1
|
Nitta T, Asano T, Yajima T, Otsuka T, Ishii Y. Chemical ablation of the left ventricular endocardium reduces ventricular fibrillation inducibility in acute ischemic canine heart. J Arrhythm 2024; 40:325-332. [PMID: 38586838 PMCID: PMC10995593 DOI: 10.1002/joa3.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 04/09/2024] Open
Abstract
Objective Ventricular fibrillation remains as the major cause of death in patients with acute myocardial infarction. Effects of trans-atrial chemical ablation of the left ventricular (LV) endocardium with Lugol's solution on ventricular fibrillation inducibility and ventricular conduction were examined in canines with acute myocardial ischemia. Materials and Methods Chemical ablation of the LV endocardium with Lugol's solution or normal saline was preformed through a left atrial appendage in 14 canines 30 min after occlusion of the left anterior coronary artery. Results Ventricular fibrillation threshold decreased after the coronary artery occlusion and increased after endocardial chemical ablation. There was a significant difference in the ventricular fibrillation threshold after chemical ablation between with Lugol's solution and with normal saline (25.9 ± 9.2 mA vs. 11.3 ± 2.7 mA, p < .01). QRS width significantly increased from 88 ± 4 msec to 116 ± 5 msec (p < .01) after the chemical ablation with Lugol's solution, and the activation map of the ventricles demonstrated a left bundle branch block ventricular conduction pattern. Histological examination of the LV endocardium showed lymphocyte infiltration for a depth of 1 mm. Conclusions Chemical ablation of the LV endocardium with Lugol's solution injures endocardial conduction system and increases ventricular fibrillation threshold in the early phase of myocardial ischemia in canines. The procedure may be useful in suppressing intractable ventricular tachyarrhythmias in patients with acute myocardial ischemia.
Collapse
Affiliation(s)
- Takashi Nitta
- Cardiovascular SurgeryNippon Medical SchoolTokyoJapan
| | - Tetsuo Asano
- Cardiovascular SurgeryNippon Medical SchoolTokyoJapan
| | | | - Toshiaki Otsuka
- Public Health (Statistical Analysis)Nippon Medical SchoolTokyoJapan
| | - Yosuke Ishii
- Cardiovascular SurgeryNippon Medical SchoolTokyoJapan
| |
Collapse
|
2
|
Hurley M, Kaur S, Walton R, Power A, Haïssaguerre M, Bernus O, Ward ML, White E. Endocardial role in arrhythmias induced by acute ventricular stretch and the involvement of Purkinje fibres, in isolated rat hearts. Curr Res Physiol 2023; 6:100098. [PMID: 36814643 PMCID: PMC9939534 DOI: 10.1016/j.crphys.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Purkinje fibres (PFs) play an important role in some ventricular arrhythmias and acute ventricular stretch can evoke mechanically-induced arrhythmias. We tested whether PFs and specifically TRPM4 channels, play a role in these mechanically-induced arrhythmias. Pseudo-ECGs and left ventricular (LV) activation, measured by optical mapping, were recorded in isolated, Langendorff-perfused, rat hearts. The LV endocardial surface was irrigated with experimental agents, via an indwelling catheter. The number and period of ectopic activations was measured during LV lumen inflation via an indwelling fluid-filled balloon (100 μL added over 2 s, maintained for 38 s). Mechanically-induced arrhythmias occurred during balloon inflation: they were multifocal, maximal in the first 5 s and ceased within 20 s. Optical mapping revealed activation patterns indicating PF-mediated and ectopic focal sources. Irrigation of the LV lumen with Lugol solution (IK/I2) for 10s reduced ectopics by 93% (n = 16, P < 0.001); with ablation of endocardial PFs confirmed by histology. Five min irrigation of the LV lumen with 50 μM 9-Phenanthrol, a blocker of TRPM4 channels, reduced ectopics by 39% (n = 15, P < 0.01). Immunohistochemistry confirmed that TRPM4 was more abundant in PFs than myocardium. Our results show that the endocardial surface plays an important role in these mechanically-induced ectopic activations. Ectopic activation patterns indicate a participation of PFs in these arrhythmias, with a potential involvement of TRPM4 channels, shown by the reduction of arrhythmias by 9-Phenanthrol.
Collapse
Affiliation(s)
- Miriam Hurley
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Sarbjot Kaur
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Richard Walton
- Université Bordeaux, INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, Bordeaux, France,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac, Bordeaux, France
| | - Amelia Power
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Michel Haïssaguerre
- Université Bordeaux, INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, Bordeaux, France,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac, Bordeaux, France,Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, Pessac, France
| | - Olivier Bernus
- Université Bordeaux, INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, Bordeaux, France,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac, Bordeaux, France
| | - Marie-Louise Ward
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Ed White
- School of Biomedical Sciences, University of Leeds, Leeds, UK,Corresponding author. Garstang Building, School of Biomedical Sciences, University of Leeds, LS29JT, Leeds, UK.
| |
Collapse
|
3
|
Ezzeddine FM, Ward RC, Asirvatham SJ, DeSimone CV. Mapping and ablation of ventricular fibrillation substrate. J Interv Card Electrophysiol 2023:10.1007/s10840-022-01454-z. [PMID: 36598715 DOI: 10.1007/s10840-022-01454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Ventricular fibrillation (VF) is a life-threatening arrhythmia and a common cause of sudden cardiac death (SCD). A basic understanding of its mechanistic underpinning is crucial for enhancing our knowledge to develop innovative mapping and ablation techniques for this lethal rhythm. Significant advances in our understanding of VF have been made especially in the basic science and pre-clinical experimental realms. However, these studies have not yet translated into a robust clinical approach to identify and successfully ablate both the structural and functional substrate of VF. In this review, we aim to (1) provide a conceptual framework of VF and an overview of the data supporting the spatiotemporal dynamics of VF, (2) review experimental approaches to mapping VF to elucidate drivers and substrate for maintenance with a focus on the His-Purkinje system, (3) discuss current approaches using catheter ablation to treat VF, and (4) highlight current unknowns and gaps in the field where future work is necessary to transform the clinical landscape.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Robert Charles Ward
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Hurley M, Walton R, Vigmond EJ, Haïssaguerre M, Bernus O, White E. Attenuation of stretch-induced arrhythmias following chemical ablation of Purkinje fibres, in isolated rabbit hearts. Front Physiol 2023; 14:1154157. [PMID: 37089427 PMCID: PMC10115947 DOI: 10.3389/fphys.2023.1154157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Purkinje fibres (PFs) play an important role in some ventricular arrhythmias and acute ventricular stretch can evoke mechanically-induced arrhythmias. We tested whether Purkinje fibres, play a role in these arrhythmias. Pseudo-ECGs were recorded in isolated, Langendorff-perfused, rabbit hearts in which the left ventricular endocardial surface was also irrigated with Tyrode, via an indwelling catheter placed in the left ventricular lumen. The number and period of ectopic activations was measured during left ventricular lumen inflation via an indwelling fluid-filled balloon (500 μL added over 2 s and maintained for 15 s in total). Mechanically-induced arrhythmias occurred in 70% of balloon inflations: they were maximal in the first 5 s and ceased within 15 s. Brief, (10 s) irrigation of the left ventricular lumen with Lugol solution (IK/I2), via the indwelling catheter, reduced inflation-induced ectopics by 98% (p < 0.05). Ablation of endocardial PFs by Lugol was confirmed by Triphenyltetrazolium Chloride staining. Optical mapping revealed the left ventricular epicardial activation patterns of ectopics could have PF-mediated and focal sources. In silico modelling predicted ectopic sources originating in the endocardial region propagate to and through the Purkinje fibres network. Acute distention-induced ectopics are multi-focal, their attenuation by Lugol, their activation patterns and in silico modelling indicate a participation of Purkinje fibres in these arrhythmias.
Collapse
Affiliation(s)
- Miriam Hurley
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Richard Walton
- INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Université Bordeaux, Pessac-Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac-Bordeaux, France
| | - Edward J. Vigmond
- INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Université Bordeaux, Pessac-Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac-Bordeaux, France
| | - Michel Haïssaguerre
- INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Université Bordeaux, Pessac-Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac-Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Olivier Bernus
- INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Université Bordeaux, Pessac-Bordeaux, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac-Bordeaux, France
| | - Ed White
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- *Correspondence: Ed White,
| |
Collapse
|
5
|
Ezzeddine FM, Darlington AM, DeSimone CV, Asirvatham SJ. Catheter Ablation of Ventricular Fibrillation. Card Electrophysiol Clin 2022; 14:729-742. [PMID: 36396189 DOI: 10.1016/j.ccep.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ventricular fibrillation (VF) is a common cause of sudden cardiac death (SCD) and is unfortunately without a cure. Current therapies focus on prevention of SCD, such as implantable cardioverter-defibrillator (ICD) implantation and anti-arrhythmic agents. Significant progress has been made in improving our understanding and ability to target the triggers of VF, via advanced mapping and ablation techniques, as well as with autonomic modulation. However, the critical substrate for VF maintenance remains incompletely defined. In this review, we discuss the evidence behind the basic mechanisms of VF and review the current role of catheter ablation in patients with VF.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN, USA
| | - Ashley M Darlington
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN, USA.
| |
Collapse
|
6
|
Redefining the electroanatomy of the cardiac conduction system. Heart Rhythm 2019; 17:131-132. [PMID: 31449882 DOI: 10.1016/j.hrthm.2019.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 11/22/2022]
|
7
|
Caluori G, Wojtaszczyk A, Yasin O, Pesl M, Wolf J, Belaskova S, Crha M, Sugrue A, Vaidya VR, Naksuk N, DeSimone CV, Killu AM, Padmanabhan D, Asirvatham SJ, Stárek Z. Comparing the incidence of ventricular arrhythmias during epicardial ablation in swine versus canine models. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2019; 42:862-867. [PMID: 30989679 DOI: 10.1111/pace.13698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Choosing the appropriate animal model for development of novel technologies requires an understanding of anatomy and physiology of these different models. There are little data about the characteristics of different animal models for the study of technologies used for epicardial ablation. We aimed to compare the incidence of ventricular arrhythmias during epicardial radiofrequency ablation between swine and canine models using novel epicardial ablation catheters. METHODS We conducted a retrospective study using data obtained from epicardial ablation experiments performed on swine (Sus Scrofa) and canine (Canis familiaris) models. We compared the incidence of ventricular arrhythmias during ablation between swine and canine using multivariate regression analysis. Six swine and six canine animals underwent successful epicardial radiofrequency ablation. A total of 103 ablation applications were recorded. RESULTS Ventricular arrhythmias requiring cardioversion occurred in 13.11% of radiofrequency ablation applications in swine and 9.75% in canine (relative risk: 117.6%, 95% confidence interval [CI]: 83.97-164.69, animal-based odds ratio [OR]: .55, 95% CI: .23-61.33; P = .184). When adjusting for application position, duration of ablation and power, the odds of developing potentially lethal ventricular arrhythmia in swine increased significantly compared to canine (OR: 3.60, 95% CI: 1.35-9.55; P = .010). CONCLUSIONS The swine myocardium is more susceptible to developing ventricular arrhythmias compared to canine model during epicardial ablation. This issue should be carefully considered in future studies.
Collapse
Affiliation(s)
- Guido Caluori
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,CEITEC, Masaryk University, Brno, Czech Republic
| | - Adam Wojtaszczyk
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Omar Yasin
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota
| | - Martin Pesl
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,First Department of Internal Medicine/Cardioangiology, St. Anne´s Hospital, Masaryk University, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Wolf
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Silvie Belaskova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michal Crha
- University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Alan Sugrue
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota
| | - Vaibhav R Vaidya
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota
| | - Niyada Naksuk
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota
| | | | - Ammar M Killu
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota
| | | | - Samuel J Asirvatham
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota.,Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Zdeněk Stárek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,First Department of Internal Medicine/Cardioangiology, St. Anne´s Hospital, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Cheniti G, Vlachos K, Meo M, Puyo S, Thompson N, Denis A, Duchateau J, Takigawa M, Martin C, Frontera A, Kitamura T, Lam A, Bourier F, Klotz N, Derval N, Sacher F, Jais P, Dubois R, Hocini M, Haissaguerre M. Mapping and Ablation of Idiopathic Ventricular Fibrillation. Front Cardiovasc Med 2018; 5:123. [PMID: 30280100 PMCID: PMC6153961 DOI: 10.3389/fcvm.2018.00123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/20/2018] [Indexed: 01/30/2023] Open
Abstract
Idiopathic ventricular fibrillation (IVF) is the main cause of unexplained sudden cardiac death, particularly in young patients under the age of 35. IVF is a diagnosis of exclusion in patients who have survived a VF episode without any identifiable structural or metabolic causes despite extensive diagnostic testing. Genetic testing allows identification of a likely causative mutation in up to 27% of unexplained sudden deaths in children and young adults. In the majority of cases, VF is triggered by PVCs that originate from the Purkinje network. Ablation of VF triggers in this setting is associated with high rates of acute success and long-term freedom from VF recurrence. Recent studies demonstrate that a significant subset of IVF defined by negative comprehensive investigations, demonstrate in fact subclinical structural alterations. These localized myocardial alterations are identified by high density electrogram mapping, are of small size and are mainly located in the epicardium. As reentrant VF drivers are often colocated with regions of abnormal electrograms, this localized substrate can be shown to be mechanistically linked with VF. Such areas may represent an important target for ablation.
Collapse
Affiliation(s)
- Ghassen Cheniti
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France.,Department of Cardiology, Sahloul Hospital, Universite de Sousse, Sousse, Tunisia
| | - Konstantinos Vlachos
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Marianna Meo
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Stephane Puyo
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Nathaniel Thompson
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Arnaud Denis
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Josselin Duchateau
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Masateru Takigawa
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Claire Martin
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France.,Department of Cardiology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Antonio Frontera
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Takeshi Kitamura
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Anna Lam
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Felix Bourier
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Nicolas Klotz
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Nicolas Derval
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Frederic Sacher
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Pierre Jais
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Remi Dubois
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Meleze Hocini
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Michel Haissaguerre
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| |
Collapse
|
9
|
Livia C, Sugrue A, Witt T, Polkinghorne MD, Maor E, Kapa S, Lehmann HI, DeSimone CV, Behfar A, Asirvatham SJ, McLeod CJ. Elimination of Purkinje Fibers by Electroporation Reduces Ventricular Fibrillation Vulnerability. J Am Heart Assoc 2018; 7:e009070. [PMID: 30371233 PMCID: PMC6201470 DOI: 10.1161/jaha.118.009070] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
Background The Purkinje network appears to play a pivotal role in the triggering as well as maintenance of ventricular fibrillation. Irreversible electroporation ( IRE ) using direct current has shown promise as a nonthermal ablation modality in the heart, but its ability to target and ablate the Purkinje tissue is undefined. Our aim was to investigate the potential for selective ablation of Purkinje/fascicular fibers using IRE . Methods and Results In an ex vivo Langendorff model of canine heart (n=8), direct current was delivered in a unipolar manner at various dosages from 750 to 2500 V, in 10 pulses with a 90-μs duration at a frequency of 1 Hz. The window of ventricular fibrillation vulnerability was assessed before and after delivery of electroporation energy using a shock on T-wave method. IRE consistently eradicated all Purkinje potentials at voltages between 750 and 2500 V (minimum field strength of 250-833 V/cm). The ventricular electrogram amplitude was only minimally reduced by ablation: 0.6±2.3 mV ( P=0.03). In 4 hearts after IRE delivery, ventricular fibrillation could not be reinduced. At baseline, the lower limit of vulnerability to ventricular fibrillation was 1.8±0.4 J, and the upper limit of vulnerability was 19.5±3.0 J. The window of vulnerability was 17.8±2.9 J. Delivery of electroporation energy significantly reduced the window of vulnerability to 5.7±2.9 J ( P=0.0003), with a postablation lower limit of vulnerability=7.3±2.63 J, and the upper limit of vulnerability=18.8±5.2 J. Conclusions Our study highlights that Purkinje tissue can be ablated with IRE without any evidence of underlying myocardial damage.
Collapse
Affiliation(s)
- Christopher Livia
- Department of Cardiovascular Medicine and Department of Molecular Pharmacology and Experimental TherapeuticsCenter for Regenerative MedicineMayo ClinicRochesterMN
| | - Alan Sugrue
- Division of Heart Rhythm ServicesDepartment of Cardiovascular DiseasesMayo ClinicRochesterMN
| | - Tyra Witt
- Department of Cardiovascular Medicine and Department of Molecular Pharmacology and Experimental TherapeuticsCenter for Regenerative MedicineMayo ClinicRochesterMN
| | - Murray D. Polkinghorne
- Division of Heart Rhythm ServicesDepartment of Cardiovascular DiseasesMayo ClinicRochesterMN
| | - Elad Maor
- Leviev Heart Center, Sheba Medical CenterSackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Suraj Kapa
- Division of Heart Rhythm ServicesDepartment of Cardiovascular DiseasesMayo ClinicRochesterMN
| | - Helge I. Lehmann
- Division of Heart Rhythm ServicesDepartment of Cardiovascular DiseasesMayo ClinicRochesterMN
| | - Christopher V. DeSimone
- Division of Heart Rhythm ServicesDepartment of Cardiovascular DiseasesMayo ClinicRochesterMN
| | - Atta Behfar
- Department of Cardiovascular Medicine and Department of Molecular Pharmacology and Experimental TherapeuticsCenter for Regenerative MedicineMayo ClinicRochesterMN
| | - Samuel J. Asirvatham
- Division of Heart Rhythm ServicesDepartment of Cardiovascular DiseasesMayo ClinicRochesterMN
- Division of Pediatric CardiologyDepartment of Pediatric and Adolescent MedicineMayo ClinicRochesterMN
| | - Christopher J. McLeod
- Division of Heart Rhythm ServicesDepartment of Cardiovascular DiseasesMayo ClinicRochesterMN
| |
Collapse
|
10
|
Krummen DE, Ho G, Villongco CT, Hayase J, Schricker AA. Ventricular fibrillation: triggers, mechanisms and therapies. Future Cardiol 2016; 12:373-90. [PMID: 27120223 DOI: 10.2217/fca-2016-0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ventricular fibrillation (VF) is a common, life-threatening arrhythmia responsible for significant morbidity and mortality. Due to challenges in safely mapping VF, a comprehensive understanding of its mechanisms remains elusive. Recent findings have provided new insights into mechanisms that sustain early VF. Notably, the central role of electrical rotors and catheter-based ablation of VF rotor substrate have been recently reported. In this article, we will review data regarding four stages of VF: initiation, transition, maintenance and evolution. We will discuss the particular mechanisms for each stage and therapies targeting these mechanisms. We also examine inherited arrhythmia syndromes, including the mechanisms and therapies specific to each. We hope that the overview of VF outlined in this work will assist other investigators in designing future therapies to interrupt this life-threatening arrhythmia.
Collapse
Affiliation(s)
- David E Krummen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Gordon Ho
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Christopher T Villongco
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Justin Hayase
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Amir A Schricker
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.,Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
11
|
|
12
|
Wilder CDE, Masoud R, Yazar D, O'Brien BA, Eykyn TR, Curtis MJ. Contractile function assessment by intraventricular balloon alters the ability of regional ischaemia to evoke ventricular fibrillation. Br J Pharmacol 2016; 173:39-52. [PMID: 26377788 PMCID: PMC4813384 DOI: 10.1111/bph.13332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE In drug research using the rat Langendorff heart preparation, it is possible to study left ventricular (LV) contractility using an intraventricular balloon (IVB), and arrhythmogenesis during coronary ligation-induced regional ischaemia. Assessing both concurrently would halve animal requirements. We aimed to test the validity of this approach. EXPERIMENTAL APPROACH The electrocardiogram (ECG) and LV function (IVB) were recorded during regional ischaemia of different extents in a randomized and blinded study. KEY RESULTS IVB-induced proarrhythmia was anticipated, but in hearts with an ischaemic zone (IZ) made deliberately small, an inflated IVB reduced ischaemia-induced ventricular fibrillation (VF) incidence as a trend. Repeating studies in hearts with large IZs revealed the effect to be significant. There were no changes in QT interval or other variables that might explain the effect. Insertion of an IVB that was minimally inflated had no effect on any variable compared with 'no IVB' controls. The antiarrhythmic effect of verapamil (a positive control drug) was unaffected by IVB inflation. Removal of an inflated (but not a non-inflated) IVB caused a release of lactate commensurate with reperfusion of an endocardial/subendocardial layer of IVB-induced ischaemia. This was confirmed by intracellular (31) phosphorus ((31) P) nuclear magnetic resonance (NMR) spectroscopy. CONCLUSIONS AND IMPLICATIONS IVB inflation does not inhibit VF suppression by a standard drug, but it has profound antiarrhythmic effects of its own, likely to be due to inflation-induced localized ischaemia. This means rhythm and contractility cannot be assessed concurrently by this approach, with implications for drug discovery and safety assessment.
Collapse
Affiliation(s)
| | - Radwa Masoud
- Cardiovascular
DivisionKing's College LondonLondonUK
| | - Duygu Yazar
- Cardiovascular
DivisionKing's College LondonLondonUK
| | | | | | | |
Collapse
|
13
|
Vigmond EJ, Stuyvers BD. Modeling our understanding of the His-Purkinje system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:179-88. [PMID: 26740015 DOI: 10.1016/j.pbiomolbio.2015.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023]
Abstract
The His-Purkinje System (HPS) is responsible for the rapid electric conduction in the ventricles. It relays electrical impulses from the atrioventricular node to the muscle cells and, thus, coordinates the contraction of ventricles in order to ensure proper cardiac pump function. The HPS has been implicated in the genesis of ventricular tachycardia and fibrillation as a source of ectopic beats, as well as forming distinct portions of reentry circuitry. Despite its importance, it remains much less well characterized, structurally and functionally, than the myocardium. Notably, important differences exist with regard to cell structure and electrophysiology, including ion channels, intracellular calcium handling, and gap junctions. Very few computational models address the HPS, and the majority of organ level modeling studies omit it. This review will provide an overview of our current knowledge of structure and function (including electrophysiology) of the HPS. We will review the most recent advances in modeling of the system from the single cell to the organ level, with considerations for relevant interspecies distinctions.
Collapse
Affiliation(s)
- Edward J Vigmond
- LIRYC, Institute of Electrophysiology and Cardiac Modeling, Hôpital Xavier Arnozan, avenue Haut-Lévèque, 33600 Pessac, France; Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351, cours de la Libération, F 33 405 Talence, France; Department of Electrical and Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Bruno D Stuyvers
- LIRYC, Institute of Electrophysiology and Cardiac Modeling, Hôpital Xavier Arnozan, avenue Haut-Lévèque, 33600 Pessac, France; Université de Bordeaux, 351, cours de la Libération, F 33 405 Talence, France; Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
14
|
Zaglia T, Pianca N, Borile G, Da Broi F, Richter C, Campione M, Lehnart SE, Luther S, Corrado D, Miquerol L, Mongillo M. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2. Proc Natl Acad Sci U S A 2015; 112:E4495-504. [PMID: 26204914 PMCID: PMC4538656 DOI: 10.1073/pnas.1509380112] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extrasystoles lead to several consequences, ranging from uneventful palpitations to lethal ventricular arrhythmias, in the presence of pathologies, such as myocardial ischemia. The role of working versus conducting cardiomyocytes, as well as the tissue requirements (minimal cell number) for the generation of extrasystoles, and the properties leading ectopies to become arrhythmia triggers (topology), in the normal and diseased heart, have not been determined directly in vivo. Here, we used optogenetics in transgenic mice expressing ChannelRhodopsin-2 selectively in either cardiomyocytes or the conduction system to achieve cell type-specific, noninvasive control of heart activity with high spatial and temporal resolution. By combining measurement of optogenetic tissue activation in vivo and epicardial voltage mapping in Langendorff-perfused hearts, we demonstrated that focal ectopies require, in the normal mouse heart, the simultaneous depolarization of at least 1,300-1,800 working cardiomyocytes or 90-160 Purkinje fibers. The optogenetic assay identified specific areas in the heart that were highly susceptible to forming extrasystolic foci, and such properties were correlated to the local organization of the Purkinje fiber network, which was imaged in three dimensions using optical projection tomography. Interestingly, during the acute phase of myocardial ischemia, focal ectopies arising from this location, and including both Purkinje fibers and the surrounding working cardiomyocytes, have the highest propensity to trigger sustained arrhythmias. In conclusion, we used cell-specific optogenetics to determine with high spatial resolution and cell type specificity the requirements for the generation of extrasystoles and the factors causing ectopies to be arrhythmia triggers during myocardial ischemia.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/complications
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Cardiac Complexes, Premature/complications
- Cardiac Complexes, Premature/pathology
- Cardiac Complexes, Premature/physiopathology
- Channelrhodopsins
- Connexins/metabolism
- Coronary Vessels/pathology
- Coronary Vessels/physiopathology
- Electrophysiological Phenomena
- Humans
- Integrases/metabolism
- Ligation
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocardial Ischemia/complications
- Myocardial Ischemia/pathology
- Myocardial Ischemia/physiopathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Optogenetics/methods
- Organ Specificity
- Purkinje Fibers/metabolism
- Purkinje Fibers/pathology
- Purkinje Fibers/physiopathology
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Tania Zaglia
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Nicola Pianca
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Giulia Borile
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | | | - Claudia Richter
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Gottingen, Germany
| | - Marina Campione
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Clinic of Cardiology and Pulmonology, University Medical Center, 37077 Gottingen, Germany; German Centre for Cardiovascular Research, partner site Göttingen, 37077 Gottingen, Germany
| | - Stefan Luther
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Gottingen, Germany; Heart Research Center Göttingen, Clinic of Cardiology and Pulmonology, University Medical Center, 37077 Gottingen, Germany; German Centre for Cardiovascular Research, partner site Göttingen, 37077 Gottingen, Germany; Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Domenico Corrado
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padova, 35128 Padova, Italy
| | - Lucile Miquerol
- Aix Marseille University, CNRS Institut de Biologie du Développement de Marseille UMR 7288, 13288 Marseille, France
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35121 Padova, Italy;
| |
Collapse
|
15
|
Lang D, Holzem K, Kang C, Xiao M, Hwang HJ, Ewald GA, Yamada KA, Efimov IR. Arrhythmogenic remodeling of β2 versus β1 adrenergic signaling in the human failing heart. Circ Arrhythm Electrophysiol 2015; 8:409-19. [PMID: 25673629 DOI: 10.1161/circep.114.002065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 01/27/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Arrhythmia is the major cause of death in patients with heart failure, for which β-adrenergic receptor blockers are a mainstay therapy. But the role of β-adrenergic signaling in electrophysiology and arrhythmias has never been studied in human ventricles. METHODS AND RESULTS We used optical imaging of action potentials and [Ca(2+)]i transients to compare the β1- and β2-adrenergic responses in left ventricular wedge preparations of human donor and failing hearts. β1-Stimulation significantly increased conduction velocity, shortened action potential duration, and [Ca(2+)]i transients duration (CaD) in donor but not in failing hearts, because of desensitization of β1-adrenergic receptor in heart failure. In contrast, β2-stimulation increased conduction velocity in both donor and failing hearts but shortened action potential duration only in failing hearts. β2-Stimulation also affected transmural heterogeneity in action potential duration but not in [Ca(2+)]i transients duration. Both β1- and β2-stimulation augmented the vulnerability and frequency of ectopic activity and enhanced substrates for ventricular tachycardia in failing, but not in donor, hearts. Both β1- and β2-stimulation enhanced Purkinje fiber automaticity, whereas only β2-stimulation promoted Ca-mediated premature ventricular contractions in heart failure. CONCLUSIONS During end-stage heart failure, β2-stimulation creates arrhythmogenic substrates via conduction velocity regulation and transmurally heterogeneous repolarization. β2-Stimulation is, therefore, more arrhythmogenic than β1-stimulation. In particular, β2-stimulation increases the transmural difference between [Ca(2+)]i transients duration and action potential duration, which facilitates the formation of delayed afterdepolarizations.
Collapse
Affiliation(s)
- Di Lang
- From the Department of Biomedical Engineering (D.L., K.H., C.K., M.X., H.J.H., I.R.E.) and Department of Medicine (G.A.E., K.A.Y., I.R.E.), Washington University School of Medicine, St. Louis, MO; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France (I.R.E.); and Moscow Institute of Physics and Technology, Moscow, Russia (I.R.E.)
| | - Katherine Holzem
- From the Department of Biomedical Engineering (D.L., K.H., C.K., M.X., H.J.H., I.R.E.) and Department of Medicine (G.A.E., K.A.Y., I.R.E.), Washington University School of Medicine, St. Louis, MO; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France (I.R.E.); and Moscow Institute of Physics and Technology, Moscow, Russia (I.R.E.)
| | - Chaoyi Kang
- From the Department of Biomedical Engineering (D.L., K.H., C.K., M.X., H.J.H., I.R.E.) and Department of Medicine (G.A.E., K.A.Y., I.R.E.), Washington University School of Medicine, St. Louis, MO; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France (I.R.E.); and Moscow Institute of Physics and Technology, Moscow, Russia (I.R.E.)
| | - Mengqian Xiao
- From the Department of Biomedical Engineering (D.L., K.H., C.K., M.X., H.J.H., I.R.E.) and Department of Medicine (G.A.E., K.A.Y., I.R.E.), Washington University School of Medicine, St. Louis, MO; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France (I.R.E.); and Moscow Institute of Physics and Technology, Moscow, Russia (I.R.E.)
| | - Hye Jin Hwang
- From the Department of Biomedical Engineering (D.L., K.H., C.K., M.X., H.J.H., I.R.E.) and Department of Medicine (G.A.E., K.A.Y., I.R.E.), Washington University School of Medicine, St. Louis, MO; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France (I.R.E.); and Moscow Institute of Physics and Technology, Moscow, Russia (I.R.E.)
| | - Gregory A Ewald
- From the Department of Biomedical Engineering (D.L., K.H., C.K., M.X., H.J.H., I.R.E.) and Department of Medicine (G.A.E., K.A.Y., I.R.E.), Washington University School of Medicine, St. Louis, MO; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France (I.R.E.); and Moscow Institute of Physics and Technology, Moscow, Russia (I.R.E.)
| | - Kathryn A Yamada
- From the Department of Biomedical Engineering (D.L., K.H., C.K., M.X., H.J.H., I.R.E.) and Department of Medicine (G.A.E., K.A.Y., I.R.E.), Washington University School of Medicine, St. Louis, MO; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France (I.R.E.); and Moscow Institute of Physics and Technology, Moscow, Russia (I.R.E.)
| | - Igor R Efimov
- From the Department of Biomedical Engineering (D.L., K.H., C.K., M.X., H.J.H., I.R.E.) and Department of Medicine (G.A.E., K.A.Y., I.R.E.), Washington University School of Medicine, St. Louis, MO; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France (I.R.E.); and Moscow Institute of Physics and Technology, Moscow, Russia (I.R.E.).
| |
Collapse
|
16
|
Ventricular fibrillation: are swine a sensitive species? J Interv Card Electrophysiol 2015; 42:83-9. [DOI: 10.1007/s10840-014-9964-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
17
|
Lin C, Jin Q, Zhang N, Zhou J, Pang Y, Xin Y, Liu S, Wu Q, Wu L. Endocardial focal activation originating from Purkinje fibers plays a role in the maintenance of long duration ventricular fibrillation. Croat Med J 2014; 55:121-7. [PMID: 24778098 PMCID: PMC4009712 DOI: 10.3325/cmj.2014.55.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aim To determine the role of repetitive endocardial focal activations and Purkinje fibers in the maintenance of long duration ventricular fibrillation (LDVF, VF>1 minute) in canine hearts in vivo. Methods The study was conducted in electrophysiological laboratory of Shanghai Ruijin hospital from July 2010 to August 2012. A 64-electrode basket was introduced through a carotid artery into the left ventricle (LV) of 11 beagle dogs for global endocardial electrical mapping. In the Lugol’s solution group (n = 5), the subendocardium was ablated by washing with Lugol’s solution. In the control group, (n = 6) saline was used for ablation. Before and after saline or Lugol ablation, we determined QRS duration and QT/QTc interval in sinus rhythm (SR). We also measured the activation rates in the first 2 seconds of each minute during 7 minutes of VF for each group. If VF terminated spontaneously in less than 7 minutes, the VF segments used in activation rate analysis were reduced accordingly. Results At the beginning of VF there was no difference between the groups in the activation rate. However, after 1 minute of LDVF the Lugol’s solution group had significantly slower activation rate than the control group. In the control group, all episodes of LDVF (6/6) were successfully sustained for 7 minutes, while in the Lugol’s solution group 4/5 episodes of LDVF spontaneously terminated before 7 minutes (4.8 ± 1.4 minutes) (P = 0.015). In the control group, at 5.1 ± 1.3 minutes of LDVF, a successive, highly organized focal LV endocardial activation pattern was observed. During this period, activations partly arose in PF and spread to the working ventricular myocardium. Mapping analysis showed that these events were consistent with repetitive endocardial focal activations. No evidence of similar focal activations was observed in the Lugol’s solution group. Conclusions Repetitive endocardial focal activations in the LV endocardium may be associated with activation of subendocardial PFs. This mechanism may play an important role in the maintenance of LDVF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liqun Wu
- Liqun Wu, Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Shanghai Rui Jin Er Road, Shanghai, P.R. China, 200025,
| |
Collapse
|
18
|
Syed FF, Hai JJ, Lachman N, DeSimone CV, Asirvatham SJ. The infrahisian conduction system and endocavitary cardiac structures: relevance for the invasive electrophysiologist. J Interv Card Electrophysiol 2013; 39:45-56. [PMID: 24322419 DOI: 10.1007/s10840-013-9858-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/24/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Faisal F Syed
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | | | | | | |
Collapse
|
19
|
Osadchii OE. Electrophysiological determinants of arrhythmic susceptibility upon endocardial and epicardial pacing in guinea-pig heart. Acta Physiol (Oxf) 2012; 205:494-506. [PMID: 22356273 DOI: 10.1111/j.1748-1716.2012.02428.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/23/2011] [Accepted: 02/14/2012] [Indexed: 12/01/2022]
Abstract
AIM Endocardial pacing instituted to treat symptomatic bradycardia may nevertheless promote tachyarrhythmia in some pacemaker-implanted patients. We sought to determine the contributing electrophysiological mechanisms. METHODS Left ventricular (LV) monophasic action potential duration (APD(90)) and effective refractory periods were determined in perfused guinea-pig hearts along with volume-conducted ECG recordings during epicardial and endocardial stimulations. RESULTS Consistent with electrotonic modulation of repolarization, APD(90) at a given (either epicardial or endocardial) recording site tended to be longer while pacing from the ipsilateral LV site as compared to stimulations applied at the opposite side of ventricular wall. As a result, the intrinsic transmural repolarization gradient was amplified during endocardial pacing while being significantly reduced upon epicardial stimulations. The maximum slope of APD(90) restitution was greater upon endocardial than epicardial pacing. The excitability was found to recur at earlier repolarization time point at endocardium than epicardium, thereby contributing to increased endocardial critical intervals for re-excitation. Premature extrasystolic beats could have been elicited at shorter coupling stimulation intervals and propagated with greater transmural conduction delay upon endocardial than epicardial stimulations. Endocardial site exhibited lower ventricular fibrillation thresholds and greater inducibility of tachyarrhythmia upon extrasystolic stimulations as compared to epicardium. CONCLUSION Arrhythmic susceptibility in guinea-pig heart is greater during endocardial than epicardial pacing because of greater transmural APD(90) dispersion, steeper electrical restitution slopes, greater critical intervals for LV re-excitation and slower transmural conduction of the earliest premature ectopic beats. Further studies are warranted to determine whether these effects may contribute to proarrhythmia in paced human patients.
Collapse
Affiliation(s)
- O E Osadchii
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
20
|
Latcu D, Saoudi N. His-Purkinje et arythmies. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2011. [DOI: 10.1016/s1878-6480(11)70390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Wu TJ, Lin SF, Hsieh YC, Lin TC, Lin JC, Ting CT. Pretreatment of BAPTA-AM suppresses the genesis of repetitive endocardial focal discharges and pacing-induced ventricular arrhythmia during global ischemia. J Cardiovasc Electrophysiol 2011; 22:1154-62. [PMID: 21489030 DOI: 10.1111/j.1540-8167.2011.02067.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In isolated rabbit hearts, repetitive endocardial focal discharges (REFDs) were consistently observed during ventricular fibrillation (VF) with prolonged (>5 minutes) global ischemia (GI). We hypothesized that BAPTA-AM, a calcium chelator, can suppress these REFDs. METHODS AND RESULTS Using a two-camera optical mapping system, we simultaneously mapped endocardial (left ventricle, LV) and epicardial (both ventricles) activations during ventricular arrhythmia with GI. In 5 hearts (protocol I), we infused Tyrode's solution (no BAPTA-AM) for ≥30 minutes before the onset of no-flow GI. In 7 additional hearts (protocol II), BAPTA-AM (20 μmol/L) was infused for ≥30 minutes before the initiation of GI. In protocol I, sustained VF (>30 seconds) was successfully induced in all 5 hearts with prolonged GI. REFDs were present in >85 % of recording time. In protocol II, however, ventricular arrhythmia was not inducible and REFDs were not observed after 5-minute GI in 5 hearts. Effects of BAPTA-AM on intracellular calcium (Ca(i) ) at the LV endocardium were also evaluated in 5 hearts (protocol III) using dual Ca(i) /membrane potential mapping. GI, both without and with BAPTA-AM pretreatment, caused a decrease of Ca(i) amplitude during S(1) pacing. However, this effect was more pronounced in the hearts with BAPTA-AM pretreatment (P < 0.001). GI, without BAPTA-AM pretreatment, caused broadening of Ca(i) transient. In contrast, GI, with BAPTA-AM pretreatment, caused narrowing of Ca(i) transient. CONCLUSIONS BAPTA-AM pretreatment attenuates Ca(i) transient, suppressing the genesis of REFDs and pacing-induced ventricular arrhythmia during GI. These findings support the notion that Ca(i) dynamics is important in the maintenance of REFDs.
Collapse
Affiliation(s)
- Tsu-Juey Wu
- Cardiovascular Center, Taichung Veterans General Hospital and Department of Internal Medicine, Faculty of Medicine, Institute of Clinical Medicine, Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
22
|
Kurian TK, Efimov IR. Mechanisms of fibrillation: neurogenic or myogenic? Reentrant or focal? Multiple or single? Still puzzling after 160 years of inquiry. J Cardiovasc Electrophysiol 2011; 21:1274-5. [PMID: 20550608 DOI: 10.1111/j.1540-8167.2010.01820.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Osadchii OE, Soltysinska E, Olesen SP. Na+ channel distribution and electrophysiological heterogeneities in guinea pig ventricular wall. Am J Physiol Heart Circ Physiol 2011; 300:H989-1002. [DOI: 10.1152/ajpheart.00816.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to explore the distribution pattern of Na+ channels across ventricular wall, and to determine its functional correlates, in the guinea pig heart. Voltage-dependent Na+ channel (Nav) protein expression levels were measured in transmural samples of ventricular tissue by Western blotting. Isolated, perfused heart preparations were used to record monophasic action potentials and volume-conducted ECG, and to measure effective refractory periods (ERPs) and pacing thresholds, in order to assess excitability, electrical restitution kinetics, and susceptibility to stimulation-evoked tachyarrhythmias at epicardial and endocardial stimulation sites. In both ventricular chambers, Nav protein expression was higher at endocardium than epicardium, with midmyocardial layers showing intermediate expression levels. Endocardial stimulation sites showed higher excitability, as evidenced by lower pacing thresholds during regular stimulation and downward displacement of the strength-interval curve reconstructed after extrasystolic stimulation compared with epicardium. ERP restitution assessed over a wide range of pacing rates showed greater maximal slope and faster kinetics at endocardial than epicardial stimulation sites. Flecainide, a Na+ channel blocker, reduced the maximal ERP restitution slope, slowed restitution kinetics, and eliminated epicardial-to-endocardial difference in dynamics of electrical restitution. Greater excitability and steeper electrical restitution have been associated with greater arrhythmic susceptibility of endocardium than epicardium, as assessed by measuring ventricular fibrillation threshold, inducibility of tachyarrhythmias by rapid cardiac pacing, and the magnitude of stimulation-evoked repolarization alternans. In conclusion, higher Na+ channel expression levels may contribute to greater excitability, steeper electrical restitution slopes and faster restitution kinetics, and greater susceptibility to stimulation-evoked tachyarrhythmias at endocardium than epicardium in the guinea pig heart.
Collapse
Affiliation(s)
- Oleg E. Osadchii
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ewa Soltysinska
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Soren Peter Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Murakawa Y. Role of purkinje fibers in the maintenance of ventricular fibrillation. Circ J 2009; 73:1793-4. [PMID: 19779271 DOI: 10.1253/circj.cj-09-0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Wu TJ, Lin SF, Hsieh YC, Chiu YT, Ting CT. Repetitive endocardial focal discharges during ventricular fibrillation with prolonged global ischemia in isolated rabbit hearts. Circ J 2009; 73:1803-11. [PMID: 19652397 DOI: 10.1253/circj.cj-09-0260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ventricular fibrillation (VF) during prolonged (>5 min) global ischemia (GI) could be due to repetitive endocardial focal discharges (REFDs). This hypothesis was tested in isolated rabbit hearts. METHODS AND RESULTS With optical mapping, simultaneous endocardial (left ventricle, LV) and epicardial (both ventricles) activations during VF with prolonged GI were studied (protocol I, 8 hearts). Lugol solution was applied to the LV endocardium in additional 5 hearts after 5-min GI (protocol II). During prolonged GI, sustained VF (>30 s) was successfully induced in 7 protocol I hearts. The dominant frequency of summed optical signals at the LV endocardium was higher than at the epicardium (P<0.05). Mapping data showed that after 5-min GI, REFDs were present in >90% for recording time. There were 18 windows of optical recording showing spontaneous VF termination. In 10, once REFDs ceased, the VF episode terminated immediately. Electrical defibrillation was also performed on 3 hearts. Eight shocks showed early VF recurrence after successful defibrillation. REFDs were consistently involved in the initiation period of recurrence. In protocol II, Lugol subendocardial ablation diminished REFD genesis during re-induced VF. These VF episodes were all non-sustained. CONCLUSIONS REFDs at the LV endocardium were important for both VF maintenance and post-shock recurrence during prolonged GI in this model.
Collapse
Affiliation(s)
- Tsu-Juey Wu
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Tabereaux PB, Dosdall DJ, Ideker RE. Mechanisms of VF maintenance: wandering wavelets, mother rotors, or foci. Heart Rhythm 2008; 6:405-15. [PMID: 19251220 DOI: 10.1016/j.hrthm.2008.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/03/2008] [Indexed: 11/19/2022]
Abstract
Ventricular fibrillation (VF), despite its declining incidence as a cause of sudden cardiac death, is still a major health problem. The underlying mechanisms for the maintenance of VF are still disputed. Studies suggest that VF is unlikely one static mechanism but rather a dynamic process of electrical derangement that changes with duration. The 2 principal proposed mechanisms of VF are multiple wavelets and mother rotors. Most studies of these proposed mechanisms for VF maintenance have been during the first minute of VF. However, the time to external defibrillation in the community and pre-hospital settings, where the majority of sudden cardiac death occurs, ranges from 4 to 10 min and the time to defibrillation seems crucial because the odds of survival worsen with delay. Recent studies during the first 10 min of VF suggest that Purkinje fibers are important in maintaining VF after the first 1 to 2 min, either as a part of a reentrant circuit or as a source of focal activations.
Collapse
Affiliation(s)
- Paul B Tabereaux
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA.
| | | | | |
Collapse
|
28
|
|
29
|
Ben Caref E, Boutjdir M, Himel HD, El-Sherif N. Role of subendocardial Purkinje network in triggering torsade de pointes arrhythmia in experimental long QT syndrome. Europace 2008; 10:1218-23. [PMID: 18757866 DOI: 10.1093/europace/eun248] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The present study addresses the controversy regarding the 'primary' role of the subendocardial Purkinje network in triggering torsade de pointes (TdP) ventricular tachyarrhythmia (VAs) in the long QT syndrome (LQTS). METHODS AND RESULTS We investigated the well-established canine anthopleurin-A (AP-A) surrogate model of LQT3 to study the role of the subendocardial Purkinje network in triggering VAs. Three-dimensional activation and repolarization patterns were analysed from unipolar extracellular electrograms utilizing 64 plunge needle electrodes. In 6 dogs, the animals were placed on cardiopulmonary bypass and chemical ablation of the endocardial Purkinje network was obtained using Lugol's solution. Spontaneous VAs consistently developed in response to AP-A infusion and were triggered by a subendocardial focal activity acting on a substrate of spatial three-dimensional dispersion of repolarization. Endocardial ablation was considered successful by the development of complete atrioventricular block in the absence of ventricular escape rhythm. Following endocardial ablation spontaneous VAs were no longer observed. However, an appropriately coupled premature stimulus consistently induced re-entrant VAs. CONCLUSION The present study strongly suggests that in the LQTS, focal activity generated in subendocardial Purkinje tissue is the primary, if not the only, trigger for TdP VAs by acting on a substrate of three-dimensional dispersion of myocardial repolarization to induce re-entrant excitation.
Collapse
Affiliation(s)
- E Ben Caref
- Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
30
|
Dosdall DJ, Tabereaux PB, Kim JJ, Walcott GP, Rogers JM, Killingsworth CR, Huang J, Robertson PG, Smith WM, Ideker RE. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs. Am J Physiol Heart Circ Physiol 2008; 295:H883-9. [PMID: 18586887 DOI: 10.1152/ajpheart.00466.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 x 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 +/- 1.5 vs. 9.2 +/- 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF.
Collapse
Affiliation(s)
- Derek J Dosdall
- Volker Hall B140, 1670 Univ. Blvd., Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pak HN, Kim GI, Lim HE, Fang YH, Choi JI, Kim JS, Hwang C, Kim YH. Both Purkinje Cells and Left Ventricular Posteroseptal Reentry Contribute to the Maintenance of Ventricular Fibrillation in Open-Chest Dogs and Swine Effects of Catheter Ablation and the Ventricular Cut-and-Sew Operation. Circ J 2008; 72:1185-92. [PMID: 18577833 DOI: 10.1253/circj.72.1185] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui-Nam Pak
- Korea University Cardiovascular Center, Seoul
| | - Gwang Il Kim
- Department of Pathology, College of Medicine, Pochon CHA University
| | | | | | | | | | | | | |
Collapse
|
32
|
Cerrone M, Noujaim SF, Tolkacheva EG, Talkachou A, O'Connell R, Berenfeld O, Anumonwo J, Pandit SV, Vikstrom K, Napolitano C, Priori SG, Jalife J. Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ Res 2007; 101:1039-48. [PMID: 17872467 PMCID: PMC2515360 DOI: 10.1161/circresaha.107.148064] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (VT) is a lethal familial disease characterized by bidirectional VT, polymorphic VT, and ventricular fibrillation. Catecholaminergic polymorphic VT is caused by enhanced Ca2+ release through defective ryanodine receptor (RyR2) channels. We used epicardial and endocardial optical mapping, chemical subendocardial ablation with Lugol's solution, and patch clamping in a knockin (RyR2/RyR2(R4496C)) mouse model to investigate the arrhythmogenic mechanisms in catecholaminergic polymorphic VT. In isolated hearts, spontaneous ventricular arrhythmias occurred in 54% of 13 RyR2/RyR2(R4496C) and in 9% of 11 wild-type (P=0.03) littermates perfused with Ca2+and isoproterenol; 66% of 12 RyR2/RyR2(R4496C) and 20% of 10 wild-type hearts perfused with caffeine and epinephrine showed arrhythmias (P=0.04). Epicardial mapping showed that monomorphic VT, bidirectional VT, and polymorphic VT manifested as concentric epicardial breakthrough patterns, suggesting a focal origin in the His-Purkinje networks of either or both ventricles. Monomorphic VT was clearly unifocal, whereas bidirectional VT was bifocal. Polymorphic VT was initially multifocal but eventually became reentrant and degenerated into ventricular fibrillation. Endocardial mapping confirmed the Purkinje fiber origin of the focal arrhythmias. Chemical ablation of the right ventricular endocardial cavity with Lugol's solution induced complete right bundle branch block and converted the bidirectional VT into monomorphic VT in 4 anesthetized RyR2/RyR2(R4496C) mice. Under current clamp, single Purkinje cells from RyR2/RyR2(R4496C) mouse hearts generated delayed afterdepolarization-induced triggered activity at lower frequencies and level of adrenergic stimulation than wild-type. Overall, the data demonstrate that the His-Purkinje system is an important source of focal arrhythmias in catecholaminergic polymorphic VT.
Collapse
Affiliation(s)
- Marina Cerrone
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pak HN, Kim YH, Lim HE, Chou CC, Miyauchi Y, Fang YH, Sun K, Hwang C, Chen PS. Role of the Posterior Papillary Muscle and Purkinje Potentials in the Mechanism of Ventricular Fibrillation in Open Chest Dogs and Swine: Effects of Catheter Ablation. J Cardiovasc Electrophysiol 2006; 17:777-83. [PMID: 16836678 DOI: 10.1111/j.1540-8167.2006.00511.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Papillary muscle (PM) ablation may terminate ventricular fibrillation (VF) in rabbit hearts. Whether or not PM ablation prevents ventricular fibrillation (VF) induction in large animals is unknown. METHODS We performed noncontact endocardial mapping and/or high-density epicardial mapping during VF in 12 dogs and 16 swine and tested the effects of posterior PM (PPM) ablation on VF inducibility. RESULTS During VF in progressive global ischemia (3 swine and 2 dogs), the highest dominant frequency (DF) was near PPM. The majority of the reentrant wavefronts during a propranolol infusion (swine) were anchored to the PPM. Purkinje potentials onset were recorded on the PPM both during sinus rhythm and during VF. Radiofrequency (RF) ablation of the endocardium on the PPM with a linear extension of the ablation line from the PPM to the mitral valve annulus and then the left ventricular apex in 7 dogs reduced the VF inducibility from 100% at baseline to 22% after ablation (P < 0.0001). RF applications to the anterolateral wall of dogs (n = 3) did not prevent VF induction. The application of RF energy near the PPM frequently initiated VF in swine (n = 7), preventing subsequent testing of VF inducibility. CONCLUSION In dogs and swine, the highest DF and majority of reentrant wavefronts during VF with acute global ischemia or during a propranolol infusion were located on the PPM. RF ablation targeted at the PPM reduced the inducibility of VF in normal dogs. However, the same ablation provoked incessant VF in swine, preventing subsequent testing of VF inducibility.
Collapse
Affiliation(s)
- Hui-Nam Pak
- Korea University Cardiovascular Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Han W, Zhang L, Schram G, Nattel S. Properties of potassium currents in Purkinje cells of failing human hearts. Am J Physiol Heart Circ Physiol 2002; 283:H2495-503. [PMID: 12388306 DOI: 10.1152/ajpheart.00389.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac Purkinje fibers play an important role in cardiac arrhythmias, but no information is available about ionic currents in human cardiac Purkinje cells (PCs). PCs and midmyocardial ventricular myocytes (VMs) were isolated from explanted human hearts. K(+) currents were evaluated at 37 degrees C with whole cell patch clamp. PCs had clear inward rectifier K(+) current (I(K1)), with a density not significantly different from VMs between -110 and -20 mV. A Cs(+)-sensitive, time-dependent hyperpolarization-activated current was measurable negative to -60 mV. Transient outward current (I(to)) density was smaller, but end pulse sustained current (I(sus)) was larger, in PCs vs. VMs. I(to) recovery was substantially slower in PCs, leading to strong frequency dependence. Unlike VM I(to), which was unaffected by 10 mM tetraethylammonium, Purkinje I(to) was strongly inhibited by tetraethylammonium, and Purkinje I(to) was 10-fold more sensitive to 4-aminopyridine than VM. PC I(sus) was also reduced strongly by 10 mM tetraethylammonium. In conclusion, human PCs demonstrate a prominent I(K1), a time-dependent hyperpolarization-activated current, and an I(to) with pharmacological sensitivity and recovery kinetics different from those in the atrium or ventricle and compatible with a different molecular basis.
Collapse
Affiliation(s)
- Wei Han
- Research Center, Montreal Heart Institute, Quebec H1T 1C8, Canada
| | | | | | | |
Collapse
|
35
|
Cates AW, Smith WM, Ideker RE, Pollard AE. Purkinje and ventricular contributions to endocardial activation sequence in perfused rabbit right ventricle. Am J Physiol Heart Circ Physiol 2001; 281:H490-505. [PMID: 11454550 DOI: 10.1152/ajpheart.2001.281.2.h490] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between peripheral conduction system and myocardial wave fronts control the ventricular endocardial activation sequence. To assess those interactions during sinus and paced ventricular beats, we recorded unipolar electrograms from 528 electrodes spaced 0.5 mm apart and placed over most of the perfused rabbit right ventricular free wall endocardium. Left ventricular contributions to electrograms were eliminated by cryoablating that tissue. Electrograms were systematically processed to identify fast (P) deflections separated by >2 ms from slow (V) deflections to measure P-V latencies. By using this criterion during sinus mapping (n = 5), we found P deflections in 22% of electrograms. They preceded V deflections at 91% of sites. Peripheral conduction system wave fronts preceded myocardial wave fronts by an overall P-V latency magnitude that measured 6.7 +/- 3.9 ms. During endocardial pacing (n = 8) at 500 ms cycle length, P deflections were identified on 15% of electrodes and preceded V deflections at only 38% of sites, and wave fronts were separated by a P-V latency magnitude of 5.6 +/- 2.3 ms. The findings were independent of apical, basal, or septal drive site. Modest changes in P-V latency accompanied cycle length accommodation to 125-ms pacing (6.8 +/- 2.6 ms), although more pronounced separation between wave fronts followed premature stimulation (11.7 +/- 10.4 ms). These results suggested peripheral conduction system and myocardial wave fronts became functionally more dissociated after premature stimulation. Furthermore, our analysis of the first ectopic beats that followed 12 of 24 premature stimuli revealed comparable separation between wave fronts (10.7 +/- 5.5 ms), suggesting the dissociation observed during the premature cycles persisted during the initiating cycles of the resulting arrhythmias.
Collapse
Affiliation(s)
- A W Cates
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
36
|
Yamaki M, Kubota I, Tomoike H. Simulation of late potentials and arrhythmias by use of a three-dimensional heart model: Causality of peri-infarctional slow conduction in ventricular fibrillation. J Electrocardiol 1999. [DOI: 10.1016/s0022-0736(99)90090-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Abstract
One of the factors that favors the development of ventricular fibrillation is an increase in the dispersion of refractoriness. Experiments will be described in which an increase in dispersion in the recovery of excitability was determined during brief episodes of enhanced sympathetic nerve activity, known to increase the risk of fibrillation. Whereas in the normal heart ventricular fibrillation can be induced by a strong electrical shock, a premature stimulus of moderate intensity only induces fibrillation in the presence of regional ischemia, which greatly increases the dispersion of refractoriness. One factor that is of importance for the transition of reentrant ventricular tachycardia to ventricular fibrillation during acute regional ischemia is the subendocardial Purkinje system. After selective destruction of the Purkinje network by lugol, reentrant tachycardias still develop in the ischemic region, but they do not degenerate into fibrillation. Finally, attempts were made to determine the minimal mass of thin ventricular myocardium required to sustain fibrillation induced by burst pacing. This was done by freezing of subendocardial and midmural layers. The rim of surviving epicardial muscle had to be larger than 20 g. Extracellular electrograms during fibrillation in both the intact and the "frozen" left ventricle were indistinguishable, but activation patterns were markedly different. In the intact ventricle epicardial activation was compatible with multiple wavelet reentry, in the "frozen" heart a single, or at most two wandering reentrant waves were seen. (c) 1998 American Institute of Physics.
Collapse
Affiliation(s)
- Michiel J. Janse
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 Az Amsterdam ZO, The Netherlands
| |
Collapse
|
38
|
Chen PS, Garfinkel A, Weiss JN, Karagueuzian HS. Computerized mapping of fibrillation in normal ventricular myocardium. CHAOS (WOODBURY, N.Y.) 1998; 8:127-136. [PMID: 12779716 DOI: 10.1063/1.166293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It is well known that the ability to fibrillate is intrinsic to a normal ventricle that exceeds a critical mass. The questions we address are how is ventricular fibrillation (VF) initiated and perpetuated in normal myocardium, and why is VF not seen more often in the general population if all ventricles have the ability to fibrillate. To study the mechanisms of VF, we used computerized mapping techniques with up to 512 channels of simultaneous multisite recordings for data acquisition. The data were then processed for dynamic display of the activation patterns and for mathematical analyses of the activation intervals. The results show that in normal ventricles, VF can be initiated by a single strong premature stimulus given during the vulnerable period of the cardiac cycle. The initial activations form a figure-eight pattern. Afterward, VF will perpetuate itself without any outside help. The self-perpetuation itself is due to at least two factors. One is that single wave fronts spontaneously break up into two or more wavelets. The second is that when two wavelets intersect perpendicular to each other, the second wavelet is broken by the residual refractoriness left over from the first wavelet. Mathematical analyses of the patterns of activation during VF revealed that VF is a form of chaos, and that transition from ventricular tachycardia (VT) to VF occurs via the quasiperiodic route. In separate experiments, we found that we can convert VF to VT by tissue size reduction. The physiological mechanism associated with the latter transition appears to be the reduction of the number of reentrant wave fronts and wandering wavelets. Based on these findings, we propose that the reentrant wave fronts and the wandering wavelets serve as the physiological equivalent of coupled oscillators. A minimal number of oscillators is needed for VF to perpetuate itself, and to generate chaotic dynamics; hence a critical mass is required to perpetuate VF. We conclude that VF in normal myocardium is a form of reentrant cardiac arrhythmia. A strong electrical stimulus initiates single or dual reentrant wave fronts that break up into multiple wavelets. Sometimes short-lived reentry is also generated during the course of VF. These organized reentrant and broken wavelets serve as coupled oscillators that perpetuate VF and maintain chaos. Although the ability to support these oscillators exists in a normal ventricle, the triggers required to generate them are nonexistent in the normal heart. Therefore, VF and sudden death do not happen to most people with normal ventricular myocardium. (c) 1998 American Institute of Physics.
Collapse
Affiliation(s)
- Peng-Sheng Chen
- Division of Cardiology, Department of Medicine, Cedars-Sinai Medical CenterUCLA School of Medicine, Los Angeles, California 90048
| | | | | | | |
Collapse
|
39
|
|
40
|
|
41
|
Inoue H, Waller BF, Zipes DP. Intracoronary ethyl alcohol or phenol injection ablates aconitine-induced ventricular tachycardia in dogs. J Am Coll Cardiol 1987; 10:1342-9. [PMID: 3680803 DOI: 10.1016/s0735-1097(87)80139-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hypothesis whether localized ventricular tachycardia could be ablated by myocardial necrosis induced with chemical agents injected into a coronary artery was tested. In 59 anesthetized dogs, a diagonal branch of the left anterior descending coronary artery was cannulated either occlusively or nonocclusively. Localized ventricular tachycardia was induced by injecting approximately 0.01 ml of 30 micrograms/ml of aconitine solution into the left ventricular wall perfused by the cannulated diagonal branch in 54 dogs. In eight untreated control dogs, aconitine-induced ventricular tachycardia lasted 10.2 +/- 2.3 minutes or degenerated into ventricular fibrillation after 7.0 +/- 4.0 minutes. In the remaining 46 dogs, 1 ml of saline solution, 25, 50 or 100% ethyl alcohol or 0.94 ml (mean [range 0.4 to 2.0]) of 25% phenol at room temperature was injected into the occluded coronary artery and 1 ml of 100% ethyl alcohol at body temperature was injected into the nonoccluded coronary artery. Ventricular tachycardia was eliminated in 9 (82%) of 11 dogs receiving phenol, 7 (88%) of 8 dogs receiving 100% ethyl alcohol occlusively, 6 (75%) of 8 dogs receiving 100% ethyl alcohol nonocclusively and 6 (67%) of 9 dogs receiving 50% ethyl alcohol for an entire follow-up period of 10 to 60 minutes. However, saline solution and 25% ethyl alcohol suppressed ventricular tachycardia only transiently in 8 (53%) of 15 and 3 (60%) of 5 dogs, respectively. Left ventricular end-diastolic pressure rose from 8.0 to 11.2 mm Hg (p less than 0.05) immediately after injection of 100% ethyl alcohol in seven dogs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Inoue
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis 46202
| | | | | |
Collapse
|