1
|
Chevalley T, Dübi M, Fumeaux L, Merli MS, Sarre A, Schaer N, Simeoni U, Yzydorczyk C. Sexual Dimorphism in Cardiometabolic Diseases: From Development to Senescence and Therapeutic Approaches. Cells 2025; 14:467. [PMID: 40136716 PMCID: PMC11941476 DOI: 10.3390/cells14060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The global incidence and prevalence of cardiometabolic disorders have risen significantly in recent years. Although lifestyle choices in adulthood play a crucial role in the development of these conditions, it is well established that events occurring early in life can have an important effect. Recent research on cardiometabolic diseases has highlighted the influence of sexual dimorphism on risk factors, underlying mechanisms, and response to therapies. In this narrative review, we summarize the current understanding of sexual dimorphism in cardiovascular and metabolic diseases in the general population and within the framework of the Developmental Origins of Health and Disease (DOHaD) concept. We explore key risk factors and mechanisms, including the influence of genetic and epigenetic factors, placental and embryonic development, maternal nutrition, sex hormones, energy metabolism, microbiota, oxidative stress, cell death, inflammation, endothelial dysfunction, circadian rhythm, and lifestyle factors. Finally, we discuss some of the main therapeutic approaches, responses to which may be influenced by sexual dimorphism, such as antihypertensive and cardiovascular treatments, oxidative stress management, nutrition, cell therapies, and hormone replacement therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine Yzydorczyk
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (T.C.); (M.D.); (L.F.); (M.S.M.); (A.S.); (N.S.)
| |
Collapse
|
2
|
Ungvari A, Gulej R, Patai R, Papp Z, Toth A, Szabó AÁ, Podesser BK, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Maier AB, Csiszar A, Ungvari Z. Sex-specific mechanisms in vascular aging: exploring cellular and molecular pathways in the pathogenesis of age-related cardiovascular and cerebrovascular diseases. GeroScience 2025; 47:301-337. [PMID: 39754010 PMCID: PMC11872871 DOI: 10.1007/s11357-024-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 03/04/2025] Open
Abstract
Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases. Critical analysis of both preclinical and clinical studies reveals significant sex-specific variations in these mechanisms, which could be pivotal in understanding the disparity in disease morbidity and mortality between sexes. The review highlights key molecular pathways, including oxidative stress, inflammation, and autophagy, and their differential roles in the vascular aging of males and females. We argue that recognizing these sex-specific differences is crucial for developing targeted therapeutic strategies aimed at preventing and managing age-related vascular pathologies. The implications for personalized medicine and potential areas for future research are also explored, emphasizing the need for a nuanced approach to the study and treatment of vascular aging.
Collapse
Affiliation(s)
- Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Attila Á Szabó
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
- Reynolds Section of Geriatrics and Palliative Medicine, Department of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- @AgeSingapore, Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Higashi Y. Noninvasive Assessment of Vascular Function: From Physiological Tests to Biomarkers. JACC. ASIA 2024; 4:898-911. [PMID: 39802992 PMCID: PMC11711812 DOI: 10.1016/j.jacasi.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 01/16/2025]
Abstract
Vascular function is impaired by conditions such as hypertension, dyslipidemia, and diabetes as well as coronary risk factors including age, smoking, obesity, menopause and physical inactivity. Measurement of vascular function is useful not only for assessment of atherosclerosis itself but also in many other aspects such as understanding the pathophysiology, assessing treatment efficacy, and predicting prognosis of cardiovascular events. It is therefore important to accurately assess the extent of vascular function. A variety of vascular function assessments are currently used in clinical practice, including flow-mediated vasodilation, reactive hyperemia index, strain-gauge pulse plethysmographs, pulse wave velocity, augmentation index, intima media thickness, and chemical biomarkers. However, it is also true that there is no gold standard method for measuring vascular function in humans. To use vascular function effectively, it is necessary to understand the measurement-related pitfalls.
Collapse
Affiliation(s)
- Yukihito Higashi
- Address for correspondence: Dr Yukihito Higashi, Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
4
|
Davis KA, Bhuiyan NA, McIntyre BJ, Dinh VQ, Rickards CA. Induced blood flow oscillations at 0.1 Hz protects oxygenation of severely ischemic tissue in humans. J Appl Physiol (1985) 2024; 137:1243-1256. [PMID: 39298614 PMCID: PMC11563589 DOI: 10.1152/japplphysiol.00438.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Generating 10-s (∼0.1 Hz) fluctuations or "oscillations" in arterial pressure and blood flow blunts reductions in cerebral tissue oxygenation in response to 15%-20% reductions in cerebral blood flow. To examine the effect of 0.1 Hz hemodynamic oscillations on tissue oxygenation during severe ischemia, we developed a partial limb ischemia protocol targeting a 70%-80% reduction in blood flow. We hypothesized that 0.1 Hz hemodynamic oscillations would attenuate reductions in tissue oxygenation during severe ischemia. Thirteen healthy humans (6 M and 7 F; 27.3 ± 4.2 yr) completed two experimental protocols separated by ≥48 h. In both conditions, an upper arm cuff was used to decrease brachial artery (BA) blood velocity by ∼70%-80% from baseline. In the oscillation condition (0.1 Hz), 0.1 Hz hemodynamic oscillations were induced by intermittently inflating and deflating bilateral thigh cuffs every 5 s during forearm ischemia. In the control condition (0 Hz), the thigh cuffs were inactive. BA blood flow, forearm tissue oxygenation (SmO2), and arterial pressure were measured continuously. The initial reduction in BA blood velocity was tightly matched between protocols (0 Hz: -76.9 ± 7.9% vs. 0.1 Hz: -75.5 ± 7.4%, P = 0.49). Although 0.1 Hz oscillations during forearm ischemia had no effect on the reduction in BA velocity (0 Hz: -73.0 ± 9.9% vs. 0.1 Hz: -73.3 ± 8.2%, P = 0.91), the reduction in SmO2 was attenuated (0 Hz: -35.7 ± 8.6% vs. 0.1 Hz: -27.2 ± 8.9%, P = 0.01). These data provide further evidence for the use of 0.1 Hz hemodynamic oscillations as a potential therapeutic intervention for conditions associated with severe tissue ischemia (e.g., hemorrhage and stroke).NEW & NOTEWORTHY We investigated the effects of induced 10-s (0.1 Hz) oscillations in blood flow on forearm tissue oxygenation during severe ischemia. Intermittent inflation of bilateral thigh cuffs was used as a clinically applicable method to drive blood flow oscillations. In support of our hypothesis, 0.1 Hz oscillations in blood flow blunted reductions in forearm tissue oxygenation. These results further support the potential use of oscillatory hemodynamics as a therapeutic intervention for ischemic conditions.
Collapse
Affiliation(s)
- K Austin Davis
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nasrul A Bhuiyan
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Benjamin J McIntyre
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Viet Q Dinh
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Caroline A Rickards
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
5
|
Durchslag JN, Tanner SM, Mason AR, Roth NR, Thiros AS, Van Guilder GP. Menstrual cycle and the protective effects of remote ischemic preconditioning against endothelial ischemia/reperfusion injury: comparison with postmenopausal women. J Appl Physiol (1985) 2024; 137:1446-1457. [PMID: 39388285 DOI: 10.1152/japplphysiol.00127.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
The aim of this study was to determine whether the capacity of remote ischemic preconditioning (IPC) against endothelial ischemia/reperfusion (I/R) injury changes across the menstrual cycle in premenopausal women and to compare IPC responses to postmenopausal women. Thirty-five women were studied (22 premenopausal/13 postmenopausal). Changes in endothelial function were determined during the early follicular vs. the late follicular phase (after positive urine ovulation test; Study 1), vs. the mid-luteal phase (after positive urine progesterone test; Study 2), and vs. estrogen-deficient postmenopausal women; Study 3). Endothelium-dependent vasodilation was assessed by the forearm blood flow (FBF) to reactive hyperemia with/without I/R injury with remote IPC (3 × 5 min cycles of upper arm ischemia). In the premenopausal women, peak FBF responses during the early follicular phase were blunted 20% (P < 0.0001) with I/R injury (from baseline: 23.4 ± 6.2 to 19.5 ± 4.9 mL/100 mL tissue/min) compared with the late follicular/mid-luteal phases despite IPC. In postmenopausal women, peak FBF was diminished (from: 21.1 ± 5.1 to 17.2 ± 4.4 mL/100 mL tissue/min), and total FBF (area under the curve) was decreased a third (-32%; P < 0.001) with I/R injury. Protection from I/R injury was preserved during the late follicular (from baseline: 21.7 ± 5.3 to 24.8 ± 5.9 mL/100 mL tissue/min; P = 0.109) and mid-luteal phases (from: 25.1 ± 3.9 to 27.2 ± 5.7 mL/100 mL tissue/min; P = 0.267). Reduced estrogen during the early follicular phase and the rise in estrogen associated with ovulation and the mid-luteal phase may contribute to changes in IPC-mediated protection in premenopausal women and shed light on how cardioprotection may change with ovarian hormone deficiency with the menopause transition.NEW & NOTEWORTHY The capacity of remote ischemic preconditioning to protect against vascular endothelial ischemia/reperfusion injury varies widely across the phases of the menstrual cycle in healthy premenopausal women. Robust protection was afforded during the late follicular and mid-luteal phases. In contrast, weakened protection was demonstrated during the early follicular phase, with a level of impairment similar to estrogen-deficient postmenopausal women.
Collapse
Affiliation(s)
- Janinka Nina Durchslag
- Recreation, Exercise & Sport Science, Western Colorado University, Gunnison, Colorado 81231, United States
| | - Shelby M Tanner
- Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Alexandra R Mason
- Recreation, Exercise & Sport Science, Western Colorado University, Gunnison, Colorado 81231, United States
| | - Nasya R Roth
- Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Alexia S Thiros
- Recreation, Exercise & Sport Science, Western Colorado University, Gunnison, Colorado 81231, United States
| | - Gary P Van Guilder
- Recreation, Exercise & Sport Science, Western Colorado University, Gunnison, Colorado 81231, United States
- Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota 57007, United States
| |
Collapse
|
6
|
Daniele A, Lucas SJE, Rendeiro C. Variability of flow-mediated dilation across lower and upper limb conduit arteries. Eur J Appl Physiol 2024; 124:3265-3278. [PMID: 38878074 PMCID: PMC11519148 DOI: 10.1007/s00421-024-05517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/23/2024] [Indexed: 10/30/2024]
Abstract
Endothelial dysfunction is an early predictor of atherosclerosis and cardiovascular disease. Flow-mediated dilation (FMD) is the gold standard to assess endothelial function in humans. FMD reproducibility has been mainly assessed in the brachial artery (BA) with limited research in lower limb arteries. The purpose of this study was to compare FMD reproducibility in the upper limb BA and lower limb superficial femoral artery (SFA) in young healthy adults.Fifteen young healthy adults (nine males; six females) underwent FMD, resting diameter, velocity, and shear rate measurements on three occasions to determine intra-and inter-day reproducibility in both BA and SFA, assessed by coefficient of variation (CV), intraclass correlation coefficient (ICC), and Bland-Altman plots.BA FMD CVs (intra-day: 4.2%; inter-day: 8.7%) and ICCs (intra-day: 0.967; inter-day: 0.903) indicated excellent reproducibility and reliability, while for SFA FMD, both CVs (intra-day: 11.6%; inter-day: 26.7%) and ICCs (intra-day: 0.898; inter-day: 0.651) showed good/moderate reproducibility and reliability. BA FMD was significantly more reproducible than SFA FMD (p < 0.05). Diameter reproducibility was excellent and similar between arteries, while resting velocity and shear rate have lower reproducibility in the BA compared to SFA. Bland-Altman plots displayed no proportional and fixed bias between measurements.In summary, SFA FMD is less reproducible than BA FMD, with identical volume of ultrasound training. Given the increasing interest in using SFA FMD to test the efficacy of interventions targeting lower limb's vascular health and as a potential biomarker for peripheral arterial disease risk, future studies should ensure higher levels of training for adequate reproducibility.
Collapse
Affiliation(s)
- Alessio Daniele
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Williams JS, Cheng JL, Stone JC, Kamal MJ, Cherubini JM, Parise G, MacDonald MJ. Menstrual and oral contraceptive pill cycles minimally influence vascular function and associated cellular regulation in premenopausal females. Am J Physiol Heart Circ Physiol 2024; 327:H1019-H1036. [PMID: 39178026 DOI: 10.1152/ajpheart.00672.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Historical exclusion of females in research has been, in part, due to the perceived influence of natural menstrual (NAT) and oral contraceptive pill (OCP) cycles on vascular outcomes. NAT and OCP cycle phases may influence brachial artery (BA) endothelial function, however, findings are mixed. Minimal research has examined arterial stiffness, smooth muscle, and lower limb endothelial function. The purpose of this study was to investigate the influence of NAT and OCP cycles on cardiovascular outcomes and cellular regulation. Forty-nine premenopausal females (n = 17 NAT, n = 17 second generation OCP, n = 15 third generation OCP) participated in two randomized order visits in the low (LH, early follicular/placebo) and high (HH, midluteal/active) hormone cycle phases. BA and superficial femoral artery (SFA) endothelial function [flow-mediated dilation (FMD) test], smooth muscle function (nitroglycerine-mediated dilation test), and carotid and peripheral (pulse wave velocity) arterial stiffness were assessed. Cultured female human endothelial cells were exposed to participant serum for 24 h to examine endothelial nitric oxide synthase (eNOS) and estrogen receptor-α (ERα) protein content. BA FMD was elevated in the HH vs. LH phase, regardless of group (HH, 7.7 ± 3.5%; LH, 7.0 ± 3.3%; P = 0.02); however, allometric scaling for baseline diameter resulted in no phase effect (HH, 7.6 ± 2.6%; LH, 7.1 ± 2.6%; P = 0.052, d = 0.35). SFA FMD, BA, and SFA smooth muscle function, arterial stiffness, and eNOS and ERα protein content were unaffected. NAT and OCP phases examined have minimal influence on vascular outcomes and ERα-eNOS pathway, apart from a small effect on BA endothelial function partially explained by differences in baseline artery diameter. NEW & NOTEWORTHY Comprehensive evaluation of the cardiovascular system in naturally cycling and second and third generation OCP users indicates no major influence of hormonal phases examined on endothelial function and smooth muscle function in the arteries of the upper and lower limbs, arterial stiffness, or underlying cellular mechanisms. Study findings challenge the historical exclusion of female participants due to potentially confounding hormonal cycles; researchers are encouraged to consider the hormonal environment in future study design.
Collapse
Affiliation(s)
- Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jem L Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jenna C Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael J Kamal
- Molecular Exercise Physiology & Muscle Aging Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua M Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Molecular Exercise Physiology & Muscle Aging Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Fewkes JJ, Dordevic AL, Murray M, Williamson G, Kellow NJ. Association between endothelial function and skin advanced glycation end-products (AGEs) accumulation in a sample of predominantly young and healthy adults. Cardiovasc Diabetol 2024; 23:332. [PMID: 39251982 PMCID: PMC11386354 DOI: 10.1186/s12933-024-02428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND In populations with chronic disease, skin autofluorescence (SAF), a measure of long-term fluorescent advanced glycation end-products (AGEs) accumulation in body tissues, has been associated with vascular endothelial function, measured using flow-mediated dilation (FMD). The primary aim of this study was to quantify the relationship between endothelial function and tissue accumulation of AGEs in adults from the general population to determine whether SAF could be used as a marker to predict early impairment of the endothelium. METHODS A cross-sectional study was conducted with 125 participants (median age: 28.5 y, IQR: 24.4-36.0; 54% women). Endothelial function was measured by fasting FMD. Skin AGEs were measured as SAF using an AGE Reader. Participant anthropometry, blood pressure, and blood biomarkers were also measured. Associations were evaluated using multivariable regression analysis and were adjusted for significant covariates. RESULTS FMD was inversely correlated with SAF (ρ = -0.50, P < 0.001) and chronological age (ρ = -0.51, P < 0.001). In the multivariable analysis, SAF, chronological age, and male sex were independently associated with reduced FMD (B [95% CI]; -2.60 [-4.40, -0.80]; -0.10 [-0.16, -0.03]; 1.40 [0.14, 2.67], respectively), with the multivariable model adjusted R2 = 0.31, P < 0.001. CONCLUSIONS Higher skin AGE levels, as measured by SAF, were associated with lower FMD values, in a predominantly young, healthy population. Additionally, older age and male participants exhibited significantly lower FMD values, corresponding with compromised endothelial function. These results suggest that SAF, a simple and inexpensive marker, could be used to predict endothelial impairment before the emergence of any structural artery pathophysiology or classic cardiovascular disease risk markers. TRIAL REGISTRATION The study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12621000821897) and concurrently entered into the WHO International Clinical Trials Registry Platform under the same ID number.
Collapse
Affiliation(s)
- Juanita J Fewkes
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Margaret Murray
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC, 3800, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| |
Collapse
|
9
|
Williams JS, Wiley E, Cheng JL, Stone JC, Bostad W, Cherubini JM, Gibala MJ, Tang A, MacDonald MJ. Differences in cardiovascular risk factors associated with sex and gender identity, but not gender expression, in young, healthy cisgender adults. Front Cardiovasc Med 2024; 11:1374765. [PMID: 39318832 PMCID: PMC11420989 DOI: 10.3389/fcvm.2024.1374765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/10/2024] [Indexed: 09/26/2024] Open
Abstract
Background Sex differences exist in cardiovascular disease risk factors including elevated blood pressure and arterial stiffness, and decreased endothelial function in males compared to females. Feminine gender expression may be associated with elevated risk of acute coronary syndrome. However, no study has investigated the associations between sex, gender identity, and gender expression and cardiovascular disease risk factors in young adults. Methods One hundred and thirty participants (22 ± 3 years) underwent assessments of hemodynamics, arterial stiffness [pulse wave velocity (PWV)], and brachial artery endothelial function (flow-mediated dilation; %FMD). Participants completed a questionnaire capturing sex category (50 male/80 female), gender identity category (49 men/79 women/2 non-binary), and aspects of gender expression assessed by the Bem Sex Role Inventory-30 (39 androgynous/33 feminine/29 masculine/29 undifferentiated). Sex/gender identity category groups were compared using unpaired t-tests and gender expression groups compared using one-way ANOVAs. Results Resting systolic and mean arterial pressure (p < 0.01) were elevated in males vs. females. Central PWV was elevated in males [median (interquartile range): 6.4 (1.8) vs. 5.8 (2.2) m/s, p = 0.02]; however, leg and arm PWV were not different between sexes. %FMD was elevated in males vs. females, after accounting for a larger baseline artery diameter in males (8.8 ± 3.3% vs. 7.2 ± 3.1%, p = 0.02); since the majority of participants were cisgender, the same results were found examining gender identity (men vs. women). There were no differences across gender expression groups (p > 0.05). Conclusions Sex/gender identity category, but not gender expression, influence cardiovascular risk factors (blood pressure, arterial stiffness, endothelial function) in cisgender adults; further research is needed in gender-diverse populations.
Collapse
Affiliation(s)
- Jennifer S. Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Elise Wiley
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Jem L. Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jenna C. Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - William Bostad
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Joshua M. Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Martin J. Gibala
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ada Tang
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Maureen J. MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Aoyama R, Sudo H, Okino S, Fukuzawa S. Two case reports of coronary spastic angina accompanied by the menstrual cycle. Eur Heart J Case Rep 2024; 8:ytae381. [PMID: 39132301 PMCID: PMC11310700 DOI: 10.1093/ehjcr/ytae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Background Coronary spastic angina (CSA) in premenopausal women is not frequent but has also been suggested to be associated with oestrogen decline during the menstrual cycle and sometimes becomes refractory and difficult to control. We experienced two premenopausal women with CSA that showed the involvement of the menstrual cycle. Case summary Case 1: 41-year-old-woman had ST-segment elevation and chest pain during urosepsis, just 2 days after the onset of menstruation. The acetylcholine stress test was performed according to the menstrual cycle, and multiple coronary spasms were induced. Case 2: 40-year-old-woman had refractory chest pain as a symptom of premenstrual syndrome (PMS). Coronary angiography on drugs at the maximum dose revealed spontaneous multiple coronary spasms. Blood levels of oestrogen were normal, suggesting that hormonal change may be involved, and the introduction of low-dose pills made free from angina and the reduction of drug dose. Discussion In premenopausal female angina pectoris, oestrogen may play a role; it is important to ask about the menstrual cycle and history of PMS. Besides, the timing of catheterization in premenopausal women with suspected CSA should be considered. Low-dose pills may be effective in some cases, and active medical collaboration with other departments such as gynaecology is desirable. .
Collapse
Affiliation(s)
- Rie Aoyama
- Department of Cardiology, Heart and Vascular Institute, Funabashi Municipal Medical Center, 1-21-1 Kanasugi, Chiba 273-8588, Japan
| | - Hironao Sudo
- Department of Cardiology, Heart and Vascular Institute, Funabashi Municipal Medical Center, 1-21-1 Kanasugi, Chiba 273-8588, Japan
| | - Shinichi Okino
- Department of Cardiology, Heart and Vascular Institute, Funabashi Municipal Medical Center, 1-21-1 Kanasugi, Chiba 273-8588, Japan
| | - Shigeru Fukuzawa
- Department of Cardiology, Heart and Vascular Institute, Funabashi Municipal Medical Center, 1-21-1 Kanasugi, Chiba 273-8588, Japan
| |
Collapse
|
11
|
Siebner TH, Hove JD, Madelung CF, Hulme OJ, Bendtsen F, Siebner HR, Barløse M. No difference in postprandial mesenteric blood flow between healthy younger and elderly individuals. Sci Rep 2024; 14:8689. [PMID: 38622189 PMCID: PMC11018827 DOI: 10.1038/s41598-024-58111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
We recently used phase-contrast magnetic resonance imaging (PC-MRI) to demonstrate an attenuated postprandial blood flow response in the superior mesenteric artery (SMA) in patients with Parkinson's disease compared to age- and sex-matched healthy controls. Since both groups showed substantial inter-individual variations, we extended the cohort of controls with a group of young individuals to investigate possible age-related effects. Seventeen healthy young subjects aged < 30 years and 17 elderly subjects aged > 50 years underwent serial PC-MRI to measure the postprandial blood flow response in the SMA after ingestion of a standardized liquid test meal (∼400 kcal). Postprandial blood flow dynamics in SMA did not differ between young and elderly subjects. A noticeable inter-individual variation in postprandial intestinal blood flow increase was found, and approximately 30% of the variation could be explained by the preprandial blood flow. Regardless of age, some subjects showed a remarkable transient SMA blood flow increase immediately after meal intake. This study provides tentative evidence that postprandial blood flow dynamics in SMA in healthy young and elderly subjects do not substantially differ, indicating that age is without impact on vascular response in SMA as an indicator for regulation of mesenteric perfusion in response to food intake.
Collapse
Affiliation(s)
- Thomas Hartwig Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
- Department of Cardiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Jens Dahlgaard Hove
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christopher Fugl Madelung
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Oliver James Hulme
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastrounit, Medical Division, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mads Barløse
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
12
|
Draghici AE, Ely MR, Hamner JW, Taylor JA. Nitric oxide-mediated vasodilation in human bone. Microcirculation 2024; 31:e12842. [PMID: 38133925 PMCID: PMC10922487 DOI: 10.1111/micc.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Regulation of blood flow to bone is critical but poorly understood, particularly in humans. This study aims to determine whether nitric oxide (NO), a major regulator of vascular tone to other tissues, contributes also to the regulation of blood flow to bone. METHODS In young healthy adults (n = 16, 8F, 8M), we characterized NO-mediated vasodilation in the tibia in response to sublingual nitroglycerin and contrasted it to lower leg. Blood flow responses were assessed in supine individuals by continuously measuring tibial total hemoglobin (tHb) via near-infrared spectroscopy and lower leg blood flow (LBF) as popliteal flow velocity via Doppler ultrasound in the same leg. RESULTS LBF increased by Δ9.73 ± 0.66 cm/s and peaked 4.4 min after NO administration and declined slowly but remained elevated (Δ3.63 ± 0.60 cm/s) at 10 min. In contrast, time to peak response was longer and smaller in magnitude in the tibia as tHb increased Δ2.08 ± 0.22 μM and peaked 5.3 min after NO administration and declined quickly but remained elevated (Δ0.87±0.22 μM) at 10 min (p = .01). CONCLUSIONS In young adults, the tibial vasculature demonstrates robust NO-mediated vasodilation, but tHb is delayed and diminishes faster compared to LBF, predominately reflective of skeletal muscle responses. Thus, NO-mediated vasodilation in bone may be characteristically different from other vascular beds.
Collapse
Affiliation(s)
- Adina E. Draghici
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA
- Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA
| | - Matthew R. Ely
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA
- Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA
| | - Jason W. Hamner
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA
- Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA
| | - J. Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA
- Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA
- Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA
| |
Collapse
|
13
|
Tahsin CT, Michopoulos V, Powers A, Park J, Ahmed Z, Cullen K, Jenkins NDM, Keller-Ross M, Fonkoue IT. Sleep efficiency and PTSD symptom severity predict microvascular endothelial function and arterial stiffness in young, trauma-exposed women. Am J Physiol Heart Circ Physiol 2023; 325:H739-H750. [PMID: 37505472 PMCID: PMC10642999 DOI: 10.1152/ajpheart.00169.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
Posttraumatic stress disorder (PTSD) is linked to sleep disturbances and significantly higher risk of developing cardiovascular disease (CVD). Furthermore, vascular dysfunction and sleep are independently associated with CVD. Uncovering the link between PTSD symptom severity, sleep disturbances, and vascular function could shine a light on mechanisms of CVD risk in trauma-exposed young women. The purpose of the present study was to investigate the individual and combined effects of sleep efficiency and PTSD symptom severity on vascular function. We recruited 60 otherwise healthy women [age, 26 ± 7 yr and body mass index (BMI), 27.7 ± 6.5 kg/m2] who had been exposed to trauma. We objectively quantified sleep efficiency (SE) using actigraphy, microvascular endothelial function via Framingham reactive hyperemia index (fRHI), and arterial stiffness via pulse-wave velocity (PWV). PTSD symptom severity was assessed using the PTSD checklist for fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (PCL5). PWV was correlated with age (r = 0.490, P < 0.001) and BMI (r = 0.484, P < 0.001). In addition, fRHI was positively correlated with SE (r = 0.409, P = 0.001) and negatively correlated with PTSD symptoms (r = -0.382, P = 0.002). To explore the predictive value of SE and PTSD symptoms on PWV and fRHI, we conducted two multivariate linear regression models. The model predicting PWV was significant (R2 = 0.584, P < 0.001) with age, BMI, blood pressure, and SE emerging as predictors. Likewise, the model predicting fRHI was significant (R2 = 0.360, P < 0.001) with both PTSD symptoms and SE as significant predictors. Our results suggest that although PTSD symptoms mainly impact microvascular endothelial function, sleep efficiency is additionally associated with arterial stiffness in young trauma-exposed women, after controlling for age and BMI.NEW & NOTEWORTHY This is the first study to investigate the individual and combined impacts of objective sleep and PTSD symptoms severity on arterial stiffness and microvascular endothelial function in young premenopausal women. We report that in young trauma-exposed women, although low sleep efficiency is associated with overall vascular function (i.e., microvascular endothelial function and arterial stiffness), the severity of PTSD symptoms is specifically associated with microvascular endothelial function, after accounting for age and body mass index.
Collapse
Affiliation(s)
- Chowdhury Tasnova Tahsin
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs, Research Service Line, Atlanta Veterans Affairs Healthcare Systems, Decatur, Georgia, United States
| | - Zynab Ahmed
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Kathryn Cullen
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States
| | - Manda Keller-Ross
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Ida T Fonkoue
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| |
Collapse
|
14
|
Simon AB, Derella CC, Blackburn M, Thomas J, Layman LC, Nicholson MS, Waller J, Elmarakby A, Saad KM, Harris RA. Endogenous estradiol contributes to vascular endothelial dysfunction in premenopausal women with type 1 diabetes. Cardiovasc Diabetol 2023; 22:243. [PMID: 37679748 PMCID: PMC10486136 DOI: 10.1186/s12933-023-01966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Endogenous estrogen is cardio-protective in healthy premenopausal women. Despite this favorable action of estrogen, animal models depict a detrimental effect of estradiol on vascular function in the presence of diabetes. The present study sought to determine the role of endogenous estradiol on endothelial function in women with type 1 diabetes. METHOD 32 women with type 1 diabetes (HbA1c = 8.6 ± 1.7%) and 25 apparently healthy women (HbA1c = 5.2 ± 0.3%) participated. Flow-mediated dilation (FMD), a bioassay of nitric-oxide bioavailability and endothelial function was performed during menses (M) and the late follicular (LF) phase of the menstrual cycle to represent low and high concentrations of estrogen, respectively. In addition, a venous blood sample was collected at each visit to determine circulating concentrations of estradiol, thiobarbituric acid reactive substances (TBARS), and nitrate/nitrite (NOx), biomarkers of oxidative stress and nitric oxide, respectively. Data were collected in (1) 9 additional women with type 1 diabetes using oral hormonal birth control (HBC) (HbA1c = 8.3 ± 2.1%) during the placebo pill week and second active pill week, and (2) a subgroup of 9 demographically matched women with type 1 diabetes not using HBC (HbA1c = 8.9 ± 2.1%). RESULTS Overall, estradiol was significantly increased during the LF phase compared to M in both type 1 diabetes (Δestradiol = 75 ± 86 pg/mL) and controls (Δestradiol = 71 ± 76 pg/mL); however, an increase in TBARS was only observed in patients with type 1 diabetes (ΔTBARS = 3 ± 13 µM) compared to controls (ΔTBARS = 0 ± 4 µM). FMD was similar (p = 0.406) between groups at M. In addition, FMD increased significantly from M to the LF phase in controls (p = 0.024), whereas a decrease was observed in type 1 diabetes. FMD was greater (p = 0.015) in patients using HBC compared to those not on HBC, independent of menstrual cycle phase. CONCLUSION Endogenous estradiol increases oxidative stress and contributes to endothelial dysfunction in women with diabetes. Additionally, HBC use appears to be beneficial to endothelial function in type 1 diabetes.
Collapse
Affiliation(s)
- Abigayle B Simon
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1707, Augusta, GA, 30912, Georgia
| | - Cassandra C Derella
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1707, Augusta, GA, 30912, Georgia
| | - Marsha Blackburn
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1707, Augusta, GA, 30912, Georgia
| | - Jeffrey Thomas
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1707, Augusta, GA, 30912, Georgia
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Matthew S Nicholson
- Department of Endocrinology, Medical College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Jennifer Waller
- Department of Biostatistics and Data Science, Medical College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Ahmed Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Karim M Saad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, Georgia
| | - Ryan A Harris
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1707, Augusta, GA, 30912, Georgia.
| |
Collapse
|
15
|
Connolly DM, D'Oyly TJ, Harridge SDR, Smith TG, Lee VM. Decompression Sickness Risk in Parachutist Dispatchers Exposed Repeatedly to High Altitude. Aerosp Med Hum Perform 2023; 94:666-677. [PMID: 37587625 DOI: 10.3357/amhp.6231.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
INTRODUCTION: Occurrences of severe decompression sickness (DCS) in military parachutist dispatchers at 25,000 ft (7620 m) prompted revision of exposure guidelines for high altitude parachuting. This study investigated residual risks to dispatchers and explored the potential for safely conducting repeat exposures in a single duty period.METHODS: In this study, 15 healthy men, ages 20-50 yr, undertook 2 profiles of repeated hypobaric chamber decompression conducting activities representative of dispatcher duties. Phase 1 comprised two ascents to 25,000 ft (7620 m) for 60 and then 90 min. Phase 2 included three ascents first to 25,000 ft for 60 min, followed by two ascents to 22,000 ft (6706 m) for 90 min. Denitrogenation was undertaken at 15,000 ft (4572 m) with successive ascents separated by 1-h air breaks at ground level.RESULTS: At 25,000 ft (7620 m), five cases of limb (knee) pain DCS developed, the earliest at 29 min. Additionally, multiple minor knee "niggles" occurred with activity but disappeared when seated at rest. No DCS and few niggles occurred at 22,000 ft (6706 m). Early, heavy, and sustained bubble loads were common at 25,000 ft, particularly in older subjects, but lighter and later loads followed repeat exposure, especially at 22,000 ft.DISCUSSION: Parachutist dispatchers are at high risk of DCS at 25,000 ft (7620 m) commensurate with their heavy level of exertion. However, the potential exists for repeated safe ascents to 22,000 ft (6706 m), in the same duty period, if turn-around times breathing air at ground level are brief. Older dispatchers (>40 yr) with functional right-to-left (intracardiac or pulmonary) vascular shunts will be at risk of arterialization of microbubbles.Connolly DM, D'Oyly TJ, Harridge SDR, Smith TG, Lee VM. Decompression sickness risk in parachutist dispatchers exposed repeatedly to high altitude. Aerosp Med Hum Perform. 2023; 94(9):666-677.
Collapse
|
16
|
Gonçalinho GHF, Kuwabara KL, Faria NFDO, Goes MFDS, Roggerio A, Avakian SD, Strunz CMC, Mansur ADP. Sirtuin 1 and Vascular Function in Healthy Women and Men: A Randomized Clinical Trial Comparing the Effects of Energy Restriction and Resveratrol. Nutrients 2023; 15:2949. [PMID: 37447275 DOI: 10.3390/nu15132949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Sirtuin 1 (SIRT1) has been associated with longevity and protection against cardiometabolic diseases, but little is known about how it influences human vascular function. Therefore, this study evaluated the effects of SIRT1 activation by resveratrol and energy restriction on vascular reactivity in adults. Methods: A randomized trial allocated 48 healthy adults (24 women and 24 men), aged 55 to 65 years, to resveratrol supplementation or energy restriction for 30 days. Blood lipids, glucose, insulin, C-reactive protein, noradrenaline, SIRT1 (circulating and gene expression), and flow-mediated vasodilation (FMD) and nitrate-mediated vasodilation (NMD) were measured. Results: Both interventions increased circulating SIRT1 (p < 0.001). Pre- and post-tests changes of plasma noradrenaline were significant for both groups (resveratrol: p = 0.037; energy restriction: p = 0.008). Baseline circulating SIRT1 was inversely correlated with noradrenaline (r = -0.508; p < 0.01), and post-treatment circulating SIRT1 was correlated with NMD (r = 0.433; p < 0.01). Circulating SIRT1 was a predictor of FMD in men (p = 0.045), but not in women. SIRT1 was an independent predictor of NMD (p = 0.026) only in the energy restriction group. Conclusions: Energy restriction and resveratrol increased circulating SIRT1 and reduced sympathetic activity similarly in healthy adults. SIRT1 was independently associated with NMD only in the energy restriction group.
Collapse
Affiliation(s)
- Gustavo Henrique Ferreira Gonçalinho
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
- Serviço de Prevenção, Cardiopatia da Mulher e Reabilitação Cardiovascular, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Karen Lika Kuwabara
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
- Serviço de Prevenção, Cardiopatia da Mulher e Reabilitação Cardiovascular, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Nathalia Ferreira de Oliveira Faria
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
- Serviço de Prevenção, Cardiopatia da Mulher e Reabilitação Cardiovascular, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Marisa Fernandes da Silva Goes
- Pesquisa Clínica, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Alessandra Roggerio
- Laboratório de Análises Clínicas, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Solange Desirée Avakian
- Unidade Clínica de Cardiopatias Valvares, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Célia Maria Cassaro Strunz
- Laboratório de Análises Clínicas, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| | - Antonio de Padua Mansur
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
- Serviço de Prevenção, Cardiopatia da Mulher e Reabilitação Cardiovascular, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo 05403-900, Brazil
| |
Collapse
|
17
|
Weggen JB, Hogwood AC, Decker KP, Darling AM, Chiu A, Richardson J, Garten RS. Vascular Responses to Passive and Active Movement in Premenopausal Females: Comparisons across Sex and Menstrual Cycle Phase. Med Sci Sports Exerc 2023; 55:900-910. [PMID: 36728956 DOI: 10.1249/mss.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Adequate, robust vascular responses to passive and active movement represent two distinct components linked to normal, healthy cardiovascular function. Currently, limited research exists determining if these vascular responses are altered in premenopausal females (PMF) when compared across sex or menstrual cycle phase. METHODS Vascular responses to passive leg movement (PLM) and handgrip (HG) exercise were assessed in PMF ( n = 21) and age-matched men ( n = 21). A subset of PMF subjects ( n = 11) completed both assessments during the early and late follicular phase of their menstrual cycle. Microvascular function was assessed during PLM via changes in leg blood flow, and during HG exercise, via steady-state arm vascular conductance. Macrovascular (brachial artery [BA]) function was assessed during HG exercise via BA dilation responses as well as BA shear rate-dilation slopes. RESULTS Leg microvascular function, determined by PLM, was not different between sexes or across menstrual cycle phase. However, arm microvascular function, demonstrated by arm vascular conductance, was lower in PMF compared with men at rest and during HG exercise. Macrovascular function was not different between sexes or across menstrual cycle phase. CONCLUSIONS This study identified similar vascular function across sex and menstrual cycle phase seen in microvasculature of the leg and macrovascular (BA) of the arm. Although arm microvascular function was unaltered by menstrual cycle phase in PMF, it was revealed to be significantly lower when compared with age-matched men highlighting a sex difference in vascular/blood flow regulation during small muscle mass exercise.
Collapse
Affiliation(s)
- Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, VA
| | - Kevin P Decker
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE
| | - Ashley M Darling
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Alex Chiu
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Jacob Richardson
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
18
|
Barranca C, Pereira TJ, Edgell H. Oral contraceptive use and menstrual cycle influence acute cerebrovascular response to standing. Auton Neurosci 2023; 244:103054. [PMID: 36516546 DOI: 10.1016/j.autneu.2022.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine if the menstrual cycle and oral contraceptives (OC) influence responses to acute orthostatic stress and if these factors are clinically relevant to the diagnosis of initial orthostatic hypotension (iOH). METHODS Young, healthy women were recruited, including OC users (n = 12) and non-users (NOC; n = 9). Women were tested during the low hormone (LH; placebo pills; days 2-5 natural cycle) and high hormone (HH; active dose; days 18-24 natural cycle) menstrual phases. Changes in mean arterial pressure, cardiac output, heart rate, the 30:15 heart rate ratio and cerebrovascular resistance indices within 30 s of standing were examined. RESULTS There were no effects of OC or menstrual cycle on hemodynamic responses during standing (all p>0.05). In the LH phase, OC users had a greater fall in mean middle cerebral artery blood velocity (MCAV) compared to NOC (p<0.05). However, this was reversed in the HH phase, where OC users had a reduced fall in mean MCAV (p<0.05). Interestingly, 8 women (OC and NOC) had drops in systolic/diastolic blood pressure meeting the criteria for iOH, and 7 of those 8 women displayed this drop in a single phase of the menstrual cycle. CONCLUSION Our results indicate that chronic versus acute OC use (i.e., long-term use observed via LH phase versus short-term use observed via HH phase) have opposing effects on cerebral blood velocity during standing. Further, our results highlight that multiple assessments across the cycle may be necessary to accurately diagnose iOH, as most women met the diagnostic criteria during a single menstrual phase.
Collapse
Affiliation(s)
- C Barranca
- School of Kinesiology and Health Sciences, York University, Toronto, ON M3J1P3, Canada
| | - T J Pereira
- School of Kinesiology and Health Sciences, York University, Toronto, ON M3J1P3, Canada
| | - H Edgell
- School of Kinesiology and Health Sciences, York University, Toronto, ON M3J1P3, Canada; Muscle Health Research Centre, York University, Toronto, ON, Canada.
| |
Collapse
|
19
|
Does sex influence near-infrared spectroscopy-derived indicators of microvascular reactivity and the response to acute dietary capsaicin. Microvasc Res 2023; 145:104436. [PMID: 36113667 DOI: 10.1016/j.mvr.2022.104436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 02/03/2023]
Abstract
Endothelial dysfunction is associated with cardiovascular disease development, nitric oxide (NO) deficiencies, and may be limb or sex-specific. Prior in vitro work indicated that the transient receptor potential vanilloid channel-1 (TRPV1) is expressed in human arteries and the TRPV1 agonist capsaicin alters vasodilation in an endothelium-dependent manner; however, it is unknown if this translates in vivo or is limb or sex-dependent. Therefore, we sought to determine if there was limb or sex-specificity in the effect of capsaicin on microvascular function using near-infrared spectroscopy (NIRS)-derived tissue oxygen saturation (StO2) reperfusion slope. In a blinded placebo-controlled crossover design, 45 young males (M: n = 25) and females (F: n = 20), the reperfusion slopes of the forearm and quadriceps were assessed, and a urine sample obtained to assay for nitrate/nitrite (NOx) concentrations and antioxidant capacity after acutely ingesting placebo or capsaicin. Under placebo, females had greater reperfusion rates in both the forearm (M: 0.44 ± 0.24 vs. F: 0.98 ± 0.46 %/sec; p = 0.002, d = -1.50) and quadricep (M: 0.86 ± 0.31 vs. F: 1.17 ± 0.43 %/sec; p = 0.010, d = -0.85). Capsaicin decreased microvascular responsiveness in the forearm of females (placebo: 0.98 ± 0.45 vs. capsaicin: 0.84 ± 0.45 %/sec) as compared to males (placebo: 0.45 ± 0.24 vs. capsaicin: 0.38 ± 0.16 %/sec, interaction p < 0.001, η2 = 0.475). There was a sex*treatment interaction for NOx concentrations, where males increased (placebo: 21.13 ± 12.83 vs. capsaicin: 23.82 ± 13.34 μM), while females decreased (placebo: 22.78 ± 14.40 vs. capsaicin: 14.43 ± 10.01 μM; p = 0.037, η2 = 0.042). Using NIRS to assess microvascular function, there is apparent limb and sex-specificity, and, for the first-time, document that acute oral capsaicin alters reperfusion slope in a sexually divergent manner.
Collapse
|
20
|
Seligowski AV, Webber TK, Marvar PJ, Ressler KJ, Philip NS. Involvement of the brain-heart axis in the link between PTSD and cardiovascular disease. Depress Anxiety 2022; 39:663-674. [PMID: 35708302 PMCID: PMC9588548 DOI: 10.1002/da.23271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) has long been associated with a heightened risk of cardiovascular disease (CVD). A number of mechanisms have been implicated to underlie this brain-heart axis relationship, such as altered functioning of the autonomic nervous system and increased systemic inflammation. While neural alterations have repeatedly been observed in PTSD, they are rarely considered in the PTSD-CVD link. The brain-heart axis is a pathway connecting frontal and limbic brain regions to the brainstem and periphery via the autonomic nervous system and it may be a promising model for understanding CVD risk in PTSD given its overlap with PTSD neural deficits. We first provide a summary of the primary mechanisms implicated in the association between PTSD and CVD. We then review the brain-heart axis and its relevance to PTSD, as well as findings from PTSD trials demonstrating that a number of PTSD treatments have effects on areas of the brain-heart axis. Finally, we discuss sex considerations in the PTSD-CVD link. A critical next step in this study is to determine if PTSD treatments that affect the brain-heart axis (e.g., brain stimulation that improves autonomic function) also reduce the risk of CVD.
Collapse
Affiliation(s)
- Antonia V. Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | | | | | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Noah S. Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, of Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Fewkes JJ, Kellow NJ, Cowan SF, Williamson G, Dordevic AL. A single, high-fat meal adversely affects postprandial endothelial function: a systematic review and meta-analysis. Am J Clin Nutr 2022; 116:699-729. [PMID: 35665799 PMCID: PMC9437993 DOI: 10.1093/ajcn/nqac153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/29/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endothelial dysfunction is a predictive risk factor for the development of atherosclerosis and is assessed by flow-mediated dilation (FMD). Although it is known that NO-dependent endothelial dysfunction occurs after consuming a high-fat meal, the magnitude of the effect and the factors that affect the response are unquantified. OBJECTIVES We conducted a systematic review and meta-analysis exploring the quantitative effects of a single high-fat meal on endothelial function and determined the factors that modify the FMD response. METHODS Six databases were systematically searched for original research published up to January 2022. Eligible studies measured fasting and postprandial FMD following consumption of a high-fat meal. Meta-regression was used to analyze the effect of moderator variables. RESULTS There were 131 studies included, of which 90 were suitable for quantitative meta-analysis. A high-fat meal challenge transiently caused endothelial dysfunction, decreasing postprandial FMD at 2 hours [-1.02 percentage points (pp); 95% CI: -1.34 to -0.70 pp; P < 0.01; I2 = 93.3%], 3 hours [-1.04 pp; 95% CI: -1.48 to -0.59 pp; P < 0.001; I2 = 84.5%], and 4 hours [-1.19 pp; 95% CI: -1.53 to -0.84 pp; P < 0.01; I2 = 94.6%]. Younger, healthy-weight participants exhibited a greater postprandial reduction in the FMD percentage change than older, heavier, at-risk groups after a high-fat meal ( P < 0.05). The percentage of fat in the meals was inversely associated with the magnitude of postprandial changes in FMD at 3 hours (P < 0.01). CONCLUSIONS A single, high-fat meal adversely impacts endothelial function, with the magnitude of the impact on postprandial FMD moderated by the fasting FMD, participant age, BMI, and fat content of the meal. Recommendations are made to standardize the design of future postprandial FMD studies and optimize interpretation of results, as high-fat meals are commonly used in clinical studies as a challenge to assess endothelial function and therapeutics. This trial was registered at PROSPERO as CRD42020187244.
Collapse
Affiliation(s)
- Juanita J Fewkes
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Stephanie F Cowan
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Englund EK, Langham MC, Wehrli FW, Fanning MJ, Khan Z, Schmitz KH, Ratcliffe SJ, Floyd TF, Mohler ER. Impact of supervised exercise on skeletal muscle blood flow and vascular function measured with MRI in patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2022; 323:H388-H396. [PMID: 35802515 PMCID: PMC9359664 DOI: 10.1152/ajpheart.00633.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Supervised exercise is a common therapeutic intervention for patients with peripheral artery disease (PAD), however, the mechanism underlying the improvement in claudication symptomatology is not completely understood. The hypothesis that exercise improves microvascular blood flow is herein tested via temporally resolved magnetic resonance imaging (MRI) measurement of blood flow and oxygenation dynamics during reactive hyperemia in the leg with the lower ankle-brachial index. One hundred and forty-eight subjects with PAD were prospectively assigned to standard medical care or 3 mo of supervised exercise therapy. Before and after the intervention period, subjects performed a graded treadmill walking test, and MRI data were collected with Perfusion, Intravascular Venous Oxygen saturation, and T2* (PIVOT), a method that simultaneously quantifies microvascular perfusion, as well as relative oxygenation changes in skeletal muscle and venous oxygen saturation in a large draining vein. The 3-mo exercise intervention was associated with an improvement in peak walking time (64% greater in those randomized to the exercise group at follow-up, P < 0.001). Significant differences were not observed in the MRI measures between the subjects randomized to exercise therapy versus standard medical care based on an intention-to-treat analysis. However, the peak postischemia perfusion averaged across the leg between baseline and follow-up visits increased by 10% (P = 0.021) in participants that were adherent to the exercise protocol (completed >80% of prescribed exercise visits). In this cohort of adherent exercisers, there was no difference in the time to peak perfusion or oxygenation metrics, suggesting that there was no improvement in microvascular function nor changes in tissue metabolism in response to the 3-mo exercise intervention.NEW & NOTEWORTHY Supervised exercise interventions can improve symptomatology in patients with peripheral artery disease, but the underlying mechanism remains unclear. Here, MRI was used to evaluate perfusion, relative tissue oxygenation, and venous oxygen saturation in response to cuff-induced ischemia. Reactive hyperemia responses were measured before and after 3 mo of randomized supervised exercise therapy or standard medical care. Those participants who were adherent to the exercise regimen had a significant improvement in peak perfusion.
Collapse
Affiliation(s)
- Erin K Englund
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Molly J Fanning
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zeeshan Khan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn H Schmitz
- Department of Public Health Sciences, Penn State University, University Park, Pennsylvania
| | - Sarah J Ratcliffe
- Department of Biostatistics, University of Virginia, Charlottesville, Virginia
| | - Thomas F Floyd
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, Texas
| | - Emile R Mohler
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Davis KM, Petersen KS, Bowen KJ, Jones PJH, Taylor CG, Zahradka P, Letourneau K, Perera D, Wilson A, Wagner PR, Kris-Etherton PM, West SG. Effects of Diets Enriched with Conventional or High-Oleic Canola Oils on Vascular Endothelial Function: A Sub-Study of the Canola Oil Multi-Centre Intervention Trial 2 (COMIT-2), a Randomized Crossover Controlled Feeding Study. Nutrients 2022; 14:nu14163404. [PMID: 36014910 PMCID: PMC9416081 DOI: 10.3390/nu14163404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Partial replacement of saturated fatty acids (SFA) with unsaturated fatty acids is recommended to reduce cardiovascular disease (CVD) risk. Monounsaturated fatty acids (MUFA), including oleic acid, are associated with lower CVD risk. Measurement of flow-mediated dilation of the brachial artery (FMD) is the gold standard for measuring endothelial function and predicts CVD risk. This study examined the effect of partially replacing SFA with MUFA from conventional canola oil and high-oleic acid canola oil on FMD. Participants (n = 31) with an elevated waist circumference plus ≥1 additional metabolic syndrome criterion completed FMD measures as part of the Canola Oil Multi-Centre Intervention Trial 2 (COMIT-2), a multi-center, double-blind, three-period crossover, controlled feeding randomized trial. Diet periods were 6 weeks, separated by ≥4-week washouts. Experimental diets were provided during all feeding periods. Diets only differed by the fatty acid profile of the oils: canola oil (CO; 17.5% energy from MUFA, 9.2% polyunsaturated fatty acids (PUFA), 6.6% SFA), high-oleic acid canola oil (HOCO; 19.1% MUFA, 7.0% PUFA, 6.4% SFA), and a control oil blend (CON; 11% MUFA, 10% PUFA, 12% SFA). Multilevel models were used to examine the effect of the diets on FMD. No significant between-diet differences were observed for average brachial artery diameter (CO: 6.70 ± 0.15 mm, HOCO: 6.57 ± 0.15 mm, CON: 6.73 ± 0.14 mm; p = 0.72), peak brachial artery diameter (CO: 7.11 ± 0.15 mm, HOCO: 7.02 ± 0.15 mm, CON: 6.41 ± 0.48 mm; p = 0.80), or FMD (CO: 6.32 ± 0.51%, HOCO: 6.96 ± 0.49%, CON: 6.41 ± 0.48%; p = 0.81). Partial replacement of SFA with MUFA from CO and HOCO had no effect on FMD in participants with or at risk of metabolic syndrome.
Collapse
Affiliation(s)
- Kristin M. Davis
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
| | - Kristina S. Petersen
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kate J. Bowen
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Peter J. H. Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| | - Carla G. Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Karen Letourneau
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Danielle Perera
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Angela Wilson
- The Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Paul R. Wagner
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
- Correspondence:
| | - Sheila G. West
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
24
|
Davezac M, Buscato M, Zahreddine R, Lacolley P, Henrion D, Lenfant F, Arnal JF, Fontaine C. Estrogen Receptor and Vascular Aging. FRONTIERS IN AGING 2022; 2:727380. [PMID: 35821994 PMCID: PMC9261451 DOI: 10.3389/fragi.2021.727380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases remain an age-related pathology in both men and women. These pathologies are 3-fold more frequent in men than in women before menopause, although this difference progressively decreases after menopause. The vasculoprotective role of estrogens are well established before menopause, but the consequences of their abrupt decline on the cardiovascular risk at menopause remain debated. In this review, we will attempt to summarize the main clinical and experimental studies reporting the protective effects of estrogens against cardiovascular diseases, with a particular focus on atherosclerosis, and the impact of aging and estrogen deprivation on their endothelial actions. The arterial actions of estrogens, but also part of that of androgens through their aromatization into estrogens, are mediated by the estrogen receptor (ER)α and ERβ. ERs belong to the nuclear receptor family and act by transcriptional regulation in the nucleus, but also exert non-genomic/extranuclear actions. Beside the decline of estrogens at menopause, abnormalities in the expression and/or function of ERs in the tissues, and particularly in arteries, could contribute to the failure of classic estrogens to protect arteries during aging. Finally, we will discuss how recent insights in the mechanisms of action of ERα could contribute to optimize the hormonal treatment of the menopause.
Collapse
Affiliation(s)
- Morgane Davezac
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Melissa Buscato
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Rana Zahreddine
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Patrick Lacolley
- INSERM, UMR_S 1116, DCAC Institute, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Daniel Henrion
- INSERM U1083 CNRS UMR 6015, CHU, MITOVASC Institute and CARFI Facility, Université d'Angers, Angers, France
| | - Francoise Lenfant
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Jean-Francois Arnal
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| |
Collapse
|
25
|
Gentilin A, Moghetti P, Cevese A, Schena F, Tarperi C. Sympathetic-mediated blunting of forearm vasodilation is similar between young men and women. Biol Sex Differ 2022; 13:33. [PMID: 35752870 PMCID: PMC9233837 DOI: 10.1186/s13293-022-00444-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The in-vivo regulation of vascular conductance (VC) is a continuous balance between endothelial vasodilation and sympathetic vasoconstriction. Although women may report blunted sympathetic vasoconstriction along with higher endothelial vasodilation than men, it is currently unknown whether the interaction between vasoconstriction and vasodilation leads to different regulation of VC between sexes. This study assessed sex differences in sympathetic-mediated blunting of endothelial vasodilation after a brief period of ischemia and whether any restriction of vasodilation blunts tissue blood flow (BF) and re-oxygenation. METHODS 13 young women and 12 young men underwent two 5-min forearm circulatory occlusions followed by reperfusion, one in basal conditions and the other during cold pressor test-induced sympathetic activation (SYMP). Brachial artery diameter and BF, mean arterial pressure, total peripheral resistance (TPR), and thenar eminence oxygenation were collected. Percent changes normalized to baseline values of forearm VC, brachial artery BF and flow-mediated dilation (FMD), TPR, and hand oxygenation after circulatory reperfusion were calculated. RESULTS TPR increased during SYMP in men (p = 0.019) but not in women (p = 0.967). Women showed a greater brachial artery FMD than men (p = 0.004) at rest, but sex differences disappeared after normalization to shear rate and baseline diameter (p > 0.11). The percent increases from baseline of peak and average forearm VC after circulatory reperfusion did not differ between sexes in basal conditions (p > 0.98) or during SYMP (p > 0.97), and were restrained by SYMP similarly in both sexes (p < 0.003) without impairing the hand re-oxygenation (p > 0.08) or average hyperemic response (p > 0.09). CONCLUSIONS Although women may report blunted sympathetic vasoconstriction than men when assessed separately, the similar sympathetic-mediated restriction of vasodilation suggests a similar dynamic regulation of VC between sexes. SYMP-mediated restrictions of the normal forearm vasodilation do not impair the average hyperemic response and hand re-oxygenation in both sexes.
Collapse
Affiliation(s)
- Alessandro Gentilin
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy. .,Italian Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Paolo Moghetti
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Antonio Cevese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy.,Italian Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy.,Italian Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Cantor Tarperi
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Soto-Rodríguez FJ, Cabañas EI, Pérez-Mármol JM. Impact of prolonged sitting interruption strategies on shear rate, flow-mediated dilation and blood flow in adults: A systematic review and meta-analysis of randomized cross-over trials. J Sports Sci 2022; 40:1558-1567. [PMID: 35731706 DOI: 10.1080/02640414.2022.2091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Prolonged sitting has been shown to affect endothelial function. Strategies that promote interruption of sitting have shown varying results on the shear rate (SR), flow-mediated dilation (FMD) and blood flow (BF). Thus, we conducted a systematic review and meta-analysis to 1) increase the existing knowledge of the impact of sitting interruption in the prevention of endothelial dysfunction in adults and 2) determine the effect of the sitting interruption strategies on SR, FMD, BF. Literature search was carried out through 7 databases. A random effects model was used to provide the overall mean difference with a 95%CI, and forest plots were generated for pooled estimates of each study outcome. Assessment of biases was performed using ROB2 and considerations for crossover trials. Prolonged sitting interruption strategies showed a significant effect in increasing SR (MD: 7.58 s-1; 95% CI: 3.00 to 12.17), FMD (MD: 1.74%; 95% CI: 0.55 to 2.93) and BF (MD: 12.08 ml/min; 95% CI: 7.61 to 16.55) when compared with the uninterrupted prolonged sitting condition. Prolonged sitting interruption strategies significantly increase SR, FMD and BF, therefore, they represent a considerable effective preventive method on endothelial dysfunction caused by acute exposure to uninterrupted prolonged sitting.
Collapse
Affiliation(s)
- Francisco Javier Soto-Rodríguez
- Programa de Doctorado en Medicina Clínica y Salud Pública, Universidad de Granada, Granada, Spain.,Facultad de Medicina, Departamento de Medicina Interna, Universidad de La Frontera, Temuco, Chile.,Facultad de Ciencias de la Salud, Carrera de Kinesiología, Universidad Autónoma de Chile, Temuco, Chile
| | - Eva Isidoro Cabañas
- Programa de Doctorado en Medicina Clínica y Salud Pública, Universidad de Granada, Granada, Spain.,Hospital Virgen de las Nieves, Granada, España
| | - José Manuel Pérez-Mármol
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| |
Collapse
|
27
|
Alali MH, Lucas RAI, Junejo RT, Fisher JP. Impact of acute dynamic exercise and arterial shear rate modification on radial artery low-flow mediated constriction in young men. Eur J Appl Physiol 2022; 122:1885-1895. [PMID: 35551453 PMCID: PMC9287252 DOI: 10.1007/s00421-022-04963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Purpose Leg cycling exercise acutely augments radial artery low-flow mediated constriction (L-FMC). Herein, we sought to determine whether this is associated with exercise-induced changes in arterial shear rate (SR). Methods Ten healthy and recreationally active young men (23 ± 2 years) participated in 30 min of incremental leg cycling exercise (50, 100, 150 Watts). Trials were repeated with (Exercise + WC) and without (Exercise) the use of a wrist cuff (75 mmHg) placed distal to the radial artery to increase local retrograde SR while reducing mean and anterograde SR. Radial artery characteristics were measured throughout the trial, and L-FMC and flow mediated dilatation (FMD) were assessed before and acutely (~ 10 min) after leg cycling. Results Exercise increased radial artery mean and anterograde SR, along with radial artery diameter, velocity, blood flow and conductance (P < 0.05). Exercise + WC attenuated the exercise-induced increase in mean and anterograde SR (P > 0.05) but also increased retrograde SR (P < 0.05). In addition, increases in radial artery blood flow and diameter were reduced during Exercise + WC (Exercise + WC vs. Exercise, P < 0.05). After Exercise, L-FMC was augmented (− 4.4 ± 1.4 vs. − 13.1 ± 1.6%, P < 0.05), compared to no change in L-FMC after Exercise + WC (− 5.2 ± 2.0 vs. − 3.0 ± 1.6%, P > 0.05). In contrast, no change in FMD was observed in either Exercise or Exercise + WC trials (P > 0.05). Conclusions These findings indicate that increases in L-FMC following exercise are abolished by the prevention of increases radial artery diameter, mean and anterograde SR, and by elevation of retrograde SR, during exercise in young men.
Collapse
Affiliation(s)
- Mohammad H Alali
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rehan T Junejo
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - James P Fisher
- Department of Physiology, Faculty of Medical and Health Sciences, Manaaki Manawa-The Centre for Heart Research, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
28
|
Habib K, Fallah B, Edgell H. Effect of Upright Posture on Endothelial Function in Women and Men. Front Physiol 2022; 13:846229. [PMID: 35399288 PMCID: PMC8988181 DOI: 10.3389/fphys.2022.846229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Women are more prone to orthostatic intolerance compared to men and have a greater vasodilatory capacity. We investigated the hypothesis that women would have greater peripheral flow-mediated dilation (FMD) while in the upright posture compared to men, which could contribute to this phenomenon. In young healthy women (age: 20 ± 3, BMI: 27 ± 5 kg/m2, n = 10) and men (age = 21 ± 2, BMI: 27 ± 8 kg/m2, n = 8), we assessed FMD of the brachial artery and hemodynamics to determine endothelial function during the supine and 70° head-up tilt postures (randomized). The brachial artery was kept at heart level in both trials. We observed that FMD increased in both sexes during tilt (Women: 11.9 ± 5.3 to 15.7 ± 5.6%; Men: 8.4 ± 3.2 to 14.6 ± 3.4%, Main effect of tilt p = 0.005) which was not due to changes in blood pressure or shear stress. There were no interaction effects between sex and posture. In a second cohort of women (age: 22 ± 3, BMI: 23 ± 3 kg/m2, n = 9) and men (age: 22 ± 2, BMI: 25 ± 8 kg/m2, n = 8), we investigated reactive hyperemia by peripheral arterial tonometry (LnRHI) via EndoPAT. Interestingly, we found that the EndoPAT response was decreased in both sexes during tilt (LnRHI: Men: 0.70 ± 0.28 to 0.59 ± 0.40, Women: 0.52 ± 0.23 to 0.30 ± 0.32, Main effect of tilt p = 0.037). We previously found that FMD is related to coronary responses to acetylcholine and adenosine whereas EndoPAT is related to coronary responses to dobutamine. Therefore, we suggest that sympathetic mediated dilation is attenuated in the upright posture while the increased vasodilatory response as measured by FMD in the tilt posture could be attributed to increasing metabolite production from postural muscles.
Collapse
Affiliation(s)
- Karim Habib
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Behzad Fallah
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Heather Edgell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Muscle Health Research Center, York University, Toronto, ON, Canada
| |
Collapse
|
29
|
Akins JD, Martin ZT, Patik JC, Curtis BM, Campbell JC, Olvera G, Brothers RM. Young, non-hispanic black men and women exhibit divergent peripheral and cerebral vascular reactivity. Exp Physiol 2022; 107:450-461. [PMID: 35344241 PMCID: PMC9058228 DOI: 10.1113/ep090168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of the study? Does peripheral and cerebral vascular function differ in young, non-Hispanic Black men and women? What is the main finding and its importance? The non-Hispanic, Black women in this study presented greater peripheral conduit artery and cerebrovascular reactivity, yet similar peripheral microvascular function relative to the non-Hispanic, Black men. These preliminary findings suggest that young, Black women and men possess divergent vascular function, possibly contributing to the unique non-Hispanic Black sex differences in cardiovascular and cerebrovascular diseases. ABSTRACT In the U.S., cardiovascular and cerebrovascular diseases remain more prominent in the non-Hispanic Black (BL) population relative to other racial/ethnic groups. Typically, sex differences emerge in the manifestation of these diseases, though these differences may not fully materialize in the BL population. While numerous mechanisms are implicated, differences in vascular function likely contribute. Research has demonstrated blunted vasodilation in several vascular regions in BL versus non-Hispanic White individuals, though much of this work did not assess sex differences. Therefore, this study aimed to ascertain if indices of vascular function are different between young, BL women (BW) and men (BM). Eleven BW and 15 BM (22 (4) vs. 23 (3) y) participated in this study. Each participant underwent testing for brachial artery flow-mediated dilation (FMD), post-occlusive reactive hyperemia (RH), and cerebral vasomotor reactivity during rebreathing-induced hypercapnia. BW exhibited greater adjusted FMD than BM (P < 0.05 for all), but similar or lower RH when assessed as blood velocity (P > 0.39 for all) or blood flow reactivity (P < 0.05 for all), respectively. Across a range of hypercapnia, BW had greater middle cerebral artery blood velocity and cerebrovascular conductance index than BM (P < 0.001 for both). These preliminary data suggest that young, BW have greater vascular function relative to young, BM, though this was inconsistent across different indices. These findings provide insight into the divergent epidemiological findings between BM and BW. Further research is needed to elucidate possible mechanisms and relate these physiological responses to epidemiological observations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- John D Akins
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Zachary T Martin
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Jordan C Patik
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.,Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Bryon M Curtis
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.,Institute for Exercise and Environmental Medicine, Dallas, TX, USA
| | - Jeremiah C Campbell
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Guillermo Olvera
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.,Institute for Exercise and Environmental Medicine, Dallas, TX, USA
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
30
|
Lew LA, Williams JS, Stone JC, Au AKW, Pyke KE, MacDonald MJ. Examination of Sex-Specific Participant Inclusion in Exercise Physiology Endothelial Function Research: A Systematic Review. Front Sports Act Living 2022; 4:860356. [PMID: 35399599 PMCID: PMC8990239 DOI: 10.3389/fspor.2022.860356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background To combat historical underrepresentation of female participants in research, guidelines have been established to motivate equal participation by both sexes. However, the pervasiveness of female exclusion has not been examined in vascular exercise physiology research. The purpose of this study was to systematically quantify the sex-specific prevalence of human participants and identify the rationales for sex-specific inclusion/exclusion in research examining the impact of exercise on vascular endothelial function. Methods A systematic search was conducted examining exercise/physical activity and vascular endothelial function, assessed via flow mediated dilation. Studies were categorized by sex: male-only, female-only, or mixed sex, including examination of the sample size of males and females. Analysis was performed examining sex-inclusion criteria in study design and reporting and rationale for inclusion/exclusion of participants on the basis of sex. Changes in proportion of female participants included in studies were examined over time in 5 year cohorts. Results A total of 514 studies were identified, spanning 26 years (1996–2021). Of the total participants, 64% were male and 36% were female, and a male bias was identified (32% male-only vs. 12% female-only studies). Proportions of female participants in studies remained relatively constant in the last 20 years. Male-only studies were less likely to report sex in the title compared to female-only studies (27 vs. 78%, p < 0.001), report sex in the abstract (72 vs. 98%, p < 0.001) and justify exclusion on the basis of sex (15 vs. 55%, p < 0.001). Further, male-only studies were more likely to be conducted in healthy populations compared to female-only studies (p = 0.002). Qualitative analysis of justifications identified four themes: sex-specific rationale or gap in the literature, exclusion of females based on the hormonal cycle or sex-differences, maintaining congruence with the male norm, and challenges with recruitment, retention and resources. Conclusions This systematic review provides the first analysis of sex-based inclusion/exclusion and rationale for sex-based decisions in human vascular exercise physiology research. These findings contribute to identifying the impact of research guidelines regarding inclusion of males and females and the perceived barriers to designing studies with equal sex participation, in an effort to increase female representation in vascular exercise physiology research. Systematic Review Registration: CRD42022300388.
Collapse
Affiliation(s)
- Lindsay A. Lew
- Cardiovascular Stress Response Lab, School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Jennifer S. Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jenna C. Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Alicia K. W. Au
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Kyra E. Pyke
- Cardiovascular Stress Response Lab, School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Maureen J. MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- *Correspondence: Maureen J. MacDonald
| |
Collapse
|
31
|
Akins JD, Richey RE, Campbell JC, Martin ZT, Olvera G, Brothers RM. Contributions of endothelin-1 and l-arginine to blunted cutaneous microvascular function in young, black women. Am J Physiol Heart Circ Physiol 2022; 322:H260-H268. [PMID: 34919455 PMCID: PMC8759956 DOI: 10.1152/ajpheart.00457.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Non-Hispanic black (BL) individuals have the greatest prevalence of cardiovascular disease (CVD), relative to other racial/ethnic groups (e.g., non-Hispanic white population; WH), which may be secondary to blunted vascular function. Although women typically present with reduced CVD relative to men of the same racial/ethnic group, the prevalence is similar between BL women and men though the mechanisms differ. This study hypothesized that reduced microvascular function in young, BL women is associated with endothelin-1 (ET-1) overactivity or insufficient l-arginine bioavailability. Nine BL and nine WH women participated (age: 20 ± 2 vs. 22 ± 2 yr). Cutaneous microvascular function was assessed during 39°C local heating, whereas lactated Ringer's (control), BQ-123 (ET-1 receptor type A antagonist), BQ-788 (ET-1 receptor type B antagonist), or l-arginine were infused via intradermal microdialysis to modify cutaneous vascular conductance (CVC). Subsequent infusion of Nω-nitro-l-arginine methyl ester allowed for quantification of the nitric oxide (NO) contribution to vasodilation, whereas combined sodium nitroprusside and 43°C heating allowed for normalization to maximal CVC (%CVCmax). BL women had blunted %CVCmax and NO contribution to dilation during the 39°C plateau (P < 0.027 for both). BQ-123 improved this response through augmented NO-mediated dilation (P < 0.048 for both). BQ-788 and l-arginine did not alter the CVC responses (P > 0.835 for both) or the NO contribution (P > 0.371 for both). Cutaneous microvascular function is reduced in BL women, and ET-1 receptor type A may contribute to this reduced function. Further research is needed to better characterize these mechanisms in young, BL women.NEW & NOTEWORTHY Cardiovascular disease remains a burden in the United States non-Hispanic black (BL) population, although its manifestation through blunted vasodilation in this population is different between men and women. Accordingly, this study determined that reduced microvascular function in young, BL women may be partially controlled by endothelin-1 (ET-1) type A receptors, although neither type B receptors nor insufficient l-arginine bioavailability seems to contribute to this response. Accordingly, further research is needed to better characterize these ET-1 related mechanisms and illuminate other pathways that may contribute to this disparate vascular function in young, BL women.
Collapse
Affiliation(s)
- John D. Akins
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Rauchelle E. Richey
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas,2Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Jeremiah C. Campbell
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Zachary T. Martin
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Guillermo Olvera
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas,3Institute for Exercise and Environmental Medicine, Dallas, Texas
| | - R. Matthew Brothers
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
32
|
Pyevich M, Alexander LM, Stanhewicz AE. Women with a history of preeclampsia have preserved sensory nerve-mediated dilatation in the cutaneous microvasculature. Exp Physiol 2022; 107:175-182. [PMID: 34961978 PMCID: PMC8810741 DOI: 10.1113/ep090177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are sensory nerve-mediated vasodilatation and the NO-dependent contribution to that response attenuated in the cutaneous microvasculature of women who have had preeclampsia? What is the main finding and its importance? Women who have had preeclampsia demonstrate attenuated microvascular endothelium-dependent dilatation compared to women with a history of uncomplicated pregnancy. However, there are no differences in sensory nerve-mediated vasodilatation between groups. This suggests that the neurogenic response is not altered following preeclampsia, and that the NO-dependent vasodilatation of the neurogenic response is not related to endothelium-dependent NO-mediated dilatation in these women. ABSTRACT Women who have had preeclampsia (PE) demonstrate microvascular endothelial dysfunction, mediated in part by reduced nitric oxide (NO)-dependent mechanisms. Localized heating of the skin induces a biphasic vasodilatation response: a sensory nerve-mediated initial peak, followed by a sustained endothelium-dependent plateau. We have previously shown that the endothelium-dependent plateau is attenuated in PE. However, it is unknown if the sensory nerve-mediated initial peak is similarly attenuated. Therefore, the purpose of this study was to examine the effect of PE history on sensory nerve-mediated vasodilatation and the NO-dependent contribution to that response. We hypothesized that PE would have an attenuated initial peak and a reduced NO-dependent contribution to that response compared to women with a history of normotensive pregnancy (healthy controls, HC). Nine HC (31 ± 4 years) and nine PE (28 ± 6 years) underwent a standard local heating protocol (42°C; 0.1°C s-1 ). Two intradermal microdialysis fibres were placed in the skin of the ventral forearm for the continuous local delivery of lactated Ringer solution alone (control) or 15-mM NG -nitro-l-arginine methyl ester for nitric oxide synthase (NOS) inhibition. Red blood cell flux was measured at each site by laser Doppler flowmetry (LDF). Cutaneous vascular conductance was calculated (CVC = LDF/mean arterial pressure) and normalized to maximum (%CVCmax ; 28-mM SNP + local heat 43°C). There were no differences in the initial peak between groups (HC: 79 ± 8 vs. PE: 80 ± 10%CVCmax ; P = 0.936). NOS inhibition attenuated the initial peak in both HC (57 ± 18% CVCmax ; P = 0.003) and PE (54 ± 10%CVCmax ; P = 0.002). However, there were no differences in the NO-dependent portion of the initial peak (HC: 23 ± 16 vs. PE: 24 ± 9%; P = 0.777). The local heating plateau (HC: 99 ± 4 vs. PE: 88 ± 7%CVCmax ; P = 0.001) and NO contribution to the plateau (HC: 31 ± 9 vs. PE: 17 ± 14%; P = 0.02) were attenuated in PE. There was no relation between NO-dependent dilatation in the initial peak and NO-dependent dilatation in the plateau across groups (R2 = 0.005; P = 0.943). Women who have had PE demonstrate attenuated microvascular endothelium-dependent dilatation. However, there are no differences in sensory nerve-mediated vasodilatation following PE, suggesting that the NO-dependent vasodilatation of the neurogenic response is not related to endothelium-dependent NO-mediated dilatation in these women.
Collapse
Affiliation(s)
- Michael Pyevich
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
| | - Lacy M Alexander
- Department of Kinesiology, Pennsylvania State University, University Park, PA
| | - Anna E. Stanhewicz
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
| |
Collapse
|
33
|
Theoretical and Experimental Study on Assessment of Flow-Mediated Dilatation Using the Cuff Method in Brachial Arteries. ELECTRONICS 2022. [DOI: 10.3390/electronics11030351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Endothelial dysfunction has been shown to be an important risk factor in the pathogenesis of atherosclerosis, hypertension, and heart failure. The flow-mediated vasodilation (FMD) of the peripheral arteries is an endothelium-dependent function, which is assessed by measuring the diameter change in the brachial artery before and after ischemic stress. Brachial-artery ultrasound scanning (BAUS) is the gold standard for assessing the FMD in clinical practice. However, ultrasonography requires an operator or physician with a professional training to perform accurate measurement of the diameter of the brachial artery. Thus, some studies have used the cuff method to measure the FMD in percentage, the value of which is significantly larger than that using BAUS. The goal of this study was to explore this phenomenon. We explain the interaction between the volume changes (oscillation magnitudes in volume due to cardiac pulsations) of the artery and cuff bladder under different transmural pressures when a sphygmomanometer is wrapped around an upper arm. The compliance of the cuff bladder would be of a fixed value when the cuff pressure is low. The cuff-volume change could be replaced with a cuff-pressure change (oscillation magnitude in cuff pressure due to cardiac pulsation). With the cuff method, the FMDc could be assessed with pressure changes. Then, an inequality formula regarding FMD values by both BAUS (FMDu) and the cuff method (FMDc) was derived; FMDc > 2*FMDu + FMDu2. In order to experimentally verify this inequality formula, fifty-one subjects, including thirty-eight healthy adults and thirteen patients with hypertension, participated in this study. The systolic and diastolic diameters of their brachial arteries and cuff-pressure changes due to cardiac pulsations were separately measured by BAUS and a pressure sensor before and after an ischemic stress. The results showed that FMDu and FMDc were 8.1 ± 4.3% and 121.6 ± 48.6% in the healthy group and 4.5 ± 1.1% and 55.2 ± 22.8% in the patient group, respectively. Thus, the experimental findings comply with the theoretically derived inequality formula.
Collapse
|
34
|
Seligowski AV, Ressler KJ. Sex Differences in the Co-Occurrence of PTSD and Cardiovascular Disease. Psychiatr Ann 2022. [DOI: 10.3928/00485713-20211226-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Larson EA, Ely BR, Brunt VE, Francisco MA, Harris SM, Halliwill JR, Minson CT. Brachial and carotid hemodynamic response to hot water immersion in men and women. Am J Physiol Regul Integr Comp Physiol 2021; 321:R823-R832. [PMID: 34643115 DOI: 10.1152/ajpregu.00110.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study sought to compare the brachial and carotid hemodynamic response to hot water immersion (HWI) between healthy young men and women. Ten women (W) and 11 men (M) (24 ± 4 yr) completed a 60-min HWI session immersed to the level of the sternum in 40°C water. Brachial and carotid artery hemodynamics (Doppler ultrasound) were measured at baseline (seated rest) and every 15 min throughout HWI. Within the brachial artery, total shear rate was elevated to a greater extent in women [+479 (+364, +594) s-1] than in men [+292 (+222, +361) s-1] during HWI (P = 0.005). As shear rate is inversely proportional to blood vessel diameter and directly proportional to blood flow velocity, the sex difference in brachial shear response to HWI was the result of a smaller brachial diameter among women at baseline (P < 0.0001) and throughout HWI (main effect of sex, P < 0.0001) and a greater increase in brachial velocity seen in women [+48 (+36, +61) cm/s] compared with men [+35 (+27, +43) cm/s] with HWI (P = 0.047) which allowed for a similar increase in brachial blood flow between sexes [M: +369 (+287, +451) mL/min, W: +364 (+243, +486) mL/min, P = 0.943]. In contrast, no differences were seen between sexes in carotid total shear rate, flow, velocity, or diameter at baseline or throughout HWI. These data indicate the presence of an artery-specific sex difference in the hemodynamic response to a single bout of HWI.
Collapse
Affiliation(s)
- Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Brett R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Sarianne M Harris
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
36
|
D'Agata MN, Hoopes EK, Berube FR, Hirt AE, Kuczmarski AV, Ranadive SM, Wenner MM, Witman MA. Evidence of reduced peripheral microvascular function in young Black women across the menstrual cycle. J Appl Physiol (1985) 2021; 131:1783-1791. [PMID: 34709068 PMCID: PMC8714980 DOI: 10.1152/japplphysiol.00452.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
Black women (BLW) have a higher prevalence of cardiovascular disease (CVD) morbidity and mortality compared with White women (WHW). A racial disparity in CVD risk has been identified early in life as young adult BLW demonstrate attenuated vascular function compared with WHW. Previous studies comparing vascular function between premenopausal WHW and BLW have been limited to the early follicular (EF) phase of the menstrual cycle, which may not reflect their vascular function during other menstrual phases. Therefore, we evaluated peripheral microvascular function in premenopausal WHW and BLW using passive leg movement (PLM) during three menstrual phases: EF, ovulation (OV), and mid-luteal (ML). We hypothesized that microvascular function would be augmented during the OV and ML phases compared with the EF phase in both groups, but would be attenuated in BLW compared with WHW at all three phases. PLM was performed on 26 apparently healthy premenopausal women not using hormonal contraceptives: 15 WHW (23 ± 3 yr), 11 BLW (24 ± 5 yr). There was a main effect of race on the overall change in leg blood flow (ΔLBF) (P = 0.01) and leg blood flow area under the curve (LBF AUC) (P = 0.02), such that LBF was lower in BLW. However, there was no effect of phase on ΔLBF (P = 0.69) or LBF AUC (P = 0.65), nor an interaction between race and phase on ΔLBF (P = 0.37) or LBF AUC (P = 0.75). Despite peripheral microvascular function being unchanged across the menstrual cycle, a racial disparity was apparent as microvascular function was attenuated in BLW compared with WHW across the menstrual cycle.NEW & NOTEWORTHY This is the first study to compare peripheral microvascular function between young, otherwise healthy Black women and White women at multiple phases of the menstrual cycle. Our novel findings demonstrate a significant effect of race on peripheral microvascular function such that Black women exhibit significant attenuations in microvascular function across the menstrual cycle compared with White women.
Collapse
Affiliation(s)
- Michele N D'Agata
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Elissa K Hoopes
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Felicia R Berube
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Alexandra E Hirt
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Melissa A Witman
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
37
|
Favre J, Vessieres E, Guihot AL, Proux C, Grimaud L, Rivron J, Garcia MC, Réthoré L, Zahreddine R, Davezac M, Fébrissy C, Adlanmerini M, Loufrani L, Procaccio V, Foidart JM, Flouriot G, Lenfant F, Fontaine C, Arnal JF, Henrion D. Membrane estrogen receptor alpha (ERα) participates in flow-mediated dilation in a ligand-independent manner. eLife 2021; 10:68695. [PMID: 34842136 PMCID: PMC8676342 DOI: 10.7554/elife.68695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.
Collapse
Affiliation(s)
- Julie Favre
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Emilie Vessieres
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Anne-Laure Guihot
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Coralyne Proux
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Linda Grimaud
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Jordan Rivron
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Manuela Cl Garcia
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Léa Réthoré
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Rana Zahreddine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Morgane Davezac
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Chanaelle Fébrissy
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Marine Adlanmerini
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Laurent Loufrani
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Vincent Procaccio
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, Rennes, France
| | - Françoise Lenfant
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Jean-François Arnal
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Daniel Henrion
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| |
Collapse
|
38
|
Gentilin A, Tarperi C, Skroce K, Cevese A, Schena F. Effect of acute sympathetic activation on leg vasodilation before and after endurance exercise. J Smooth Muscle Res 2021. [PMID: 34789634 DOI: 10.1540/jsmr.57.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vascular conductance (VC) regulation involves a continuous balance between metabolic vasodilation and sympathetic vasoconstriction. Endurance exercise challenges the sympathetic control on VC due to attenuated sympathetic receptor responsiveness and persistence of muscle vasodilation, especially in endurance athletes, predisposing them to blood pressure control dysfunctions. This study assessed whether acute handgrip-mediated sympathetic activation (SYMP) restrains sudden leg vasodilation before and after a half-marathon. Prior to, and within the 20 min following the race, 11 well-trained runners underwent two single passive leg movement (SPLM) tests to suddenly induce leg vasodilation, one without and the other during SYMP. Leg blood flow and mean arterial pressure were measured to assess changes in leg VC. Undertaking 60 sec of SYMP reduced the baseline leg VC both before (4.0 ± 1.0 vs. 3.3 ± 0.7 ml/min/mmHg; P=0.01; NO SYMP vs. SYMP, respectively) and after the race (4.6 ± 0.8 vs. 3.9 ± 0.8 ml/min/mmHg; P=0.01). However, SYMP did not reduce leg peak vasodilation immediately after the SPLM either before (11.5 ± 4.0 vs. 12.2 ± 3.8 ml/min/mmHg; P=0.35) or after the race (7.2 ± 2.0 vs. 7.3 ± 2.6 ml/min/mmHg; P=0.96). Furthermore, SYMP did not blunt the mean leg vasodilation over the 60 sec after the SPLM before (5.1 ± 1.7 vs. 5.9 ± 2.5 ml/min/mmHg; P=0.14) or after the race (4.8 ± 1.3 vs. 4.2 ± 1.5 ml/min/mmHg; P=0.26). This data suggest that the release of local vasoactive agents effectively opposes any preceding handgrip-mediated augmented vasoconstriction in endurance athletes before and after a half-marathon. Handgrip-mediated SYMP might improve normal vasoconstriction while athletes are still, but not necessarily while they move, as movements can induce a release of vasoactive molecules.
Collapse
Affiliation(s)
- Alessandro Gentilin
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Cantor Tarperi
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Kristina Skroce
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.,Department of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antonio Cevese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| |
Collapse
|
39
|
Gentilin A, Tarperi C, Skroce K, Cevese A, Schena F. Effect of acute sympathetic activation on leg vasodilation before and after endurance exercise. J Smooth Muscle Res 2021; 57:53-67. [PMID: 34789634 PMCID: PMC8592823 DOI: 10.1540/jsmr.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vascular conductance (VC) regulation involves a continuous balance between metabolic
vasodilation and sympathetic vasoconstriction. Endurance exercise challenges the
sympathetic control on VC due to attenuated sympathetic receptor responsiveness and
persistence of muscle vasodilation, especially in endurance athletes, predisposing them to
blood pressure control dysfunctions. This study assessed whether acute handgrip-mediated
sympathetic activation (SYMP) restrains sudden leg vasodilation before and after a
half-marathon. Prior to, and within the 20 min following the race, 11 well-trained runners
underwent two single passive leg movement (SPLM) tests to suddenly induce leg
vasodilation, one without and the other during SYMP. Leg blood flow and mean arterial
pressure were measured to assess changes in leg VC. Undertaking 60 sec of SYMP reduced the
baseline leg VC both before (4.0 ± 1.0 vs. 3.3 ± 0.7 ml/min/mmHg; P=0.01;
NO SYMP vs. SYMP, respectively) and after the race (4.6 ± 0.8 vs. 3.9 ± 0.8 ml/min/mmHg;
P=0.01). However, SYMP did not reduce leg peak vasodilation immediately
after the SPLM either before (11.5 ± 4.0 vs. 12.2 ± 3.8 ml/min/mmHg;
P=0.35) or after the race (7.2 ± 2.0 vs. 7.3 ± 2.6 ml/min/mmHg;
P=0.96). Furthermore, SYMP did not blunt the mean leg vasodilation over
the 60 sec after the SPLM before (5.1 ± 1.7 vs. 5.9 ± 2.5 ml/min/mmHg;
P=0.14) or after the race (4.8 ± 1.3 vs. 4.2 ± 1.5 ml/min/mmHg;
P=0.26). This data suggest that the release of local vasoactive agents
effectively opposes any preceding handgrip-mediated augmented vasoconstriction in
endurance athletes before and after a half-marathon. Handgrip-mediated SYMP might improve
normal vasoconstriction while athletes are still, but not necessarily while they move, as
movements can induce a release of vasoactive molecules.
Collapse
Affiliation(s)
- Alessandro Gentilin
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Cantor Tarperi
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Kristina Skroce
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.,Department of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antonio Cevese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| |
Collapse
|
40
|
Cutruzzolà A, Parise M, Vallelunga R, Lamanna F, Gnasso A, Irace C. Effect of Extra Virgin Olive Oil and Butter on Endothelial Function in Type 1 Diabetes. Nutrients 2021; 13:nu13072436. [PMID: 34371945 PMCID: PMC8308536 DOI: 10.3390/nu13072436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Post-prandial hyperglycemia can be relevant in developing early manifestations of atherosclerosis. EVOO (Extra Virgin Olive Oil), rich in saturated fatty acids and commonly used in the Mediterranean diet, seems to control post-prandial hyperglycemia better than butter. Subjects with type 1 diabetes are at higher risk of developing cardiovascular disease and show endothelial dysfunction, an early manifestation of atherosclerosis in the first years of the disease. Our study aims to evaluate whether EVOO and butter influence endothelial function in subjects with type 1 diabetes when added to a single high glycemic index (HGI) meal. In this exploratory cross-over study, 10 subjects with type 1 diabetes and 6 healthy subjects were scheduled to receive two types of HGI meals: one enriched with EVOO and one with butter. Before and after each test meal at different time points, all subjects underwent the evaluation of endothelial function by flow-mediated dilation technique, glucose and lipids measurements, and gastric emptying assessment by ultrasound. Flow-mediated dilation significantly increased after EVOO-enriched meal compared with butter in subjects with type 1 diabetes (two-way-repeated measurements ANOVA, p = 0.007). In patients with type 1 diabetes, the add-on of EVOO to HGI meal improves vascular function compared to butter, which has detrimental effects.
Collapse
Affiliation(s)
- Antonio Cutruzzolà
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (R.V.); (F.L.); (A.G.)
| | - Martina Parise
- Dipartimento di Scienze della Salute, University Magna Græcia, 88100 Catanzaro, Italy;
| | - Rosarina Vallelunga
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (R.V.); (F.L.); (A.G.)
| | - Francesco Lamanna
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (R.V.); (F.L.); (A.G.)
| | - Agostino Gnasso
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (R.V.); (F.L.); (A.G.)
| | - Concetta Irace
- Dipartimento di Scienze della Salute, University Magna Græcia, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-0961-3647039
| |
Collapse
|
41
|
Nyborg C, Melsom HS, Bonnevie-Svendsen M, Melau J, Seljeflot I, Hisdal J. Transient Reduction of FMD-Response and L-Arginine Accompanied by Increased Levels of E-Selectin, VCAM, and ICAM after Prolonged Strenuous Exercise. Sports (Basel) 2021; 9:sports9060086. [PMID: 34204566 PMCID: PMC8234080 DOI: 10.3390/sports9060086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/22/2023] Open
Abstract
We assessed endothelial function by flow-mediated dilatation (FMD), levels of the NO-precursor L-arginine, and markers of endothelial inflammation before, at the finish line, and one week after the Norseman Xtreme triathlon. The race is an Ironman distance triathlon with a total elevation of 5200 m. Nine male participants were included. They completed the race in 14.5 (13.4–15.3) h. FMD was significantly reduced to 3.1 (2.1–5.0)% dilatation compared to 8.7 (8.2–9.3)% dilatation before the race (p < 0.05) and was normalized one week after the race. L-arginine showed significantly reduced levels at the finish line (p < 0.05) but was normalized one week after the race. Markers of endothelial inflammation E-Selectin, VCAM-1, and ICAM-1 all showed a pattern with increased values at the finish line compared to before the race (all p < 0.05), with normalization one week after the race. In conclusion, we found acutely reduced FMD with reduced L-arginine levels and increased E-Selectin, VCAM-1, and ICAM-1 immediately after the Norseman Xtreme triathlon. Our findings indicate a transient reduced endothelial function, measured by the FMD-response, after prolonged strenuous exercise that could be explained by reduced NO-precursor L-arginine levels and increased endothelial inflammation.
Collapse
Affiliation(s)
- Christoffer Nyborg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; (H.S.M.); (M.B.-S.); (J.M.); (I.S.); (J.H.)
- Department of Vascular Surgery, Oslo University Hospital, 0424 Oslo, Norway
- Correspondence: ; Tel.: +47-971-76-129
| | - Helene Støle Melsom
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; (H.S.M.); (M.B.-S.); (J.M.); (I.S.); (J.H.)
- Department of Vascular Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Martin Bonnevie-Svendsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; (H.S.M.); (M.B.-S.); (J.M.); (I.S.); (J.H.)
- Department of Vascular Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Jørgen Melau
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; (H.S.M.); (M.B.-S.); (J.M.); (I.S.); (J.H.)
- Department of Vascular Surgery, Oslo University Hospital, 0424 Oslo, Norway
- Department of Prehospital Care, Vestfold Hospital Trust, 3103 Toensberg, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; (H.S.M.); (M.B.-S.); (J.M.); (I.S.); (J.H.)
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Jonny Hisdal
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; (H.S.M.); (M.B.-S.); (J.M.); (I.S.); (J.H.)
- Department of Vascular Surgery, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
42
|
Impact of Nutrition-Based Interventions on Athletic Performance during Menstrual Cycle Phases: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126294. [PMID: 34200767 PMCID: PMC8296102 DOI: 10.3390/ijerph18126294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Despite the steady increase in female participation in sport over the last two decades, comprehensive research on interventions attenuating the influence of female menstrual physiology on performance remains scarce. Studies involving eumenorrheic women often only test in one menstrual phase to limit sex hormone variance, which may restrict the application of these findings to the rest of the menstrual cycle. The impacts of nutrition-based interventions on athletic performance throughout the menstrual cycle have not been fully elucidated. We addressed this gap by conducting a focused critical review of clinical studies that reported athletic outcomes as well as menstrual status for healthy eumenorrheic female participants. In total, 1443 articles were identified, and 23 articles were included. These articles were published between 2011 and 2021, and were retrieved from Google Scholar, Medline, and PubMed. Our literature search revealed that hydration-, micronutrient-, and phytochemical-based interventions can improve athletic performance (measured by aerobic capacity, anaerobic power, and strength performance) or attenuate exercise-induced damage (measured by dehydration biomarkers, muscle soreness, and bone resorption biomarkers). Most performance trials, however, only assessed these interventions in one menstrual phase, limiting the application throughout the entire menstrual cycle. Improvements in athletic performance through nutrition-based interventions may be contingent upon female sex hormone variation in eumenorrheic women.
Collapse
|
43
|
Weggen JB, Darling AM, Autler AS, Hogwood AC, Decker KP, Imthurn B, Tuzzolo GM, Garten RS. Impact of acute antioxidant supplementation on vascular function and autonomic nervous system modulation in young adults with PTSD. Am J Physiol Regul Integr Comp Physiol 2021; 321:R49-R61. [PMID: 34075811 DOI: 10.1152/ajpregu.00054.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Posttraumatic stress disorder (PTSD) has been associated with an increase in risk of cardiovascular disease (CVD). The goal of this study was to determine if peripheral vascular dysfunction, a precursor to CVD, was present in young adults with PTSD, and if an acute antioxidant (AO) supplementation could modify this potential PTSD-induced vascular dysfunction. Thirteen individuals with PTSD were recruited for this investigation and were compared with 35 age- and sex-matched controls (CTRL). The PTSD group participated in two visits, consuming either a placebo (PTSD-PL) or antioxidants (PTSD-AO; vitamins C and E; α-lipoic acid) before their visits, whereas the CTRL subjects only participated in one visit. Upper and lower limb vascular functions were assessed via flow-mediated dilation and passive leg movement technique. Heart rate variability was utilized to assess autonomic nervous system modulation. The PTSD-PL condition, when compared with the CTRL group, reported lower arm and leg microvascular function as well as sympathetic nervous system (SNS) predominance. After acute AO supplementation, arm, but not leg, microvascular function was improved and SNS predominance was lowered to which the prior difference between PTSD group and CTRL was no longer significant. Young individuals with PTSD demonstrated lower arm and leg microvascular function as well as greater SNS predominance when compared with age- and sex-matched controls. Furthermore, this lower vascular/autonomic function was augmented by an acute AO supplementation to the level of the healthy controls, potentially implicating oxidative stress as a contributor to this blunted vascular/autonomic function.
Collapse
Affiliation(s)
- Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ashley M Darling
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Aaron S Autler
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Kevin P Decker
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon Imthurn
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Gina M Tuzzolo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
44
|
Liu KR, Lew LA, McGarity-Shipley EC, Byrne AC, Islam H, Fenuta AM, Pyke KE. Individual variation of follicular phase changes in endothelial function across two menstrual cycles. Exp Physiol 2021; 106:1389-1400. [PMID: 33866631 DOI: 10.1113/ep089482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 01/26/2023]
Abstract
NEW FINDINGS What is the central question of this study? The purpose of this study was to determine intra-individual reproducibility of follicular phase changes in endothelial function (flow-mediated dilatation) over two menstrual cycles in healthy, premenopausal women. What is the main finding and its importance? Phase changes in endothelial function were not consistent at the individual level across two menstrual cycles, which challenges the utility of interpreting individual responses over one cycle. ABSTRACT Evidence regarding the impact of menstrual phase on endothelial function is conflicting, and studies to date have examined responses only over a single cycle. It is unknown whether the observed inter-individual variability of phase changes in endothelial function reflects stable, inter-individual differences in responses to oestrogen (E2 ; a primary female sex hormone). The purpose of this study was to examine changes in endothelial function from the early follicular (EF; low-E2 ) phase to the late follicular (LF; high-E2 ) phase over two consecutive cycles. Fourteen healthy, regularly menstruating women [22 ± 3 years of age (mean ± SD)] participated in four visits (EFVisit 1 , LFVisit 2 , EFVisit 3 and LFVisit 4 ) over two cycles. Ovulation testing was used to determine the time between the LF visit and ovulation. During each visit, endothelial function [brachial artery flow-mediated dilatation (FMD)], E2 and progesterone were assessed. At the group level, there was no impact of phase or cycle on FMD (P = 0.48 and P = 0.65, respectively). The phase change in FMD in cycle 1 did not predict the phase change in cycle 2 (r = 0.03, P = 0.92). Using threshold-based classification (2 × typical error threshold), four of 14 participants (29%) exhibited directionally consistent phase changes in FMD across cycles. Oestrogen was not correlated between cycles, and this might have contributed to variability in the FMD response. The intra-individual variability in follicular fluctuation in FMD between menstrual cycles challenges the utility of interpreting individual responses to phase over a single menstrual cycle.
Collapse
Affiliation(s)
- Kaitlyn R Liu
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Lindsay A Lew
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Ellen C McGarity-Shipley
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Amanda C Byrne
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Alyssa M Fenuta
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
45
|
Paterson C, Fryer S, Zieff G, Stone K, Credeur DP, Barone Gibbs B, Padilla J, Parker JK, Stoner L. The Effects of Acute Exposure to Prolonged Sitting, With and Without Interruption, on Vascular Function Among Adults: A Meta-analysis. Sports Med 2021; 50:1929-1942. [PMID: 32757163 DOI: 10.1007/s40279-020-01325-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Exposure to acute prolonged sitting can result in vascular dysfunction, particularly within the legs. This vascular dysfunction, assessed using flow-mediated dilation (FMD), is likely the consequence of decreased blood flow-induced shear stress. With mixed success, several sitting interruption strategies have been trialled to preserve vascular function. OBJECTIVES The objectives of this meta-analysis were to (1) assess the effects of acute prolonged sitting exposure on vascular function in the upper- and lower-limb arteries, and (2) evaluate the effectiveness of sitting interruption strategies in preserving vascular function. Sub-group analyses were conducted to determine whether artery location or interruption modality explain heterogeneity. DATA SOURCES Electronic databases (PubMed, Web of Science, SPORTDiscus, and Google Scholar) were searched from inception to January 2020. Reference lists of eligible studies and relevant reviews were also checked. STUDY SELECTION Inclusion criteria for objective (1) were: (i) FMD% was assessed pre- and post-sitting; (ii) studies were either randomised-controlled, randomised-crossover, or quasi-experimental trials; (iii) the sitting period was ≥ 1 h; and (iv) participants were healthy non-smoking adults (≥ 18 years), and free of vascular-acting medication and disease at the time of testing. Additional inclusion criteria for objective (2) were: (i) the interruption strategy must have been during the sitting period; (ii) there was a control (uninterrupted sitting) group/arm; and (iii) the interruption strategy must have involved the participants actively moving their lower- or upper-limbs. APPRAISAL AND SYNTHESIS METHODS One thousand eight hundred and two articles were identified, of which 17 (22 trials, n = 269) met inclusion criteria for objective (1). Of those 17 articles, 6 studies (9 trials, n = 127) met the inclusion criteria for objective (2). Weighted mean differences (WMD), 95% confidence intervals (95% CI), and standardised mean difference (SMD) were calculated for all trials using random-effects meta-analysis modelling. SMD was used to determine the magnitude of effect, where < 0.2, 0.2, 0.5, and 0.8 was defined as trivial, small, moderate, and large respectively. RESULTS (1) Random-effects modelling showed uninterrupted bouts of prolonged sitting resulted in a significant decrease in FMD% (WMD = - 2.12%, 95% CI - 2.66 to - 1.59, SMD = 0.84). Subgroup analysis revealed reductions in lower- but not upper-limb FMD%. (2) Random-effects modelling showed that interrupting bouts of sitting resulted in a significantly higher FMD% compared to uninterrupted sitting (WMD = 1.91%, 95% CI 0.40 to 3.42, SMD = 0.57). Subgroup analyses failed to identify an optimum interruption strategy but revealed moderate non-significant effects for aerobic interventions (WMD = 2.17%, 95% CI - 0.34 to 4.67, SMD = 0.69) and simple resistance activities (WMD = 2.40%, 95% CI - 0.08 to 4.88, SMD = 0.55) and a trivial effect for standing interruptions (WMD = 0.24%, 95% CI - 0.90 to 1.38, SMD = 0.16). CONCLUSIONS Exposure to acute prolonged sitting leads to significant vascular dysfunction in arteries of the lower, but not upper, limbs. The limited available data indicate that vascular dysfunction can be prevented by regularly interrupting sitting, particularly with aerobic or simple resistance activities.
Collapse
Affiliation(s)
- Craig Paterson
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK.
| | - Simon Fryer
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Gabriel Zieff
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keeron Stone
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | | | - Bethany Barone Gibbs
- Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - John K Parker
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Lee Stoner
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Biscotto IP, Costa Hong VA, Batista RL, Mendonca BB, Arnhold IJP, Bortolotto LA, Carvalho LRS. Vasculometabolic effects in patients with congenital growth hormone deficiency with and without GH replacement therapy during adulthood. Pituitary 2021; 24:216-228. [PMID: 33098037 DOI: 10.1007/s11102-020-01099-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To evaluated the metabolic profiles and vascular properties in congenital growth hormone (GH) deficiency (GHD) and its replacement in adults. PATIENTS AND METHODS Cross-sectional study conducted in a single tertiary center for pituitary diseases. Eighty-one adult subjects were divided into three groups: (1) 29 GHD patients with daily subcutaneous GH replacement therapy (GHRT) during adulthood; (2) 20 GHD patients without GHRT during adulthood and (3) 32 controls. Only patients with adequate adherence to others pituitary hormone deficiencies were included. Anthropometric parameters, body composition by dual-energy X-ray absorptiometry, metabolic profiles and vascular properties (carotid intima media thickness, pulse wave velocity and flow-mediated dilation) were compared among the groups. RESULTS Waist-to-height ratio (WHR), body fat percentages and fat mass index (FMI) were lower in patients with GHRT than patients without GHRT during adulthood (0.49 ± 0.06 vs. 0.53 ± 0.06 p = 0.026, 30 ± 10 vs. 40 ± 11 p = 0.003 and 7.3 ± 4 vs. 10 ± 3.5 p = 0.041, respectively). In addition, association between longer GHRT and lower body fat percentage was observed (r = - 0.326, p = 0.04). We found higher triglyceride (113.5 ± 62 vs. 78 ± 36, p = 0.025) and lower HDL cholesterol (51 ± 17 vs. 66 ± 23, p = 0.029) levels in patients without GHRT during adulthood in comparison to controls. No statistical differences were observed for vascular properties among the groups. CONCLUSIONS No differences in vascular properties were observed in congenital GHD adult patients with or without GHRT despite patients without GHRT had an unfavorable body composition. GHRT currently remains an individualized decision in adults with GHD and these findings bring new insight into the treatment and follow-up of these patients.
Collapse
Affiliation(s)
- Isabela Peixoto Biscotto
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Departamento de Clínica Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, Sao Paulo, SP, 05403-000, Brazil.
| | - Valéria Aparecida Costa Hong
- Unidade de Hipertensão, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade São Paulo, Sao Paulo, Brazil
| | - Rafael Loch Batista
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Departamento de Clínica Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, Sao Paulo, SP, 05403-000, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Departamento de Clínica Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, Sao Paulo, SP, 05403-000, Brazil
| | - Ivo Jorge Prado Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Departamento de Clínica Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, Sao Paulo, SP, 05403-000, Brazil
| | - Luiz Aparecido Bortolotto
- Unidade de Hipertensão, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da Universidade São Paulo, Sao Paulo, Brazil
| | - Luciani Renata Silveira Carvalho
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Departamento de Clínica Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, Sao Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
47
|
Schoech L, Allie K, Salvador P, Martinez M, Rivas E. Sex Differences in Thermal Comfort, Perception, Feeling, Stress and Focus During Exercise Hyperthermia. Percept Mot Skills 2021; 128:969-987. [PMID: 33730933 DOI: 10.1177/00315125211002096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is unclear whether men and women perceive thermal stress differently when changes in intestinal temperature (ΔTin) and metabolic heat production (MHprod) are matched between sexes during exercise hyperthermia. This study tested the hypothesis that females have enhanced sensitivity to comfort and perception of thermal stress during exercise hyperthermia in these conditions. We had 22 healthy active adults (11 males, 11 females; M age = 22.4 years, SD = 4.9; M height = 169 cm, SD = 7.6; M weight = 68.3 kg, SD = 13) exercise in random order, separated by at least three days at similar MHprod (M = 7.0 W/kg, SD = 1.5; p = 0.32) for 60 minutes on a cycle ergometer in cool (M = 24.00C, SD = 0.0; M = 14.4%Rh, SD = 3.6) and hot (M = 42.3°C, SD = 0.2; M = 10-60%Rh) environments with a progressive increase in humidity conditions. We measured ΔTin, and thermal stress indices for sensation (TS), comfort (TC), pleasantness (TP), and stickiness (S), feeling (FS scale), stress (visual analogue stress scale, VAS), focus (F) and felt arousal (FAS scale). We examined environmental conditions as wet bulb globe temperatures (WBGT). Males and females had similar increases in ΔTin (ME: WBGT; p < 0.0001), and both groups reported increased TS and TC and decreased TP (ME: WBGT, p ≤ 0.01). However, females reported that TS, TC, and TP, felt hotter overall, more uncomfortable, and more unpleasant, compared to males (ME: Sex; p < 0.04). Overall, females felt worse and were more stressed compared to males (ME: Sex; p ≤ 0.05). Females also reported greater internal focus as WBGT increased compared to males (I: WBGT × Sex; p < 0.003). Knowing that females perceive thermal stress during exercise hyperthermia to be hotter, more uncomfortable, more unpleasant, and more stressful compared to males can help coaches/trainers plan different exercise routines for exercisers of both sexes.
Collapse
Affiliation(s)
- Lauren Schoech
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, United States
| | - Kyleigh Allie
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, United States
| | - Paolo Salvador
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, United States
| | - Mauricio Martinez
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, United States
| | - Eric Rivas
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, United States.,KBR, Human Physiology, Performance, Protection & Operations Laboratory, NASA, Johnson Space Center, Houston, Texas, United States
| |
Collapse
|
48
|
Giersch GEW, Charkoudian N, Pereira T, Edgell H, Freeberg KA, Craighead DH, Neill M, Allison EY, Zapcic AK, Smith KJ, Bock JM, Casey DP, Shenouda N, Ranadive SM, Tremblay JC, Williams AM, Simpson LL, Meah VL, Ruediger SL, Bailey TG, Pereira HM, Lei TH, Perry B, Mündel T, Freemas JA, Worley ML, Baranauskas MN, Carter SJ, Johnson BD, Schlader ZJ, Bates LC, Stoner L, Zieff G, Poles J, Adams N, Meyer ML, Hanson ED, Greenlund IM, Bigalke JA, Carter JR, Kerr ZY, Stanford K, Pomeroy A, Boggess K, de Souza HLR, Meireles A, Arriel RA, Leite LHR, Marocolo M, Chapman CL, Atencio JK, Kaiser BW, Comrada LN, Halliwill JR, Minson CT, Williams JS, Dunford EC, MacDonald MJ, Santisteban KJ, Larson EA, Reed E, Needham KW, Gibson BM, Gillen J, Barbosa TC, Cardoso LLY, Gliemann L, Tamariz-Ellemann A, Hellsten Y, DuBos LE, Babcock MC, Moreau KL, Wickham KA, Vagula M, Moir ME, Klassen SA, Rodrigues A. Commentaries on Point:Counterpoint: Investigators should/should not control for menstrual cycle phase when performing studies of vascular control. J Appl Physiol (1985) 2021; 129:1122-1135. [PMID: 33197376 DOI: 10.1152/japplphysiol.00809.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine, Natick, Massachusetts,Oak Ridge Institute for Science and Education, Oak Ridge, Tennnessee
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine, Natick, Massachusetts
| | - T Pereira
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - H Edgell
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - Kaitlin A Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Matthew Neill
- Department of Kinesiology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Elric Y Allison
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Andrea K Zapcic
- Department of Kinesiology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Kurt J Smith
- Integrative Physiology Lab, Department of Kinesiology and Nutrition, University of Chicago, Chicago, Illinois
| | - Joshua M Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa,Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ninette Shenouda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland, College Park, Maryland
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, University of British Columbia–Okanagan, Kelowna, British Columbia, Canada
| | - Alexandra M Williams
- Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Victoria L Meah
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stefanie L Ruediger
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre of Research on Exercise, Physical Activity and Health, The University of Queensland, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre of Research on Exercise, Physical Activity and Health, The University of Queensland, Australia,School of Nursing, Midwifery and Social Work, The University of Queensland, Australia
| | - Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China,Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Blake Perry
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Jessica A Freemas
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Morgan L Worley
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Marissa N Baranauskas
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Stephen J Carter
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Blair D Johnson
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Zachary J Schlader
- H.H. Morris Human Performance Laboratories, Dept. of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gabriel Zieff
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jillian Poles
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nathan Adams
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michelle L Meyer
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ian M Greenlund
- Department of Health and Human Development, Montana State University, Bozeman, Montana,Department of Psychology, Montana State University, Bozeman, Montana
| | - Jeremy A Bigalke
- Department of Health and Human Development, Montana State University, Bozeman, Montana,Department of Psychology, Montana State University, Bozeman, Montana
| | - Jason R Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana,Department of Psychology, Montana State University, Bozeman, Montana
| | - Zachary Y Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Stanford
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alex Pomeroy
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim Boggess
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hiago L R de Souza
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Anderson Meireles
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Rhai A Arriel
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Laura H R Leite
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Moacir Marocolo
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Jessica K Atencio
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Brendan W Kaiser
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Lindan N Comrada
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Emily C Dunford
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Emma Reed
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Karen W Needham
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Brandon M Gibson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Jenna Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Thales C Barbosa
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Licy L Yanes Cardoso
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | | | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Lyndsey E DuBos
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew C Babcock
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kerrie L Moreau
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, Colorado
| | - Kate A Wickham
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | | | - M Erin Moir
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | | | - Alex Rodrigues
- Physiology and Human Performance Research Group, Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
49
|
Effects of acute dietary nitrate supplementation on cold-induced vasodilation in healthy males. Eur J Appl Physiol 2021; 121:1431-1439. [PMID: 33620545 DOI: 10.1007/s00421-021-04621-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/05/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Cold-induced vasodilation (CIVD) is a paradoxical rise in blood flow to the digits that occur during prolonged cold exposure. CIVD is thought to occur through active vasodilation and/or sympathetic withdrawal, where nitric oxide (NO) may play a key role in mediating these mechanisms. Beetroot juice (BRJ) is high in dietary nitrate (NO3-) which undergoes sequential reduction to nitrite (NO2-) and subsequently NO. Using a double-blind, randomized, crossover design, we examined the effect of acute BRJ supplementation on the CIVD response in 10 healthy males. METHODS Participants had a resting blood pressure measurement taken prior to ingesting 140 mL of nitrate-rich BRJ (13 mmol NO3-) or a NO3--free placebo (PLA). After 2 h, participants immersed their hand in neutral water (~ 35 °C) for 10 min of baseline before cold water immersion (~ 8 °C) for 30 min. Laser-Doppler fluxmetry and skin temperature were measured continuously on the digits. RESULTS Compared to PLA (100 ± 3 mmHg), acute BRJ supplementation significantly reduced mean arterial pressure at -30 min (96 ± 2 mmHg; p = 0.007) and 0 min (94 ± 2 mmHg; p = 0.008). Acute BRJ supplementation had no effect on Laser-Doppler fluxmetry during CIVD (expressed as cutaneous vascular conductance) measured as area under the curve (BRJ: 843 ± 148 PU mmHg-1 s; PLA: 1086 ± 333 PU mmHg-1 s), amplitude (BRJ: 0.60 ± 0.12 PU mmHg-1; PLA: 0.69 ± 0.14 PU mmHg-1), and duration (BRJ: 895 ± 60 s; PLA: 894 ± 46 s). CONCLUSION Acute BRJ supplementation does not augment the CIVD response in healthy males.
Collapse
|
50
|
Kono K, Abe S, Yamamoto M, Kayashima R, Kaneko K, Sakuma M, Toyoda S, Nakajima T, Inoue T. Vascular Endothelial Dysfunction and Autonomic Nervous Hyperactivity among Premenopausal Women with Cold-Sensitivity Constitution (Hiesho). TOHOKU J EXP MED 2021; 253:51-60. [PMID: 33455971 DOI: 10.1620/tjem.253.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cold-sensitivity constitution (CSC), termed "Hiesho" in Japanese, is a woman-specific cold sense of peripheral sites. The etiology of and criteria for CSC are not yet well established. We defined CSC as temperature gradient > 6˚C between body surface and core, and investigated the autonomic nervous activity by measuring heart rate variability and the vascular endothelial function by determining reactive hyperemia index (RHI) in 43 healthy premenopausal women, aged 18-47 years. Twenty five women had CSC during both the follicular and luteal phases of their menstrual cycles (sustained-CSC group), 8 women did not show CSC during both phases (non-CSC group), and the remaining 10 women showed CSC in either menstrual phase (occasional CSC). To identify the pathophysiological bases of CSC, we compared the sympathetic nervous activity and vascular endothelial function between sustained-CSC and non-CSC. We thus found that sympathetic nervous activity was higher among the sustained-CSC group (p = 0.042) during the follicular phase, compared with the non-CSC group, while the RHI was similar in both groups. Furthermore, the sympathetic nervous activity was similar between the sustained-CSC women aged ≥ 40 years (n = 10) and those aged < 40 years (n = 15) during either menstrual phase, whereas the RHI of the women aged < 40 years was lower during the follicular phase (p = 0.045), compared with the women aged ≥ 40 years. In conclusion, CSC is associated with sympathetic nervous hyperactivity in premenopausal women, and vascular endothelial dysfunction is also involved in CSC among younger women.
Collapse
Affiliation(s)
- Kaori Kono
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine.,Department of Fundamental Nursing, Dokkyo Medical University School of Nursing
| | - Shichiro Abe
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine
| | | | - Ryo Kayashima
- Department of Fundamental Nursing, Dokkyo Medical University School of Nursing
| | | | - Masashi Sakuma
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine
| | - Teruo Inoue
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine
| |
Collapse
|