mediating cardioprotection. We then examine clinical trials investigating PDE5 inhibition in patients with heart failure, coronary artery disease, and ventricular arrhythmias and discuss why the studies likely have yet to show positive results and efficacy with PDE5 inhibition despite no safety concerns.
Collapse
Affiliation(s)
- Sumon Roy
- Pauley Heart Center, Virginia Commonwealth University Medical Center, McGuire VAMC, 1201 Broad Rock Boulevard, 111J, Richmond, VA, 23249, USA
| | - Robert A Kloner
- Huntington Medical Research Institute, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fadi N Salloum
- Pauley Heart Center, Virginia Commonwealth University Medical Center, McGuire VAMC, 1201 Broad Rock Boulevard, 111J, Richmond, VA, 23249, USA
| | - Ion S Jovin
- Pauley Heart Center, Virginia Commonwealth University Medical Center, McGuire VAMC, 1201 Broad Rock Boulevard, 111J, Richmond, VA, 23249, USA.
- McGuire Veterans Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|
30
|
Chung WH, Lin YN, Wu MY, Chang KC. Sympathetic Modulation in Cardiac Arrhythmias: Where We Stand and Where We Go. J Pers Med 2023; 13:786. [PMID: 37240956 PMCID: PMC10221179 DOI: 10.3390/jpm13050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The nuance of autonomic cardiac control has been studied for more than 400 years, yet little is understood. This review aimed to provide a comprehensive overview of the current understanding, clinical implications, and ongoing studies of cardiac sympathetic modulation and its anti-ventricular arrhythmias' therapeutic potential. Molecular-level studies and clinical studies were reviewed to elucidate the gaps in knowledge and the possible future directions for these strategies to be translated into the clinical setting. Imbalanced sympathoexcitation and parasympathetic withdrawal destabilize cardiac electrophysiology and confer the development of ventricular arrhythmias. Therefore, the current strategy for rebalancing the autonomic system includes attenuating sympathoexcitation and increasing vagal tone. Multilevel targets of the cardiac neuraxis exist, and some have emerged as promising antiarrhythmic strategies. These interventions include pharmacological blockade, permanent cardiac sympathetic denervation, temporal cardiac sympathetic denervation, etc. The gold standard approach, however, has not been known. Although neuromodulatory strategies have been shown to be highly effective in several acute animal studies with very promising results, the individual and interspecies variation between human autonomic systems limits the progress in this young field. There is, however, still much room to refine the current neuromodulation therapy to meet the unmet need for life-threatening ventricular arrhythmias.
Collapse
Affiliation(s)
- Wei-Hsin Chung
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90024, USA
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| |
Collapse
|
31
|
Karim S, Chahal A, Khanji MY, Petersen SE, Somers V. Autonomic Cardiovascular Control in Health and Disease. Compr Physiol 2023; 13:4493-4511. [PMID: 36994768 PMCID: PMC10406398 DOI: 10.1002/cphy.c210037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Autonomic neural control of the cardiovascular system is formed of complex and dynamic processes able to adjust rapidly to mitigate perturbations in hemodynamics and maintain homeostasis. Alterations in autonomic control feature in the development or progression of a multitude of diseases with wide-ranging physiological implications given the neural system's responsibility for controlling inotropy, chronotropy, lusitropy, and dromotropy. Imbalances in sympathetic and parasympathetic neural control are also implicated in the development of arrhythmia in several cardiovascular conditions sparking interest in autonomic modulation as a form of treatment. A number of measures of autonomic function have shown prognostic significance in health and in pathological states and have undergone varying degrees of refinement, yet adoption into clinical practice remains extremely limited. The focus of this contemporary narrative review is to summarize the anatomy, physiology, and pathophysiology of the cardiovascular autonomic nervous system and describe the merits and shortfalls of testing modalities available. © 2023 American Physiological Society. Compr Physiol 13:4493-4511, 2023.
Collapse
Affiliation(s)
- Shahid Karim
- Mayo Clinic, Rochester, Minnesota, USA
- William Harvey Research Institute, NIHR Barts Biomedical Centre, Queen Mary University London, UK
| | - Anwar Chahal
- Mayo Clinic, Rochester, Minnesota, USA
- University of Pennsylvania, Pennsylvania, USA
- William Harvey Research Institute, NIHR Barts Biomedical Centre, Queen Mary University London, UK
| | - Mohammed Y. Khanji
- William Harvey Research Institute, NIHR Barts Biomedical Centre, Queen Mary University London, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Newham University Hospital, Barts Health NHS Trust, London, UK
| | - Steffen E. Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Centre, Queen Mary University London, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
- Health Data Research UK, London, UK
- Alan Turing Institute, London, UK
| | | |
Collapse
|
32
|
Sahoglu SG, Kazci YE, Karadogan B, Aydin MS, Nebol A, Turhan MU, Ozturk G, Cagavi E. High-resolution mapping of sensory fibers at the healthy and post-myocardial infarct whole transgenic hearts. J Neurosci Res 2023; 101:338-353. [PMID: 36517461 DOI: 10.1002/jnr.25150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/15/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The sensory nervous system is critical to maintain cardiac function. As opposed to efferent innervation, less is known about cardiac afferents. For this, we mapped the VGLUT2-expressing cardiac afferent fibers of spinal and vagal origin by using the VGLUT2::tdTomato double transgenic mouse as an approach to visualize the whole hearts both at the dorsal and ventral sides. For comparison, we colabeled mixed-sex transgenic hearts with either TUJ1 protein for global cardiac innervation or tyrosine hydroxylase for the sympathetic network at the healthy state or following ischemic injury. Interestingly, the nerve density for global and VGLUT2-expressing afferents was found significantly higher on the dorsal side compared to the ventral side. From the global nerve innervation detected by TUJ1 immunoreactivity, VGLUT2 afferent innervation was detected to be 15-25% of the total network. The detailed characterization of both the atria and the ventricles revealed a remarkable diversity of spinal afferent nerve ending morphologies of flower sprays, intramuscular endings, and end-net branches that innervate distinct anatomical parts of the heart. Using this integrative approach in a chronic myocardial infarct model, we showed a significant increase in hyperinnervation in the form of axonal sprouts for cardiac afferents at the infarct border zone, as well as denervation at distal sites of the ischemic area. The functional and physiological consequences of the abnormal sensory innervation remodeling post-ischemic injury should be further evaluated in future studies regarding their potential contribution to cardiac dysfunction.
Collapse
Affiliation(s)
- Sevilay Goktas Sahoglu
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yusuf Enes Kazci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Behnaz Karadogan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Serif Aydin
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aylin Nebol
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Ugurcan Turhan
- Department of Cardiovascular Surgery, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, İstanbul, Turkey
| | - Esra Cagavi
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
33
|
Liu Q, Li Y, Shi Y, Tan J, Yan W, Zhang J, Gao P, Yan S. The protective effect of gamma aminobutyric acid B receptor activation on sympathetic nerve remodeling via the regulation of M2 macrophage polarization after myocardial infarction. Rev Port Cardiol 2023; 42:125-135. [PMID: 36759072 DOI: 10.1016/j.repc.2021.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION & OBJECTIVES Acute myocardial infarction (AMI) in coronary heart disease is a leading cause of sudden death primarily due to malignant ventricular arrhythmias (VAs). Inflammatory cell infiltration and inflammation-induced overactivation of sympathetic nerves are the major cause of VAs in AMI pathophysiological processes. Type 2 macrophages play an anti-inflammatory role in AMI. Targeting macrophages may be a therapeutic strategy to prevent VAs post AMI. We found that gamma aminobutyric acid (GABA) promotes macrophages polarized to M2 and hypothesized that GABA might exert anti-inflammatory effects by promoting type 2 macrophage polarization in AMI. We aim to characterized GABAB receptor distribution, function, and mechanisms in M2 macrophage polarization and explored the functional aspect of GABAB receptor activation in sympathetic remodeling. RESULTS Gamma aminobutyric acid B receptors were expressed on macrophage surface both in vitro and in vivo. GABAB receptor agonist baclofen, GABA promoted macrophage switch to M2. While GABAB receptor antagonist CGP52432 blocked a baclofen induced switch to M2 polarization. GABA and baclofen increased M2 macrophage percentage and CGP52432 blocked this process in vivo. Also, IL-10 and TGF-β1 released by M2 were increased in both AMI and baclofen/AMI group; Serum NE levels were decreased by baclofen. All the above effects were reversed by CGP52432 treatment. Baclofen decreased TH and GAP-43 staining while CGP52432 enhanced their expression post AMI indicating GABAB receptor activation inhibited sympathetic nerve sprouting and activity by reducing NE release. CONCLUSIONS Gamma aminobutyric acid B receptor activation promoted M2 polarization and protested AMI heart by regulating sympathetic nerve remodeling.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Cardiology, Zibo Central Hospital, Zibo City, Shandong Province, China
| | - Yan Li
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Translational Medical Research Center, the First Hospital Affiliated to Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China
| | - Yugen Shi
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Cardiology, the First Hospital Affiliated to Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China
| | - Jiayu Tan
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Cardiology, the First Hospital Affiliated to Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China
| | - Wenju Yan
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Junyi Zhang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Peng Gao
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Translational Medical Research Center, the First Hospital Affiliated to Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China
| | - Suhua Yan
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Translational Medical Research Center, the First Hospital Affiliated to Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China; Department of Cardiology, the First Hospital Affiliated to Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China.
| |
Collapse
|
34
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
35
|
Salamon RJ, Halbe P, Kasberg W, Bae J, Audhya A, Mahmoud AI. Defining Cardiac Nerve Architecture During Development, Disease, and Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522405. [PMID: 36711742 PMCID: PMC9881855 DOI: 10.1101/2022.12.31.522405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiac nerves regulate neonatal mouse heart regeneration and are susceptible to pathological remodeling following adult injury. Understanding cardiac nerve remodeling can lead to new strategies to promote cardiac repair. Our current understanding of cardiac nerve architecture has been limited to two-dimensional analysis. Here, we use genetic models, whole-mount imaging, and three-dimensional modeling tools to define cardiac nerve architecture and neurovascular association during development, disease, and regeneration. Our results demonstrate that cardiac nerves sequentially associate with coronary veins and arteries during development. Remarkably, our results reveal that parasympathetic nerves densely innervate the ventricles. Furthermore, parasympathetic and sympathetic nerves develop synchronously and are intertwined throughout the ventricles. Importantly, the regenerating myocardium reestablishes physiological innervation, in stark contrast to the non-regenerating heart. Mechanistically, reinnervation during regeneration is dependent on collateral artery formation. Our results reveal how defining cardiac nerve remodeling during homeostasis, disease, and regeneration can identify new therapies for cardiac disease.
Collapse
|
36
|
Sridharan A, Bradfield JS, Shivkumar K, Ajijola OA. Autonomic nervous system and arrhythmias in structural heart disease. Auton Neurosci 2022; 243:103037. [DOI: 10.1016/j.autneu.2022.103037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
|
37
|
Cardiac Sympathetic Denervation for the Management of Ventricular Arrhythmias. J Interv Card Electrophysiol 2022; 65:813-826. [PMID: 35397706 DOI: 10.1007/s10840-022-01211-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The autonomic nervous system contributes to the pathogenesis of ventricular arrhythmias (VA). Though anti-arrhythmic drug therapy and catheter ablation are the mainstay of management of VAs, success may be limited in patients with more refractory arrhythmias. Sympathetic modulation is increasingly recognized as a valuable adjunct tool for managing VAs in patients with structural heart disease and inherited arrhythmias. RESULTS In this review, we explore the role of the sympathetic nervous system and rationale for cardiac sympathetic denervation (CSD) in VAs and provide a disease-focused review of the utility of CSD for patients both with and without structural heart disease. CONCLUSIONS We conclude that CSD is a reasonable therapeutic option for patients with VA, both with and without structural heart disease. Though not curative, many studies have demonstrated a significant reduction in the burden of VAs for the majority of patients undergoing the procedure. However, in patients with unilateral CSD and subsequent VA recurrence, complete bilateral CSD may provide long-lasting reprieve from VA.
Collapse
|
38
|
Wang X, Qian Y, Yao Y, Wang Y, Zhang Y, Zhang S, Zhao Q. Median nerve stimulation elevates ventricular fibrillation threshold via the cholinergic anti-inflammatory pathway in myocardial infarction canine model. Front Cardiovasc Med 2022; 9:904117. [DOI: 10.3389/fcvm.2022.904117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
BackgroundMedian nerve stimulation (MNS) diminishes regional myocardial ischemia and ventricular arrhythmia; however, the underlying mechanism has not been elucidated.MethodsIn this study, we randomly categorized 22 adult mongrel dogs into a control group, MNS group 1, and MNS group 2. After a 4-week experimental myocardial infarction (MI), ventricular electrophysiology was measured in the MNS group 1 before and after 30 min of MNS. The same measurements were performed in the MNS group 2 dogs via bilateral vagotomy. Venous blood and ventricular tissue were collected to detect molecular indicators related to inflammation and cholinergic pathways by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and Western blot (WB).ResultsNo significant changes were reported in the ventricular effective refractory period (ERP) in the MNS group 1 and MNS group 2 dogs before and after MNS. The ventricular fibrillation threshold (VFT) in the MNS group 1 was significantly higher than that in the MNS group 2 (20.3 ± 3.7 V vs. 8.7 ± 2.9 V, P < 0.01). The levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nuclear transcription factor-κB (NF-κB) were lower (P < 0.01), whereas the levels of Ach were higher in the peri-infarct zone tissues in the MNS group 1 dogs than those in the MNS group 2 dogs (P < 0.01).ConclusionThis study demonstrated that MNS increases VFT in a canine model with MI. The effects of MNS on VFT are potentially associated with the cholinergic anti-inflammatory pathway.
Collapse
|
39
|
Li YL. Stellate Ganglia and Cardiac Sympathetic Overactivation in Heart Failure. Int J Mol Sci 2022; 23:ijms232113311. [PMID: 36362099 PMCID: PMC9653702 DOI: 10.3390/ijms232113311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Heart failure (HF) is a major public health problem worldwide, especially coronary heart disease (myocardial infarction)-induced HF with reduced ejection fraction (HFrEF), which accounts for over 50% of all HF cases. An estimated 6 million American adults have HF. As a major feature of HF, cardiac sympathetic overactivation triggers arrhythmias and sudden cardiac death, which accounts for nearly 50–60% of mortality in HF patients. Regulation of cardiac sympathetic activation is highly integrated by the regulatory circuitry at multiple levels, including afferent, central, and efferent components of the sympathetic nervous system. Much evidence, from other investigators and us, has confirmed the afferent and central neural mechanisms causing sympathoexcitation in HF. The stellate ganglion is a peripheral sympathetic ganglion formed by the fusion of the 7th cervical and 1st thoracic sympathetic ganglion. As the efferent component of the sympathetic nervous system, cardiac postganglionic sympathetic neurons located in stellate ganglia provide local neural coordination independent of higher brain centers. Structural and functional impairments of cardiac postganglionic sympathetic neurons can be involved in cardiac sympathetic overactivation in HF because normally, many effects of the cardiac sympathetic nervous system on cardiac function are mediated via neurotransmitters (e.g., norepinephrine) released from cardiac postganglionic sympathetic neurons innervating the heart. This review provides an overview of cardiac sympathetic remodeling in stellate ganglia and potential mechanisms and the role of cardiac sympathetic remodeling in cardiac sympathetic overactivation and arrhythmias in HF. Targeting cardiac sympathetic remodeling in stellate ganglia could be a therapeutic strategy against malignant cardiac arrhythmias in HF.
Collapse
Affiliation(s)
- Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; ; Tel.: +1-402-559-3016; Fax: +1-402-559-9659
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
40
|
Chen HS, Jungen C, Kimura Y, Dibbets-Schneider P, Piers SR, Androulakis AFA, van der Geest RJ, de Geus-Oei LF, Scholte AJHA, Lamb HJ, Jongbloed MRM, Zeppenfeld K. Ventricular Arrhythmia Substrate Distribution and Its Relation to Sympathetic Innervation in Nonischemic Cardiomyopathy Patients. JACC Clin Electrophysiol 2022; 8:1234-1245. [PMID: 36265999 DOI: 10.1016/j.jacep.2022.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Nonischemic cardiomyopathy patients referred for catheter ablation of ventricular arrhythmias (VAs) typically have either inferolateral (ILS) or anteroseptal (ASS) VA substrate locations, with poorer outcomes for ASS. Sympathetic denervation is an important determinant of arrhythmogenicity. Its relation to nonischemic fibrosis in general and to the different VA substrates is unknown. OBJECTIVES This study sought to evaluate the association between VA substrates, myocardial fibrosis, and sympathetic denervation. METHODS Thirty-five patients from the Leiden Nonischemic Cardiomyopathy Study, who underwent electroanatomic voltage mapping and iodine-123 metaiodobenzylguanidine imaging between 2011 and 2018 were included. Late gadolinium-enhanced cardiac magnetic resonance data were collected when available. The relation between global cardiac sympathetic innervation and area-weighted unipolar voltage (UV) as a surrogate for diffuse fibrosis was evaluated. For regional analysis, patients were categorized as ASS or ILS. The distribution of low UV, sympathetic denervation, and late gadolinium enhancement (LGE) scar were compared using the 17-segment model. RESULTS Median area-weighted UV was 12.3 mV in patients with normal sympathetic innervation and 8.7 mV in patients with sympathetic denervation. Global sympathetic denervation correlated with diffuse myocardial fibrosis (R = 0.53; P = 0.02). ILS (n = 13) matched with low UV, sympathetic denervation, and LGE scar in all patients, whereas ASS (n = 11) matched with low UV in all patients, with LGE scar in 63% (P = 0.20), but with sympathetic denervation in only 27% of patients (P = 0.0002). CONCLUSIONS Global cardiac sympathetic denervation is related to fibrosis in nonischemic cardiomyopathy patients with VA. The mismatch between regional fibrosis and preserved innervation for ASS may contribute to a VA substrate difficult to control by catheter ablation.
Collapse
Affiliation(s)
- H Sophia Chen
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christiane Jungen
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands; Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Germany
| | - Yoshitaka Kimura
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Sebastiaan R Piers
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexander F A Androulakis
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
41
|
Yin Z, Zhang J, Xu S, Liu J, Xu Y, Yu J, Zhao M, Pan W, Wang M, Wan J. The role of semaphorins in cardiovascular diseases: Potential therapeutic targets and novel biomarkers. FASEB J 2022; 36:e22509. [PMID: 36063107 DOI: 10.1096/fj.202200844r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022]
Abstract
Semaphorins (Semas), which belongs to the axonal guidance molecules, include 8 classes and could affect axon growth in the nervous system. Recently, semaphorins were found to regulate other pathophysiological processes, such as immune response, oncogenesis, tumor angiogenesis, and bone homeostasis, through binding with their plexin and neuropilin receptors. In this review, we summarized the detailed role of semaphorins and their receptors in the pathological progression of various cardiovascular diseases (CVDs), highlighting that semaphorins may be potential therapeutic targets and novel biomarkers for CVDs.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
42
|
Moro N, Dokshokova L, Perumal Vanaja I, Prando V, Cnudde SJA, Di Bona A, Bariani R, Schirone L, Bauce B, Angelini A, Sciarretta S, Ghigo A, Mongillo M, Zaglia T. Neurotoxic Effect of Doxorubicin Treatment on Cardiac Sympathetic Neurons. Int J Mol Sci 2022; 23:ijms231911098. [PMID: 36232393 PMCID: PMC9569551 DOI: 10.3390/ijms231911098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022] Open
Abstract
Doxorubicin (DOXO) remains amongst the most commonly used anti-cancer agents for the treatment of solid tumors, lymphomas, and leukemias. However, its clinical use is hampered by cardiotoxicity, characterized by heart failure and arrhythmias, which may require chemotherapy interruption, with devastating consequences on patient survival and quality of life. Although the adverse cardiac effects of DOXO are consolidated, the underlying mechanisms are still incompletely understood. It was previously shown that DOXO leads to proteotoxic cardiomyocyte (CM) death and myocardial fibrosis, both mechanisms leading to mechanical and electrical dysfunction. While several works focused on CMs as the culprits of DOXO-induced arrhythmias and heart failure, recent studies suggest that DOXO may also affect cardiac sympathetic neurons (cSNs), which would thus represent additional cells targeted in DOXO-cardiotoxicity. Confocal immunofluorescence and morphometric analyses revealed alterations in SN innervation density and topology in hearts from DOXO-treated mice, which was consistent with the reduced cardiotropic effect of adrenergic neurons in vivo. Ex vivo analyses suggested that DOXO-induced denervation may be linked to reduced neurotrophic input, which we have shown to rely on nerve growth factor, released from innervated CMs. Notably, similar alterations were observed in explanted hearts from DOXO-treated patients. Our data demonstrate that chemotherapy cardiotoxicity includes alterations in cardiac innervation, unveiling a previously unrecognized effect of DOXO on cardiac autonomic regulation, which is involved in both cardiac physiology and pathology, including heart failure and arrhythmias.
Collapse
Affiliation(s)
- Nicola Moro
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Induja Perumal Vanaja
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Valentina Prando
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Sophie Julie A Cnudde
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Riccardo Bariani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| |
Collapse
|
43
|
Qi L, Wang Y, Hu H, Li P, Hu H, Li Y, Wang K, Zhao Y, Feng M, Lyu H, Yin J, Shi Y, Wang Y, Li X, Yan S. m 6A methyltransferase METTL3 participated in sympathetic neural remodeling post-MI via the TRAF6/NF-κB pathway and ROS production. J Mol Cell Cardiol 2022; 170:87-99. [PMID: 35717715 DOI: 10.1016/j.yjmcc.2022.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Sudden cardiac death caused by ventricular arrhythmias (VAs) is the main cause of high mortality in patients with myocardial infarction (MI). Sympathetic neural remodeling caused by inflammation after MI is closely associated with the occurrence of VAs. METTL3, the earliest identified m6A methyltransferase, is critical in mediating inflammatory responses. Our aim was to investigate whether the m6A methyltransferase METTL3 was involved in sympathetic remodeling post-MI and its specific mechanism. METHODS AND RESULTS A rat MI model was established via left coronary artery ligation. The expression of METTL3, TRAF6, NOX2, and NF-κB increased at 3 days and remained elevated at 7 days after MI, as determined via Western blotting. METTL3 was primarily present in macrophages, as determined via immunofluorescence. Intramyocardial injection of lentivirus carrying METTL3-shRNA inhibited METTL3 expression in vivo. Methylated immunoprecipitation-qPCR determined the METTL3 knockdown inhibited the m6A level of TRAF6 mRNA 3'-UTR. The co-immunoprecipitation experiment proved that METTL3 combines with TRAF6. Western blotting showed that silencing METTL3 inhibited TRAF6 level, NF-κB activation, and ROS production; decreased cytokine release (TNF-α and IL-1β); and downregulated nerve growth factor expression. Finally, METTL3 knockdown reduced sympathetic remodeling after MI, as determined via immunofluorescence assays of tyrosine hydroxylase and growth-associated protein 43. Programmed electrical stimulation, renal sympathetic nerve activity recording, and haemodynamic measurements showed that METTL3 inhibition decreased sympathetic activity and improved cardiac function. CONCLUSIONS Downregulation of METTL3 expression attenuated the excessive sympathetic neural remodeling induced by MI, further reducing the incidence of VAs and improving cardiac function. This was partly associated with the inhibition of the TRAF6/NF-κB pathway and ROS production.
Collapse
Affiliation(s)
- Lei Qi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ye Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Hui Hu
- Department of Cardiology, Jining No. 1 People' Hospital, Jining, China
| | - Pingjiang Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yan Li
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Kang Wang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuepeng Zhao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Feng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hangji Lyu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Yin
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yugen Shi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yu Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Suhua Yan
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.
| |
Collapse
|
44
|
Tompkins JD, Buckley U, Salavatian S, Shivkumar K, Ardell JL. Vagally-mediated heart block after myocardial infarction associated with plasticity of epicardial neurons controlling the atrioventricular node. Front Synaptic Neurosci 2022; 14:960458. [PMID: 36147731 PMCID: PMC9488518 DOI: 10.3389/fnsyn.2022.960458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Imbalances in the opposing actions of sympathetic and parasympathetic nerves controlling the heart enhance risk for arrhythmia and sudden cardiac death after myocardial infarction (MI). Plasticity in peripheral neuron function may underlie the observed changes in cardiomotor nerve activity. We studied vagal control of the heart in pigs after chronic infarction of the left ventricle. Stimulation of the cervical vagus nerve produced greater bradycardic responses 8-weeks after MI. Recordings of epicardial electrocardiograms demonstrate increased severity and duration of atrioventricular (AV) block in MI-pigs during 20 Hz vagal stimulation. Intracellular voltage recordings from isolated neurons of the inferior vena cava-inferior left atrium (IVC-ILA) ganglionated plexus, a cluster of epicardial neurons receiving innervation from the vagus known to regulate the AV node, were used to assess plasticity of membrane and synaptic physiology of intrinsic cardiac neurons (ICNs) after MI. Changes to both passive and active membrane properties were observed, including more negative resting membrane potentials and greater input resistances in MI-pig ICNs, concomitant with a depression of neuronal excitability. Immunoreactivity to pituitary adenylate cyclase-activating polypeptide (PACAP), a cardiotropic peptide known to modulate cardiac neuron excitability, was localized to perineuronal varicosities surrounding pig IVC-ILA neurons. Exogenous application of PACAP increased excitability of control but not MI-ICNs. Stimulation (20 Hz) of interganglionic nerves in the ex vivo whole-mount preparations elicited slow excitatory postsynaptic potentials (sEPSPs) which persisted in hexamethonium (500 μM), but were blocked by atropine (1 μM), indicating muscarinic receptor-mediated inhibition of M-current. Extracellular application of 1 mM BaCl2 to inhibit M-current increased neuronal excitability. The muscarine-sensitive sEPSPs were observed more frequently and were of larger amplitude in IVC-ILA neurons from MI animals. In conclusion, we suggest the increased probability of muscarinic sEPSPs play a role in the potentiation of the vagus nerve mediated-slowing of AV nodal conduction following chronic MI. We identify both a novel role of a muscarinic sensitive current in the regulation of synaptic strength at ICNs projecting to the AV node, and demonstrate changes to both intrinsic plasticity and synaptic plasticity of IVC-ILA neurons which may contribute to greater risk for heart block and sudden cardiac death after MI.
Collapse
|
45
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
46
|
Lee CC, Chen SY, Lee TM. 17β-Oestradiol facilitates M2 macrophage skewing and ameliorates arrhythmias in ovariectomized female infarcted rats. J Cell Mol Med 2022; 26:3396-3409. [PMID: 35514058 PMCID: PMC9189348 DOI: 10.1111/jcmm.17344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
Epidemiological studies have suggested a lower incidence of arrhythmia‐induced sudden cardiac death in women than in men. 17β‐oestradiol (E2) has been reported to have a post‐myocardial infarction antiarrhythmic effect, although the mechanisms have yet to be elucidated. We investigated whether E2‐mediated antioxidation regulates macrophage polarization and affects cardiac sympathetic reinnervation in rats after MI. Ovariectomized Wistar rats were randomly assigned to placebo pellets, E2 treatment, or E2 treatment +3‐morpholinosydnonimine (a peroxynitrite generator) and followed for 4 weeks. The infarct sizes were similar among the infarcted groups. At Day 3 after infarction, post‐infarction was associated with increased superoxide levels, which were inhibited by administering E2. E2 significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages compared with the ovariectomized infarcted alone group as assessed by immunohistochemical staining, Western blot and RT‐PCR. Nerve growth factor colocalized with both M1 and M2 macrophages at the magnitude significantly higher in M1 compared with M2. At Day 28 after infarction, E2 was associated with attenuated myocardial norepinephrine levels and sympathetic hyperinnervation. These effects of E2 were functionally translated in inhibiting fatal arrhythmias. The beneficial effect of E2 on macrophage polarization and sympathetic hyperinnervation was abolished by 3‐morpholinosydnonimine. Our results indicated that E2 polarized macrophages into the M2 phenotype by inhibiting the superoxide pathway, leading to attenuated nerve growth factor‐induced sympathetic hyperinnervation after myocardial infarction.
Collapse
Affiliation(s)
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
47
|
Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022; 11:cells11091553. [PMID: 35563860 PMCID: PMC9105930 DOI: 10.3390/cells11091553] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the significant decline in mortality, cardiovascular diseases are still the leading cause of death worldwide. Among them, myocardial infarction (MI) seems to be the most important. A further decline in the death rate may be achieved by the introduction of molecularly targeted drugs. It seems that the components of the PI3K/Akt signaling pathway are good candidates for this. The PI3K/Akt pathway plays a key role in the regulation of the growth and survival of cells, such as cardiomyocytes. In addition, it has been shown that the activation of the PI3K/Akt pathway results in the alleviation of the negative post-infarct changes in the myocardium and is impaired in the state of diabetes. In this article, the role of this pathway was described in each step of ischemia and subsequent left ventricular remodeling. In addition, we point out the most promising substances which need more investigation before introduction into clinical practice. Moreover, we present the impact of diabetes and widely used cardiac and antidiabetic drugs on the PI3K/Akt pathway and discuss the molecular mechanism of its effects on myocardial ischemia and left ventricular remodeling.
Collapse
Affiliation(s)
- Bartosz Walkowski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
48
|
Dokshokova L, Franzoso M, Bona AD, Moro N, Sanchez-Alonso-Mardones J, Prando V, Sandre M, Basso C, Faggian G, Abriel H, Marin O, Gorelik J, Zaglia T, Mongillo M. Nerve Growth Factor transfer from cardiomyocytes to innervating sympathetic neurons activates TrkA receptors at the neuro-cardiac junction. J Physiol 2022; 600:2853-2875. [PMID: 35413134 PMCID: PMC9321700 DOI: 10.1113/jp282828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Abstract
The integration of ex vivo and in vitro data, described in this manuscript, together with our previous demonstration that sympathetic neurons (SNs) contact target cardiomyocytes (CMs) at the neuro-cardiac junction (NCJ), which underlies intercellular synaptic communication (Prando et al., 47), demonstrate that: CMs are the cell source of Nerve Growth Factor (NGF), required to sustain innervating cardiac SNs; NCJ is the place of the intimate liaison, between SNs and CMs, allowing on the one hand neurons to peremptorily control CM activity, and on the other, CMs to adequately sustain the contacting, everchanging, neuronal actuators; alterations in NCJ integrity may compromise the efficiency of 'CM-to-SN' signaling, thus representing a potentially novel mechanism of sympathetic denervation in cardiac diseases. ABSTRACT: Background Sympathetic neurons densely innervate the myocardium with non-random topology and establish structured contacts (i.e. neuro-cardiac junctions, NCJ) with cardiomyocytes, allowing synaptic intercellular communication. Establishment of heart innervation is regulated by molecular mediators released by myocardial cells. The mechanisms underlying maintenance of cardiac innervation in the fully developed heart, are, however, less clear. Notably, several cardiac diseases, primarily affecting cardiomyocytes, are associated to sympathetic denervation, supporting that retrograde 'cardiomyocyte-to-sympathetic neuron' communication is essential for heart cellular homeostasis. Objective We aimed to determine whether cardiomyocytes provide Nerve Growth Factor (NGF) to sympathetic neurons, and the role of the NCJ in supporting such retrograde neurotrophic signaling. Methods and Results Immunofluorescence on murine and human heart slices shows that NGF and its receptor, Tropomyosin-receptor-kinase-A, accumulate respectively in the pre- and post-junctional sides of the NCJ. Confocal immunofluorescence, scanning ion conductance microscopy and molecular analyses, in co-cultures, demonstrate that cardiomyocytes feed NGF to sympathetic neurons, and that such mechanism requires a stable intercellular contact at the NCJ. Consistently, cardiac fibroblasts, devoid of NCJ, are unable to sustain SN viability. ELISA assay and competition binding experiments suggest that this depends on the NCJ being an insulated microenvironment, characterized by high [NGF]. In further support, real-time imaging of Tropomyosin-receptor-kinase-A-vesicle movements demonstrate that efficiency of neurotrophic signaling parallels the maturation of such structured intercellular contacts. Conclusions Altogether, our results demonstrate the mechanisms which link sympathetic neuron survival to neurotrophin release by directly innervated cardiomyocytes, conceptualizing sympathetic neurons as cardiomyocyte-driven heart drivers. Abstract figure legend Sympathetic neuron (SN, green) varicosities establish synaptic contacts with target cardiomyocytes (CMs, pink), which we previously called Neuro-Cardiac Junction (NCJ, Prando et al. J Physiol 47). At NCJs, CMs release selectively NGF, which by activating TrkA signaling, is key to sustain neuronal survival. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35121, Italy.,Division of Cardiac Surgery, University of Verona, Verona, Italy.,National Heart and Lung Institute, London, UK
| | - Mauro Franzoso
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35121, Italy
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, Padova, 35131, Italy
| | - Nicola Moro
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35121, Italy
| | | | - Valentina Prando
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35121, Italy
| | - Michele Sandre
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35121, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, Padova, 35131, Italy
| | - Giuseppe Faggian
- Division of Cardiac Surgery, University of Verona, Verona, Italy
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, 3012, Switzerland
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35121, Italy
| | | | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35121, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35121, Italy.,CNR Institute of Neuroscience, Viale G. Colombo 3, Padova, 35121, Italy
| |
Collapse
|
49
|
Hoang JD, Yamakawa K, Rajendran PS, Chan CA, Yagishita D, Nakamura K, Lux RL, Vaseghi M. Proarrhythmic Effects of Sympathetic Activation Are Mitigated by Vagal Nerve Stimulation in Infarcted Hearts. JACC Clin Electrophysiol 2022; 8:513-525. [PMID: 35450607 PMCID: PMC9034056 DOI: 10.1016/j.jacep.2022.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The goal of this study was to evaluate whether intermittent VNS reduces electrical heterogeneities and arrhythmia inducibility during sympathoexcitation. BACKGROUND Sympathoexcitation increases the risk of ventricular tachyarrhythmias (VT). Vagal nerve stimulation (VNS) has been antiarrhythmic in the setting of ischemia-driven arrhythmias, but it is unclear if it can overcome the electrophysiological effects of sympathoexcitation in the setting of chronic myocardial infarction (MI). METHODS In Yorkshire pigs after chronic MI, a sternotomy was performed, a 56-electrode sock was placed over the ventricles (n = 17), and a basket catheter was positioned in the left ventricle (n = 6). Continuous unipolar electrograms from sock and basket arrays were obtained to analyze activation recovery interval (ARI), a surrogate of action potential duration. Bipolar voltage mapping was performed to define scar, border zone, or viable myocardium. Hemodynamic and electrical parameters and VT inducibility were evaluated during sympathoexcitation with bilateral stellate ganglia stimulation (BSS) and during combined BSS with intermittent VNS. RESULTS During BSS, global epicardial ARIs shortened from 384 ± 59 milliseconds to 297 ± 63 milliseconds and endocardial ARIs from 359 ± 36 milliseconds to 318 ± 40 milliseconds. Dispersion in ARIs increased in all regions, with the greatest increase observed in scar and border zone regions. VNS mitigated the effects of BSS on border zone ARIs (from -18.3% ± 6.3% to -2.1% ± 14.7%) and ARI dispersion (from 104 ms2 [1 to 1,108 ms2] to -108 ms2 [IQR: -588 to 30 ms2]). VNS reduced VT inducibility during sympathoexcitation (from 75%-40%; P < 0.05). CONCLUSIONS After chronic MI, VNS overcomes the detrimental effects of sympathoexcitation by reducing electrophysiological heterogeneities exacerbated by sympathetic stimulation, decreasing VT inducibility.
Collapse
Affiliation(s)
- Jonathan D Hoang
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA; UCLA Neurocardiology Program of Excellence, University of California, Los Angeles, California, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, California, USA
| | - Kentaro Yamakawa
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA
| | - Pradeep S Rajendran
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA; UCLA Neurocardiology Program of Excellence, University of California, Los Angeles, California, USA
| | - Christopher A Chan
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA; UCLA Neurocardiology Program of Excellence, University of California, Los Angeles, California, USA
| | - Daigo Yagishita
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA
| | - Keijiro Nakamura
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA
| | - Robert L Lux
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, California, USA; UCLA Neurocardiology Program of Excellence, University of California, Los Angeles, California, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, California, USA.
| |
Collapse
|
50
|
Mehra R, Tjurmina OA, Ajijola OA, Arora R, Bolser DC, Chapleau MW, Chen PS, Clancy CE, Delisle BP, Gold MR, Goldberger JJ, Goldstein DS, Habecker BA, Handoko ML, Harvey R, Hummel JP, Hund T, Meyer C, Redline S, Ripplinger CM, Simon MA, Somers VK, Stavrakis S, Taylor-Clark T, Undem BJ, Verrier RL, Zucker IH, Sopko G, Shivkumar K. Research Opportunities in Autonomic Neural Mechanisms of Cardiopulmonary Regulation: A Report From the National Heart, Lung, and Blood Institute and the National Institutes of Health Office of the Director Workshop. JACC Basic Transl Sci 2022; 7:265-293. [PMID: 35411324 PMCID: PMC8993767 DOI: 10.1016/j.jacbts.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022]
Abstract
This virtual workshop was convened by the National Heart, Lung, and Blood Institute, in partnership with the Office of Strategic Coordination of the Office of the National Institutes of Health Director, and held September 2 to 3, 2020. The intent was to assemble a multidisciplinary group of experts in basic, translational, and clinical research in neuroscience and cardiopulmonary disorders to identify knowledge gaps, guide future research efforts, and foster multidisciplinary collaborations pertaining to autonomic neural mechanisms of cardiopulmonary regulation. The group critically evaluated the current state of knowledge of the roles that the autonomic nervous system plays in regulation of cardiopulmonary function in health and in pathophysiology of arrhythmias, heart failure, sleep and circadian dysfunction, and breathing disorders. Opportunities to leverage the Common Fund's SPARC (Stimulating Peripheral Activity to Relieve Conditions) program were characterized as related to nonpharmacologic neuromodulation and device-based therapies. Common themes discussed include knowledge gaps, research priorities, and approaches to develop novel predictive markers of autonomic dysfunction. Approaches to precisely target neural pathophysiological mechanisms to herald new therapies for arrhythmias, heart failure, sleep and circadian rhythm physiology, and breathing disorders were also detailed.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- AD, autonomic dysregulation
- AF, atrial fibrillation
- ANS, autonomic nervous system
- Ach, acetylcholine
- CNS, central nervous system
- COPD, chronic obstructive pulmonary disease
- CSA, central sleep apnea
- CVD, cardiovascular disease
- ECG, electrocardiogram
- EV, extracellular vesicle
- GP, ganglionated plexi
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HRV, heart rate variability
- LQT, long QT
- MI, myocardial infarction
- NE, norepinephrine
- NHLBI, National Heart, Lung, and Blood Institute
- NPY, neuropeptide Y
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PAH, pulmonary arterial hypertension
- PV, pulmonary vein
- REM, rapid eye movement
- RV, right ventricular
- SCD, sudden cardiac death
- SDB, sleep disordered breathing
- SNA, sympathetic nerve activity
- SNSA, sympathetic nervous system activity
- TLD, targeted lung denervation
- asthma
- atrial fibrillation
- autonomic nervous system
- cardiopulmonary
- chronic obstructive pulmonary disease
- circadian
- heart failure
- pulmonary arterial hypertension
- sleep apnea
- ventricular arrhythmia
Collapse
Affiliation(s)
- Reena Mehra
- Cleveland Clinic, Cleveland, Ohio, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Olga A. Tjurmina
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Rishi Arora
- Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | | | - Mark W. Chapleau
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | - Michael R. Gold
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - David S. Goldstein
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Beth A. Habecker
- Oregon Health and Science University School of Medicine, Portland, Oregon, USA
| | - M. Louis Handoko
- Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - James P. Hummel
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Marc A. Simon
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- University of California-San Francisco, San Francisco, California, USA
| | | | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - Richard L. Verrier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - George Sopko
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | |
Collapse
|