1
|
Investigating the involvement of TRPV 1 ion channels in remote hind limb preconditioning-induced cardioprotection in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:117-126. [PMID: 27752734 DOI: 10.1007/s00210-016-1311-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/09/2016] [Indexed: 01/03/2023]
Abstract
Remote ischemic preconditioning (RIPC) treatment strategy is a breakthrough in the field of cardiovascular pharmacology as it has the potential to attenuate myocardial ischemia-reperfusion injury. However, the underlying intracellular pathways have not been widely explored. The present study intends to explore the possible role of TRPV1 channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 cycles in succession) was delivered by tying the blood pressure cuff at the inguinal level of the rat. The Langendorff system was used to perfuse the isolated heart and afterward was subjected to 30 min of global ischemia and 120 min of reperfusion. Sustained ischemia and, thereafter, reperfusion led to cardiac injury that was assessed in terms of infarct size, lactate dehydrogenase (LDH) release, creatine kinase (CK) release, left ventricular end diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), +dp/dtmax, -dp/dtmin, heart rate, rate pressure product, and coronary flow rate. The pharmacological modulators employed included capsaicin as TRPV1 agonist and capsazepine as TRPV1 antagonist. Remote hind limb preconditioning stimulus and capsaicin preconditioning (5 and 10 mg/kg) led to significant reduction in infarct size, LVEDP, LDH release, CK release, and significant improvement in LVDP, +dp/dtmax, -dp/dtmin, heart rate, rate pressure product, and coronary flow rate. However, remote hind limb preconditioning-induced cardioprotective effects were considerably abolished in the presence of capsazepine (2.5 and 5 mg/kg). This indicates that remote hind limb preconditioning stimulus possibly activates TRPV1 channels to produce cardioprotective effects.
Collapse
|
2
|
Randhawa PK, Jaggi AS. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:887-96. [PMID: 27118661 DOI: 10.1007/s00210-016-1251-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/20/2016] [Indexed: 01/16/2023]
Abstract
Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. Using Langendorff's system, the heart was perfused and subjected to 30-min ischemia and 120-min reperfusion. The myocardial injury was assessed by measuring infarct size, lactate dehydrogenase (LDH), creatine kinase (CK), LVDP, +dp/dtmax, -dp/dtmin, heart rate, and coronary flow rate. Gadolinium, TRP blocker, and ruthenium red, TRPV channel blocker, were employed as pharmacological tools. Remote hind limb preconditioning significantly reduced the infarct size, LDH release, CK release and improved coronary flow rate, hemodynamic parameters including LVDP, +dp/dtmax, -dp/dtmin, and heart rate. However, gadolinium (7.5 and 15 mg kg(-1)) and ruthenium red (4 and 8 mg kg(-1)) significantly attenuated the cardioprotective effects suggesting the involvement of TRP especially TRPV channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
3
|
Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 2014; 63:291-301. [PMID: 24145181 DOI: 10.1097/fjc.0000000000000032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.
Collapse
|
4
|
O'Connell TD, Jensen BC, Baker AJ, Simpson PC. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 2013; 66:308-33. [PMID: 24368739 DOI: 10.1124/pr.112.007203] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate "inside-out" signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure.
Collapse
Affiliation(s)
- Timothy D O'Connell
- VA Medical Center (111-C-8), 4150 Clement St., San Francisco, CA 94121. ; or Dr. Timothy D. O'Connell, E-mail:
| | | | | | | |
Collapse
|
5
|
|
6
|
Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 2011; 301:H1723-41. [PMID: 21856909 DOI: 10.1152/ajpheart.00553.2011] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart diseases due to myocardial ischemia, such as myocardial infarction or ischemic heart failure, are major causes of death in developed countries, and their number is unfortunately still growing. Preliminary exploration into the pathophysiology of ischemia-reperfusion injury, together with the accumulation of clinical evidence, led to the discovery of ischemic preconditioning, which has been the main hypothesis for over three decades for how ischemia-reperfusion injury can be attenuated. The subcellular pathophysiological mechanism of ischemia-reperfusion injury and preconditioning-induced cardioprotection is not well understood, but extensive research into components, including autacoids, ion channels, receptors, subcellular signaling cascades, and mitochondrial modulators, as well as strategies for modulating these components, has made evolutional progress. Owing to the accumulation of both basic and clinical evidence, the idea of ischemic postconditioning with a cardioprotective potential has been discovered and established, making it possible to apply this knowledge in the clinical setting after ischemia-reperfusion insult. Another a great outcome has been the launch of translational studies that apply basic findings for manipulating ischemia-reperfusion injury into practical clinical treatments against ischemic heart diseases. In this review, we discuss the current findings regarding the fundamental pathophysiological mechanisms of ischemia-reperfusion injury, the associated protective mechanisms of ischemic pre- and postconditioning, and the potential seeds for molecular, pharmacological, or mechanical treatments against ischemia-reperfusion injury, as well as subsequent adverse outcomes by modulation of subcellular signaling mechanisms (especially mitochondrial function). We also review emerging translational clinical trials and the subsistent clinical comorbidities that need to be overcome to make these trials applicable in clinical medicine.
Collapse
Affiliation(s)
- Shoji Sanada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | |
Collapse
|
7
|
Jensen BC, O'Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol 2010; 51:518-28. [PMID: 21118696 DOI: 10.1016/j.yjmcc.2010.11.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Division, VA Medical Center, San Francisco, CA, USA.
| | | | | |
Collapse
|
8
|
Hidalgo C, Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1275-312. [PMID: 18377233 DOI: 10.1089/ars.2007.1886] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies done many years ago established unequivocally the key role of calcium as a universal second messenger. In contrast, the second messenger roles of reactive oxygen and nitrogen species have emerged only recently. Therefore, their contributions to physiological cell signaling pathways have not yet become universally accepted, and many biological researchers still regard them only as cellular noxious agents. Furthermore, it is becoming increasingly apparent that there are significant interactions between calcium and redox species, and that these interactions modify a variety of proteins that participate in signaling transduction pathways and in other fundamental cellular functions that determine cell life or death. This review article addresses first the central aspects of calcium and redox signaling pathways in animal cells, and continues with the molecular mechanisms that underlie crosstalk between calcium and redox signals under a number of physiological or pathological conditions. To conclude, the review focuses on conditions that, by promoting cellular oxidative stress, lead to the generation of abnormal calcium signals, and how this calcium imbalance may cause a variety of human diseases including, in particular, degenerative diseases of the central nervous system and cardiac pathologies.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Centro FONDAP de Estudios Moleculares de la Célula and Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
9
|
French JP, Hamilton KL, Quindry JC, Lee Y, Upchurch PA, Powers SK. Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. FASEB J 2008; 22:2862-71. [PMID: 18417547 DOI: 10.1096/fj.07-102541] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exercise provides protection against myocardial ischemia-reperfusion (IR) injury. Understanding the mechanisms of this protection may lead to new interventions for the prevention and/or treatment of heart disease. Although presently these mechanisms are not well understood, reports suggest that manganese superoxide dismutase (MnSOD) and calpain may be critical mediators of this protection. We hypothesized that an exercise-induced increase in MnSOD would provide cardioprotection by attenuating IR-induced oxidative modification to critical Ca(2+)-handling proteins, thereby decreasing calpain-mediated cleavage of these and other proteins attenuating cardiomyocyte death. After IR, myocardial apoptosis and infarct size were significantly reduced in hearts of exercised animals compared with sedentary controls. In addition, exercise prevented IR-induced calpain activation as well as the oxidative modification and calpain-mediated degradation of myocardial Ca(2+)-handling proteins (L-type Ca(2+) channels, phospholamban, and sarcoplasmic/endoplasmic reticulum calcium ATPase). Further, IR-induced activation of proapoptotic proteins was attenuated in exercised animals. Importantly, prevention of the exercise-induced increase in MnSOD activity via antisense oligonucleotides greatly attenuated the cardioprotection conferred by exercise. These results suggest that MnSOD provides cardioprotection by attenuating IR-induced oxidation and calpain-mediated degradation of myocardial Ca(2+)-handling proteins, thereby preventing myocardial apoptosis and necrosis.
Collapse
Affiliation(s)
- Joel P French
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Marinovic J, Ljubkovic M, Stadnicka A, Bosnjak ZJ, Bienengraeber M. Role of sarcolemmal ATP-sensitive potassium channel in oxidative stress-induced apoptosis: mitochondrial connection. Am J Physiol Heart Circ Physiol 2008; 294:H1317-25. [PMID: 18192220 DOI: 10.1152/ajpheart.00840.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From time of their discovery, sarcolemmal ATP-sensitive K+ (sarcK ATP) channels were thought to have an important protective role in the heart during stress whereby channel opening protects the heart from stress-induced Ca2+ overload and resulting damage. In contrast, some recent studies indicate that sarcK ATP channel closing can lead to cardiac protection. Also, the role of the sarcK ATP channel in apoptotic cell death is unclear. In the present study, the effects of channel inhibition on apoptosis and the specific interaction between the sarcK ATP channel and mitochondria were investigated. Apoptotic cell death of cultured HL-1 and neonatal cardiomyocytes following exposure to oxidative stress was significantly increased in the presence of sarcK ATP channel inhibitor HMR-1098 as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and caspase-3,7 assays. This was paralleled by an increased release of cytochrome c from mitochondria to cytosol, suggesting activation of the mitochondrial death pathway. sarcK ATP channel inhibition during stress had no effect on Bcl-2, Bad, and phospho-Bad, indicating that the increase in apoptosis cannot be attributed to these modulators of the apoptotic pathway. However, monitoring of mitochondrial Ca2+ with rhod-2 fluorescent indicator revealed that mitochondrial Ca2+ accumulation during stress is potentiated in the presence of HMR-1098. In conclusion, this study provides novel evidence that opening of sarcK ATP channels, through a specific Ca2+-related interaction with mitochondria, plays an important role in preventing cardiomyocyte apoptosis and mitochondrial damage during stress.
Collapse
Affiliation(s)
- Jasna Marinovic
- Department of Anesthesiology, Medical College of Wisconsin, Miwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
11
|
Mathur MC, Kobayashi T, Chalovich JM. Negative charges at protein kinase C sites of troponin I stabilize the inactive state of actin. Biophys J 2007; 94:542-9. [PMID: 17872964 PMCID: PMC2157249 DOI: 10.1529/biophysj.107.113944] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alterations in the troponin complex can lead to increases or decreases in contractile activity. Most mutations of troponin that cause hypertrophic cardiomyopathy increase the activity of cardiac muscle fibers. In at least some cases these mutants stabilize the active state of regulated actin. In contrast, phosphorylation of troponin I at residues 43, 45, and 144 inhibits muscle contractility. To determine if alterations of troponin I that reduce activity do stabilize the inactive state of actin, we introduced negative charges at residues 43, 45, and 144 of troponin I to mimic a constitutively phosphorylated state. At saturating calcium, all mutants decreased ATPase rates relative to wild-type actin-tropomyosin-troponin. Reduced activation of ATPase activity was seen with a single mutation at S45E and was not further altered by mutating the other two sites. In the presence of low concentrations of NEM-S1, wild-type troponin was more active than the mutants. At high NEM-S1, the rates of wild-type and mutants approached the same limiting value. Changes in Ca(2+) affinity also support the idea that the equilibrium between states of actin-tropomyosin-troponin was shifted to the inactive state by mutations that mimic troponin I phosphorylation.
Collapse
Affiliation(s)
- Mohit C Mathur
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | | | | |
Collapse
|
12
|
Li SZ, Wu F, Wang B, Wei GZ, Jin ZX, Zang YM, Zhou JJ, Wong TM. Role of reverse mode Na+/Ca2+ exchanger in the cardioprotection of metabolic inhibition preconditioning in rat ventricular myocytes. Eur J Pharmacol 2007; 561:14-22. [PMID: 17306252 DOI: 10.1016/j.ejphar.2006.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 12/11/2006] [Accepted: 12/15/2006] [Indexed: 01/08/2023]
Abstract
This study determined the role of the reverse mode Na(+)/Ca(2+) exchanger (NCX) in cardioprotection of metabolic inhibition preconditioning in isolated ventricular myocyctes. Activity of the reverse mode NCX was assessed by changes of [Ca(2+)](i) upon withdrawal of extracellular Na(+). [Ca(2+)](i) was measured by spectrofluorometry, using Fura-2 as Ca(2+) indicator. The amplitude of contraction and exclusion of trypan blue by myocytes served as indices of contractile function and viability, respectively. Firstly, NCX activity significantly decreased during simulated reperfusion after severe metabolic inhibition (index ischaemia) in myocytes subjected to metabolic inhibition preconditioning. This inhibitory effect on NCX activity correlated with the enhancing effect of metabolic inhibition preconditioning on cell viability following ischaemic insult. Treatment myocytes with E4031, an activator of reverse mode NCX, during index ischaemia and reperfusion attenuated the enhancing effects of metabolic inhibition preconditioning on cell contraction and viability. Secondly, NCX activity was significantly higher at the end of metabolic inhibition preconditioning. More importantly, E4031 pretreatment mimicked the beneficial effects of metabolic inhibition preconditioning in myocytes and ischaemic preconditioning in the isolated perfused heart, respectively, and these effects were abolished by KB-R7943, an inhibitor of reverse mode NCX. The results indicate that increased reverse mode NCX activity during preconditioning triggered cardioprotection, and reduced reverse mode NCX activity during reperfusion after index ischaemia conferred cardioprotection.
Collapse
Affiliation(s)
- Shu-Zhuang Li
- Department of Physiology, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pasdois P, Beauvoit B, Costa ADT, Vinassa B, Tariosse L, Bonoron-Adèle S, Garlid KD, Dos Santos P. Sarcoplasmic ATP-sensitive potassium channel blocker HMR1098 protects the ischemic heart: implication of calcium, complex I, reactive oxygen species and mitochondrial ATP-sensitive potassium channel. J Mol Cell Cardiol 2006; 42:631-42. [PMID: 17306295 DOI: 10.1016/j.yjmcc.2006.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Revised: 11/27/2006] [Accepted: 12/19/2006] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the effects of HMR1098, a selective blocker of sarcolemmal ATP-sensitive potassium channel (sarcK(ATP)), in Langendorff-perfused rat hearts submitted to ischemia and reperfusion. The recovery of heart hemodynamic and mitochondrial function, studied on skinned fibers, was analyzed after 30-min global ischemia followed by 20-min reperfusion. Infarct size was quantified on a regional ischemia model after 2-h reperfusion. We report that the perfusion of 10 microM HMR1098 before ischemia, delays the onset of ischemic contracture, improves recovery of cardiac function upon reperfusion, preserves the mitochondrial architecture, and finally decreases infarct size. This HMR1098-induced cardioprotection is prevented by 1 mM 2-mercaptopropionylglycine, an antioxidant, and by 100 nM nifedipine, an L-type calcium channel blocker. Concomitantly, it is shown that HMR1098 perfusion induces (i) a transient and specific inhibition of the respiratory chain complex I and, (ii) an increase in the averaged intracellular calcium concentration probed by the in situ measurement of indo-1 fluorescence. Finally, all the beneficial effects of HMR1098 were strongly inhibited by 5-hydroxydecanoate and abolished by glibenclamide, two mitoK(ATP) blockers. This study demonstrates that the HMR1098-induced cardioprotection occurs indirectly through extracellular calcium influx, respiratory chain complex inhibition, reactive oxygen species production and mitoK(ATP) opening. Taken together, these data suggest that a functional interaction between sarcK(ATP) and mitoK(ATP) exists in isolated rat heart ischemia model, which is mediated by extracellular calcium influx.
Collapse
|
14
|
Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O'Farrelly C, Rabb H, Taylor CT. Reoxygenation‐specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia‐reperfusion injury. FASEB J 2006; 20:2624-6. [PMID: 17142801 DOI: 10.1096/fj.06-5097fje] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue reoxygenation following hypoxia is associated with ischemia-reperfusion injury (IRI) and may signal the development of ischemic preconditioning, an adaptive state that is protective against subsequent IRI. Here we used microarray RNA analysis of in vivo and in vitro models of IRI to delineate the underlying molecular mechanisms. Microarray analysis of renal tissue after ischemia-reperfusion revealed a number of highly up-regulated antioxidant genes including aldehyde dehydrogenases (ALDH1A1 and ALDH1A7), glutathione S-transferases (GSTM5, GSTA2 and GSTP1), and NAD(P)H quinone oxidoreductase (NQO1). The transcription factor NF-E2-related factor-2 (Nrf2), a master regulator of this antioxidant response, is also elevated in IRI. Furthermore, microarray analysis of renal epithelial cells exposed to hypoxia/reoxygenation identified Nrf2 to be up-regulated on reoxygenation. We also reveal a reoxygenation-specific nuclear accumulation of Nrf2 protein and subsequent activation of a NQO1 promoter reporter construct. Attenuating reactive oxygen species (ROS) in reoxygenation using the antioxidant N-acetyl cysteine results in inhibition of Nrf-2 activation. mRNA levels for Nrf2-dependent genes were detected in human liver biopsy 1 h after transplantation. These results indicate that reoxygenation-dependent Nrf-2 activity facilitates ischemic preconditioning through the induction of antioxidant gene expression and that ROS may be critical in signaling this event.
Collapse
Affiliation(s)
- Martin O Leonard
- School of Medicine and Medical Sciences, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang SS, Wei FC, Hung LM. Ischemic preconditioning attenuates postischemic leukocyte--endothelial cell interactions: role of nitric oxide and protein kinase C. Circ J 2006; 70:1070-5. [PMID: 16864944 DOI: 10.1253/circj.70.1070] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) produces immediate tolerance to subsequent prolonged ischemia/reperfusion (I/R), although the underlying mechanism remains unknown. The purpose of this study was to examine the role of nitric oxide (NO) and protein kinase C (PKC) in IPC-attenuated post ischemic leukocyte-endothelium interactions. METHODS AND RESULTS Male Sprague-Dawley rats were randomized (n=8 per group) into 5 groups: sham-operated control group, IPC group, I/R group (4 h of pubic epigastric artery ischemia followed by 2 h of reperfusion), IPC+I/R group (30 min of ischemia followed by 30 min of reperfusion before I/R), and chelerythrine (PKC inhibitor)+IPC+I/R group. Intravital microscopy was used to observe leukocyte-endothelium interaction and to quantify functional capillaries in rat cremaster muscle flaps. The mRNA expressions of neuronal (n) NO synthase (NOS), inducible (i) NOS, and endothelial (e) NOS were determined by reverse transcription-polymerase chain reaction. The results showed that besides increasing functional capillary density, IPC also prevents I/R-induced increases in leukocyte rolling, adhesion, and migration. In the chelerythrine+IPC+I/R group, the IPC protective action was inhibited by the addition of chelerythrine. It was also observed that IPC upregulated nNOS, iNOS, and eNOS mRNA in I/R injured tissue, but this effect was not blocked by chelerythrine. Furthermore, specifically pretreated nNOS and iNOS inhibitors, along with a nonselective NOS inhibitor, were used in the IPC+I/R group to examine their possible antagonistic effects on leukocyte-endothelium interactions. Inhibition of the nNOS and iNOS activities did not block the beneficial effects of IPC. In contrast, pretreatment with the nonselective NOS inhibitor (NG-nitro-L-arginine methylester) in the IPC+I/R group almost completely blocked the protective effect of IPC. CONCLUSIONS Both NOS and PKC play a protective role during IPC, but probably in distinct ways. Furthermore, the results also indicate that eNOS, but not nNOS nor iNOS, is the key mediator of IPC-attenuated I/R-induced microcirculatory disturbance.
Collapse
Affiliation(s)
- Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, and Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
16
|
Hofgaard JP, Sigurdardottir KS, Treiman M. Protection by 6-aminonicotinamide against oxidative stress in cardiac cells. Pharmacol Res 2006; 54:303-10. [PMID: 16879976 DOI: 10.1016/j.phrs.2006.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 05/18/2006] [Accepted: 06/13/2006] [Indexed: 11/18/2022]
Abstract
Oxidative stress at the time of reperfusion is a major aspect of ischemia-reperfusion injury in heart as well as in other organs. There is a continuing interest in development of pharmacological approaches to alleviate this injury. 6-Aminonicotinamide (6AN) has been shown to diminish myocardial necrosis following global ischemia in an isolated rat heart, apparently by limiting the oxidative injury component. We therefore explored the antioxidative potential of 6AN in a model using H9C2(2-1) rat cardiac myoblasts exposed to H2O2 stress. Dependent on the specific protocol, 6AN pretreatment for 6-23 h resulted in a strongly increased cell survival: from 11% to 16% in untreated cells to 56-75% following 6AN treatment. This 6AN-mediated protection was associated with a modest increase (up to 55%) of the cytosolic free Ca2+, and was blocked by ryanodine, but not by verapamil or nifedipine. The protective effect of 6AN was associated with a decrease in total cell content of the reduced glutathione (GSH) by 15-44%, indicative of an oxidative shift in the GSH/GSSG system redox potential. We propose that this redox shift caused an increased Ca2+ leak through ryanodine receptors, reflecting their known sensitivity to redox modulation. In turn, this Ca2+ redistribution appeared to trigger a state of an enhanced antioxidative resistance, somewhat analogous to the phenomenon of Ca2+ preconditioning. Similar to some of the cases of Ca2+ preconditioning, this protected state involved the activity of Ca2+ -independent, but not of Ca2+ -dependent, isoform(s) of protein kinase C.
Collapse
Affiliation(s)
- Johannes P Hofgaard
- Department of Medical Physiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, The Panum Institute 12.5, Blegdamsvej 3, Copenhagen N, Denmark
| | | | | |
Collapse
|
17
|
Przyklenk K, Maynard M, Darling CE, Whittaker P. Pretreatment with D-myo-inositol trisphosphate reduces infarct size in rabbit hearts: role of inositol trisphosphate receptors and gap junctions in triggering protection. J Pharmacol Exp Ther 2005; 314:1386-92. [PMID: 15919762 DOI: 10.1124/jpet.105.087742] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pretreatment with D-myo-inositol-1,4,5-trisphosphate hexasodium (D-myo-IP(3)), the sodium salt of the second messenger inositol 1,4,5-trisphosphate (IP(3)), is cardioprotective and triggers a reduction of infarct size comparable in magnitude to that obtained with ischemic preconditioning. However, this observation is enigmatic; whereas IP(3) signaling is conventionally initiated by receptor binding, IP(3) receptors are typically considered to be intracellular, and D-myo-IP(3) is membrane-impermeable. We propose that this paradox is explained by the presence of poorly characterized external IP(3) receptors and hypothesize that: 1) infarct size reduction with D-myo-IP(3) is receptor-mediated; and 2) communication via gap junctions and/or hemichannels is required to initiate this protection. To investigate the role of receptor binding, isolated buffer-perfused rabbit hearts underwent 30 min of coronary occlusion (CO) and 2 h of reflow. Prior to CO, hearts received no treatment (controls), D-myo-IP(3), L-myo-IP(3) (enantiomer not recognized by the IP(3) receptor), D-myo-IP(3) + the IP(3) receptor inhibitor xestospongin C (XeC), or XeC alone. Infarct size, assessed by tetrazolium staining, was reduced with D-myo-IP(3) treatment, whereas hearts that received L-myo-IP(3) or D-myo-IP(3) + XeC showed no protection. To evaluate the contribution of gap junctions/hemichannels, additional control and D-myo-IP(3)-treated cohorts received a 5-min infusion of heptanol or Gap 27, two structurally distinct gap junction inhibitors, administered at doses confirmed to attenuate intercellular transmission of a gap junction-permeable fluorescent dye. There was no infarct-sparing effect of D-myo-IP(3) in inhibitor-treated hearts. These data support the concepts that infarct size reduction with D-myo-IP(3) is triggered by receptor binding and that communication via gap junctions/hemichannels is involved in initiating this protection.
Collapse
Affiliation(s)
- Karin Przyklenk
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, 01655, USA.
| | | | | | | |
Collapse
|
18
|
Sanada S, Kitakaze M. Ischemic preconditioning: emerging evidence, controversy, and translational trials. Int J Cardiol 2004; 97:263-76. [PMID: 15458694 DOI: 10.1016/j.ijcard.2003.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 12/01/2003] [Accepted: 12/08/2003] [Indexed: 11/16/2022]
Abstract
Protection against ischemia by ischemic preconditioning (IP) is seen in many tissues and organs. However, the preconditioning ischemia must precede lethal ischemia for this effect to occur, and the creation of ischemia to treat heart disease does not seem to be a realistic strategy. Accordingly, the underlying mechanisms that confer cardioprotection should be identified. Early studies revealed that IP causes two windows of cardioprotection, and subsequent efforts to detect cardioprotective factors have identified various triggers, mediators, and potent effectors of IP, such as endogenous receptor agonists (adenosine, catecholamines, bradykinin, and opioids), intracellular messengers [protein kinase C (PKC), p38MAPK, PI-3K, and PKA], ion channels such as KATP channels, enzymes including heat shock proteins (HSPs), superoxide dismutase (SOD), and 5'-nucleotidase, and other factors [nitric oxide (NO), growth factors, free radicals, and products of the arachidonic acid cascade]. Some of these factors are involved in several different pathways and may have multiple roles in IP-induced cardioprotection. Recently, however, certain problems have arisen such as controversies related to increasing knowledge and the relative lack of clinical studies in contrast to the intensive performance of basic studies. To overcome these problems, the latest studies have followed three major trends: (1) investigation of mechanisms to explain the current controversies, (2) detection of other unknown potent mechanisms, and (3) promotion of clinical trials based on the evidence from experimental studies in larger animals. Here, we summarize recent investigations on IP, emphasizing on the controversial issues and emerging factors, and discuss current research on the prevention or treatment of ischemic heart disease including some relevant clinical studies.
Collapse
Affiliation(s)
- Shoji Sanada
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
19
|
Kumar Ebenezar K, Sathish V, Devaki T. Effect of arginine and lysine on mitochondrial function during isoproterenol induced myocardial infarction in rats. Nutr Res 2003. [DOI: 10.1016/s0271-5317(03)00234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Effect of arginine and lysine on mitochondrial function during isoproterenol induced myocardial infarction in rats. Nutr Res 2003. [DOI: 10.1016/s0271-5317(03)00135-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Sathish V, Vimal V, Ebenezar KK, Devaki T. Synergistic effect of nicorandil and amlodipine on mitochondrial function during isoproterenol-induced myocardial infarction in rats. J Pharm Pharmacol 2002; 54:133-7. [PMID: 11829124 DOI: 10.1211/0022357021771841] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The synergistic effects of nicorandil (KATP-channel opener) and amlodipine (calcium-channel blocker) on heart mitochondrial enzymes and the mitochondrial antioxidant defence system was examined on isoproterenol-induced myocardial infarction in rats. The rats given isoproterenol (150 mg kg(-1) daily, i.p.) for two days showed significant changes in marker enzymes, mitochondrial enzymes and the mitochondrial defence system. Pre-co-treatment with nicorandil (2.5 mg kg(-1) daily, p.o.) and amlodipine (5.0 mg kg(-1) daily, p.o.) for 3 days significantly prevented these alterations and restored enzyme activity to near normal. These findings demonstrate the protective and synergistic effect of nicorandil and amlodipine in combination against isoproterenol-induced cardiac damage.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Department of Biochemistry and Molecular Biology, University of Madras, Chennai, India
| | | | | | | |
Collapse
|
22
|
Kurkinen K, Busto R, Goldsteins G, Koistinaho J, Pérez-Pinzón MA. Isoform-specific membrane translocation of protein kinase C after ischemic preconditioning. Neurochem Res 2001; 26:1139-44. [PMID: 11700956 DOI: 10.1023/a:1012322906824] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mild cerebral anoxic/ischemic/stress insults promote 'tolerance' and thereby protect the brain from subsequent 'lethal' anoxic/ischemic insults. We examined whether specific activation of PKC alpha, delta, epsilon, or zeta isoforms is associated with ischemic preconditioning (IPC) in rat brain. IPC was produced by a 2-minute global cerebral ischemia. Membrane and cytosolic fractions of the hippocampi were immunoblotted using specific antibodies for PKCalpha, delta, epsilon, and zeta. PKCalpha showed a significant translocation to the membrane fraction from 30 min to 4 h and PKCdelta at 4 h following IPC. In contrast, the membrane/cytosol ratio of PKCepsilon showed a tendency to decrease at 30 min and 8 h, and the membrane/cytosol ratio of PKCzeta was significantly decreased from 30 min to 24 h following IPC. These findings indicate PKC isoform-specific membrane translocations in the hippocampus after brief global brain ischemia and suggest that activation of PKCalpha and PKCdelta may be associated with IPC-induced tolerance in the rat hippocampus.
Collapse
Affiliation(s)
- K Kurkinen
- Department of Neurology, University of Miami School of Medicine, FL 33101, USA
| | | | | | | | | |
Collapse
|
23
|
Youssef FF, Addae JI, McRae A, Stone TW. Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia. Brain Res 2001; 907:144-50. [PMID: 11430897 DOI: 10.1016/s0006-8993(01)02594-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously shown that long-term potentiation (LTP) decreases the sensitivity of glutamate receptors in the rat hippocampal CA1 region to exogenously applied glutamate agonists. Since the pathophysiology of hypoxia/ischemia involves increased concentration of endogenous glutamate, we tested the hypothesis that LTP could reduce the effects of hypoxia in the hippocampal slice. The effects of LTP on hypoxia were measured by the changes in population spike potentials (PS) or field excitatory post-synaptic potentials (fepsps). Hypoxia was induced by perfusing the slice with (i) artificial CSF which had been pre-gassed with 95%N2/5% CO2; (ii) artificial CSF which had not been pre-gassed with 95% O2/5% CO2; or (iii) an oxygen-glucose deprived (OGD) medium which was similar to (ii) and in which the glucose had been replaced with sucrose. Exposure of a slice to a hypoxic medium for 1.5-3.0 min led to a decrease in the PS or fepsps; the potentials recovered to control levels within 3-5 min. Repeat exposure, 45 min later, of the same slice to the same hypoxic medium for the same duration as the first exposure caused a reduction in the potentials again; there were no significant differences between the degree of reduction caused by the first or second exposure for all three types of hypoxic media (P>0.05; paired t-test). In some of the slices, two episodes of LTP were induced 25 and 35 min after the first hypoxic exposure; this caused inhibition of reduction in potentials caused by the second hypoxic insult which was given at 45 min after the first; the differences in reduction in potentials were highly significant for all the hypoxic media used (P<0.01; paired t-test). The neuroprotective effects of LTP were not prevented by cyclothiazide or inhibitors of NO synthetase compounds that have been shown to be effective in blocking the effects of LTP on the actions of exogenously applied AMPA and NMDA, respectively. The neuroprotective effects of LTP were similar to those of propentofylline, a known neuroprotective compound. We conclude that LTP causes an appreciable protection of hippocampal slices to various models of acute hypoxia. This phenomenon does not appear to involve desensitisation of AMPA receptors or mediation by NO, but may account for the recognised inverse relationship between educational attainment and the development of dementia.
Collapse
Affiliation(s)
- F F Youssef
- Department of Preclinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | | | | | | |
Collapse
|
24
|
Salvi S. Protecting the myocardium from ischemic injury: a critical role for alpha(1)-adrenoreceptors? Chest 2001; 119:1242-9. [PMID: 11296192 DOI: 10.1378/chest.119.4.1242] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Ischemic preconditioning (IPC) refers to the ability of short periods of ischemia to make the myocardium more resistant to a subsequent ischemic insult. It is the most powerful form of endogenous protection against myocardial infarction and has been demonstrated in all species evaluated to date. However, the cellular mechanisms that drive IPC remain poorly understood. This hypothesis describes an important role for alpha(1)-adrenoreceptors in mediating IPC and discusses the underlying mechanisms by which this is likely achieved. alpha(1)-Adrenoreceptors are present in the myocardium of all mammalian species, and several lines of evidence suggest that they play an important role in mediating IPC. During periods of myocardial hypoxia/ischemia, cardiomyocytes have to rely solely on anaerobic glycolysis for energy production; for this, the cells have to depend on increased glucose entry inside the cell as well as increased glycolysis. Stimulation of alpha(1)-adrenoreceptors increases glucose transport inside the cardiomyocytes by translocating glucose transporter (GLUT)-1 and GLUT-4 from the cytoplasm to the plasma membrane, enhances glycogenolysis by activating phosphorylase kinase, increases the rate of glycolysis by activating the enzyme phosphofructokinase, reduces intracellular acidity produced during excessive glycolysis by activating the Na(+)/H(+) exchanger, and inhibits apoptosis by increasing the levels of the antiapoptotic protein Bcl-2. Myocardial ischemia produces an increase in the expression of alpha(1)-adrenoreceptors in cardiomyocytes, as well as increases the levels of its agonist norepinephrine by several fold. During ischemic states, upregulation of alpha(1)-adrenoreceptors and increase in norepinephrine release could be a powerful adaptive mechanism that drives IPC. An understanding into the role of alpha(1)-adrenoreceptors in mediating IPC could not only point to newer treatments for limiting myocardial damage during myocardial infarction or heart surgery, but could also help in avoiding the use of alpha(1)-antagonists in patients with ischemic heart disease.
Collapse
Affiliation(s)
- S Salvi
- Department of Medicine, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
25
|
Kurkinen K, Keinänen R, Li W, Koistinaho J. Preconditioning with spreading depression activates specifically protein kinase Cdelta. Neuroreport 2001; 12:269-73. [PMID: 11209933 DOI: 10.1097/00001756-200102120-00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Preconditioning with brief ischemia or spreading depression (SD) confers tolerance in cortical neurons to subsequent episode of ischemia. In myocardium a similar preconditioning is achieved by mechanisms, which are mediated by protein kinase C (PKC) alpha, delta, epsilon or zeta isoform. We induced SD by cortical application of KCl in the rat and analyzed cortical tissues after recovery of 30 min, 4 h and 12 h. While no changes at protein levels or activity of PKCalpha, epsilon or zeta were detected, a considerable increase in membrane translocation of PKCdelta was seen at 30 min and 12 h. A significant increase at mRNA level, protein amount and autophosphorylation at 12 h confirmed the late activation of PKCdelta, which may be involved in neuronal protection by preconditioning.
Collapse
Affiliation(s)
- K Kurkinen
- AI Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
| | | | | | | |
Collapse
|
26
|
Dunzendorfer S, Wiedermann CJ. Modulation of neutrophil migration and superoxide anion release by metoprolol. J Mol Cell Cardiol 2000; 32:915-24. [PMID: 10888246 DOI: 10.1006/jmcc.2000.1148] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to having anti-sympathotonic effects, beta-blockers are thought to have some adrenoceptor-independent properties. Such ancillary effects are described for carvedilol acting as oxygen radical scavenger and for propranolol which blocks protein kinase C and phosphatidate phosphohydrolase. The goal of our in vitro experiments was to identify ancillary effects of the widely used beta-blockers metoprolol and atenolol in neutrophils. Neutrophil chemotaxis was tested using the leading front assay in a modified Boyden microchemotaxis chamber. Respiratory burst activity was detected fluorometrically. Inhibition of protein kinase C activity was tested with purified alpha-, beta- and gamma-isoenzyme preparation. Metoprolol dose-dependently inhibited formyl peptide-stimulated neutrophil chemotaxis and formylpeptide- and phorbol myristate acetate-triggered oxygen free radical production. These actions were not affected by the competitive presence of the beta-receptor agonist, orciprenaline. Effects of metoprolol, as well as of propranolol, and the signaling enzyme blockers were strongly time dependent. Propranolol mimicked effects of staurosporine on respiratory burst, whereas the effects of metoprolol were similar to bisindolylmaleimide, a specific protein kinase C blocker. Atenolol, a hydrophilic beta-blocker, neither affected neutrophil chemotaxis nor respiratory burst. In a cell-free system, metoprolol did not interfere with the activity of the purified protein kinase C alpha-, beta- and gamma-isoenzymes. Adrenoceptor-independent inhibition of neutrophil chemotaxis and free radical production is a novel mode of action of metoprolol that may be relevant for beneficial effects ot the beta-blocker in heart failure and endothelial preconditioning.
Collapse
Affiliation(s)
- S Dunzendorfer
- Department of Medicine, University of Innsbruck, Austria
| | | |
Collapse
|
27
|
Murase K, Okumura K, Hayashi K, Matsui H, Toki Y, Ito T, Hayakawa T. Measurements of 1,2-diacylglycerol and ceramide in hearts subjected to ischemic preconditioning. Life Sci 2000; 66:1491-500. [PMID: 10794496 DOI: 10.1016/s0024-3205(00)00466-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An accumulation of recent evidence suggests that the mechanism in ischemic preconditioning (IPC) may involve the activation of protein kinase C (PKC) regulatory pathway. In this study, we examined whether the content of 1,2-diacylglycerol (1,2-DAG) and ceramide, which are intracellular second messengers regulating PKC activity, change during IPC in isolated perfused rat hearts, and whether the observed change in 1,2-DAG is accompanied with alteration in its fatty acid composition. Hearts subjected to IPC, consisting of 5-min transient global ischemia followed by 5-min reperfusion, presented a significant functional recovery during subsequent 40-min reperfusion following 40-min global ischemia compared with non-preconditioned hearts. An increase in 1,2-DAG content was observed in hearts subjected to 5-min transient ischemia compared with non-ischemic control hearts, however this was not seen in hearts harvested after 5-min reperfusion following 5-min ischemia. While fatty acid composition in 1,2-DAG was virtually unchanged in hearts subjected to 5-min ischemia, saturated 1,2-DAG decreased and monounsaturated/polyunsaturated 1,2-DAG increased in hearts reperfused for 5-min following 5-min ischemia compared with the non-ischemic control hearts. Ceramide mass did not change significantly, suggesting that the contribution of ceramide may be small in IPC. These data are in concert with the hypothesis that 1,2-DAG is a second messenger in IPC and the changes in fatty acid composition of 1,2-DAG may add new insight concerning signal transduction pathway in IPC.
Collapse
Affiliation(s)
- K Murase
- Internal Medicine II, Nagoya University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Gysembergh A, Lemaire S, Piot C, Sportouch C, Richard S, Kloner RA, Przyklenk K. Pharmacological manipulation of Ins(1,4,5)P3 signaling mimics preconditioning in rabbit heart. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H2458-69. [PMID: 10600869 DOI: 10.1152/ajpheart.1999.277.6.h2458] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence revealed biphasic alterations in myocardial concentrations of the second messenger inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] with ischemic preconditioning (PC), i.e., increase during brief PC ischemia and decrease early during sustained test occlusion. Our aim was to determine whether an agonist and an antagonist of Ins(1,4,5)P(3) signaling (D-myo-inositol-1,4,5-trisphosphate hexasodium salt [D-myo-Ins(1,4, 5)P3] and 2-aminoethoxydiphenyl borate (2-APB), respectively), given such that they mimic this biphasic profile, would mimic infarct size reduction with PC. To test this concept, isolated, buffer-perfused rabbit hearts received no intervention (control), ischemic PC, D-myo-Ins(1,4,5)P3, D-myo-Ins(1,4,5)P(3) + PC, 2-APB, or 2-APB + PC. All hearts then underwent 30-min coronary occlusion and 2 h reflow, and infarct size was delineated by tetrazolium staining. In addition, the effects of D-myo-Ins(1,4,5)P3 and 2-APB on Ins(1,4,5)P3 signaling were evaluated in isolated fura 2-loaded rat cardiomyocytes. Mean infarct size was reduced with PC and in all D-myo-Ins(1,4,5)P3- and 2-APB-treated groups versus control (59 and 42-55%, respectively, vs. 80% of myocardium at risk, P < 0.05). Thus pharmacological manipulation of Ins(1,4,5)P3 signaling mimics the cardioprotection achieved with ischemic PC in rabbit heart.
Collapse
Affiliation(s)
- A Gysembergh
- Heart Institute, Good Samaritan Hospital and University of Southern California, Los Angeles, California 90017-2395, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Han X, Budreau AM, Chesney RW. Ser-322 is a critical site for PKC regulation of the MDCK cell taurine transporter (pNCT). J Am Soc Nephrol 1999; 10:1874-9. [PMID: 10477138 DOI: 10.1681/asn.v1091874] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Previous studies have shown that the Madin-Darby canine kidney cell taurine transporter (pNCT) is downregulated by protein kinase C (PKC) activation. In this study, it is hypothesized that the highly conserved serine-322 (Ser-322) located in the fourth intracellular segment (S4) may play an important role in the function of taurine transporter, which is modulated by PKC phosphorylation. It is demonstrated that Ser-322 is the critical site of PKC phosphorylation, as determined by site-directed mutagenesis. When Ser-322 of pNCT was changed to alanine (S322A) and this mutant was evaluated in an oocyte expression system, taurine transport activity increased threefold compared with control (wild-type pNCT). Activation of PKC by the active phorbol ester 12-myristate 13-acetate did not influence taurine transport by mutant S322A. Kinetic analysis showed that the mutation of Ser-322 essentially changed the Vmax, rather than the Km, of the transporter. Mutation of all other PKC consensus sites did not affect transporter activity when expressed in the oocyte system. Western blot analysis showed that expression of taurine transporter protein was similar in oocytes injected with either wild-type or mutant pNCT cRNA, indicating that the enhanced taurine transport activity by mutant S322A was not caused by a greater amount of transporter expressed in the oocyte. Furthermore, this study demonstrated that the taurine transporter was phosphorylated after PKC activation, and this effect was not observed in mutant S322A. In conclusion, Ser-322 is critical in PKC regulation of taurine transporter activity. The steady-state taurine transporter activity is tightly controlled by endogenous PKC phosphorylation of Ser-322, which is located in the fourth intracellular segment of the taurine transporter.
Collapse
Affiliation(s)
- X Han
- Department of Pediatrics, University of Tennessee, and the Crippled Children's Foundation Research Center at Le Bonheur Children's Medical Center, Memphis 38103, USA
| | | | | |
Collapse
|
30
|
Przyklenk K, Simkhovich BZ, Bauer B, Hata K, Zhao L, Elliott GT, Kloner RA. Cellular mechanisms of infarct size reduction with ischemic preconditioning. Role of calcium? Ann N Y Acad Sci 1999; 874:192-210. [PMID: 10415532 DOI: 10.1111/j.1749-6632.1999.tb09236.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brief episodes of ischemia protect or "precondition" the heart and reduce infarct size caused by a subsequent sustained ischemic insult. Despite a decade of intensive investigation, the cellular mechanism(s) responsible for this paradoxical protection remain poorly understood. In this review, we focus on the emerging concept that alterations in intracellular calcium homeostasis may participate in either triggering and/or mediating infarct size reduction with preconditioning.
Collapse
Affiliation(s)
- K Przyklenk
- Heart Institute, Good Samaritan Hospital, Los Angeles, California 90017-2395, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Pérez-Pinzón MA, Born JG, Centeno JM. Calcium and increase excitability promote tolerance against anoxia in hippocampal slices. Brain Res 1999; 833:20-6. [PMID: 10375673 DOI: 10.1016/s0006-8993(99)01462-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously demonstrated that anoxic preconditioning (APC) protects against a subsequent otherwise 'lethal' anoxic insult in hippocampal slices. Tested here are two hypotheses: (a) APC requires calcium to improve electrical recovery in hippocampal slices; and (b) mild excitation promotes preconditioning neuroprotection. Control hippocampal slices were given a single 'test' anoxic insult followed by reoxygenation. Experimental slices were preconditioned by three short anoxic insults of 1 min separated by 10 min of reoxygenation. At 30 min after the third 'conditioning' insult, slices underwent a 'test' anoxic insult [1 min of anoxic depolarization (AD)], and then slices were reoxygenated. Evoked potentials (EPs) were recorded throughout the experiment. In other slices, APC was emulated by inducing spreading depression (as determined by a negative DC shift) with KCL or by inducing increased neuronal excitability with the excitatory agent 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX) (an adenosine A1 receptor blocker). 'Test' anoxic insults lasted 2 min of AD in these groups. To determine the role of calcium during APC, extracellular CaCl2 was decreased to 0.5 mM but only during the APC episodes ('test' anoxia, 1 min of AD). EP amplitudes recovered significantly better after anoxia in preconditioned slices, and in KCl- and DPCPX-treated slices (147.2+/-33.3, n=8, **p<0.01, 71.7+/-13.5, n=7, **p<0.01, and 117.8+/-37.3, n=5, ***p<0.001, respectively) compared to controls. Decreases in extracellular CaCl2 during APC blocked the recovery of EPs after 'test' anoxia (80.6+/-23.0, n=8). These data confirm that increases in excitability can emulate APC. These data also demonstrate that calcium influx during preconditioning is required for the induction of tolerance during APC.
Collapse
Affiliation(s)
- M A Pérez-Pinzón
- Department of Neurology D4-5, University of Miami School of Medicine, P.O. Box 016960, Miami, FL 33101, USA.
| | | | | |
Collapse
|
32
|
Tauskela JS, chakravarthy BR, Murray CL, Wang Y, Comas T, Hogan M, Hakim A, Morley P. Evidence from cultured rat cortical neurons of differences in the mechanism of ischemic preconditioning of brain and heart. Brain Res 1999; 827:143-51. [PMID: 10320703 DOI: 10.1016/s0006-8993(99)01322-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ca2+ influx and activation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) during nonlethal ischemic preconditioning have been implicated in the protection of the heart against subsequent lethal ischemic injury. Thus, we determined if Ca2+ influx, PKC and MAPK also mediate ischemic preconditioning-induced protection in neurons. Preconditioning by exposure of E18 rat cortical cultures to 90 min of nonlethal oxygen-glucose deprivation (OGD) 24 h prior to 180-240 min of lethal OGD was neuroprotective. Exposure to nominally free Ca2+, or blockade of the alpha-amino-hydroxy-5-methyl-isoxazolepropionate (AMPA) receptor with CNQX did not eliminate protection. MAPK activity did not change and PKC activity decreased by 50% relative to normal baseline levels at 0 and 24 h following preconditioning. The sustained decrease in PKC activity was not due to a loss of enzyme as determined from immunoblots using pan and epsilon-, beta- and zeta-specific PKC antibodies. Neuroprotection was maintained with pharmacological inhibition of PKC activity by staurosporine, chelerythrine and calphostin C and MAPK activity by PD 98059 during preconditioning, indicating that activation of these enzymes during preconditioning was not necessary for protection. Therefore, in contrast to cardiac tissue, ischemic preconditioning of neurons does not require activation of PKC and MAP kinase, and protection is maintained with substantial removal of extracellular Ca2+ or blockade of the AMPA receptor.
Collapse
Affiliation(s)
- J S Tauskela
- National Research Council of Canada, Institute for Biological Sciences, Building M-54, Montreal Road Campus, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Brief transient episodes of nonlethal myocardial ischemia protect or "precondition" the heart and render the myocardium resistant to a subsequent more sustained ischemic insult. The hallmark of this phenomenon--documented in virtually all species and experimental models evaluated to date in countless laboratories worldwide--is the profound reduction in infarct size seen in preconditioned groups versus time-matched controls. Efforts to identify the cellular mechanisms responsible for this paradoxical ischemia-induced cardioprotection, to expand the definition of ischemic preconditioning beyond infarct size reduction, and, perhaps most importantly, to evaluate the efficacy of preconditioning in disease models and in the clinical setting, are all topics of intensive ongoing investigation.
Collapse
Affiliation(s)
- K Przyklenk
- Heart Institute, Good Samaritan Hospital and Department of Medicine, University of Southern California, Los Angeles 90017-2395, USA
| | | |
Collapse
|
34
|
Kouchi I, Murakami T, Nawada R, Akao M, Sasayama S. KATP channels are common mediators of ischemic and calcium preconditioning in rabbits. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H1106-12. [PMID: 9575913 DOI: 10.1152/ajpheart.1998.274.4.h1106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcium preconditioning (CPC), like ischemic preconditioning (IPC), reduces myocardial infarct size in dogs and rats. ATP-sensitive potassium (KATP) channels induce cardioprotection of IPC in these animals. To determine whether KATP channels mediate both IPC and CPC, pentobarbital sodium-anesthetized rabbits received 30 min of coronary artery occlusion followed by 180 min of reperfusion. IPC was elicited by 5 min of occlusion and 10 min of reperfusion, and CPC was elicited by two cycles of 5 min of calcium infusion with an interval period of 15 min. Infarct size expressed as a percentage of the area at risk was 38 +/- 3% (mean +/- SE) in controls. IPC, CPC, and pretreatment with a KATP channel opener, cromakalim, all reduced infarct size to 13 +/- 2, 17 +/- 2, and 12 +/- 3%, respectively (P < 0.01 vs. controls). Glibenclamide, a KATP channel blocker administered 45 min (but not 20 min) before sustained ischemia, attenuated the effects of IPC and CPC (31 +/- 4 and 41 +/- 6%, respectively). Thus KATP channel activation appears to contribute to these two types of cardioprotection in rabbits.
Collapse
Affiliation(s)
- I Kouchi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|