1
|
Valdivia A, Duran C, Lee M, Williams HC, Lee MY, San Martin A. Nox1-based NADPH oxidase regulates the Par protein complex activity to control cell polarization. Front Cell Dev Biol 2023; 11:1231489. [PMID: 37635877 PMCID: PMC10457011 DOI: 10.3389/fcell.2023.1231489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Cell migration is essential for many biological and pathological processes. Establishing cell polarity with a trailing edge and forming a single lamellipodium at the leading edge of the cell is crucial for efficient directional cell migration and is a hallmark of mesenchymal cell motility. Lamellipodia formation is regulated by spatial-temporal activation of the small GTPases Rac and Cdc42 at the front edge, and RhoA at the rear end. At a molecular level, partitioning-defective (Par) protein complex comprising Par3, Par6, and atypical Protein Kinase (aPKC isoforms ζ and λ/ι) regulates front-rear axis polarization. At the front edge, integrin clustering activates Cdc42, prompting the formation of Par3/Par6/aPKC complexes to modulate MTOC positioning and microtubule stabilization. Consequently, the Par3/Par6/aPKC complex recruits Rac1-GEF Tiam to activate Rac1, leading to lamellipodium formation. At the rear end, RhoA-ROCK phosphorylates Par3 disrupting its interaction with Tiam and inactivating Rac1. RhoA activity at the rear end allows the formation of focal adhesions and stress fibers necessary to generate the traction forces that allow cell movement. Nox1-based NADPH oxidase is necessary for PDGF-induced migration in vitro and in vivo for many cell types, including fibroblasts and smooth muscle cells. Here, we report that Nox1-deficient cells failed to acquire a normal front-to-rear polarity, polarize MTOC, and form a single lamellipodium. Instead, these cells form multiple protrusions that accumulate Par3 and active Tiam. The exogenous addition of H2O2 rescues this phenotype and is associated with the hyperactivation of Par3, Tiam, and Rac1. Mechanistically, Nox1 deficiency induces the inactivation of PP2A phosphatase, leading to increased activation of aPKC. These results were validated in Nox1y/- primary mouse aortic smooth muscle cells (MASMCs), which also showed PP2A inactivation after PDGF-BB stimulation consistent with exacerbated activation of aPKC. Moreover, we evaluated the physiological relevance of this signaling pathway using a femoral artery wire injury model to generate neointimal hyperplasia. Nox1y/- mice showed increased staining for the inactive form of PP2A and increased signal for active aPKC, suggesting that PP2A and aPKC activities might contribute to reducing neointima formation observed in the arteries of Nox1y/- mice.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Charity Duran
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Mingyoung Lee
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Holly C. Williams
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Moo-Yeol Lee
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Alejandra San Martin
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
2
|
Oxidative Stress Links Aging-Associated Cardiovascular Diseases and Prostatic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5896136. [PMID: 34336107 PMCID: PMC8313344 DOI: 10.1155/2021/5896136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
The incidence of chronic aging-associated diseases, especially cardiovascular and prostatic diseases, is increasing with the aging of society. Evidence indicates that cardiovascular diseases usually coexist with prostatic diseases or increase its risk, while the pathological mechanisms of these diseases are unknown. Oxidative stress plays an important role in the development of both cardiovascular and prostatic diseases. The levels of oxidative stress biomarkers are higher in patients with cardiovascular diseases, and these also contribute to the development of prostatic diseases, suggesting cardiovascular diseases may increase the risk of prostatic diseases via oxidative stress. This review summarizes the role of oxidative stress in cardiovascular and prostatic diseases and also focuses on the main shared pathways underlying these diseases, in order to provide potential prevention and treatment targets.
Collapse
|
3
|
Shenxian-Shengmai Oral Liquid Improves Sinoatrial Node Dysfunction through the PKC/NOX-2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5572140. [PMID: 33936239 PMCID: PMC8055400 DOI: 10.1155/2021/5572140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022]
Abstract
Sick sinus syndrome (SSS) is one of the common causes of cardiac syncope and sudden death; the occurrence of SSS is associated with the accumulation of ROS in the sinoatrial node (SAN). Shenxian-shengmai (SXSM) is a traditional Chinese medicine available as oral liquid that causes a significant increase in heart rate. The objective of this study is to observe the improvement of SXSM on SAN function in SSS mice and explore its potential mechanism. In the current study, SSS was simulated in mice by inducing SAN dysfunction using a micro-osmotic pump to inject angiotensin II (Ang II). The mouse model with SSS was used to determine the effect of SXSM on SAN function and to explore its potential mechanism. Furthermore, the HL-1 cell line, derived from mouse atrial myocytes, was used to simulate SAN pacemaker cells. Our results indicated that SXSM significantly increased the heart rate of SSS mice by reducing the AngII-induced accumulation of ROS in the SAN and by inhibiting the expression of HDAC4, thereby reducing the loss of HCN4, a critical component of the cardiac conduction system. MASSON staining revealed a reduction of SAN damage in SSS mice that were treated with SXSM compared with controls. In vitro experiments showed that AngII treatment caused an upregulation of the PKC/NOX-2 signaling pathway in HL-1 cells which could be prevented by pretreatment with SXSM. The protective effect of SXSM was attenuated upon treatment with the PCK agonist PMA. In conclusion, SXSM reduced the AngII-induced accumulation of ROS in the SAN through the PKC/NOX2 signaling pathway, improving the functioning of the SAN and preventing the decrease of heart rate in SSS mice.
Collapse
|
4
|
Schiffer TA, Lundberg JO, Weitzberg E, Carlström M. Modulation of mitochondria and NADPH oxidase function by the nitrate-nitrite-NO pathway in metabolic disease with focus on type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165811. [PMID: 32339643 DOI: 10.1016/j.bbadis.2020.165811] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria play fundamental role in maintaining cellular metabolic homeostasis, and metabolic disorders including type 2 diabetes (T2D) have been associated with mitochondrial dysfunction. Pathophysiological mechanisms are coupled to increased production of reactive oxygen species and oxidative stress, together with reduced bioactivity/signaling of nitric oxide (NO). Novel strategies restoring these abnormalities may have therapeutic potential in order to prevent or even treat T2D and associated cardiovascular and renal co-morbidities. A diet rich in green leafy vegetables, which contains high concentrations of inorganic nitrate, has been shown to reduce the risk of T2D. To this regard research has shown that in addition to the classical NO synthase (NOS) dependent pathway, nitrate from our diet can work as an alternative precursor for NO and other bioactive nitrogen oxide species via serial reductions of nitrate (i.e. nitrate-nitrite-NO pathway). This non-conventional pathway may act as an efficient back-up system during various pathological conditions when the endogenous NOS system is compromised (e.g. acidemia, hypoxia, ischemia, aging, oxidative stress). A number of experimental studies have demonstrated protective effects of nitrate supplementation in models of obesity, metabolic syndrome and T2D. Recently, attention has been directed towards the effects of nitrate/nitrite on mitochondrial functions including beiging/browning of white adipose tissue, PGC-1α and SIRT3 dependent AMPK activation, GLUT4 translocation and mitochondrial fusion-dependent improvements in glucose homeostasis, as well as dampening of NADPH oxidase activity. In this review, we examine recent research related to the effects of bioactive nitrogen oxide species on mitochondrial function with emphasis on T2D.
Collapse
Affiliation(s)
- Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
González F, Considine RV, Abdelhadi OA, Acton AJ. Oxidative Stress in Response to Saturated Fat Ingestion Is Linked to Insulin Resistance and Hyperandrogenism in Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2019; 104:5360-5371. [PMID: 31298704 PMCID: PMC6773460 DOI: 10.1210/jc.2019-00987] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022]
Abstract
CONTEXT Oxidative stress and insulin resistance are often present in polycystic ovary syndrome (PCOS). OBJECTIVE We determined the effect of saturated fat ingestion on leukocytic reactive oxygen species (ROS) generation, p47phox expression, and circulating thiobarbituric acid-reactive substances (TBARS) in women with PCOS. DESIGN Cross-sectional study. SETTING Academic medical center. PATIENTS Twenty women of reproductive age with PCOS (10 lean, 10 with obesity) and 19 ovulatory control subjects (10 lean, 9 with obesity). MAIN OUTCOME MEASURES ROS generation and p47phox mRNA and protein content were quantified in leukocytes, and TBARS was measured in plasma from blood drawn while the subjects were fasting and 2, 3, and 5 hours after saturated fat ingestion. Insulin sensitivity was derived from an oral glucose tolerance test (ISOGTT). Androgen secretion was assessed from blood drawn while the subjects were fasting and 24, 48, and 72 hours after human chorionic gonadotropin (HCG) administration. RESULTS Regardless of weight class, women with PCOS exhibited lipid-induced increases in leukocytic ROS generation and p47phox mRNA and protein content as well as plasma TBARS compared with lean control subjects. Both PCOS groups exhibited lower ISOGTT and greater HCG-stimulated androgen secretion compared with control subjects. The ROS generation, p47phox, and TBARS responses were negatively correlated with ISOGTT and positively correlated with HCG-stimulated androgen secretion. CONCLUSION In PCOS, increases in ROS generation, p47phox gene expression, and circulating TBARS in response to saturated fat ingestion are independent of obesity. Circulating mononuclear cells and excess adipose tissue are separate and distinct contributors to oxidative stress in this disorder.
Collapse
Affiliation(s)
- Frank González
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
- Correspondence and Reprint Requests: Frank González, MD, University of Illinois at Chicago College of Medicine, Department of Obstetrics and Gynecology, 820 South Wood Street m/c 808, CSN W233, Chicago, Illinois 60612. E-mail:
| | - Robert V Considine
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ola A Abdelhadi
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony J Acton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
6
|
Koo BH, Yi BG, Wang WK, Ko IY, Hoe KL, Kwon YG, Won MH, Kim YM, Lim HK, Ryoo S. Arginase Inhibition Suppresses Native Low-Density Lipoprotein-Stimulated Vascular Smooth Muscle Cell Proliferation by NADPH Oxidase Inactivation. Yonsei Med J 2018; 59:366-375. [PMID: 29611398 PMCID: PMC5889988 DOI: 10.3349/ymj.2018.59.3.366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. MATERIALS AND METHODS Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. RESULTS Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. CONCLUSION Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation.
Collapse
Affiliation(s)
- Bon Hyeock Koo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Korea
| | - Bong Gu Yi
- Department of Biological Sciences, Kangwon National University, Chuncheon, Korea
| | - Wi Kwang Wang
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - In Young Ko
- Department of Medical Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Kwang Lae Hoe
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | | | - Moo Ho Won
- Department of Neurobiology, Kangwon National University, Chuncheon, Korea
| | - Young Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Korea.
| |
Collapse
|
7
|
Singla B, Ghoshal P, Lin H, Wei Q, Dong Z, Csányi G. PKCδ-Mediated Nox2 Activation Promotes Fluid-Phase Pinocytosis of Antigens by Immature Dendritic Cells. Front Immunol 2018; 9:537. [PMID: 29632528 PMCID: PMC5879126 DOI: 10.3389/fimmu.2018.00537] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Aims Macropinocytosis is a major endocytic pathway by which dendritic cells (DCs) internalize antigens in the periphery. Despite the importance of DCs in the initiation and control of adaptive immune responses, the signaling mechanisms mediating DC macropinocytosis of antigens remain largely unknown. The goal of the present study was to investigate whether protein kinase C (PKC) is involved in stimulation of DC macropinocytosis and, if so, to identify the specific PKC isoform(s) and downstream signaling mechanisms involved. Methods Various cellular, molecular and immunological techniques, pharmacological approaches and genetic knockout mice were utilized to investigate the signaling mechanisms mediating DC macropinocytosis. Results Confocal laser scanning microscopy confirmed that DCs internalize fluorescent antigens (ovalbumin) using macropinocytosis. Pharmacological blockade of classical and novel PKC isoforms using calphostin C abolished both phorbol ester- and hepatocyte growth factor-induced antigen macropinocytosis in DCs. The qRT-PCR experiments identified PKCδ as the dominant PKC isoform in DCs. Genetic studies demonstrated the functional role of PKCδ in DC macropinocytosis of antigens, their subsequent maturation, and secretion of various T-cell stimulatory cytokines, including IL-1α, TNF-α and IFN-β. Additional mechanistic studies identified NADPH oxidase 2 (Nox2) and intracellular superoxide anion as important players in DC macropinocytosis of antigens downstream of PKCδ activation. Conclusion The findings of the present study demonstrate a novel mechanism by which PKCδ activation via stimulation of Nox2 activity and downstream redox signaling promotes DC macropinocytosis of antigens. PKCδ/Nox2-mediated antigen macropinocytosis stimulates maturation of DCs and secretion of T-cell stimulatory cytokines. These findings may contribute to a better understanding of the regulatory mechanisms in DC macropinocytosis and downstream regulation of T-cell-mediated responses.
Collapse
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Pushpankur Ghoshal
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huiping Lin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Gábor Csányi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
8
|
Nagarkoti S, Dubey M, Awasthi D, Kumar V, Chandra T, Kumar S, Dikshit M. S-Glutathionylation of p47phox sustains superoxide generation in activated neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:444-454. [DOI: 10.1016/j.bbamcr.2017.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/08/2017] [Accepted: 11/26/2017] [Indexed: 12/23/2022]
|
9
|
Schröder K, Weissmann N, Brandes RP. Organizers and activators: Cytosolic Nox proteins impacting on vascular function. Free Radic Biol Med 2017; 109:22-32. [PMID: 28336130 DOI: 10.1016/j.freeradbiomed.2017.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 01/25/2023]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Ghoshal P, Singla B, Lin H, Feck DM, Cantu-Medellin N, Kelley EE, Haigh S, Fulton D, Csányi G. Nox2-Mediated PI3K and Cofilin Activation Confers Alternate Redox Control of Macrophage Pinocytosis. Antioxid Redox Signal 2017; 26:902-916. [PMID: 27488058 PMCID: PMC5455614 DOI: 10.1089/ars.2016.6639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIMS Internalization of extracellular fluid and its solute by macropinocytosis requires dynamic reorganization of actin cytoskeleton, membrane ruffling, and formation of large endocytic vacuolar compartments, called macropinosomes, inside the cell. Although instigators of macropinocytosis, such as growth factors and phorbol esters, stimulate NADPH oxidase (Nox) activation and signal transduction mediators upstream of Nox assembly, including Rac1 and protein kinase C (PKC), are involved in macropinocytosis, the role of Nox enzymes in macropinocytosis has never been investigated. This study was designed to examine the role of Nox2 and the potential downstream redox signaling involved in macropinocytosis. RESULTS Phorbol myristate acetate activation of human and murine macrophages stimulated membrane ruffling, macropinosome formation, and subsequent uptake of macromolecules by macropinocytosis. Mechanistically, we found that pharmacological blockade of PKC, transcriptional knockdown of Nox2, and scavenging of intracellular superoxide anion abolished phorbol ester-induced macropinocytosis. We observed that Nox2-derived reactive oxygen species via inhibition of phosphatase and tensin homolog and activation of the phosphoinositide-3-kinase (PI3K)/Akt pathway lead to activation of actin-binding protein cofilin, membrane ruffling, and macropinocytosis. Similarly, activation of macropinocytosis by macrophage colony-stimulating factor involves Nox2-mediated cofilin activation. Furthermore, peritoneal chimera experiments indicate that macropinocytotic uptake of lipids in hypercholesterolemic ApoE-/- mice was attenuated in Nox2y/- macrophages compared with wild-type controls. Innovation and Conclusion: In summary, these findings demonstrate a novel Nox2-mediated mechanism of solute uptake via macropinocytosis, with broad implications for both general cellular physiology and pathological processes. The redox mechanism described here may also identify new targets in atherosclerosis and other disease conditions involving macropinocytosis. Antioxid. Redox Signal. 26, 902-916.
Collapse
Affiliation(s)
- Pushpankur Ghoshal
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Bhupesh Singla
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Huiping Lin
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Douglas M Feck
- 2 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Nadiezhda Cantu-Medellin
- 2 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Eric E Kelley
- 2 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Stephen Haigh
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - David Fulton
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia .,4 Department of Pharmacology and Toxicology, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Gábor Csányi
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia .,4 Department of Pharmacology and Toxicology, Augusta University , Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
11
|
Ardanaz N, Pagano PJ. Hydrogen Peroxide as a Paracrine Vascular Mediator: Regulation and Signaling Leading to Dysfunction. Exp Biol Med (Maywood) 2016; 231:237-51. [PMID: 16514169 DOI: 10.1177/153537020623100302] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Numerous studies have demonstrated the ability of a variety of vascular cells, including endothelial cells, smooth muscle cells, and fibroblasts, to produce reactive oxygen species (ROS). Until recently, major emphasis was placed on the production of superoxide anion (O2–) in the vasculature as a result of its ability to directly attenuate the biological activity of endothelium-derived nitric oxide (NO). The short half-life and radius of diffusion of O2– drastically limit the role of this ROS as an important paracrine hormone in vascular biology. On the contrary, in recent years, the O2– metabolite hydrogen peroxide (H2O2) has increasingly been viewed as an important cellular signaling agent in its own right, capable of modulating both contractile and growth-promoting pathways with more far-reaching effects. In this review, we will assess the vascular production of H2O2, its regulation by endogenous scavenger systems, and its ability to activate a variety of vascular signaling pathways, thereby leading to vascular contraction and growth. This discussion will include the ability of H2O2 to (i) Initiate calcium flux as well as (ii) stimulate pathways leading to sensitization of contractile elements to calcium. The latter involves a variety of protein kinases that have also been strongly implicated in vascular hypertrophy. Previous Intensive study has emphasized the ability of NADPH oxidase-derived O2– and H2O2 to activate these pathways in cultured smooth muscle cells. However, growing evidence indicates a considerably more complex array of unique oxidase systems in the endothelium, media, and adventitia that appear to participate in these deleterious effects in a sequential and temporal manner. Taken together, these findings seem consistent with a paracrine effect of H2O2 across the vascular wall.
Collapse
Affiliation(s)
- Noelia Ardanaz
- Hypertension and Vascular Research Division, RM 7044, E&R Building, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202-2689, USA
| | | |
Collapse
|
12
|
Meyer MR, Fredette NC, Daniel C, Sharma G, Amann K, Arterburn JB, Barton M, Prossnitz ER. Obligatory role for GPER in cardiovascular aging and disease. Sci Signal 2016; 9:ra105. [PMID: 27803283 DOI: 10.1126/scisignal.aag0240] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pharmacological activation of the heptahelical G protein-coupled estrogen receptor (GPER) by selective ligands counteracts multiple aspects of cardiovascular disease. We thus expected that genetic deletion or pharmacological inhibition of GPER would further aggravate such disease states, particularly with age. To the contrary, we found that genetic ablation of Gper in mice prevented cardiovascular pathologies associated with aging by reducing superoxide (⋅O2-) formation by NADPH oxidase (Nox) specifically through reducing the expression of the Nox isoform Nox1 Blocking GPER activity pharmacologically with G36, a synthetic, small-molecule, GPER-selective blocker (GRB), decreased Nox1 abundance and ⋅O2- production to basal amounts in cells exposed to angiotensin II and in mice chronically infused with angiotensin II, reducing arterial hypertension. Thus, this study revealed a role for GPER activity in regulating Nox1 abundance and associated ⋅O2--mediated structural and functional damage that contributes to disease pathology. Our results indicated that GRBs represent a new class of drugs that can reduce Nox abundance and activity and could be used for the treatment of chronic disease processes involving excessive ⋅O2- formation, including arterial hypertension and heart failure.
Collapse
Affiliation(s)
- Matthias R Meyer
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Natalie C Fredette
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Christoph Daniel
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Nephropathology, 91054 Erlangen, Germany
| | - Geetanjali Sharma
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Kerstin Amann
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Nephropathology, 91054 Erlangen, Germany
| | - Jeffrey B Arterburn
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM 88003, USA
| | - Matthias Barton
- University of Zürich, Molecular Internal Medicine, 8057 Zürich, Switzerland
| | - Eric R Prossnitz
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
13
|
Nour-Eldine W, Ghantous CM, Zibara K, Dib L, Issaa H, Itani HA, El-Zein N, Zeidan A. Adiponectin Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Remodeling through Nitric Oxide and the RhoA/ROCK Pathway. Front Pharmacol 2016; 7:86. [PMID: 27092079 PMCID: PMC4823273 DOI: 10.3389/fphar.2016.00086] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Adiponectin (APN), an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II) induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II. METHODS AND RESULTS Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO), the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS) mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor S-nitroso-N-acetylpenicillamine (SNAP), or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 h Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22(phox) mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47(phox) expression. CONCLUSION Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese UniversityBeirut, Lebanon
| | - Crystal M Ghantous
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese University Beirut, Lebanon
| | - Leila Dib
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hawraa Issaa
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese UniversityBeirut, Lebanon
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Nabil El-Zein
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese University Beirut, Lebanon
| | - Asad Zeidan
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
14
|
Yeves AM, Caldiz CI, Aiello EA, Villa-Abrille MC, Ennis IL. Reactive oxygen species partially mediate high dose angiotensin II-induced positive inotropic effect in cat ventricular myocytes. Cardiovasc Pathol 2015; 24:236-40. [DOI: 10.1016/j.carpath.2015.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/11/2023] Open
|
15
|
Ye BH, Lee SJ, Choi YW, Park SY, Kim CD. Preventive effect of gomisin J from Schisandra chinensis on angiotensin II-induced hypertension via an increased nitric oxide bioavailability. Hypertens Res 2014; 38:169-77. [DOI: 10.1038/hr.2014.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 09/04/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023]
|
16
|
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of "kindling radicals," which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. RECENT ADVANCES There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. CRITICAL ISSUES NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. FUTURE DIRECTIONS Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice.
Collapse
Affiliation(s)
- Anna Konior
- 1 Department of Internal Medicine, Jagiellonian University School of Medicine , Cracow, Poland
| | | | | | | |
Collapse
|
17
|
Andrographolide, a Novel NF- κ B Inhibitor, Induces Vascular Smooth Muscle Cell Apoptosis via a Ceramide-p47phox-ROS Signaling Cascade. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:821813. [PMID: 24489592 PMCID: PMC3893871 DOI: 10.1155/2013/821813] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/04/2013] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is linked with the development of many cardiovascular complications. Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in the development of atherosclerosis. Accordingly, the apoptosis of VSMCs, which occurs in the progression of vascular proliferation, may provide a beneficial strategy for managing cardiovascular diseases. Andrographolide, a novel nuclear factor-κB inhibitor, is the most active and critical constituent isolated from the leaves of Andrographis paniculata. Recent studies have indicated that andrographolide is a potential therapeutic agent for treating cancer through the induction of apoptosis. In this study, the apoptosis-inducing activity and mechanisms in andrographolide-treated rat VSMCs were characterized. Andrographolide significantly induced reactive oxygen species (ROS) formation, p53 activation, Bax, and active caspase-3 expression, and these phenomena were suppressed by pretreating the cells with N-acetyl-L-cysteine, a ROS scavenger, or diphenylene iodonium, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) inhibitor. Furthermore, p47phox, a Nox subunit protein, was phosphorylated in andrographolide-treated rat VSMCs. However, pretreatment with 3-O-methyl-sphingomyelin, a neutral sphingomyelinase inhibitor, significantly inhibited andrographolide-induced p47phox phosphorylation as well as Bax and active caspase-3 expression. Our results collectively demonstrate that andrographolide-reduced cell viability can be attributed to apoptosis in VSMCs, and this apoptosis-inducing activity was associated with the ceramide-p47phox-ROS signaling cascade.
Collapse
|
18
|
Wakui H, Dejima T, Tamura K, Uneda K, Azuma K, Maeda A, Ohsawa M, Kanaoka T, Azushima K, Kobayashi R, Matsuda M, Yamashita A, Umemura S. Activation of angiotensin II type 1 receptor-associated protein exerts an inhibitory effect on vascular hypertrophy and oxidative stress in angiotensin II-mediated hypertension. Cardiovasc Res 2013; 100:511-9. [PMID: 24189624 DOI: 10.1093/cvr/cvt225] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Activation of tissue angiotensin II (Ang II) type 1 receptor (AT1R) plays an important role in the development of vascular remodelling. We have shown that the AT1R-associated protein (ATRAP/Agtrap), a specific binding protein of AT1R, functions as an endogenous inhibitor to prevent pathological activation of the tissue renin-angiotensin system. In this study, we investigated the effects of ATRAP on Ang II-induced vascular remodelling. METHODS AND RESULTS Transgenic (Tg) mice with a pattern of aortic vascular-dominant overexpression of ATRAP were obtained, and Ang II or vehicle was continuously infused into Tg and wild-type (Wt) mice via an osmotic minipump for 14 days. Although blood pressure of Ang II-infused Tg mice was comparable with that of Ang II-infused Wt mice, the Ang II-mediated development of aortic vascular hypertrophy was partially inhibited in Tg mice compared with Wt mice. In addition, Ang II-mediated up-regulation of vascular Nox4 and p22(phox), NADPH oxidase components, and 4-HNE, a marker of reactive oxygen species (ROS) generation, was significantly suppressed in Tg mice, with a concomitant inhibition of activation of aortic vascular p38MAPK and JNK by Ang II. This protection afforded by vascular ATRAP against Ang II-induced activation of NADPH oxidase is supported by in vitro experimental data using adenoviral transfer of recombinant ATRAP. CONCLUSION These results indicate that activation of aortic vascular ATRAP partially inhibits the Nox4/p22(phox)-ROS-p38MAPK/JNK pathway and pathological aortic hypertrophy provoked by Ang II-mediated hypertension, thereby suggesting ATRAP as a novel receptor-binding modulator of vascular pathophysiology.
Collapse
Affiliation(s)
- Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Usui T, Morita T, Okada M, Yamawaki H. Histone deacetylase 4 controls neointimal hyperplasia via stimulating proliferation and migration of vascular smooth muscle cells. Hypertension 2013; 63:397-403. [PMID: 24166750 DOI: 10.1161/hypertensionaha.113.01843] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histone deacetylases (HDACs) are transcriptional coregulators. Recently, we demonstrated that HDAC4, one of class IIa family members, promotes reactive oxygen species-dependent vascular smooth muscle inflammation and mediates development of hypertension in spontaneously hypertensive rats. Pathogenesis of hypertension is, in part, modulated by vascular structural remodeling via proliferation and migration of vascular smooth muscle cells (SMCs). Thus, we examined whether HDAC4 controls SMC proliferation and migration. In rat mesenteric arterial SMCs, small interfering RNA against HDAC4 inhibited platelet-derived growth factor (PDGF)-BB-induced SMC proliferation as determined by a cell counting and bromodeoxyuridine incorporation assay as well as migration as determined by Boyden chamber assay. Expression and activity of HDAC4 were increased by PDGF-BB. HDAC4 small interfering RNA inhibited phosphorylation of p38 mitogen-activated protein kinase and heat shock protein 27 and expression of cyclin D1 as measured by Western blotting. HDAC4 small interfering RNA also inhibited PDGF-BB-induced reactive oxygen species production as measured fluorometrically using 2', 7'-dichlorofluorescein diacetate and nicotinamide adenine dinucleotide phosphate oxidase activity as measured by lucigenin assay. A Ca(2+)/calmodulin-dependent protein kinase II inhibitor, KN93, inhibited PDGF-BB-induced SMC proliferation and migration as well as phosphorylation of HDAC4. In vivo, a class IIa HDACs inhibitor, MC1568 prevented neointimal hyperplasia in mice carotid ligation model. MC1568 also prevented increased activation of HDAC4 in the neointimal lesions. The present results for the first time demonstrate that HDAC4 controls PDGF-BB-induced SMC proliferation and migration through activation of p38 mitogen-activated protein kinase/heat shock protein 27 signals via reactive oxygen species generation in a Ca(2+)/calmodulin-dependent protein kinase-dependent manner, which may lead to the neointimal hyperplasia in vivo.
Collapse
Affiliation(s)
- Tatsuya Usui
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada City, Aomori 034-8628, Japan.
| | | | | | | |
Collapse
|
20
|
Soe NN, Sowden M, Baskaran P, Smolock EM, Kim Y, Nigro P, Berk BC. Cyclophilin A is required for angiotensin II-induced p47phox translocation to caveolae in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2013; 33:2147-53. [PMID: 23846495 DOI: 10.1161/atvbaha.113.301894] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Angiotensin II (AngII) signal transduction in vascular smooth muscle cells (VSMC) is mediated by reactive oxygen species (ROS). Cyclophilin A (CyPA) is a ubiquitously expressed cytosolic protein that possesses peptidyl-prolyl cis-trans isomerase activity, scaffold function, and significantly enhances AngII-induced ROS production in VSMC. We hypothesized that CyPA regulates AngII-induced ROS generation by promoting translocation of NADPH oxidase cytosolic subunit p47phox to caveolae of the plasma membrane. APPROACH AND RESULTS Overexpression of CyPA in CyPA-deficient VSMC (CyPA(-/-)VSMC) significantly increased AngII-stimulated ROS production. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors (VAS2870 or diphenylene iodonium) significantly attenuated AngII-induced ROS production in CyPA and p47phox-overexpressing CyPA(-/-)VSMC. Cell fractionation and sucrose gradient analyses showed that AngII-induced p47phox plasma membrane translocation, specifically to the caveolae, was reduced in CyPA(-/-)VSMC compared with wild-type-VSMC. Immunofluorescence studies demonstrated that AngII increased p47phox and CyPA colocalization and translocation to the plasma membrane. In addition, immunoprecipitation of CyPA followed by immunoblotting of p47phox and actin showed that AngII increased CyPA and p47phox interaction. AngII-induced p47phox and actin cell cytoskeleton association was attenuated in CyPA(-/-)VSMC. Mechanistically, inhibition of p47phox phosphorylation and phox homology domain deletion attenuated CyPA and p47phox interaction. Finally, cyclosporine A and CyPA-peptidyl-prolyl cis-trans isomerase mutant, R55A, inhibited AngII-stimulated CyPA and p47phox association in VSMC, suggesting that peptidyl-prolyl cis-trans isomerase activity was required for their interaction. CONCLUSIONS These findings provide the mechanism by which CyPA is an important regulator for AngII-induced ROS generation in VSMC through interaction with p47phox and cell cytoskeleton, which enhances the translocation of p47phox to caveolae.
Collapse
Affiliation(s)
- Nwe Nwe Soe
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Urokinase requires NAD(P)H oxidase to transactivate the epidermal growth factor receptor. Surgery 2012; 152:879-85. [PMID: 22575880 DOI: 10.1016/j.surg.2012.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 03/01/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cell migration is an integral part of the development of intimal hyperplasia, and proteases are pivotal components in the process. Cell migration in response to urokinase is mediated through the aminoterminal fragment (ATF) of the protein. This study examines the role of NAD(P)H oxidase during epidermal growth factor receptor (EGFR) transactivation by ATF in human vascular smooth muscle cells (VSMC). METHODS Human VSMCs were cultured in vitro. Linear wound and Boyden microchemotaxis assays of migration in response to ATF were performed in the presence and absence of NAD(P)H oxidase inhibitors (diphenyleneiodonium [DPI] and apocynin) and small interfering RNA (siRNA) to Nox1. Additional assays were performed to examine the upstream pathways that lead to NAD(P)H oxidase activity. Assays were also performed for EGFR activation. RESULTS ATF produced concentration-dependent VSMC migration, which was inhibited by increasing concentrations of DPI and apocynin. ATF was shown to induce time-dependent EGFR phosphorylation, which peaked at 4-fold greater than control. This response was inhibited by DPI and apocynin in a concentration-dependent manner. ATF induced a concentration-dependent increase in intracellular oxygen free radical species, which was mitigated by the presence of DPI and apocynin. Inhibition of Gβγ by βARK(CT) reduced both NAD(P)H oxidase activity and EGFR activation. Inhibition of rac, which allows the NAD(P)H complex to assemble on the membrane, and inhibition of src, which induces assembly of the complex, both reduced ATF-dependent NAD(P)H oxidase activity and EGFR phosphorylation. siRNA to Nox1 prevented ATF-mediated EGFR activation and cell migration. CONCLUSION ATF requires NAD(P)H oxidase activity through a Gβγ-, rac-, and src-mediated pathway to facilitate transactivation of EGFR and VSMC migration.
Collapse
|
22
|
Antihypertensive effect of gomisin A from Schisandra chinensis on angiotensin II-induced hypertension via preservation of nitric oxide bioavailability. Hypertens Res 2012; 35:928-34. [PMID: 22534517 PMCID: PMC3434368 DOI: 10.1038/hr.2012.50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gomisin A (GA) is a small molecular weight lignan present in Schisandra chinensis, and has been demonstrated to have vasodilatory activity. In the present study, we investigated the effect of GA on blood pressure (BP) in angiotensin II (Ang II)-induced hypertensive mice. C57/BL6 mice infused subcutaneously with Ang II (1 and 2 μg kg−1 per min for 2 weeks) showed an increase in BP with a decrease in nitric oxide (NO) metabolites in plasma, and a negative correlation between these two parameters was demonstrated. In the thoracic aorta from Ang II-induced hypertensive mice, a decrease in vascular NO that was accompanied by a diminution of phosphorylated endothelial nitric oxide synthase (eNOS), as well as by increased reactive oxygen species (ROS) production, was demonstrated. These alterations in BP, eNOS phosphorylation and ROS production in the vasculature of Ang II-treated mice were markedly and dose-dependently reversed by simultaneous administration of GA (2 and 10 μg kg−1 per min). In addition, Ang II-induced ROS production in cultured vascular cells such as endothelial cells and vascular smooth muscle cells was markedly attenuated by GA. These results suggested that GA attenuated the increase in BP via preservation of vascular NO bioavailability not only by inhibiting ROS production but also by preventing the impairment of eNOS function in the vasculature of Ang II-induced hypertensive mice.
Collapse
|
23
|
González F. Inflammation in Polycystic Ovary Syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 2012; 77:300-5. [PMID: 22178787 PMCID: PMC3309040 DOI: 10.1016/j.steroids.2011.12.003] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/22/2011] [Indexed: 12/13/2022]
Abstract
Chronic low-grade inflammation has emerged as a key contributor to the pathogenesis of Polycystic Ovary Syndrome (PCOS). A dietary trigger such as glucose is capable of inciting oxidative stress and an inflammatory response from mononuclear cells (MNC) of women with PCOS, and this phenomenon is independent of obesity. This is important because MNC-derived macrophages are the primary source of cytokine production in excess adipose tissue, and also promote adipocyte cytokine production in a paracrine fashion. The proinflammatory cytokine tumor necrosis factor-α (TNFα) is a known mediator of insulin resistance. Glucose-stimulated TNFα release from MNC along with molecular markers of inflammation are associated with insulin resistance in PCOS. Hyperandrogenism is capable of activating MNC in the fasting state, thereby increasing MNC sensitivity to glucose; and this may be a potential mechanism for promoting diet-induced inflammation in PCOS. Increased abdominal adiposity is prevalent across all weight classes in PCOS, and this inflamed adipose tissue contributes to the inflammatory load in the disorder. Nevertheless, glucose ingestion incites oxidative stress in normal weight women with PCOS even in the absence of increased abdominal adiposity. In PCOS, markers of oxidative stress and inflammation are highly correlated with circulating androgens. Chronic suppression of ovarian androgen production does not ameliorate inflammation in normal weight women with the disorder. Furthermore, in vitro studies have demonstrated the ability of pro-inflammatory stimuli to upregulate the ovarian theca cell steroidogenic enzyme responsible for androgen production. These findings support the contention that inflammation directly stimulates the polycystic ovary to produce androgens.
Collapse
Affiliation(s)
- Frank González
- Indiana University School of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Indianapolis, IN 46202, USA.
| |
Collapse
|
24
|
Tang Y, Xu J, Qu W, Peng X, Xin P, Yang X, Ying C, Sun X, Hao L. Resveratrol reduces vascular cell senescence through attenuation of oxidative stress by SIRT1/NADPH oxidase-dependent mechanisms. J Nutr Biochem 2012; 23:1410-6. [PMID: 22284404 DOI: 10.1016/j.jnutbio.2011.08.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/23/2011] [Accepted: 08/30/2011] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Senescence of vascular cells contributes to the development of cardiovascular diseases and the overall aging. This study was undertaken to investigate the effects of resveratrol (Res) on amelioration of vascular cell aging and the role of SIRT1/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase pathway. METHODS AND RESULTS Adult male Wistar rats were treated with a high-fat/sucrose diet (HFS) in the presence or absence of Res for 3 months. HFS and in vitro treatment with high glucose increased the senescence cells and reactive oxygen species production in rat aorta and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Res protected against HFS- or high-glucose-induced increase in NADPH oxidase p47phox expression and decrease in SIRT1 level. Apocynin, a NADPH oxidase inhibitor, down-regulated p47phox protein expression, but had no influence on SIRT1 protein; sirtinol, a SIRT1 inhibitor, aggravated the decrease in SIRT1 protein level and the increase in p47phox protein expression induced by high glucose. CONCLUSION Our studies suggested that Res was able to reverse the senescence process in aorta induced by HFS in rats or induced by the exposure to high glucose in cultured BAECs. The underlying mechanism is at least SIRT1/NADPH oxidase pathway dependent.
Collapse
Affiliation(s)
- Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lai EY, Solis G, Luo Z, Carlstrom M, Sandberg K, Holland S, Wellstein A, Welch WJ, Wilcox CS. p47(phox) is required for afferent arteriolar contractile responses to angiotensin II and perfusion pressure in mice. Hypertension 2011; 59:415-20. [PMID: 22184329 DOI: 10.1161/hypertensionaha.111.184291] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myogenic and angiotensin contractions of afferent arterioles generate reactive oxygen species. Resistance vessels express neutrophil oxidase-2 and -4. Angiotensin II activates p47(phox)/neutrophil oxidase-2, whereas it downregulates NOX-4. Therefore, we tested the hypothesis that p47(phox) enhances afferent arteriolar angiotensin contractions. Angiotensin II infusion in p47(phox) +/+ but not -/- mice increased renal cortical NADPH oxidase activity (7±1-12±1 [P<0.01] versus 5±1-7±1 10(3) · RLU · min(-1) · μg protein(-1) [P value not significant]), mean arterial pressure (77±2-91±2 [P<0.005] versus 74±2-77±1 mm Hg [P value not significant]), and renal vascular resistance (7.5±0.4-10.1±0.7 [P<0.01] versus 7.9±0.4-8.3±0.4 mm Hg/mL · min(-1) · gram kidney weight(-1) [P value not significant]). Afferent arterioles from p47(phox) -/- mice had a lesser myogenic response (3.1±0.4 versus 1.4±0.2 dynes · cm(-1) · mm Hg(-1); P<0.02) and a lesser (P<0.05) contraction to 10(-6) M angiotensin II (diameter change +/+: 9.3±0.2-3.4±0.6 μm versus -/-: 9.9±0.6-7.5±0.4 μm). Angiotensin and increased perfusion pressure generated significantly (P<0.05) more reactive oxygen species in p47(phox) +/+ than -/- arterioles. Angiotensin II infusion increased the maximum responsiveness of afferent arterioles from p47(phox) +/+ mice to 10(-6) M angiotensin II yet decreased the response in p47(phox) -/- mice. The angiotensin infusion increased the sensitivity to angiotensin II only in p47(phox) +/+ mice. We conclude that p47(phox) is required to enhance renal NADPH oxidase activity and basal afferent arteriolar myogenic and angiotensin II contractions and to switch afferent arteriolar tachyphylaxis to sensitization to angiotensin during a prolonged angiotensin infusion. These effects likely contribute to hypertension and renal vasoconstriction during infusion of angiotensin II.
Collapse
Affiliation(s)
- En Yin Lai
- Hypertension, Kidney, and Vascular Research Center, Georgetown University Medical Center, NW, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang A, Yan C, Suematsu N, Cuevas A, Yang YM, Kertowidjojo E, Hintze TH, Kaley G, Sun D. Impaired flow-induced dilation of coronary arterioles of dogs fed a low-salt diet: roles of ANG II, PKC, and NAD(P)H oxidase. Am J Physiol Heart Circ Physiol 2010; 299:H1476-83. [PMID: 20833958 DOI: 10.1152/ajpheart.01250.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Low-salt (LS) diet has been considered to be beneficial in the prevention and treatment of hypertension; however, it also increases plasma angiotensin (ANG) II and may cause adverse cardiovascular effects, such as endothelial dysfunction. We assessed endothelial function of coronary arterioles and vascular superoxide production, as a function of LS diet. Dogs were fed with LS (0.05% NaCl) or a normal-salt (NS, 0.65% NaCl) diet for 2 wk. There were threefold increases in plasma ANG II, associated with a 60% reduction in flow-induced dilation (FID) in coronary arterioles of LS compared with NS dogs. In vessels of NS dogs, FID was primarily mediated by nitric oxide (NO), as indicated by an eliminated FID by N(ω)-nitro-l-arginine methyl ester (l-NAME). In vessels of LS dogs, however, FID was eliminated. Administration of apocynin, a NAD(P)H oxidase inhibitor, partially restored FID and additional l-NAME eliminated FID. Generation of superoxide, measured with dihydroethidium, was significantly greater in vessels of LS than in NS dogs, which was further increased in response to ANG II or phorbol 12,13-dibutyrate, an agonist of protein kinase C (PKC). The enhanced superoxide was normalized by apocynin, losartan (a blocker of angiotensin type 1 receptor), and chelerythrine chloride (an antagonist of PKC). Western blotting indicated an upregulation of gp91(phox) and p47(phox), associated with increased expression of phosphorylated PKC in vessels of LS dogs. In separate experiments, dogs were fed simultaneously with LS and losartan (LS + Losa) for 2 wk. There was a significant increase in plasma ANG II in LS + Losa dogs, which, however, was associated with normal FID and gp91(phox) expression in coronary arterioles. In conclusion, LS led to endothelial dysfunction, as indicated by an impaired flow-induced dilation caused by decreasing NO bioavailibility, a response that involves angiotensin-induced activation of PKC that, in turn, activates vascular NAD(P)H oxidase to produce superoxide.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Grimm MJ, Vethanayagam RR, Almyroudis NG, Lewandowski D, Rall N, Blackwell TS, Segal BH. Role of NADPH oxidase in host defense against aspergillosis. Med Mycol 2010; 49 Suppl 1:S144-9. [PMID: 20560866 DOI: 10.3109/13693786.2010.487077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
NADPH oxidase plays a critical role in antimicrobial host defense, as evident in chronic granulomatous disease (CGD), an inherited disorder of the NADPH oxidase characterized by severe bacterial and fungal diseases. Invasive aspergillosis and other moulds are the major cause of mortality in CGD. We also learn from CGD patients that NADPH oxidase plays an important role in regulating inflammation; CGD patients are prone to developing inflammatory diseases such as inflammatory bowel disease, obstructive granulomata of the genitourinary tract, and hypersensitivity pneumonitis. Indeed, the NADPH oxidase plays an essential role in calibrating innate and T-cell responses to control the growth of inhaled fungi while protecting against excessive and injurious inflammation. Knowledge gained on the mechanisms by which NADPH oxidase kills fungi and regulates inflammation may lead to new therapeutics for CGD and will have broad relevance to understanding host-pathogen interactions between mammals and ubiquitous moulds to which we are continually exposed.
Collapse
Affiliation(s)
- Melissa J Grimm
- Department of Medicine, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Niu XL, Madamanchi NR, Vendrov AE, Tchivilev I, Rojas M, Madamanchi C, Brandes RP, Krause KH, Humphries J, Smith A, Burnand KG, Runge MS. Nox activator 1: a potential target for modulation of vascular reactive oxygen species in atherosclerotic arteries. Circulation 2010; 121:549-59. [PMID: 20083677 DOI: 10.1161/circulationaha.109.908319] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite a concerted effort by many laboratories, the critical subunits that participate in vascular smooth muscle cell (VSMC) NADPH oxidase function have yet to be elucidated. Given the potential therapeutic importance of cell-specific inhibition of NADPH oxidase, we investigated the role of Nox activator 1 (NoxA1), a homolog of p67phox, in VSMC NADPH oxidase function and atherosclerosis. METHODS AND RESULTS The presence of NoxA1 in mouse aortic VSMCs was confirmed by reverse-transcription polymerase chain reaction and sequencing. NoxA1/p47phox interaction after thrombin treatment was observed by immunoprecipitation/Western analysis of lysates from p47phox(-/-) VSMCs transfected with adenoviral HA-NoxA1 and Myc-p47phox. Infection with adenoviral NoxA1 significantly enhanced thrombin-induced reactive oxygen species generation in wild-type but not in p47phox(-/-) and Nox1(-/-) VSMCs. Thrombin-induced reactive oxygen species production and VSMC proliferation were significantly reduced after downregulation of NoxA1 with shRNA. Infection with NoxA1 shRNA but not scrambled shRNA significantly decreased thrombin-induced activation of the redox-sensitive protein kinases (Janus kinase 2, Akt, and p38 mitogen-activated protein kinase) in VSMCs. Adenovirus-mediated overexpression of NoxA1 in guidewire-injured mouse carotid arteries significantly increased superoxide production in medial VSMCs and enhanced neointimal hyperplasia. NoxA1 expression was significantly increased in aortas and atherosclerotic lesions of ApoE(-/-) mice compared with age-matched wild-type mice. Furthermore, in contrast to p67phox, immunoreactive NoxA1 is present in intimal and medial SMCs of human early carotid atherosclerotic lesions. CONCLUSIONS NoxA1 is the functional homolog of p67phox in VSMCs that regulates redox signaling and VSMC phenotype. These findings support the potential for modulation of NoxA1 expression as a viable approach for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Xi-Lin Niu
- McAllister Heart Institute, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7005, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Both Ras and Nox represent ancient gene families which control a broad range of cellular responses. Both families mediate signals governing motility, differentiation, and proliferation, and both inhabit overlapping subcellular microdomains. Yet little is known of the precise functional relationship between these two ubiquitous families. In this review, we examine the interface where these two large fields meet.
Collapse
Affiliation(s)
| | - Lance S. Terada
- Correspondence to: Lance S. Terada; Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390. Fax: 214-648-9104. E-mail:
| |
Collapse
|
30
|
Matsuo J, Oku H, Kanbara Y, Kobayashi T, Sugiyama T, Ikeda T. Involvement of NADPH oxidase and protein kinase C in endothelin-1-induced superoxide production in retinal microvessels. Exp Eye Res 2009; 89:693-9. [PMID: 19576886 DOI: 10.1016/j.exer.2009.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/30/2009] [Accepted: 06/24/2009] [Indexed: 01/01/2023]
Abstract
Redox signaling has been implicated in pathophysiological changes in the vascular system. We examined whether endothelin-1 (ET-1) increases the formation of superoxide anions in retinal microvessels. Freshly isolated retinal microvessels from rats were exposed to ET-1 (100 nM), and the intracellular superoxide formation in the retinal pericytes was assessed semi-quantitatively by time-lapse fluorometric analyses using hydroethidine. The receptor mechanisms were determined by BQ-123 and BQ-788, receptor antagonists for ET(A) and ET(B) receptors, respectively, and also by IRL-1620, a selective agonist for ET(B) receptors. In addition, the changes induced by adding apocynin (10 microM), myr-PKC (1.0 microM), allopurinol (100 microM), rotenone (10 microM), or L-NAME (100 microM) with ET-1 were evaluated. Microvessels were incubated with phorbol 12-myristate 13-acetate (PMA, 10nM), a protein kinase C (PKC) activator. Fluorometric analyses showed ethidium fluorescence-positive regions that coincided well with the location of retinal pericytes. The intracellular superoxide levels were significantly increased after addition of ET-1 (100 nM), and this elevation was suppressed by apocynin or myr-PKC. Other enzyme inhibitors including L-NAME had no effect. The ET-1-induced increase of superoxide was significantly suppressed by BQ-123 (1.0 microM), while effects of adding BQ-788 (1.0 microM) were insignificant. IRL-1620 (100 nM) did not increase superoxide formation significantly. PMA (10nM) mimicked the effect of ET-1. These results suggest that ET-1 increases the formation of superoxides in the retinal microvascular pericytes most likely by activating NADPH oxidase through ET(A) receptors. The activation of PKC may be involved in the mechanism. Thus, ET-1 may augment its vasoconstrictive effects through the formation of superoxide, which may impair the bioavailability of nitric oxide in the retinal microvasculature.
Collapse
Affiliation(s)
- Junko Matsuo
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | | | | | | | | | | |
Collapse
|
31
|
El-Benna J, Dang PMC, Gougerot-Pocidalo MA, Marie JC, Braut-Boucher F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med 2009; 41:217-25. [PMID: 19372727 DOI: 10.3858/emm.2009.41.4.058] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Phagocytes such as neutrophils play a vital role in host defense against microbial pathogens. The anti-microbial function of neutrophils is based on the production of superoxide anion (O2 -), which generates other microbicidal reactive oxygen species (ROS) and release of antimicrobial peptides and proteins. The enzyme responsible for O2 - production is called the NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans- membrane proteins (p22phox and gp91phox, also called NOX2, which together form the cytochrome b558) and four cytosolic proteins (p47phox, p67phox, p40phox and a GTPase Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate agents. This process is dependent on the phosphorylation of the cytosolic protein p47phox. p47phox is a 390 amino acids protein with several functional domains: one phox homology (PX) domain, two src homology 3 (SH3) domains, an auto-inhibitory region (AIR), a proline rich domain (PRR) and has several phosphorylated sites located between Ser303 and Ser379. In this review, we will describe the structure of p47phox, its phosphorylation and discuss how these events regulate NADPH oxidase activation.
Collapse
Affiliation(s)
- Jame El-Benna
- Universite Paris 7 Denis Diderot, Faculte de Medecine, site Bichat, Paris, F-75018, France.
| | | | | | | | | |
Collapse
|
32
|
Oakley FD, Abbott D, Li Q, Engelhardt JF. Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal 2009; 11:1313-33. [PMID: 19072143 PMCID: PMC2842130 DOI: 10.1089/ars.2008.2363] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and/or Rac1), ROS processing enzymes (SOD1 and/or peroxiredoxins), chloride channels capable of mediating superoxide transport and/or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia/reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redox-dependent effector functions through the spatial and temporal regulation of ROS as second messengers.
Collapse
Affiliation(s)
- Fredrick D Oakley
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
33
|
Garrido AM, Griendling KK. NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol 2009; 302:148-58. [PMID: 19059306 PMCID: PMC2835147 DOI: 10.1016/j.mce.2008.11.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/17/2008] [Accepted: 11/03/2008] [Indexed: 02/07/2023]
Abstract
Over the last decade many studies have demonstrated the importance of reactive oxygen species (ROS) production by NADPH oxidases in angiotensin II (Ang II) signaling, as well as a role for ROS in the development of different diseases in which Ang II is a central component. In this review, we summarize the mechanism of activation of NADPH oxidases by Ang II and describe the molecular targets of ROS in Ang II signaling in the vasculature, kidney and brain. We also discuss the effects of genetic manipulation of NADPH oxidase function on the physiology and pathophysiology of the renin-angiotensin system.
Collapse
|
34
|
Li CY, Deng YL, Sun BH. Effects of apocynin and losartan treatment on renal oxidative stress in a rat model of calcium oxalate nephrolithiasis. Int Urol Nephrol 2009; 41:823-33. [DOI: 10.1007/s11255-009-9534-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
35
|
Zhang P, Hou M, Li Y, Xu X, Barsoum M, Chen Y, Bache RJ. NADPH oxidase contributes to coronary endothelial dysfunction in the failing heart. Am J Physiol Heart Circ Physiol 2009; 296:H840-6. [PMID: 19168727 DOI: 10.1152/ajpheart.00519.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increased reactive oxygen species (ROS) produced by the failing heart can react with nitric oxide (NO), thereby decreasing NO bioavailability. This study tested the hypothesis that increased ROS generation contributes to coronary endothelial dysfunction in the failing heart. Congestive heart failure (CHF) was produced in six dogs by ventricular pacing at 240 beats/min for 4 wk. Studies were performed at rest and during treadmill exercise under control conditions and after treatment with the NADPH oxidase inhibitor and antioxidant apocynin (4 mg/kg iv). Apocynin caused no significant changes in heart rate, aortic pressure, left ventricular (LV) systolic pressure, LV end-diastolic pressure, or maximum rate of LV pressure increase at rest or during exercise in normal or CHF dogs. Apocynin caused no change in coronary blood flow (CBF) in normal dogs but increased CBF at rest and during exercise in animals with CHF (P < 0.05). Intracoronary ACh caused dose-dependent increases of CBF that were blunted in CHF. Apocynin had no effect on the response to ACh in normal dogs but augmented the response to ACh in CHF dogs (P < 0.05). The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were significantly greater in failing than in normal myocardium. Furthermore, coelenterazine chemiluminescence for O(2)(-) was more than twice normal in failing myocardium, and this difference was abolished by apocynin. Western blot analysis of myocardial lysates demonstrated that the p47(phox) and p22(phox) subunits of NADPH were significantly increased in the failing hearts, while real-time PCR demonstrated that Nox2 mRNA was significantly increased. The data indicate that increased ROS generation in the failing heart is associated with coronary endothelial dysfunction and suggest that NADPH oxidase may contribute to this abnormality.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Medicine, University of Minnesota Health Sciences Center, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR. NADPH oxidases in the vasculature: Molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 2008; 120:254-91. [DOI: 10.1016/j.pharmthera.2008.08.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 02/07/2023]
|
37
|
Park YM, Lim BH, Touyz RM, Park JB. Expression of NAD(P)H oxidase subunits and their contribution to cardiovascular damage in aldosterone/salt-induced hypertensive rat. J Korean Med Sci 2008; 23:1039-45. [PMID: 19119450 PMCID: PMC2610641 DOI: 10.3346/jkms.2008.23.6.1039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 03/04/2008] [Indexed: 12/21/2022] Open
Abstract
NAD(P)H oxidase plays an important role in hypertension and its complication in aldosterone-salt rat. We questioned whether NAD(P)H oxidase subunit expression and activity are modulated by aldosterone and whether this is associated with target-organ damage. Rats were infused with aldosterone (0.75 microg/hr/day) for 6 weeks and were given 0.9% NaCl+/-losartan (30 mg/kg/day), spironolactone (200 mg/kg/day), and apocynin (1.5 mM/L). Aldosterone-salt hypertension was prevented completely by spironolactone and modestly by losartan and apocynin. Aldosterone increased aortic NAD(P)H oxidase activity by 34% and spironolactone and losartan inhibited the activity. Aortic expression of the subunits p47(phox), gp91(phox), and p22(phox) increased in aldosterone-infused rats by 5.5, 4.7, and 3.2-fold, respectively, which was decreased completely by spironolactone and partially by losartan and apocynin. Therefore, the increased expression of NAD(P)H oxidase may contribute to cardiovascular damage in aldosterone-salt hypertension through the increased expression of each subunit.
Collapse
Affiliation(s)
| | | | - Rhian M. Touyz
- Ottawa Health Research Institute, University of Ottawa, Ottawa, Canada
| | - Jeong Bae Park
- Department of Medicine/Cardiology, Cheil General Hospital, Kwandong University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Yamaguchi O, Kaneshiro T, Saitoh SI, Ishibashi T, Maruyama Y, Takeishi Y. Regulation of coronary vascular tone via redox modulation in the alpha1-adrenergic-angiotensin-endothelin axis of the myocardium. Am J Physiol Heart Circ Physiol 2008; 296:H226-32. [PMID: 19028798 DOI: 10.1152/ajpheart.00480.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We hypothesized that alpha(1)-adrenoceptor stimulation of cardiac myocytes results in the production of an endothelin (ET)-releasing factor that stimulates the coronary vasculature to release ET and, by manipulating the redox state of cardiac and vascular cells, may influence the extent of alpha(1)-adrenergic-ET-1 vasoconstriction. Dihydroethidium (DHE) and dichlorodihydrofluorescein (DCF) intensities were increased by phenylephrine stimulation in isolated rat cardiac myocytes, which were enhanced by the mitochondrial electron transport chain complex I inhibitor rotenone (DHE: 20.4 +/- 1.2-fold and DCF: 25.2 +/- 0.9-fold, n = 8, P < 0.01, respectively) but not by the NADPH oxidase inhibitor apocynin. Olmesartan, an angiotensin II type 1 receptor antagonist, and enalaprilate did not change DHE and DCF intensities by phenylephrine. Next, we measured the vasoconstriction of isolated, pressurized rat coronary arterioles (diameter: 74 +/- 8 microm) in response to supernatant collected from isolated cardiac myocytes. The addition of supernatant from phenylephrine-stimulated myocytes to a 2-ml vessel bath (n = 8 each) caused volume-dependent vasoconstriction (500 microl: -14.8 +/- 2.2%). Olmesartan and TA0201, an ET type A receptor antagonist, converted vasoconstriction into vasodilation (8.5 +/- 1.2% and 10.5 +/- 0.5%, P < 0.01, respectively) in response to supernatant from phenylephrine-stimulated myocytes, which was eliminated with catalase. Vasoconstriction was weakened using supernatant from phenylephrine with rotenone-treated myocytes. Treatment of arterioles with apocynin to myocyte supernatant converted vasoconstriction into vasodilation (7.8 +/- 0.8%, P < 0.01). These results suggest that alpha(1)-adrenergic stimulation in cardiac myocytes produces angiotensin I and H(2)O(2) and that angiotensin releases ET-1 through NADPH oxidase in coronary arterioles. Thus, coronary vasoconstriction via the alpha-adrenergic-angiotensin-ET axis appears to require redox-mediated signaling in cardiac and vascular cells.
Collapse
Affiliation(s)
- Osamu Yamaguchi
- First Dept. of Internal Medicine, Fukushima Medical Univ., 1 Hikarigaoka, Fukushima 960-1295, Japan
| | | | | | | | | | | |
Collapse
|
39
|
The positive inotropic effect of endothelin-1 is mediated by mitochondrial reactive oxygen species. Life Sci 2008; 83:264-71. [PMID: 18625248 DOI: 10.1016/j.lfs.2008.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/27/2008] [Accepted: 06/13/2008] [Indexed: 01/11/2023]
Abstract
We have previously demonstrated the participation of reactive oxygen species (ROS) in the positive inotropic effect of a physiological concentration of Angiotensin II (Ang II, 1 nM). The objective of the present work was to evaluate the role and source of ROS generation in the positive inotropic effect produced by an equipotent concentration of endothelin-1 (ET-1, 0.4 nM). Isolated cat ventricular myocytes were used to measure sarcomere shortening with a video-camera, superoxide anion (()O(2)(-)) with chemiluminescence, and ROS production and intracellular pH (pH(i)) with epifluorescence. The ET-1-induced positive inotropic effect (40.4+/-3.1%, n=10, p<0.05) was associated to an increase in ROS production (105+/-29 fluorescence units above control, n=6, p<0.05). ET-1 also induced an increase in ()O(2)(-) production that was inhibited by the NADPH oxidase blocker, apocynin, and by the blockers of mitochondrial ATP-sensitive K(+) channels (mK(ATP)), glibenclamide and 5 hydroxydecanoic acid. The ET-1-induced positive inotropic effect was inhibited by apocynin (0.3 mM; 6.3+/-6.6%, n=13), glibenclamide (50 microM; 8.8+/-3.5%, n=6), 5 hydroxydecanoic acid (500 microM; 14.1+/-8.1, n=9), and by scavenging ROS with MPG (2 mM; 0.92+/-5.6%, n=8). ET-1 enhanced proton efflux (J(H)) carried by the Na(+)/H(+) exchanger (NHE) after an acid load, effect that was blocked by MPG. Consistently, the ET-induced positive inotropic effect was also inhibited by the NHE selective blocker HOE642 (5 microM; 9.37+/-6.07%, n=7). The data show that the effect of a concentration of ET-1 that induces an increase in contractility of about 40% is totally mediated by an intracellular pathway triggered by mitochondrial ROS formation and stimulation of the NHE.
Collapse
|
40
|
Sirolimus-Induced Vascular Dysfunction. J Am Coll Cardiol 2008; 51:2130-8. [DOI: 10.1016/j.jacc.2008.01.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/31/2007] [Accepted: 01/21/2008] [Indexed: 01/08/2023]
|
41
|
Renovascular hypertension by two-kidney one-clip enhances endothelial progenitor cell mobilization in a p47phox-dependent manner. J Hypertens 2008; 26:257-68. [PMID: 18192840 DOI: 10.1097/hjh.0b013e3282f09f79] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Enhanced mechanical forces, e.g. in arterial hypertension, stimulate the formation of reactive oxygen species (ROS) by the NAD(P)H oxidase. Since bone marrow derived endothelial progenitor cells (EPCs) contribute to vascular remodeling and repair, we investigated whether renovascular hypertension stimulates EPC mobilization in a NAD(P)H oxidase-dependent manner. METHODS Renovascular hypertension was induced by two-kidney one-clip (2K1C) in C57BL/6 (WT) and in mice lacking the p47phox subunit of the NAD(P)H oxidase (p47phox-/-). RESULTS In WT, 2K1C increased blood pressure levels by 32.4 +/- 4 mmHg, which was associated with a four-fold increase in circulating EPCs (Sca-1+;Flk-1+). In p47phox-/- mice, the increase in blood pressure was significantly reduced (15.1 +/- 1.8 mmHg, P < 0.05) and not associated with increased EPCs. Inhibitors of the renin-angiotensin system (RAS) and nonspecific vasodilators normalized blood pressure and inhibited EPC mobilization in WT mice after 2K1C. In addition, p47phox deficiency and pharmacological ROS blockage abrogated 2K1C-induced blood pressure elevation and EPC mobilization. Stromal cell derived factor (SDF)-1 and matrix metalloproteinase (MMP)-9 activity in the bone marrow, required for EPC mobilization, were modulated in WT mice after 2K1C. In contrast, no alterations in SDF-1 and MMP-9 were observed in p47phox-/- mice. Moreover, enhanced migration of Lin- bone marrow mononuclear cells was observed when stimulated with plasma from 2K1C WT mice but not when stimulated with plasma from 2K1C p47phox-/- mice. CONCLUSION Enhanced mechanical stretch in renovascular hypertension induces EPC mobilization in a p47phox-dependent manner, involving bone marrow SDF-1 and MMP-9 which may contribute to compensatory vascular adaptation in renovascular hypertension.
Collapse
|
42
|
Do vasculature reactive oxygen species play a role in the mobilization of bone marrow endothelial progenitor cells? J Hypertens 2008; 26:188-90. [PMID: 18192830 DOI: 10.1097/hjh.0b013e3282f2851a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Bäumer AT, ten Freyhaus H, Sauer H, Wartenberg M, Kappert K, Schnabel P, Konkol C, Hescheler J, Vantler M, Rosenkranz S. Phosphatidylinositol 3-Kinase-dependent Membrane Recruitment of Rac-1 and p47phox Is Critical for α-Platelet-derived Growth Factor Receptor-induced Production of Reactive Oxygen Species. J Biol Chem 2008; 283:7864-76. [DOI: 10.1074/jbc.m704997200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
44
|
Puddu P, Puddu GM, Cravero E, De Pascalis S, Muscari A. The putative role of mitochondrial dysfunction in hypertension. Clin Exp Hypertens 2008; 29:427-34. [PMID: 17994352 DOI: 10.1080/10641960701613852] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hypertension is a condition associated with oxidative stress, endothelial dysfunction, and increased vascular resistance, representing probably both a cause and a consequence of elevated levels of reactive oxygen (ROS) and nitrogen (RNS) species. Mitochondria are important sites of ROS production, and a mitochondrial dysfunction, preceding endothelial dysfunction, might favor the development of hypertension. ROS production may also be induced by RNS, which inhibit the respiratory chain and may be generated through the action of a mitochondrial NO synthase. Mitochondrial uncoupling proteins are involved in both experimental and human hypertension. Finally, an excessive production of ROS may damage mitochondrial DNA, with resultant impairment in the synthesis of some components of the respiratory chain and further ROS production, a vicious cycle that may be implicated in hypertensive states.
Collapse
Affiliation(s)
- Paolo Puddu
- Department of Internal Medicine, Cardioangiology, Hepatology, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
45
|
Choi H, Leto TL, Hunyady L, Catt KJ, Bae YS, Rhee SG. Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J Biol Chem 2007; 283:255-267. [PMID: 17981802 DOI: 10.1074/jbc.m708000200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of angiotensin II (Ang II)-induced superoxide production was investigated with HEK293 or Chinese hamster ovary cells reconstituted with the angiotensin type 1 receptor (AT(1)R) and NADPH oxidase (either Nox1 or Nox2) along with a pair of adaptor subunits (either NOXO1 with NOXA1 or p47(phox) with p67(phox)). Ang II enhanced the activity of both Nox1 and Nox2 supported by either adaptor pair, with more effective activation of Nox1 in the presence of NOXO1 and NOXA1 and of Nox2 in the presence of p47(phox) and p67(phox). Expression of several AT(1)R mutants showed that interaction of the receptor with G proteins but not that with beta-arrestin or with other proteins (Jak2, phospholipase C-gamma1, SH2 domain-containing phosphatase 2) that bind to the COOH-terminal region of AT(1)R, was necessary for Ang II-induced superoxide production. The effects of constitutively active alpha subunits of G proteins and of various pharmacological agents implicated signaling by a pathway comprising AT(1)R, Galpha(q/11), phospholipase C-beta, and protein kinase C as largely, but not exclusively, responsible for Ang II-induced activation of Nox1 and Nox2 in the reconstituted cells. A contribution of Galpha(12/13), phospholipase D, and phosphatidyl-inositol 3-kinase to Ang II-induced superoxide generation was also suggested, whereas Src and the epidermal growth factor receptor did not appear to participate in this effect of Ang II. In reconstituted cells stimulated with Ang II, Nox2 exhibited a more sensitive response than Nox1 to the perturbation of protein kinase C, phosphatidylinositol 3-kinase, or the small GTPase Rac1.
Collapse
Affiliation(s)
- Hyun Choi
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Thomas L Leto
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - László Hunyady
- Department of Physiology, Semmelweis University, H-1088 Budapest, Hungary
| | - Kevin J Catt
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun Soo Bae
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea.
| | - Sue Goo Rhee
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
46
|
Wagner B, Ricono JM, Gorin Y, Block K, Arar M, Riley D, Choudhury GG, Abboud HE. Mitogenic signaling via platelet-derived growth factor beta in metanephric mesenchymal cells. J Am Soc Nephrol 2007; 18:2903-11. [PMID: 17942966 DOI: 10.1681/asn.2006111229] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mice deficient in either platelet-derived growth factor (PDGF) B chain or PDGF receptor (PDGFR) beta lack mesangial cells. PDGF stimulates proliferation and migration of metanephric mesenchymal cells, from which mesangial cells are derived. Binding of PDGF to PDGFR-beta induces autophosphorylation at specific tyrosine residues and activates various effector proteins, including phosphatidylinositol-3-kinase (PI3-K). This study explored the role of PI 3-K and reactive oxygen species (ROS) in PDGF-mediated signaling using cells established from wild-type and PDGFR-beta -/- metanephric blastemas at 11.5 days post-conception. PDGF-induced effects that were dependent on PI3-K activation were determined using PDGFR-beta -/- cells made to express "add-back" mutant PDGFR-beta capable of binding PI3-K. We found that PDGF is mitogenic for mesenchymal cells expressing PDGFR-beta, and PI3-K is an important regulator of PDGF-induced DNA synthesis. Activation of ERK1/2 is partially dependent on PI3-K, and both the PI3-K and MEK-ERK1/2 pathways contribute to PI3-K-dependent mitogenesis. In addition, PDGF-induced DNA synthesis in wild-type cells was found to be dependent on ROS that are generated downstream of PI3-K activation. Using antisense oligonucleotides and small interfering RNA, we determined that the NAD(P)H oxidase Nox4 produces these ROS that activate Akt and the MEK-ERK1/2 mitogenic cascade. In conclusion, the present study demonstrates Nox4 involvement in PDGF-induced DNA synthesis in metanephric mesenchymal cells and provides the first evidence that PDGF-induced PI3-K activity enhances production of ROS by Nox4.
Collapse
Affiliation(s)
- Brent Wagner
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Caldiz CI, Garciarena CD, Dulce RA, Novaretto LP, Yeves AM, Ennis IL, Cingolani HE, Chiappe de Cingolani G, Pérez NG. Mitochondrial reactive oxygen species activate the slow force response to stretch in feline myocardium. J Physiol 2007; 584:895-905. [PMID: 17823205 PMCID: PMC2276989 DOI: 10.1113/jphysiol.2007.141689] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
When the length of the myocardium is increased, a biphasic response to stretch occurs involving an initial rapid increase in force followed by a delayed slow increase called the slow force response (SFR). Confirming previous findings involving angiotensin II in the SFR, it was blunted by AT1 receptor blockade (losartan). The SFR was accompanied by an increase in reactive oxygen species (ROS) of approximately 30% and in intracellular Na(+) concentration ([Na(+)](i)) of approximately 2.5 mmol l(-1) over basal detected by H(2)DCFDA and SBFI fluorescence, respectively. Abolition of ROS by 2-mercapto-propionyl-glycine (MPG) and EUK8 suppressed the increase in [Na(+)](i) and the SFR, which were also blunted by Na(+)/H(+) exchanger (NHE-1) inhibition (HOE642). NADPH oxidase inhibition (apocynin or DPI) or blockade of the ATP-sensitive mitochondrial potassium channels (5HD or glybenclamide) suppressed both the SFR and the increase in [Na(+)](i) after stretch, suggesting that endogenous angiotensin II activated NADPH oxidase leading to ROS release by the ATP-sensitive mitochondrial potassium channels, which promoted NHE-1 activation. Supporting the notion of ROS-mediated NHE-1 activation, stretch increased the ERK1/2 and p90rsk kinases phosphorylation, effect that was cancelled by losartan. In agreement, the SFR was cancelled by inhibiting the ERK1/2 signalling pathway with PD98059. Angiotensin II at a dose that mimics the SFR (1 nmol l(-1)) induced an increase in .O(2)(-) production of approximately 30-40% detected by lucigenin in cardiac slices, an effect that was blunted by losartan, MPG, apocynin, 5HD and glybenclamide. Taken together the data suggest a pivotal role of mitochondrial ROS in the genesis of the SFR to stretch.
Collapse
Affiliation(s)
- Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, UNLP, 60 y 120 (1900) La Plata, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lambeth JD, Kawahara T, Diebold B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 2007; 43:319-31. [PMID: 17602947 PMCID: PMC1989153 DOI: 10.1016/j.freeradbiomed.2007.03.028] [Citation(s) in RCA: 400] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 11/18/2022]
Abstract
In recent years, it has become clear that reactive oxygen species (ROS, which include superoxide, hydrogen peroxide, and other metabolites) are produced in biological systems. Rather than being simply a by-product of aerobic metabolism, it is now recognized that specific enzymes--the Nox (NADPH oxidase) and Duox (Dual oxidase) enzymes--seem to have the sole function of generating ROS in a carefully regulated manner, and key roles in signal transduction, immune function, hormone biosynthesis, and other normal biological functions are being uncovered. The prototypical Nox is the respiratory burst oxidase or phagocyte oxidase, which generates large amounts of superoxide and other reactive species in the phagosomes of neutrophils and macrophages, playing a central role in innate immunity by killing microbes. This enzyme system has been extensively studied over the past two decades, and provides a basis for comparison with the more recently described Nox and Duox enzymes, which generate ROS in a variety of cells and tissues. This review first considers the structure and regulation of the respiratory burst oxidase, and then reviews recent studies relating to the regulation of the activity of the novel Nox/Duox enzymes. The regulation of Nox and Duox expression in tissues and by specific stimuli is also considered here. An accompanying review considers biological and pathological roles of the Nox family of enzymes.
Collapse
Affiliation(s)
- J David Lambeth
- Department of Pathology and Laboratory Medicine, 148 Whitehead Biomedical Research Building, Emory University, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
49
|
Hirono Y, Yoshimoto T, Suzuki N, Sugiyama T, Sakurada M, Takai S, Kobayashi N, Shichiri M, Hirata Y. Angiotensin II receptor type 1-mediated vascular oxidative stress and proinflammatory gene expression in aldosterone-induced hypertension: the possible role of local renin-angiotensin system. Endocrinology 2007; 148:1688-96. [PMID: 17218415 DOI: 10.1210/en.2006-1157] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, aldosterone has been shown to activate local renin-angiotensin system in vitro. To elucidate the potential role of local renin-angiotensin system in aldosterone-induced cardiovascular injury, we investigated the effects of selective mineralocorticoid receptor (MR) antagonist eplerenone (EPL), angiotensin (Ang) II type 1 receptor antagonist candesartan (ARB), and superoxide dismutase mimetic tempol (TEM) on the development of hypertension, vascular injury, oxidative stress, and inflammatory-related gene expression in aldosterone-treated hypertensive rats. The increased systolic blood pressure and vascular inflammatory changes were attenuated by cotreatment either with EPL, ARB, or TEM. Aldosterone increased angiotensin-converting enzyme expression in the aortic tissue; its effects were blocked by EPL but not by ARB or TEM. Aldosterone also increased Ang II contents in the aortic tissue in the presence of low circulating Ang II concentrations. Aldosterone induced expression of various inflammatory-related genes, whose effects were abolished by EPL, whereas the inhibitory effects of ARB and TEM varied depending on the gene. Aldosterone caused greater accumulation of the oxidant stress marker 4-hydroxy-2-neonenal in the endothelium; its effect was abolished by EPL, ARB, or TEM. Aldosterone increased mRNA levels of reduced nicotinamide adenine dinucleotide phosphate oxidase components; their effect was abolished by EPL, whereas ARB and TEM decreased only the p47phox mRNA level but not that of p22phox or gp91phox. The present findings suggest that the Ang II-dependent pathway resulting from vascular angiotensin-converting enzyme up-regulation and Ang II-independent pathway are both involved in the underlying mechanisms resulting in the development of hypertension, vascular inflammation, and oxidative stress induced by aldosterone.
Collapse
Affiliation(s)
- Yuki Hirono
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang P, Tang F, Li R, Zhang H, Chen S, Liu P, Huang H. Contribution of different Nox homologues to cardiac remodeling in two-kidney two-clip renovascular hypertensive rats: effect of valsartan. Pharmacol Res 2007; 55:408-17. [PMID: 17324585 DOI: 10.1016/j.phrs.2007.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 01/23/2007] [Accepted: 01/26/2007] [Indexed: 11/17/2022]
Abstract
Growing evidences have shown that hypertension, cardiac hypertrophy and fibrosis were associated with an overactivity of NAD(P)H oxidase. It is unknown, however, which isoform of NAD(P)H oxidase yields O(2)*(-) formation in heart and aorta in two-kidney, two-clip (2K2C) hypertensive rats in vivo and thus is responsible for the development of cardiac remodeling. We examined the pathological change of NAD(P)H oxidase homologues and tested the effect of valsartan on the cardiac remodeling in 2K2C renovascular hypertensive rats. Four weeks after male Sprague-Dawley rats accepted 2K2C or sham operation, 2K2C hypertensive (>160 mmHg) rats were divided into vehicle-treated (2K2C) and valsartan (30 mg kg(-1) per day, for 6 weeks)-treated (2K2C+Val) groups, which were compared with sham-operated controls (Sham). At week 10, 2K2C hypertensive rats showed increased serum level of angiotensin II (Ang II), MDA and blood pressure (BP), obvious cardiac hypertrophy and fibrosis, increased O(2)*(-) production and NAD(P)H oxidase activity and expression in aorta and heart. The heart in 2K2C hypertensive rats preferred to use NADH as substrate while the aorta used both NADH and NADPH. Valsartan treatment decreased BP, ameliorated cardiac hypertrophy and fibrosis, decreased O(2)*(-) production and NAD(P)H oxidase activity in aorta and heart. Nox2 and Nox4 protein expression increased in heart, while Nox1 and Nox4 increased in aorta in 2K2C hypertensive rats, which were all normalized after valsartan treatment. In conclusion, these data indicate that different Nox expression might account for substrate preference and the formation of O(2)*(-) by NAD(P)H oxidase resulting from elevated Ang II in the 2K2C model contributes to the development of renovascular hypertension and subsequent cardiac remodeling.
Collapse
Affiliation(s)
- Ping Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|