1
|
Lestari YM, Tarawan VM, Achadiyani A, Radhiyanti PT, Ray HRD, Lesmana R, Goenawan H. Exercise intensities modulate ACE2/MasR/eNOS pathway in male Wistar rat's lung. Physiol Rep 2023; 11:e15803. [PMID: 37667409 PMCID: PMC10477189 DOI: 10.14814/phy2.15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Specific exercise intensities could improve lung vascular function by increasing nitric oxide (NO). The ACE2/MasR/eNOS axis is one of the pathways facilitating NO synthesis. This study examines the effect of different intensities of aerobic training on the ACE2/MasR/eNOS axis and histology of lung muscular arteries. Male Wistar rats were used in this study and randomized into control and exercise groups receiving low-, moderate-, and high-intensity training. The training was conducted for 30 min daily, five times a week, for 8 weeks. We observed that different exercise intensities affect the ACE2/MasR/eNOS pathway differently. Compared to control, high-intensity aerobic exercise significantly increased ACE2, Mas receptor (MasR), and eNOS mRNA expressions (p < 0.01). Moderate-intensity exercise significantly increased MasR and eNOS mRNA expressions compared to the control (p < 0.05), and this intensity also increased ACE2 mRNA but not significantly. Low-intensity exercise increased ACE2, MasR, and eNOS mRNA expressions but not significantly. Low-, moderate-, or high-intensity exercises reduced the medial wall thickness of the lung muscular arteries but not significantly. In conclusion, high-intensity exercise may induce NO synthesis in the lung by increasing mRNA expression of ACE2, MasR, and eNOS without decreasing the medial wall thickness of the muscular artery. Thus, high-intensity exercise may be the optimal intensity to improve NO synthesis and vascular function in the lung.
Collapse
Affiliation(s)
- Yani Medina Lestari
- Biomedical Science Master Program, Faculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Vita Murniati Tarawan
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
| | - Achadiyani Achadiyani
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
| | - Putri Teesa Radhiyanti
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
| | | | - Ronny Lesmana
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
- Central LaboratoryUniversitas PadjadjaranJatinangorIndonesia
| | - Hanna Goenawan
- Department of Biomedical Science, Faculty of MedicineUniversitas PadjadjaranJatinangorIndonesia
- Central LaboratoryUniversitas PadjadjaranJatinangorIndonesia
| |
Collapse
|
2
|
Lazzarato L, Bianchi L, Andolfo A, Granata A, Lombardi M, Sinelli M, Rolando B, Carini M, Corsini A, Fruttero R, Arnaboldi L. Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms. Molecules 2023; 28:5724. [PMID: 37570694 PMCID: PMC10420201 DOI: 10.3390/molecules28155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.
Collapse
Affiliation(s)
- Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy;
| | - Agnese Granata
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Lombardi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Sinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Marina Carini
- Department of Pharmaceutical Sciences “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| |
Collapse
|
3
|
Lin C, Guo J, Jia R. Roles of Regulatory T Cell-Derived Extracellular Vesicles in Human Diseases. Int J Mol Sci 2022; 23:11206. [PMID: 36232505 PMCID: PMC9569925 DOI: 10.3390/ijms231911206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in maintaining immune self-tolerance and immune homeostasis, and closely associated with many human diseases. Recently, Treg cells-derived extracellular vesicles (Treg-EVs) have been demonstrated as a novel cell-contact independent inhibitory mechanism of Treg cells. Treg-EVs contain many specific biological molecules, which are delivered to target cells and modulate immune responses by inhibiting T cell proliferation, inducing T cell apoptosis, and changing the cytokine expression profiles of target cells. The abnormal quantity or function of Treg-EVs is associated with several types of human diseases or conditions, such as transplant rejection, inflammatory diseases, autoimmune diseases, and cancers. Treg-EVs are promising novel potential targets for disease diagnosis, therapy, and drug transport. Moreover, Treg-EVs possess distinct advantages over Treg cell-based immunotherapies. However, the therapeutic potential of Treg-EVs is limited by some factors, such as the standardized protocol for isolation and purification, large scale production, and drug loading efficiency. In this review, we systematically describe the structure, components, functions, and basic mechanisms of action of Treg-EVs and discuss the emerging roles in pathogenesis and the potential application of Treg-EVs in human diseases.
Collapse
Affiliation(s)
- Can Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Anta-Fernández F, Santander-Gordón D, Becerra S, Santamaría R, Díaz-Mínguez JM, Benito EP. Nitric Oxide Metabolism Affects Germination in Botrytis cinerea and Is Connected to Nitrate Assimilation. J Fungi (Basel) 2022; 8:jof8070699. [PMID: 35887455 PMCID: PMC9324006 DOI: 10.3390/jof8070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide regulates numerous physiological processes in species from all taxonomic groups. Here, its role in the early developmental stages of the fungal necrotroph Botrytis cinerea was investigated. Pharmacological analysis demonstrated that NO modulated germination, germ tube elongation and nuclear division rate. Experimental evidence indicates that exogenous NO exerts an immediate but transitory negative effect, slowing down germination-associated processes, and that this effect is largely dependent on the flavohemoglobin BCFHG1. The fungus exhibited a “biphasic response” to NO, being more sensitive to low and high concentrations than to intermediate levels of the NO donor. Global gene expression analysis in the wild-type and ΔBcfhg1 strains indicated a situation of strong nitrosative and oxidative stress determined by exogenous NO, which was much more intense in the mutant strain, that the cells tried to alleviate by upregulating several defense mechanisms, including the simultaneous upregulation of the genes encoding the flavohemoglobin BCFHG1, a nitronate monooxygenase (NMO) and a cyanide hydratase. Genetic evidence suggests the coordinated expression of Bcfhg1 and the NMO coding gene, both adjacent and divergently arranged, in response to NO. Nitrate assimilation genes were upregulated upon exposure to NO, and BCFHG1 appeared to be the main enzymatic system involved in the generation of the signal triggering their induction. Comparative expression analysis also showed the influence of NO on other cellular processes, such as mitochondrial respiration or primary and secondary metabolism, whose response could have been mediated by NmrA-like domain proteins.
Collapse
Affiliation(s)
- Francisco Anta-Fernández
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
| | - Daniela Santander-Gordón
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), Carrera de Ingeniería en Biotecnología, Universidad de las Américas (UDLA), Quito 170513, Ecuador;
| | - Sioly Becerra
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
| | - Rodrigo Santamaría
- Department of Computer Science, University of Salamanca, 37008 Salamanca, Spain;
| | - José María Díaz-Mínguez
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
| | - Ernesto Pérez Benito
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
- Correspondence:
| |
Collapse
|
5
|
Mechanisms underlying the effects of caloric restriction on hypertension. Biochem Pharmacol 2022; 200:115035. [DOI: 10.1016/j.bcp.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
|
6
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
7
|
Chen SY, Wang J, Jia F, Shen ZD, Zhang WB, Wang YX, Ren KF, Fu GS, Ji J. Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. J Mater Chem B 2021; 10:2454-2462. [PMID: 34698745 DOI: 10.1039/d1tb01828k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thrombus and restenosis after stent implantation are the major complications because traditional drugs such as rapamycin delay the process of endothelialization. Nitric oxide (NO) is mainly produced by endothelial nitric oxide synthase (eNOS) on the membrane of endothelial cells (ECs) in the cardiovascular system and plays an important role in vasomotor function. It strongly inhibits the proliferation of smooth muscle cells (SMCs) and ameliorates endothelial function when ECs get hurt. Inspired by this, introducing NO to traditional stent coating may alleviate endothelial insufficiency caused by rapamycin. Here, we introduced SNAP as the NO donor, mimicking how NO affects in vivo, into rapamycin coating to alleviate endothelial damage while inhibiting SMC proliferation. Through wicking effects, SNAP was absorbed into a hierarchical coating that had an upper porous layer and a dense polymer layer with rapamycin at the bottom. Cells were cultured on the coatings, and it was observed that the injured ECs were restored while the growth of SMCs further diminished. Genome analysis was conducted to further clarify possible signaling pathways: the effect of cell growth attenuated by NO may cause by affecting cell cycle and enhancing inflammation. These findings supported the idea that introducing NO to traditional drug-eluting stents alleviates incomplete endothelialization and further inhibits the stenosis caused by the proliferation of SMCs.
Collapse
Affiliation(s)
- Sheng-Yu Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-da Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Wen-Bin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke-Feng Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China. .,MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guo-Sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jian Ji
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China. .,MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Elnaggar M, Hasan ML, Bhang SH, Joung YK. Endothelial Cell-Derived Tethered Lipid Bilayers Generating Nitric Oxide for Endovascular Implantation. ACS APPLIED BIO MATERIALS 2021; 4:6381-6393. [DOI: 10.1021/acsabm.1c00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mahmoud Elnaggar
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoungbuk-gu, Seoul 02792, Republic of Korea
| | - Md. Lemon Hasan
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoungbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305−333, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seoungbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305−333, Republic of Korea
| |
Collapse
|
9
|
Intrauterine Nitric Oxide Deficiency Weakens Differentiation of Vascular Smooth Muscle in Newborn Rats. Int J Mol Sci 2021; 22:ijms22158003. [PMID: 34360769 PMCID: PMC8347173 DOI: 10.3390/ijms22158003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) deficiency during pregnancy is a key reason for preeclampsia development. Besides its important vasomotor role, NO is shown to regulate the cell transcriptome. However, the role of NO in transcriptional regulation of developing smooth muscle has never been studied before. We hypothesized that in early ontogeny, NO is important for the regulation of arterial smooth muscle-specific genes expression. Pregnant rats consumed NO-synthase inhibitor L-NAME (500 mg/L in drinking water) from gestational day 10 till delivery, which led to an increase in blood pressure, a key manifestation of preeclampsia. L-NAME reduced blood concentrations of NO metabolites in dams and their newborn pups, as well as relaxations of pup aortic rings to acetylcholine. Using qPCR, we demonstrated reduced abundances of the smooth muscle-specific myosin heavy chain isoform, α-actin, SM22α, and L-type Ca2+-channel mRNAs in the aorta of newborn pups from the L-NAME group compared to control pups. To conclude, the intrauterine NO deficiency weakens gene expression specific for a contractile phenotype of arterial smooth muscle in newborn offspring.
Collapse
|
10
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
11
|
Bhartiya P, Mumtaz S, Lim JS, Kaushik N, Lamichhane P, Nguyen LN, Jang JH, Yoon SH, Choi JJ, Kaushik NK, Choi EH. Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines. Sci Rep 2021; 11:8475. [PMID: 33875781 PMCID: PMC8055702 DOI: 10.1038/s41598-021-88078-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Microwave (MW) radiation is increasingly being used for several biological applications. Many investigations have focused on understanding the potential influences of pulsed MW irradiation on biological solutions. The current study aimed to investigate the effects of 3.5 GHz pulsed MW radiation-irradiated liquid solutions on the survival of human cancer and normal cells. Different physiological solutions such as phosphate buffer saline, deionized water, and Dulbecco's modified Eagle medium (DMEM) for cell culture growth were irradiated with pulsed MW radiation (45 shots with the energy of 1 mJ/shot). We then evaluated physiological effects such as cell viability, metabolic activity, mitochondrial membrane potential, cell cycle, and cell death in cells treated with MW-irradiated biological solutions. As MW irradiation with power density ~ 12 kW/cm2 mainly induces reactive nitrogen oxygen species in deionized water, it altered the cell cycle, membrane potential, and cell death rates in U373MG cells due to its high electric field ~ 11 kV/cm in water. Interestingly, MW-irradiated cell culture medium and phosphate-buffered saline did not alter the cellular viability and metabolic energy of cancer and normal cells without affecting the expression of genes responsible for cell death. Taken together, MW-irradiated water can alter cellular physiology noticeably, whereas irradiated media and buffered saline solutions induce negligible or irrelevant changes that do not affect cellular health.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jun Sup Lim
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Neha Kaushik
- College of Engineering, Department of Biotechnology, University of Suwon, Hwaseong, 18323, Korea
| | - Pradeep Lamichhane
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jung Hyun Jang
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sang Ho Yoon
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jin Joo Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
12
|
Pieretti JC, Gonçalves MC, Nakazato G, Santos de Souza AC, Boudier A, Seabra AB. Multifunctional hybrid nanoplatform based on Fe 3O 4@Ag NPs for nitric oxide delivery: development, characterization, therapeutic efficacy, and hemocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:23. [PMID: 33675446 PMCID: PMC7936955 DOI: 10.1007/s10856-021-06494-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/15/2021] [Indexed: 05/03/2023]
Abstract
The combination of Fe3O4@Ag superparamagnetic hybrid nanoparticles and nitric oxide (NO) represents an innovative strategy for a localized NO delivery with a simultaneous antibacterial and antitumoral actions. Here, we report the design of Fe3O4@Ag hybrid nanoparticles, coated with a modified and nitrosated chitosan polymer, able to release NO in a biological medium. After their synthesis, physicochemical characterization confirmed the obtention of small NO-functionalized superparamagnetic Fe3O4@Ag NPs. Antibacterial assays demonstrated enhanced effects compared to control. Bacteriostatic effect against Gram-positive strains and bactericidal effect against E. coli were demonstrated. Moreover, NO-functionalized Fe3O4@Ag NPs demonstrated improved ability to reduce cancer cells viability and less cytotoxicity against non-tumoral cells compared to Fe3O4@Ag NPs. These effects were associated to the ability of these NPs act simultaneous as cytotoxic (necrosis inductors) and cytostatic compounds inducing S-phase cell cycle arrest. NPs also demonstrated low hemolysis ratio (<10%) at ideal work range, evidencing their potential for biomedical applications. Targeted and hemocompatible nitric oxide-releasing multi-functional hybrid nanoparticles for antitumor and antimicrobial applications.
Collapse
Affiliation(s)
- Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | - Gerson Nakazato
- Department of Microbiology, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
13
|
Wunpathe C, Maneesai P, Rattanakanokchai S, Bunbupha S, Kukongviriyapan U, Tong-un T, Pakdeechote P. Tangeretin mitigates l-NAME-induced ventricular dysfunction and remodeling through the AT1R/pERK1/2/pJNK signaling pathway in rats. Food Funct 2020; 11:1322-1333. [DOI: 10.1039/c9fo02365h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tangeretin alleviates ventricular alterations in l-NAME hypertensive rats.
Collapse
Affiliation(s)
- Chutamas Wunpathe
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Putcharawipa Maneesai
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Siwayu Rattanakanokchai
- Veterinary Teaching Hospital
- Faculty of Veterinary Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Sarawoot Bunbupha
- Faculty of Medicine
- Mahasarakham University
- Mahasarakham 44150
- Thailand
| | - Upa Kukongviriyapan
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Terdthai Tong-un
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Poungrat Pakdeechote
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| |
Collapse
|
14
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
15
|
Simultaneous effects of hydrostatic pressure and dexamethasone release from electrospun fibers on inflammation-induced chondrocytes. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Lu H, Sun L, Chen W, Zhou Y, Liu K, Chen J, Zhang Z, Zhang C, Tian H. Sirtuin 3 Therapy Attenuates Aging Expression, Oxidative Stress Parameters, and Neointimal Hyperplasia Formation in Vein Grafts. Ann Vasc Surg 2019; 64:303-317. [PMID: 31394214 DOI: 10.1016/j.avsg.2019.05.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vein graft (VG) failure due to neointimal hyperplasia remains an important and unresolved problem in cardiovascular surgery. Sirtuin3 (SIRT3) is associated with oxidative stress and lifespan. We aimed to measure SIRT3 expression in the veins of humans and rats during aging, explore the inhibitory effects of SIRT3 on vascular smooth muscle cell (VSMC) proliferation and neointimal hyperplasia in VGs, and investigate the underlying mechanisms. METHODS SIRT3 mRNA and protein levels in saphenous veins of young and older humans and in veins of young and old rats were measured by quantitative real-time polymerized chain reaction (PCR) and Western blot analysis. Young and old male rats were randomized to the control (control), graft (graft), adenovirus-encoding green fluorescent protein (Ad-GFP), and adenovirus encoding SIRT3 (Ad-SIRT3) groups. At 7 days after operation, the mRNA and protein levels of SIRT3 and endothelial nitric oxide synthase (eNOS) were measured by quantitative real-time PCR and Western blot analysis. The mRNA levels and enzyme activity of manganese superoxide dismutase (MnSOD) and catalase (CAT) were measured by quantitative real-time PCR and enzymatic activity assay kits, and total nitric oxide (NO) levels were measured by biochemical assay kits. Histomorphometric analysis of VGs and immunohistochemical staining for proliferative activity were performed at 4 weeks after operation. The hemodynamic parameters of the VGs were also measured by ultrasonic examination. RESULTS SIRT3 mRNA and protein levels were lower in older human and rat veins than in younger human and rat veins. Ad-SIRT3 treatment significantly increased the expression and concentration of SIRT3, MnSOD, CAT, eNOS, and NO in VGs at 7 days after operation. Ad-SIRT3 gene transfer reduced the neointimal thickness and neointimal area/media area ratio in the VGs of the Ad-SIRT3 groups compared with the graft and Ad-GFP groups, especially in old rats. Proliferative activity was lower in the Ad-SIRT3 groups than in the other groups. The hemodynamic parameters of VGs were obviously improved in the Ad-SIRT3 groups. CONCLUSIONS SIRT3 expression decreases in the veins of humans and rats during aging. Furthermore, SIRT3 overexpression can significantly reduce VSMC proliferation and neointimal hyperplasia in VGs. Local intravenous delivery of adenovirus encoding SIRT3 may be a promising gene therapy for preventing VG failure.
Collapse
Affiliation(s)
- Hongguang Lu
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Cardiovascular Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Lu Sun
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Wei Chen
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yang Zhou
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaiyu Liu
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Jianxin Chen
- Department of Cardiovascular Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Zhijie Zhang
- Department of Cardiovascular Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Chunfeng Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Hai Tian
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
| |
Collapse
|
17
|
Mori Y, Shimizu H, Kushima H, Saito T, Hiromura M, Terasaki M, Koshibu M, Ohtaki H, Hirano T. Nesfatin-1 suppresses peripheral arterial remodeling without elevating blood pressure in mice. Endocr Connect 2019; 8:536-546. [PMID: 30939447 PMCID: PMC6499920 DOI: 10.1530/ec-19-0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
Nesfatin-1 is a novel anorexic peptide hormone that also exerts cardiovascular protective effects in rodent models. However, nesfatin-1 treatment at high doses also exerts vasopressor effects, which potentially limits its therapeutic application. Here, we evaluated the vasoprotective and vasopressor effects of nesfatin-1 at different doses in mouse models. Wild-type mice and those with the transgene nucleobindin-2, a precursor of nesfatin-1, were employed. Wild-type mice were randomly assigned to treatment with vehicle or nesfatin-1 at 0.2, 2.0 or 10 μg/kg/day (Nes-0.2, Nes-2, Nes-10, respectively). Subsequently, mice underwent femoral artery wire injury to induce arterial remodeling. After 4 weeks, injured arteries were collected for morphometric analysis. Compared with vehicle, nesfatin-1 treatments at 2.0 and 10 μg/kg/day decreased body weights and elevated plasma nesfatin-1 levels with no changes in systolic blood pressure. Furthermore, these treatments reduced neointimal hyperplasia without inducing undesirable remodeling in injured arteries. However, nesfatin-1 treatment at 0.2 μg/kg/day was insufficient to elevate plasma nesfatin-1 levels and showed no vascular effects. In nucleobindin-2-transgenic mice, blood pressure was slightly higher but neointimal area was lower than those observed in littermate controls. In cultured human vascular endothelial cells, nesfatin-1 concentration-dependently increased nitric oxide production. Additionally, nesfatin-1 increased AMP-activated protein kinase phosphorylation, which was abolished by inhibiting liver kinase B1. We thus demonstrated that nesfatin-1 treatment at appropriate doses suppressed arterial remodeling without affecting blood pressure. Our findings indicate that nesfatin-1 can be a therapeutic target for improved treatment of peripheral artery disease.
Collapse
Affiliation(s)
- Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hiroyuki Shimizu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Maebashi Hirosegawa Clinic, Maebashi, Gunma, Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| |
Collapse
|
18
|
Chami B, Hossain F, Hambly TW, Cai X, Aran R, Fong G, Vellajo A, Martin NJJ, Wang X, Dennis JM, Sharma A, Shihata WA, Chin-Dusting JPF, de Haan JB, Sharland A, Geczy CL, Freedman B, Witting PK. Serum Amyloid A Stimulates Vascular and Renal Dysfunction in Apolipoprotein E-Deficient Mice Fed a Normal Chow Diet. Front Immunol 2019; 10:380. [PMID: 30899260 PMCID: PMC6416175 DOI: 10.3389/fimmu.2019.00380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Elevated serum amyloid A (SAA) levels may promote endothelial dysfunction, which is linked to cardiovascular and renal pathologies. We investigated the effect of SAA on vascular and renal function in apolipoprotein E-deficient (ApoE−/−) mice. Male ApoE−/− mice received vehicle (control), low-level lipopolysaccharide (LPS), or recombinant human SAA by i.p. injection every third day for 2 weeks. Heart, aorta and kidney were harvested between 3 days and 18 weeks after treatment. SAA administration increased vascular cell adhesion molecule (VCAM)-1 expression and circulating monocyte chemotactic protein (MCP)-1 and decreased aortic cyclic guanosine monophosphate (cGMP), consistent with SAA inhibiting nitric oxide bioactivity. In addition, binding of labeled leukocytes to excised aorta increased as monitored using an ex vivo leukocyte adhesion assay. Renal injury was evident 4 weeks after commencement of SAA treatment, manifesting as increased plasma urea, urinary protein, oxidized lipids, urinary kidney injury molecule (KIM)-1 and multiple cytokines and chemokines in kidney tissue, relative to controls. Phosphorylation of nuclear-factor-kappa-beta (NFκB-p-P65), tissue factor (TF), and macrophage recruitment increased in kidneys from ApoE−/− mice 4 weeks after SAA treatment, confirming that SAA elicited a pro-inflammatory and pro-thrombotic phenotype. These data indicate that SAA impairs endothelial and renal function in ApoE−/− mice in the absence of a high-fat diet.
Collapse
Affiliation(s)
- Belal Chami
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Farjaneh Hossain
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Hambly
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Xiaoping Cai
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Roshanak Aran
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Genevieve Fong
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Abigail Vellajo
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nathan J J Martin
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - XiaoSuo Wang
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Joanne M Dennis
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Arpeeta Sharma
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Waled A Shihata
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jaye P F Chin-Dusting
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Alexandra Sharland
- Transplantation Immunobiology Group, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Carolyn L Geczy
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ben Freedman
- ANZAC Research and Heart Research Institutes, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Paul K Witting
- Discipline of Pathology, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:227-240. [PMID: 29047089 DOI: 10.1007/978-3-319-63245-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The soluble form of guanylate cyclase (sGC) and cGMP signaling are major regulators of pulmonary vasodilation and vascular remodeling that protect the pulmonary circulation from hypertension development. Nitric oxide, reactive oxygen species, thiol and heme redox, and heme biosynthesis control mechanisms regulating the production of cGMP by sGC. In addition, a cGMP-independent mechanism regulates protein kinase G through thiol oxidation in manner controlled by peroxide metabolism and NADPH redox. Multiple aspects of these regulatory processes contribute to physiological and pathophysiological regulation of the pulmonary circulation, and create potentially novel therapeutic targets for the treatment of pulmonary vascular disease.
Collapse
|
20
|
Ruiter MS, Pesce M. Mechanotransduction in Coronary Vein Graft Disease. Front Cardiovasc Med 2018; 5:20. [PMID: 29594150 PMCID: PMC5861212 DOI: 10.3389/fcvm.2018.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Autologous saphenous veins are the most commonly used conduits in revascularization of the ischemic heart by coronary artery bypass graft surgery, but are subject to vein graft failure. The current mini review aims to provide an overview of the role of mechanotransduction signalling underlying vein graft failure to further our understanding of the disease progression and to improve future clinical treatment. Firstly, limitation of damage during vein harvest and engraftment can improve outcome. In addition, cell cycle inhibition, stimulation of Nur77 and external grafting could form interesting therapeutic options. Moreover, the Hippo pathway, with the YAP/TAZ complex as the main effector, is emerging as an important node controlling conversion of mechanical signals into cellular responses. This includes endothelial cell inflammation, smooth muscle cell proliferation/migration, and monocyte attachment/infiltration. The combined effects of expression levels and nuclear/cytoplasmic translocation make YAP/TAZ interesting novel targets in the prevention and treatment of vein graft disease. Pharmacological, molecular and/or mechanical conditioning of saphenous vein segments between harvest and grafting may potentiate targeted and specific treatment to improve long-term outcome.
Collapse
Affiliation(s)
- Matthijs Steven Ruiter
- Cardiovascular Tissue Engineering Unit, Centro Cardiologico Monzino (IRCCS), Milan, Italy
| | - Maurizio Pesce
- Cardiovascular Tissue Engineering Unit, Centro Cardiologico Monzino (IRCCS), Milan, Italy
| |
Collapse
|
21
|
Aiello S, Rocchetta F, Longaretti L, Faravelli S, Todeschini M, Cassis L, Pezzuto F, Tomasoni S, Azzollini N, Mister M, Mele C, Conti S, Breno M, Remuzzi G, Noris M, Benigni A. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Sci Rep 2017; 7:11518. [PMID: 28912528 PMCID: PMC5599553 DOI: 10.1038/s41598-017-08617-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
We have previously shown that rat allogeneic DC, made immature by adenoviral gene transfer of the dominant negative form of IKK2, gave rise in-vitro to a unique population of CD4+CD25− regulatory T cells (dnIKK2-Treg). These cells inhibited Tcell response in-vitro, without needing cell-to-cell contact, and induced kidney allograft survival prolongation in-vivo. Deep insight into the mechanisms behind dnIKK2-Treg-induced suppression of Tcell proliferation remained elusive. Here we document that dnIKK2-Treg release extracellular vesicles (EV) riched in exosomes, fully accounting for the cell-contact independent immunosuppressive activity of parent cells. DnIKK2-Treg-EV contain a unique molecular cargo of specific miRNAs and iNOS, which, once delivered into target cells, blocked cell cycle progression and induced apoptosis. DnIKK2-Treg-EV-exposed T cells were in turn converted into regulatory cells. Notably, when administered in-vivo, dnIKK2-Treg-EV prolonged kidney allograft survival. DnIKK2-Treg-derived EV could be a tool for manipulating the immune system and for discovering novel potential immunosuppressive molecules in the context of allotransplantation.
Collapse
Affiliation(s)
- Sistiana Aiello
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Federica Rocchetta
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Lorena Longaretti
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Silvia Faravelli
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Marta Todeschini
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Linda Cassis
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Francesca Pezzuto
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Susanna Tomasoni
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Nadia Azzollini
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Marilena Mister
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Caterina Mele
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Sara Conti
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Matteo Breno
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy.,Unit of Nephrology and Dialyisis Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy.,Unit of Nephrology and Dialyisis, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Marina Noris
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy.
| | - Ariela Benigni
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| |
Collapse
|
22
|
Pari S, Abnosi MH, Pakyari R. Sodium Nitroprusside Changed The Metabolism of Mesenchymal Stem Cells to An Anaerobic State while Viability and Proliferation Remained Intact. CELL JOURNAL 2017; 19:146-158. [PMID: 28367425 PMCID: PMC5241511 DOI: 10.22074/cellj.2016.4875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/26/2016] [Indexed: 11/06/2022]
Abstract
Objective We used sodium nitroprusside (SNP), a nitric oxide (NO) releasing molecule,
to understand its effect on viability and proliferation of rat bone marrow mesenchymal
stem cells (BM-MSCs).
Materials and Methods This experimental study evaluated the viability and morphology of MSCs in the presence of SNP (100 to 2000 µM) at 1, 5, and 15 hours. We chose
the 100, 1000, and 2000 µM concentrations of SNP for one hour exposure for further
analyses. Cell proliferation was investigated by the colony forming assay and population
doubling number (PDN). Na+, K+, and Ca2+ levels as well as activities of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), aspartate transaminase (AST), and alanine
transaminase (ALT) were measured.
Results The viability of MSCs dose-dependently reduced from 750 µM at one hour and
250 µM at 5 and 15 hours. The 100 µM caused no change in viability, however we
observed a reduction in the cytoplasmic area at 5 and 15 hours. This change was not
observed at one hour. The one hour treatment with 100 µM of SNP reduced the mean
colony numbers but not the diameter when the cells were incubated for 7 and 14 days. In
addition, one hour treatment with 100 µM of SNP significantly reduced ALT, AST, and ALP
activities whereas the activity of LDH increased when incubated for 24 hours. The same
treatment caused an increase in Ca2+ and reduction in Na+ content. The 1000 and 2000
µM concentrations reduced all the factors except Ca2+ and LDH which increased.
Conclusion The high dose of SNP, even for a short time, was toxic. The low dose was
safe with respect to viability and proliferation, especially over a short time. However elevated LDH activity might increase anaerobic metabolism.
Collapse
Affiliation(s)
- Sadiyeh Pari
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | | | - Reza Pakyari
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| |
Collapse
|
23
|
Novikova GV, Mur LAJ, Nosov AV, Fomenkov AA, Mironov KS, Mamaeva AS, Shilov ES, Rakitin VY, Hall MA. Nitric Oxide Has a Concentration-Dependent Effect on the Cell Cycle Acting via EIN2 in Arabidopsis thaliana Cultured Cells. Front Physiol 2017; 8:142. [PMID: 28344560 PMCID: PMC5344996 DOI: 10.3389/fphys.2017.00142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
Ethylene is known to influence the cell cycle (CC) via poorly characterized roles whilst nitric oxide (NO) has well-established roles in the animal CC but analogous role(s) have not been reported for plants. As NO and ethylene signaling events often interact we examined their role in CC in cultured cells derived from Arabidopsis thaliana wild-type (Col-0) plants and from ethylene-insensitive mutant ein2-1 plants. Both NO and ethylene were produced mainly during the first 5 days of the sub-cultivation period corresponding to the period of active cell division. However, in ein2-1 cells, ethylene generation was significantly reduced while NO levels were increased. With application of a range of concentrations of the NO donor, sodium nitroprusside (SNP) (between 20 and 500 μM) ethylene production was significantly diminished in Col-0 but unchanged in ein2-1 cells. Flow cytometry assays showed that in Col-0 cells treatments with 5 and 10 μM SNP concentrations led to an increase in S-phase cell number indicating the stimulation of G1/S transition. However, at ≥20 μM SNP CC progression was restrained at G1/S transition. In the mutant ein2-1 strain, the index of S-phase cells was not altered at 5-10 μM SNP but decreased dramatically at higher SNP concentrations. Concomitantly, 5 μM SNP induced transcription of genes encoding CDKA;1 and CYCD3;1 in Col-0 cells whereas transcription of CDKs and CYCs were not significantly altered in ein2-1 cells at any SNP concentrations examined. Hence, it is appears that EIN2 is required for full responses at each SNP concentration. In ein2-1 cells, greater amounts of NO, reactive oxygen species, and the tyrosine-nitrating peroxynitrite radical were detected, possibly indicating NO-dependent post-translational protein modifications which could stop CC. Thus, we suggest that in Arabidopsis cultured cells NO affects CC progression as a concentration-dependent modulator with a dependency on EIN2 for both ethylene production and a NO/ethylene regulatory function.
Collapse
Affiliation(s)
- Galina V. Novikova
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Luis A. J. Mur
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Alexander V. Nosov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Artem A. Fomenkov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Kirill S. Mironov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Anna S. Mamaeva
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Evgeny S. Shilov
- Department of Immunology, M.V. Lomonosov Moscow State UniversityMoscow, Russia
| | - Victor Y. Rakitin
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Michael A. Hall
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
24
|
Elnaggar MA, Subbiah R, Han DK, Joung YK. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv 2017; 14:1341-1353. [DOI: 10.1080/17425247.2017.1285904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahmoud A. Elnaggar
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
25
|
Mierke J, Christoph M, Pfluecke C, Jellinghaus S, Wunderlich C, Strasser RH, Ibrahim K, Poitz DM. Atheroprotective role of Caveolin-1 and eNOS in an innovative transplantation model is mainly mediated by local effects. Biochim Biophys Acta Mol Basis Dis 2017; 1863:529-536. [DOI: 10.1016/j.bbadis.2016.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/03/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
|
26
|
Bedair TM, ElNaggar MA, Joung YK, Han DK. Recent advances to accelerate re-endothelialization for vascular stents. J Tissue Eng 2017; 8:2041731417731546. [PMID: 28989698 PMCID: PMC5624345 DOI: 10.1177/2041731417731546] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/19/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are considered as one of the serious diseases that leads to the death of millions of people all over the world. Stent implantation has been approved as an easy and promising way to treat cardiovascular diseases. However, in-stent restenosis and thrombosis remain serious problems after stent implantation. It was demonstrated in a large body of previously published literature that endothelium impairment represents a major factor for restenosis. This discovery became the driving force for many studies trying to achieve an optimized methodology for accelerated re-endothelialization to prevent restenosis. Thus, in this review, we summarize the different methodologies opted to achieve re-endothelialization, such as, but not limited to, manipulation of surface chemistry and surface topography.
Collapse
Affiliation(s)
- Tarek M Bedair
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Mahmoud A ElNaggar
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
27
|
He W, Frost MC. Direct measurement of actual levels of nitric oxide (NO) in cell culture conditions using soluble NO donors. Redox Biol 2016; 9:1-14. [PMID: 27236086 PMCID: PMC4899081 DOI: 10.1016/j.redox.2016.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/05/2023] Open
Abstract
Applying soluble nitric oxide (NO) donors is the most widely used method to expose cells of interest to exogenous NO. Because of the complex equilibria that exist between components in culture media, the donor compound and NO itself, it is very challenging to predict the dose and duration of NO cells actually experience. To determine the actual level of NO experienced by cells exposed to soluble NO donors, we developed the CellNO Trap, a device that allows continuous, real-time monitoring of the level of NO adherent cells produce and/or experience in culture without the need to alter cell culturing procedures. Herein, we directly measured the level of NO that cells grown in the CellNO Trap experienced when soluble NO donors were added to solutions in culture wells and we characterized environmental conditions that effected the level of NO in in vitro culture conditions. Specifically, the dose and duration of NO generated by the soluble donors S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO) and the diazeniumdiolate diethyltriamine (DETA/NO) were investigated in both phosphate buffered saline (PBS) and cell culture media. Other factors that were studied that potentially affect the ultimate NO level achieved with these donors included pH, presence of transition metals (ion species), redox level, presence of free thiol and relative volume of media. Then murine smooth muscle cell (MOVAS) with different NO donors but with the same effective concentration of available NO were examined and it was demonstrated that the cell proliferation ratio observed does not correlate with the half-lives of NO donors characterized in PBS, but does correlate well with the real-time NO profiles measured under the actual culture conditions. This data demonstrates the dynamic characteristic of the NO and NO donor in different biological systems and clearly illustrates the importance of tracking individual NO profiles under the actual biological conditions.
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals and Materials Building, 1400 Townsend Dr., Houghton, MI 49931-1295, United States
| | - Megan C Frost
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals and Materials Building, 1400 Townsend Dr., Houghton, MI 49931-1295, United States.
| |
Collapse
|
28
|
Yamamoto H, Rundqvist H, Branco C, Johnson RS. Autocrine VEGF Isoforms Differentially Regulate Endothelial Cell Behavior. Front Cell Dev Biol 2016; 4:99. [PMID: 27709112 PMCID: PMC5030275 DOI: 10.3389/fcell.2016.00099] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration, and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2). We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO) synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell homeostasis in normoxia and hypoxia.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| | - Helene Rundqvist
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholm, Sweden
| | - Cristina Branco
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| | - Randall S. Johnson
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
29
|
Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol 2016; 83:10-6. [DOI: 10.1016/j.vph.2015.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/27/2015] [Accepted: 07/11/2015] [Indexed: 11/23/2022]
|
30
|
Lin CF, Huang HL, Peng CY, Lee YC, Wang HP, Teng CM, Pan SL. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis. Toxicol Appl Pharmacol 2016; 305:194-202. [PMID: 27312871 DOI: 10.1016/j.taap.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/17/2016] [Accepted: 06/08/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. METHODS Cell proliferation was determined using [(3)H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. RESULTS TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. CONCLUSION The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Chao-Feng Lin
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Han-Li Huang
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chieh-Yu Peng
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Biotechnology in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Po Wang
- College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Che-Ming Teng
- College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shiow-Lin Pan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 10031, Taiwan.
| |
Collapse
|
31
|
Arterial Remodeling in B-Type Natriuretic Peptide Knock-Out Females. Sci Rep 2016; 6:25623. [PMID: 27162120 PMCID: PMC4861904 DOI: 10.1038/srep25623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/19/2016] [Indexed: 12/12/2022] Open
Abstract
Sexual dimorphisms are recognized in cardiovascular conditions such as hypertension, stroke, thrombosis and vasculitis. B-type natriuretic peptide (BNP) is a guanylyl cyclase A (GC-A) agonist. The anti-hypertensive, vasodilatory, anti-fibrotic, and anti-hypertrophic properties of BNP are well established in male animal models. Although circulating BNP levels are higher in women, when compared to age-matched men, the cardiovascular protective propensity of BNP in females is poorly understood. We assessed the cardiovascular consequences of BNP deletion in genetically null (Nppb−/−) female rat lines. Throughout the study, blood pressure (BP) remained uninfluenced by genotype, and cardiorenal consequences of BNP knock out remained minor. Unexpectedly, approximately 60% of Nppb−/− females developed mesenteric polyarteritis-nodosa (PAN)-like vasculitis in their life span, some as early as 4 months of age. Mesenteric lesions involved intense arterial remodeling, progressive inflammation, occluded lumens, and less frequently intestinal necrosis and multiple visceral arterial aneurysms. Cumulative pathologies resulted in a significant decline in survival of the Nppb−/− female. This study highlights BNP’s vasoprotective propensity, bringing to light a possible sex specific difference in the cardiovascular protection provided by BNP. Defects in the BNP/GC-A/cGMP pathway may play a role in arteriopathies in women, while GC-A agonists may provide effective therapy for arteritis.
Collapse
|
32
|
|
33
|
Gelaude A, Marin M, Cailliau K, Jeseta M, Lescuyer‐Rousseau A, Vandame P, Nevoral J, Sedmikova M, Martoriati A, Bodart J. Nitric Oxide Donor
s
‐Nitroso‐
n
‐Acetyl Penicillamine (SNAP) Alters Meiotic Spindle Morphogenesis in
Xenopus
Oocytes. J Cell Biochem 2015; 116:2445-54. [DOI: 10.1002/jcb.25211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/22/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Armance Gelaude
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Matthieu Marin
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Katia Cailliau
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Michal Jeseta
- Veterinary Research InstituteBrno ‐ Genetics and ReproductionBrnoCzech Republic
| | - Arlette Lescuyer‐Rousseau
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Pauline Vandame
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Jan Nevoral
- Czech University of Life Sciences in PragueFaculty of AgrobiologyFood and Natural Resources, Department of Veterinary SciencesPragueCzech Republic
| | - Marketa Sedmikova
- Czech University of Life Sciences in PragueFaculty of AgrobiologyFood and Natural Resources, Department of Veterinary SciencesPragueCzech Republic
| | - Alain Martoriati
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Jean‐François Bodart
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| |
Collapse
|
34
|
Liu J, Liu XL, Xi TF, Chu CC. A novel pseudo-protein-based biodegradable coating for magnesium substrates: in vitro corrosion phenomena and cytocompatibility. J Mater Chem B 2015; 3:878-893. [DOI: 10.1039/c4tb01527d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of this study is to examine whether a member of the newly developed biodegradable pseudo-protein biomaterial family could provide a far better protection and performance than the popular hydrolytically degradable poly(glycolide-co-lactide) (PLGA) biomaterial on an experimental magnesium substrate as a model.
Collapse
Affiliation(s)
- J. Liu
- Center for Biomedical Materials and Tissue Engineering
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - X. L. Liu
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - T. F. Xi
- Center for Biomedical Materials and Tissue Engineering
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| | - C. C. Chu
- Biomedical Engineering Program
- Cornell University
- Ithaca
- USA
| |
Collapse
|
35
|
Toya T, Hakuno D, Shiraishi Y, Kujiraoka T, Adachi T. Arginase inhibition augments nitric oxide production and facilitates left ventricular systolic function in doxorubicin-induced cardiomyopathy in mice. Physiol Rep 2014; 2:2/9/e12130. [PMID: 25263201 PMCID: PMC4270236 DOI: 10.14814/phy2.12130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A metabolizing enzyme arginase can decrease nitric oxide (NO) production by competing with NO synthase for arginine as a substrate, but its pathophysiological role in heart failure remains unknown. We aimed to investigate the effect of pharmacological inhibition of arginase on left ventricular function in doxorubicin‐induced cardiomyopathy in mice. Doxorubicin administration for 5 weeks significantly increased protein expression levels or activity of arginase in the lungs and liver, and caused moderate increase in arginase 2 expression in the aorta. In the lungs, accumulated interstitial cells strongly expressed both arginase 1 and arginase 2 by doxorubicin administration. Echocardiography revealed that administration of a potent, reversible arginase inhibitor N‐omega‐hydroxy‐nor‐l‐arginine completely reversed doxorubicin‐induced decrease in the ejection fraction, in parallel with expression levels of BNP mRNA, without affecting apoptosis, hypertrophy, fibrosis, or macrophage infiltration in the left ventricle. Arginase inhibition reversibly lowered systolic blood pressure, and importantly, it recovered doxorubicin‐induced decline in NO concentration in the serum, lungs, and aorta. Furthermore, arginase inhibition stimulated NO secretion from aortic endothelial cells and peritoneal macrophages in vitro. In conclusion, pharmacological inhibition of arginase augmented NO concentration in the serum, lungs, and aorta, promoted NO‐mediated decrease in afterload for left ventricle, and facilitated left ventricular systolic function in doxorubicin‐induced cardiomyopathy in mice. e12130 This figure shows that administration of an arginase inhibitor nor‐ NOHA facilitates LV systolic function in murine Dox‐induced cardiomyopathy.
Collapse
Affiliation(s)
- Takumi Toya
- Division of Cardiology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Daihiko Hakuno
- Division of Cardiology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasunaga Shiraishi
- Division of Cardiology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takehiko Kujiraoka
- Division of Cardiology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takeshi Adachi
- Division of Cardiology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
36
|
Lee J, Cho JY, Kim WK. Anti-inflammation effect of Exercise and Korean red ginseng in aging model rats with diet-induced atherosclerosis. Nutr Res Pract 2014; 8:284-91. [PMID: 24944773 PMCID: PMC4058562 DOI: 10.4162/nrp.2014.8.3.284] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/27/2013] [Accepted: 03/17/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES The aim of this study was to investigate the effects of exercise (EX) and Korean red ginseng (KRG) on inflammation mechanism in aging model rats with diet-induced atherosclerosis. MATERIALS/METHODS Forty-eight male Sprague-Dawley rats were divided into 6 groups: Young control (Y-C), Aging control (A-C), A-C with HFD (AHF), AHF with EX (AHF-EX), AHF-EX with KRG (AHF-EX+RG), and AHF with KRG (AHF-RG). Aging was induced by D-gal (100mg/kg) and atherosclerosis was induced by HFD (60% fat) for 9 weeks. The experimental rats were performed swimming (60 min/day, 5 days/week) and supplied KRG orally (dose of 200 mg/kg) for 8 weeks. All rat aorta samples were harvested for biochemical and immunohistochemical analyses. REULTS The EX and KRG supplementation significantly inhibited body weight and levels of TC, TG, LDL-C, and enhance of HDL-C compared with untreated AHF groups. AHF-EX, AHF-EX+RG, and AHF-RG group showed a decreased plasma CRP and increase plasma NO activities compared to AHF group. In addition, these groups revealed reduced 4-HNE, NF-kB, TNF-α, IL-6, COX-2, ICAM-1, VCAM-1 and enhanced eNOS expression in the aorta. CONCLUSION These results suggest that EX alone, KRG alone, and combined treatment of EX and KRG may be an effective anti-inflammatory therapeutic for the atherosclerosis, possibly acting via the decreased of CRP and pro-inflammation proteins and the increased NO and eNOS.
Collapse
Affiliation(s)
- Jin Lee
- Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, 138-763, Korea
| | - Won-Kyu Kim
- Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea
| |
Collapse
|
37
|
Ismail B, Aboul-Fotouh S, Mansour AA, Shehata HH, Salman MI, Ibrahim EA, Hassan OA, Abdel-tawab AM. Behavioural, metabolic, and endothelial effects of the TNF-α suppressor thalidomide on rats subjected to chronic mild stress and fed an atherogenic diet. Can J Physiol Pharmacol 2014; 92:375-85. [DOI: 10.1139/cjpp-2013-0446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is accumulating evidence suggesting that depression is a risk factor for cardiovascular diseases. This study aimed to examine the hypothesis that the proinflammatory cytokine TNF-α would partially explain the link between depression and atherosclerotic endothelial changes. Rats were distributed among 6 groups: (i) control group; (ii) group subjected to chronic mild stress (CMS); (iii) group fed a cholesterol–cholic acid–thiouracil (CCT diet); and (iv) CMS group fed the CCT diet and treated with the vehicle for 8 weeks. The last 2 groups were subjected to CMS–CCT and received thalidomide (THAL) or imipramine (IMIP). Rats were assessed behaviorally (sucrose preference, open field, and forced-swimming tests). TNF-α protein was assessed from the serum, aorta, and liver. Aortic TNF-α gene expression (assessed using RT–PCR), serum lipid profile, and insulin levels were measured. Endothelial function was assessed in isolated aortic rings. The THAL and IMIP groups showed ameliorated CMS–CCT-related behavioral changes. CMS–CCT-induced metabolic and endothelial dysfunctions were improved in the THAL group but were worsened in the IMIP group. RT–PCR showed a significant reduction of aortic TNF-α mRNA expression in the THAL and IMIP treatment groups. These data paralleled the findings for aortic immunohistochemistry. The THAL group, but not the IMIP group, showed improved CMS–CCT-induced changes in the vascular reactivity of the aortic rings. Thus, TNF-α provides a target link between depression, metabolic syndrome, and endothelial dysfunction. This could open a new therapeutic approach to address the comorbidities of depression.
Collapse
Affiliation(s)
- Basma Ismail
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
- Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Sawsan Aboul-Fotouh
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal A. Mansour
- Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Hanan H. Shehata
- Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Manal I. Salman
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman A. Ibrahim
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Olfat A. Hassan
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Ahmed M. Abdel-tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
38
|
Zhang P, Xu X, Hu X, Wang H, Fassett J, Huo Y, Chen Y, Bache RJ. DDAH1 deficiency attenuates endothelial cell cycle progression and angiogenesis. PLoS One 2013; 8:e79444. [PMID: 24260221 PMCID: PMC3832548 DOI: 10.1371/journal.pone.0079444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthase (NOS). ADMA is eliminated largely by the action of dimethylarginine dimethylaminohydrolase1 (DDAH1). Decreased DDAH activity is found in several pathological conditions and is associated with increased risk of vascular disease. Overexpression of DDAH1 has been shown to augment endothelial proliferation and angiogenesis. To better understand the mechanism by which DDAH1 influences endothelial proliferation, this study examined the effect of DDAH1 deficiency on cell cycle progression and the expression of some cell cycle master regulatory proteins. DDAH1 KO decreased in vivo Matrigel angiogenesis and depressed endothelial repair in a mouse model of carotid artery wire injury. DDAH1 deficiency decreased VEGF expression in HUVEC and increased NF1 expression in both HUVEC and DDAH1 KO mice. The expression of active Ras could overcome the decreased VEGF expression caused by the DDAH1 depletion. The addition of VEGF and knockdown NF1 could both restore proliferation in cells with DDAH1 depletion. Flow cytometry analysis revealed that DDAH1 sRNAi knockdown in HUVEC caused G1 and G2/M arrest that was associated with decreased expression of CDC2, CDC25C, cyclin D1 and cyclin E. MEF cells from DDAH1 KO mice also demonstrated G2/M arrest that was associated with decreased cyclin D1 expression and Akt activity. Our findings indicate that DDAH1 exerts effects on cyclin D1 and cyclin E expression through multiple mechanisms, including VEGF, the NO/cGMP/PKG pathway, the Ras/PI3K/Akt pathway, and NF1 expression. Loss of DDAH1 effects on these pathways results in impaired endothelial cell proliferation and decreased angiogenesis. The findings provide background information that may be useful in the development of therapeutic strategies to manipulate DDAH1 expression in cardiovascular diseases or tumor angiogenesis.
Collapse
Affiliation(s)
- Ping Zhang
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Xin Xu
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Xinli Hu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Huan Wang
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - John Fassett
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Yingjie Chen
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Robert J. Bache
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
39
|
Lu MX, Cao SS, Du YZ, Liu ZX, Liu P, Li J. Diapause, signal and molecular characteristics of overwintering Chilo suppressalis (Insecta: Lepidoptera: Pyralidae). Sci Rep 2013; 3:3211. [PMID: 24226906 PMCID: PMC3827604 DOI: 10.1038/srep03211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/24/2013] [Indexed: 11/24/2022] Open
Abstract
Diapause is a complex and dynamic process. Chilo suppressalis, an important rice pest in Asia enters facultative diapause as larvae. Our results demonstrated in Yangzhou, China, diapause was initiated between September 4 and 12, 2010. After diapause termination, C. suppressalis remained in quiescence in the field for as long as three months. The average time between collection of field larvae of C. suppressalis and their pupation decreased as the season progressed from fall to next spring. Unexpectedly, the pupated ratio of female to male in the initiation of diapause was 0.22. The abundance of hsp90, hsp70, hsp60 and CsAQP1 all peaked on January 8 or 15, 2011. Nitric oxide (NO) is a secondary messenger that is positively correlated with the diapause of C. suppressalis. Among several geographically separated populations of C. suppressalis, there are no significant differences in the mRNA levels of hsp70, hsp60 or CsAQP1.
Collapse
Affiliation(s)
- Ming-Xing Lu
- 1] College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China [2] Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | | | | | | | | | | |
Collapse
|
40
|
Radika M, Viswanathan P, Anuradha C. Nitric oxide mediates the insulin sensitizing effects of β-sitosterol in high fat diet-fed rats. Nitric Oxide 2013; 32:43-53. [DOI: 10.1016/j.niox.2013.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 04/10/2013] [Accepted: 04/17/2013] [Indexed: 02/07/2023]
|
41
|
Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ. Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol 2013; 62:89-95. [PMID: 23665095 DOI: 10.1016/j.jacc.2013.03.070] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/19/2013] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) has been suggested to be a pathophysiological modulator of cell proliferation, cell cycle arrest, and apoptosis. In this context, NO can exert opposite effects under diverse conditions. Indeed, several studies have indicated that low relative concentrations of NO seem to favor cell proliferation and antiapoptotic responses and higher levels of NO favor pathways inducing cell cycle arrest, mitochondria respiration, senescence, or apoptosis. Here we report the effects of NO on both promotion and inhibition of cell proliferation, in particular in regard to cardiovascular disease, diabetes, and stem cells. Moreover, we focus on molecular mechanisms of action involved in the control of cell cycle progression, which include both cyclic guanosine monophosphate-dependent and -independent pathways. This growing field may lead to broad and novel targeted therapies against cardiovascular diseases, especially concomitant type 2 diabetes, as well as novel bioimaging NO-based diagnostic tools.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, U.O.C. Immunohematology, Second University of Naples, Naples, Italy; Fondazione SDN, IRCCS, Naples, Italy.
| | - Giuseppe Paolisso
- Division of Geriatrics, 1st School of Medicine, Second University of Naples, Naples, Italy
| | - Amelia Casamassimi
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, U.O.C. Immunohematology, Second University of Naples, Naples, Italy
| | - Mohammed Al-Omran
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Michelangela Barbieri
- Division of Geriatrics, 1st School of Medicine, Second University of Naples, Naples, Italy
| | - Linda Sommese
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, U.O.C. Immunohematology, Second University of Naples, Naples, Italy
| | | | - Louis J Ignarro
- Department of Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
42
|
Madigan M, Zuckerbraun B. Therapeutic Potential of the Nitrite-Generated NO Pathway in Vascular Dysfunction. Front Immunol 2013; 4:174. [PMID: 23847616 PMCID: PMC3698458 DOI: 10.3389/fimmu.2013.00174] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) generated through L-arginine metabolism by endothelial nitric oxide synthase (eNOS) is an important regulator of the vessel wall. Dysregulation of this system has been implicated in various pathological vascular conditions, including atherosclerosis, angiogenesis, arteriogenesis, neointimal hyperplasia, and pulmonary hypertension. The pathophysiology involves a decreased bioavailability of NO within the vessel wall by competitive utilization of L-arginine by arginase and “eNOS uncoupling.” Generation of NO through reduction of nitrate and nitrite represents an alternative pathway that may be utilized to increase the bioavailability of NO within the vessel wall. We review the therapeutic potential of the nitrate/nitrite/NO pathway in vascular dysfunction.
Collapse
|
43
|
Rutaecarpine inhibits angiotensin II-induced proliferation in rat vascular smooth muscle cells. Chin J Integr Med 2013; 20:682-7. [PMID: 23775171 DOI: 10.1007/s11655-013-1198-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To evaluate the effects and possible mechanisms of rutaecarpine on angiotensin II (Ang II)-induced proliferation in cultured rat vascular smooth muscle cells (VSMCs). METHODS VSMCs were isolated from Male Sprague-Dawley rat aorta, and cultured by enzymic dispersion method. Experiments were performed with cells from passages 3-8. The cultured VSMCs were randomly divided into control, model (Ang II 0.1 μmol/L), and rutaecarpine (0.3-3.0 μmol/L) groups. VMSC proliferation was induced by Ang II, and was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and cell counting. To examine the mechanisms involved in anti-proliferative effects of rutaecarpine, nitric oxide (NO) levels and NO synthetase (NOS) activity were determined. Expressions of VSMC proliferation-related genes including endothelial nitric oxide synthase (eNOS), and c-myc hypertension related gene-1 (HRG-1) were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Rutaecarpine (0.3-3.0 μmol/L) inhibited Ang II-induced VSMC proliferation and the best effects were achieved at 3.0 μmol/L. The Ang II-induced decreases in cellular NO contents and NOS activities were antagonized by rutaecarpine (P <0.05). Ang II administration suppressed the expressions of eNOS and HRG-1, while increased c-myc expression (P <0.05). All these effects were attenuated by 3.0 μmol/L rutaecarpine (P <0.05). CONCLUSION Rutaecarpine is effective against Ang II-induced rat VSMC proliferation, and this effect is due, at least in part, to NO production and the modulation of VMSC proliferation-related gene expressions.
Collapse
|
44
|
Du F, Virtue A, Wang H, Yang XF. Metabolomic analyses for atherosclerosis, diabetes, and obesity. Biomark Res 2013; 1:17. [PMID: 24252331 PMCID: PMC4177614 DOI: 10.1186/2050-7771-1-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/07/2013] [Indexed: 02/02/2023] Open
Abstract
Insulin resistance associated with type 2 diabetes mellitus (T2DM), obesity, and atherosclerosis is a global health problem. A portfolio of abnormalities of metabolic and vascular homeostasis accompanies T2DM and obesity, which are believed to conspire to lead to accelerated atherosclerosis and premature death. The complexity of metabolic changes in the diseases presents challenges for a full understanding of the molecular pathways contributing to the development of these diseases. The recent advent of new technologies in this area termed “Metabolomics” may aid in comprehensive metabolic analysis of these diseases. Therefore, metabolomics has been extensively applied to the metabolites of T2DM, obesity, and atherosclerosis not only for the assessment of disease development and prognosis, but also for the biomarker discovery of disease diagnosis. Herein, we summarize the recent applications of metabolomics technology and the generated datasets in the metabolic profiling of these diseases, in particular, the applications of these technologies to these diseases at the cellular, animal models, and human disease levels. In addition, we also extensively discuss the mechanisms linking the metabolic profiling in insulin resistance, T2DM, obesity, and atherosclerosis, with a particular emphasis on potential roles of increased production of reactive oxygen species (ROS) and mitochondria dysfunctions.
Collapse
Affiliation(s)
- Fuyong Du
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
45
|
Efficient transduction of vascular smooth muscle cells with a translational AAV2.5 vector: a new perspective for in-stent restenosis gene therapy. Gene Ther 2013; 20:901-12. [PMID: 23535897 PMCID: PMC3706517 DOI: 10.1038/gt.2013.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/10/2013] [Accepted: 02/05/2013] [Indexed: 12/16/2022]
Abstract
Coronary artery disease represents the leading cause of mortality in the developed world. Percutaneous coronary intervention (PCI) involving stent placement remains disadvantaged by restenosis or thrombosis. Vascular gene-therapy-based methods may be approached, but lack a vascular gene delivery vector. We report a safe and efficient long-term transduction of rat carotid vessels after balloon-injury intervention with a translational optimized AAV2.5 vector. Compared to other known AAV serotypes, AAV2.5 demonstrated the highest transduction efficiency of human coronary artery vascular smooth muscle cells (VSMC) in vitro. Local delivery of AAV2.5-driven transgenes in injured carotid arteries resulted in transduction as soon as day 2 after surgery and persisted for at least 30 days. In contrast to adenovirus 5 vector, inflammation was not detected in AAV2.5-transduced vessels. The functional effects of AAV2.5-mediated gene transfer on neointimal thickening were assessed using the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a) human gene, known to inhibit VSMC proliferation. At 30 days, human SERCA2a mRNA was detected in transduced arteries. Morphometric analysis revealed a significant decrease of neointimal hyperplasia in AAV2.5-SERCA2a transduced arteries: 28.36±11.30 (n=8) vs 77.96±24.60 (n=10) μm2, in AAV2.5-GFP-infected, p<0.05. In conclusion, AAV2.5 vector can be considered as a promising safe and effective vector for vascular gene therapy.
Collapse
|
46
|
Zhao J, Gou S, Sun Y, Yin R, Wang Z. Nitric Oxide Donor-Based Platinum Complexes as Potential Anticancer Agents. Chemistry 2012; 18:14276-81. [DOI: 10.1002/chem.201201605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Indexed: 01/14/2023]
|
47
|
Bone marrow stromal cells induce cell cycle arrest in reactive astrocytes in vitro. Neurosci Lett 2012; 522:62-6. [PMID: 22705907 DOI: 10.1016/j.neulet.2012.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/29/2022]
Abstract
Transplantation of bone marrow stromal cells (BMSCs) reduces astrogliosis, decreases scar thickness and improves neurological functional recovery after brain damage. It is believed that transplanted BMSCs have a profound influence on astrocytes. To obtain the possible mechanism in their interaction, a co-culture system between BMSCs and astrocytes were set to investigate whether BMSCs could modulate cell cycle machinery in reactive astrocytes. The results obtained showed cell cycle regulatory proteins, cdk4 along with its activator cyclin D1, and PCNA increased while p27, an endogenous cyclin-dependent kinase inhibitor, deceased in glutamate-treated astrocytes in vitro. However, BMSCs influenced cell cycle elements in the cocultured astrocytes: cyclin D1, cdk 4 and PCNA were downregulated, while p27 was unregulated. Flow cytometry showed astrocytes in the S phase after glutamate incubation increased to 17.4±2.0% while restored to a level of 7.8±1.1% when cocultured with BMSCs. l-Canavanine, an inhibitor of inducible nitric oxide synthase, partially reversed the S phase to 11.3±0.4% in the cocultured astrocytes. These data indicated that BMSCs might inhibit the cell cycle control system in reactive astrocytes and nitric oxide signaling was involved in this process. The decline of astrogliosis conferred by BMSCs may derive from their effect of inhibiting the cell cycle progression in astrocytes.
Collapse
|
48
|
Majumdar U, Biswas P, Subhra Sarkar T, Maiti D, Ghosh S. Regulation of cell cycle and stress responses under nitrosative stress in Schizosaccharomyces pombe. Free Radic Biol Med 2012; 52:2186-200. [PMID: 22561704 DOI: 10.1016/j.freeradbiomed.2012.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/13/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) acts as a signaling molecule in numerous physiological processes but excess production generates nitrosative stress in cells. The exact protective mechanism used by cells to combat nitrosative stress is unclear. In this study, the fission yeast Schizosaccharomyces pombe has been used as a model system to explore cell cycle regulation and stress responses under nitrosative stress. Exposure to an NO donor results in mitotic delay in cells through G2/M checkpoint activation and initiates rereplication. Western blot analysis of phosphorylated Cdc2 revealed that the G2/M block in the cell cycle was due to retention of its inactive phosphorylated form. Interestingly, nitrosative stress results in inactivation of Cdc25 through S-nitrosylation that actually leads to cell cycle delay. From differential display analysis, we identified plo1, spn4, and rga5, three cell cycle-related genes found to be differentially expressed under nitrosative stress. Exposure to nitrosative stress also results in abnormal septation and cytokinesis in S. pombe. In summary we propose a novel molecular mechanism of cell cycle control under nitrosative stress based on our experimental results and bioinformatics analysis.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Department of Biochemistry, University College of Science, Calcutta University, Kolkata 700019, West Bengal, India
| | | | | | | | | |
Collapse
|
49
|
Miao CY, Li ZY. The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br J Pharmacol 2012; 165:643-58. [PMID: 21470202 DOI: 10.1111/j.1476-5381.2011.01404.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Adipose tissue is the largest endocrine organ, producing various adipokines and many other substances. Almost all blood vessels are surrounded by perivascular adipose tissue (PVAT), which has not received research attention until recently. This review will discuss the paracrine actions of PVAT on the growth of underlying vascular smooth muscle cells (VSMCs). PVAT can release growth factors and inhibitors. Visfatin is the first identified growth factor derived from PVAT. Decreased adiponectin and increased tumour necrosis factor-α in PVAT play a pathological role for neointimal hyperplasia after endovascular injury. PVAT-derived angiotensin II, angiotensin 1-7, reactive oxygen species, complement component 3, NO and H(2) S have a paracrine action on VSMC contraction, endothelial or fibroblast function; however, their paracrine actions on VSMC growth remain to be directly verified. Factors such as monocyte chemoattractant protein-1, interleukin-6, interleukin-8, leptin, resistin, plasminogen activator inhibitor type-1, adrenomedullin, free fatty acids, glucocorticoids and sex hormones can be released from adipose tissue and can regulate VSMC growth. Most of them have been verified for their secretion by PVAT; however, their paracrine functions are unknown. Obesity, vascular injury, aging and infection may affect PVAT, causing adipocyte abnormality and inflammatory cell infiltration, inducing imbalance of PVAT-derived growth factors and inhibitors, leading to VSMC growth and finally resulting in development of proliferative vascular disease, including atherosclerosis, restenosis and hypertension. In the future, using cell-specific gene interventions and local treatments may provide definitive evidence for identification of key factor(s) involved in PVAT dysfunction-induced vascular disease and thus may help to develop new therapies. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.
| | | |
Collapse
|
50
|
Sgarra L, Addabbo F, Potenza MA, Montagnani M. Determinants of evolving metabolic and cardiovascular benefit/risk profiles of rosiglitazone therapy during the natural history of diabetes: molecular mechanisms in the context of integrated pathophysiology. Am J Physiol Endocrinol Metab 2012; 302:E1171-82. [PMID: 22374753 DOI: 10.1152/ajpendo.00038.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rosiglitazone is a thiazolidinedione, a synthetic PPARγ receptor agonist with insulin-sensitizing properties that is used as an antidiabetic drug. In addition to improving glycemic control through actions in metabolic target tissues, rosiglitazone has numerous biological actions that impact on cardiovascular homeostasis. Some of these actions are helpful (e.g., improving endothelial function), whereas others are potentially harmful (e.g., promoting fluid retention). Since cardiovascular morbidity and mortality are major endpoints for diabetes, it is essential to understand how the natural history of diabetes alters the net benefits and risks of rosiglitazone therapy. This complex issue is an important determinant of optimal use of rosiglitazone and is critical for understanding cardiovascular safety issues. We give special attention to the effects of rosiglitazone in diabetic patients with stable coronary artery disease and the impact of rosiglitazone actions on atherosclerosis and plaque instability. This provides a rational conceptual framework for predicting evolving benefit/risk profiles that inform optimal use of rosiglitazone in the clinical setting and help explain the results of recent large clinical intervention trials where rosiglitazone had disappointing cardiovascular outcomes. Thus, in this perspective, we describe what is known about the molecular mechanisms of action of rosiglitazone on cardiovascular targets in the context of the evolving pathophysiology of diabetes over its natural history.
Collapse
Affiliation(s)
- Luca Sgarra
- Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari, Bari, Italy
| | | | | | | |
Collapse
|